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Editor: Paulo Pereira The contribution of herbivores to ecosystem nutrient fluxes through dung deposition has the potential to, directly
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well as with body size, with the dung of small herbivores having larger C, N, and P faecal content. Seasonality
also showed marked effects on faecal nutrient content, with a general pattern of decreasing levels of faecal P, N
and an increase of C/N as the summer progresses following the loss of nutrient value of the vegetation. Moreover,

we showed how herbivores play an important role as natural fertilizers of C, N, and P in our study area, especially
cattle. Our study highlights the importance of considering the relative contribution of different herbivores to
ecosystem nutrient fluxes in management practices, especially with ongoing changes in wild and domestic
herbivore populations in alpine ecosystems.

1. Introduction

In recent years, there has been a growing interest in and recognition
of the link between terrestrial animals and biogeochemical cycles
(termed zoogeochemistry), and how animals may mediate nutrient
cycling and ecosystem functioning (Ellis-Soto et al., 2021; Enquist et al.,
2020; Forbes et al., 2019; Malhi et al., 2016). Large terrestrial herbivores
have an important role in soil nutrient fluxes, with dung deposition
acting as one of the main mechanisms of input and nutrient cycle ac-
celeration (Sitters et al., 2017). Herbivore waste has relatively low C/N
ratios compared to other inputs (i.e. leaf litter, standing dead wood)
allowing for nutrients within the waste to be rapidly released into the
soil (Frank and Groffman, 1998; Hobbs, 1996; Pastor et al., 1993).
Additionally, from daily activities and seasonal migrations, herbivores
actively transport these nutrients across landscapes and create spatial
heterogeneity and dynamism in the distribution of nutrients (Bauer and
Hoye, 2014; Ferraro et al., 2022). However, it has been estimated that
wild animal-mediated nutrient transport has declined by >90 % since
the late Pleistocene due to declining herbivore population densities,
species loss, and constraints on animal movement (Doughty et al.,
2016). Large herbivore communities are facing rapid changes at global
and local scales — changes that will affect animal-vectorized nutrient
subsidies (Ripple et al., 2015).

Faecal nutrient content varies both among herbivore species and
through time, thus impacting the spatial patterning and primary pro-
duction of the terrestrial plant communities that benefit from these
nutrient inputs (Sitters and Olde Venterink, 2018, 2021b; Valdés-Cor-
recher et al., 2019). The temporal variation in dung quality has been
well studied; nutrient concentration and stoichiometry vary across
seasons, reflecting changes in plant phenology and herbivore’s diet
quality and composition (Villamuelas et al., 2016; Verheyden et al.,
2011). In contrast, the drivers of the interspecific variation in dung
quality are less well understood. Theory suggests that body size may be
an important factor; increasing body size correlates with higher total
metabolic requirements, requiring animals to expand their diet to lower-
quality forage which translates into higher dung C/N ratios (Demment
and Van Soest, 1985). Small herbivores, on the other hand, have higher
metabolic rates and select N-richer food which decreases faecal C/N
ratios (Jarman, 1974; Sitters and Olde Venterink, 2021a). Similarly, the
P requirement for skeletal investment also increases with body size, and
consequently, larger herbivores will excrete proportionally lower P (Le
Roux et al., 2020; Sitters et al., 2017). However, this body-size depen-
dent theory for differences in dung stoichiometry has been recently
questioned (Sitters and Olde Venterink, 2021a) as other factors might
affect faecal stoichiometry and overall nutrient content, such as feeding
strategies (i.e., grazer, browser, mixed-feeder; Grant et al., 1995) or
digestive strategies (i.e., ruminant and hindgut fermenters; de Iongh
et al., 2011).

We explore these questions within the context of Pyrenean grass-
lands. These systems have been traditionally used for extensive livestock
grazing during summer (Garcia-Gonzalez et al., 2005). Pastoralism,
however, is decreasing in such ecosystems, and livestock is gradually
being replaced by an increasing population of wild herbivores (Espunyes
etal., 2019a, 2019b; Munoz-Ulecia et al., 2021). In the alpine ecosystem
of the Spanish Pyrenees, a large population of a wild herbivore, the
Pyrenean chamois (Rupicapra pyrenaica pyrenaica), is present the whole

year, and from June to October they cohabit with sheep (Ovis aries),
horses (Cavall Pirinenc Catala horses Equus ferus caballus), and free-
roaming cattle (Bruna dels Pirineus cattle, Bos taurus). How pasto-
ralism abandonment and consequently changes in the abundance and
richness of the herbivores present in the Pyrenees will affect soil nutrient
cycling and therefore ecosystem functioning is uncertain. With the aim
of understanding the potential contribution of dung to soil nutrient
fluxes in the Pyrenees, we assessed the faecal nutrient content (carbon,
C; nitrogen, N; phosphorus, P; potassium, K) and stoichiometry (C/N) of
the four herbivores (chamois, sheep, horse, and cattle) present in the
system. We collected samples from June to October when all species
coexist in the system. Our objectives were to 1) explore if herbivore
faecal nutrient content and stoichiometry differed between species and
body size groups, 2) determine if seasonal differences in herbivore faecal
nutrient content and stoichiometry persisted in our study system, 3)
compare soil nutrient content of the study area with the faecal nutrient
content of the four herbivores, and 4) quantify the amount of nutrients
released annually by each herbivore.

2. Methodology
2.1. Study area

The study was conducted in the Freser-Setcases National Game
Reserve (FSNGR) in the eastern Pyrenees, Catalonia, Spain (42° 22'N, 2°
09'E; Fig. 1a). FSNGR is a 20.200 ha mountainous area with an average
altitude of 2000 m a.s.l. (1200-2910 m a.s.l. at Puigmal Peak) domi-
nated by metamorphic rocks (Vigo i Bonada, 2008). Soils in the study
area are young with little or no profile development (Entisol order ac-
cording to IUSS Working Group WRB, 2022). In particular, soils have
young erosional surfaces (Orthents suborder), on slopes where the depth
to bedrock is very shallow (Cryorthent and Udorthent groups).

Sampling was carried out in two areas separated by 20 km of rough
terrain (Fig. 1b): Costabona, a 410 ha area located in the north-eastern
part of the FSNGR (42° 24'N, 2° 20’ E, ranging from 1093 to 2429 m a.s.
1.), and Fontalba, a 717 ha area in the western part (42° 22'N, 2° 08'E,
ranging from 1660 to 2248 m a.s.l.). Both areas are characterised by
similar vegetation composition and structure, typical of the sub-humid
subalpine and alpine bioclimatic belts of the southern slopes of the
Pyrenees with a noticeable climatic Mediterranean influence (Vigo i
Bonada, 2008). Above 2000 m a.s.l., the vegetation consists of alpine
grasslands dominated by graminoids (e.g., Festuca and Carex genus). At
lower elevations (1200 to 2000 m a.s.l.), the vegetation is dominated by
Pinus uncinata forest patches and dispersed patches of woody understory
shrubs, including Arctostaphylos uva-ursi, Calluna vulgaris, Cytisus sco-
parius, and Juniperus communis. During the study years (2011 and 2012),
the annual mean temperature was 6 °C (monthly min = 1.7 °C, monthly
max = 10.8 °C) and the mean yearly accumulated rainfall was 955.2
mm. During the study period, June to October, the mean temperature
was 10.4 °C (min = 6.5 °C, max = 16.3 °C) and the mean accumulated
rainfall was 355.15 mm (Catalan Meteorological Office, 2022).

2.2. Studied species

Pyrenean chamois are present all year long in FSNGR, but change
habitats seasonally. During autumn and winter, chamois are mostly
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present below the treeline, and in spring and summer, they are usually
observed in open grasslands above the tree line, where they share
habitat with livestock species. According to Galvez Ceron (2015) in
Costabona, a population of 80 chamois (0.04 livestock units/ha, 7.6 % of
total herbivore population) cooccurs with herds of 300 sheep (0.15 LU/
ha, 28.6 % of the total herbivore population), 70 horses (0.12 LU/ha,
6.7 % of the total herbivore population), and 600 cattle (1.46 LU/ha,
57.1 % of the total herbivore population) from June to October. In
Fontalba, 150 chamois (0.04 LU/ha, 33.3 % of the total herbivore
population) share habitat with 50 horses (0.05 LU/ha, 11.1 % of the
total herbivore population) and 250 cattle (0.35 LU/ha, 55.6 % of the
total herbivore population); sheep are not present in this study area
(Table 1). Other large herbivores such as roe deer (Capreolus capreolus),
red deer (Cervus elaphus), and mouflon (Ovis aries musimon) reside in
FSNGR at very low densities and were not considered in this study; no
large predators are present within the park.

Of the four study species, chamois has the smallest body mass, fol-
lowed by sheep, horses, and finally, cattle (Table 1). The diet of the
domestic species largely overlaps and is dominated by grasses and forbs.
Although chamois is generally considered a mixed feeder in the summer
months, in our study area it acts as a browser with a clear preference for
shrubs like Calluna vulgaris and Cytisus scoparius (Espunyes et al.,
2019a). It is hypothesized that this behaviour is due to niche parti-
tioning, as they are displaced to more rocky or forested areas to avoid
competition with livestock (Espunyes et al., 2019a).

2.3. Faecal sampling and nutrient content assessment

Faecal samples were collected following the sampling procedure of
Galvez Ceron (2015). Fresh faecal samples of the studied herbivores
were collected monthly from June to October for two years (2011 and
2012) in both study areas (Fontalba and Costabona). At least two ob-
servers visited each study area twice a month and walked two transects

Pic Costabona

ZS
Costabona

Altitude (m)
[ 387900
[ 900-1.300
[ 1.300- 1.700
[ 1.700- 2:200
[ 2:200- 2901

SPAIN C
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Table 1

General information of the herbivore species present in the study area. Data on
daily defecations events was averaged across literature sources, except for
chamois where sheep defecation rates were used. Dry dung weight was
measured from 5 faeces collected in the field in the present study.

Chamois Sheep Horse Cattle
Average population size* 230 300 120 850
Body size Small Small Large Large
Feeding strategy Browser” Browser” Grazer” Grazer”
Digestive system Ruminant  Ruminant Non Ruminant

ruminant

Average body weight (kg) ~ 30° 60" 700° 800
Defecation events per day ~ 16"¢" 16" 12 15°!
Dry dung weight (g) 25.66 25.66 251.55 282.6
Average nr. of days in the 365 153 153 153

field

" Average population represents the average numbers of animals in 2011 and
2012 summed across sites.

2 Gélvez Cer6n, 2015.

b Hofmann, 1989.

¢ Smith et al., 2003.

4 Generalitat de Catalunya, 2010.

¢ Gonzalez, 2011.

f Welch, 1982.

& Longhurst, 1954.

b de Bie, 1976.

i Westendorf, 2006.

J Lamoot et al., 2004.

k villettaz Robichaud et al., 2011.

! Aland et al., 2002.

(one per location) of about 5 km. These transects were placed between
1900 and 2400 m a.s.l. and encompassed the main vegetation commu-
nities and the altitudinal movement of chamois throughout the months
within each study area. Groups of chamois and livestock herds were

Fig. 1. Location of both study areas (Fontalba and Costabona) in Freser-Setcases National Game Reserve, Spain (A, B) where chamois (C), sheep (D), horse (E), and

cattle (F) are present.
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located with binoculars and spotting scopes. Observers collected fresh
droppings of all herbivore species at the exact location where animals
were sighted and in their surroundings. At the site of collection, group
size, composition, and precise location of the animals were recorded.
Faecal samples were collected in separate labelled plastic bags. Based on
colour, texture, and the presence of mucus, we were able to determine
that all samples were collected within a maximum of 5 h after defecation
(Hibert et al., 2011). To avoid double-sampling of the same individual,
groups of animals observed twice were only sampled once. A group of
droppings collected in one bag was considered a single faecal sample,
even if the droppings could have belonged to different individuals.
Samples were transported to the laboratory and stored frozen at —20 °C.
Before processing, samples were thawed for 24 h and then dried in an
oven at 80 °C for 48 h.

To assess the nutrient content of chamois, horse, and cattle faeces,
we analysed two faecal samples per species for each site, month, and
year. For sheep, we analysed three samples for each month and year, as
sheep were only present in Costabona. Some months had a lower
number of samples because no fresh faeces were found. A total of 121
samples (33 for chamois, 23 for sheep, 31 for horse, and 34 for cattle)
were sent to the University of Jaen for chemical analysis. Faecal samples
were ground and homogenized using an MM400 Retsch mixer ball mill.
Duplicated or triplicated analyses were carried out in aliquots of two-
thirds of the samples to account for analytical variability. C and N
concentrations were measured by gas chromatography using a LECO
TruSpec Micro CNHS autoanalyzer, and P and K concentrations were
measured by Inductively Coupled-Plasma (ICP) spectrometry (Agilent
model 7900), after HpSO4-H202 acid wet digestion of faecal samples
(Parkinson and Allen, 1975) using a BD40 block digestion system (Seal
Analytical). Analytical precision (i.e., the mean and standard deviation
of the coefficients of variation of the different replicated analyses) was
2.04 4 2.07 % for total C, 3.15 & 2.43 % for total N, 2.7 4 2.2 % for total
P and 4.8 + 4.3 % for total K. Nutrient contents are expressed as % of a
particular element of the total dry weight of dung; means and standard
errors are presented.

2.4. Data analyses

We used linear mixed-effect models (LMMs) to analyse the rela-
tionship between faecal nutrient concentrations (C, N, P, K) and stoi-
chiometry (C/N) and herbivore species (chamois, sheep, horse, and
cattle), body size (small or large herbivores), and seasonality (from June
to October). Before analysis, we excluded one faecal nitrogen data point
for chamois, which was a clear outlier 4 standard deviations away from
the mean.

We first built models for each of the nutrients to assess if the average
concentration for each nutrient (C, K, N, P, C/N) was different among
herbivores. We included a nested random effect of the sampling site and
a variable for each independent month across the two years. To compare
each species, we performed a posthoc Tukey test on these models using
the package ‘multcomp’ (Hothorn et al., 2016). To assess if average
nutrient values were different among body sizes, we then divided the
herbivore species into two groups: small herbivores (chamois and sheep)
and large herbivores (horse and cattle). We classified herbivores per
body size and not per feeding strategy (i.e., grazer, browser, and mixed
feeder) due to our low sample size of each guild (see Table 1). We then
built a set of repeated measures ANOVAs to explore if seasonal differ-
ences existed for each species for each of the nutrients (C, N, P, K C/N).
Repeated measures ANOVAs were chosen as they are robust to non-
normality (Blanca et al., 2023), and while most of our models con-
tained normally distributed data, or data that met the assumptions of
normality after log-transformation, two models did not. Both models,
however, met the assumption of sphericity, indicating that the results of
the repeated measures ANOVA are robust and had non-significant re-
sults (Blanca et al., 2023). For the models with significant seasonal
differences (i.e., p < 0.05), we performed a posthoc Tukey test to
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evaluate if any seasonal patterns persisted across nutrients. All statistical
analyses were conducted using the ‘lme4’ (Bates et al., 2023) and
‘lmerTest’ (Kuznetsova et al., 2017) packages in the R Statistical Soft-
ware 3.6.2 version (R Core Team, 2021).

To understand the faecal content of each nutrient in the context of
alpine ecosystems, we compared the average faecal composition (%) of
each nutrient for each herbivore with the background soil content (%).
Since soil biogeochemistry information from our study area was not
available, we extracted soil nutrient content values from the literature
from sites within the Pyrenean mountain range that were comparable to
ours. Concentrations of soil organic C data were extracted from Garcia-
Pausas et al. (2007), the concentration of total soil N and C/N ratio from
Rodriguez et al. (2020), and soil P and K concentration from Badia et al.
(2008).

Finally, to assess the total nutrient contribution of each herbivore in
alpine ecosystems yearly, we compiled information on daily defecation
rates for each herbivore from the literature. Sheep defecation events are
reported as 17 (Welch, 1982), 13 to 16 (Longhurst, 1954) and 18 (de Bie,
1976) events per day; in this study, we used the average (16 defecation
events per day). Sheep defecation rates were used also for chamois since
literature about the topic was not found. Horse defecation rates are re-
ported from 4 to 13 events per day (Westendorf, 2006), and 20 (Lamoot
et al., 2004); in this study, we used an average (12 defecation events per
day). Finally, cattle defecation rates are reported as 3 to 18, 9 to 23
(Villettaz Robichaud et al., 2011) and 8 to 29 (Aland et al., 2002) events
per day; we use the average (15 defecation events per day). To estimate
the total nutrient contribution of each species, defecation rates were
multiplied by the average number of days each species was present at
the sites, the average dry weight of a defecation event (total defecation
dry weight), and the density. The average dry weight of a defecation
event for each herbivore was calculated based on five randomly chosen
faecal samples per species. We collected and weighed the whole dung
defecation from five cows and horses as well as the droppings from five
sheep. We subsampled 20 g of the fresh sample to dry at 65 °C for 24 h.
The dry material was used to calculate the specific dry weights per
defecation event in our animal models. The population density of each
herbivore (individuals per hectare) was estimated using the average
population of both study years and areas retrieved from Galvez Ceron
(2015) and dividing it by the area of each study site (410 ha for Cos-
tabona and 717 ha for Fontalba).

3. Results

3.1. Faecal nutrient content variation between herbivore species, body
sizes and seasonality

Differences in faecal nutrient concentration among herbivore species
were found for all nutrients (Fig. 2; Appendix A: Table A1). Sheep had on
average the largest concentrations of C, N, and P within their faecal
matter, while horses had the largest C/N ratios and K concentrations
(Table A2). Sheep faecal concentration differed from cattle and horse for
every nutrient, while chamois differed from cattle and horse in N and K
concentrations as well as C/N ratios (Table A3). Chamois and sheep had
no differences in any faecal nutrient content except for P and generally,
cattle and horses had similar faecal nutrient content except for K and C/
N ratios (Table A3). Aggregating by body size resulted in similar find-
ings, with large-bodied and small-bodied herbivores having significantly
different faecal nutrient contents; large-bodied herbivores had relatively
lower C, N, and P content yet higher K content and C/N ratios
(Table A4).

While in a vast majority of cases, faecal nutrient concentration varied
through time, there were several notable exceptions. Chamois was the
only species to exhibit seasonal differences in faecal C concentrations
(Fig. 3; Table 2), a result specifically driven by significantly lower values
in July. On the other hand, horses exhibited no monthly differences in
faecal N, and cattle only had a weakly significant seasonal variation in
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faecal P. There were also several seasonal patterns among herbivores;
most species had increased faecal N in June compared to other months
(Table A5). Small herbivores also had generally enriched P values in
June compared to other months. Finally, faecal C/N ratios remained
relatively consistent in the fall months for all domestic herbivores
(August-October).

3.2. Faecal nutrient deposition

Comparing the average nutrient content (%) in the faeces of herbi-
vores to the average nutrient content in the soil of the Pyrenees reveals

that the herbivores’ faeces contain approximately 8 times more C, 4
times more N, 5 times more P, and 2 times higher carbon-to-nitrogen
ratio (C/N). Concentrations of faecal K were comparable to those from
soil (Fig. 2; Table A2).

In terms of annual nutrient input into the ecosystem, cattle had by far
the largest inputs of all nutrients among the studied herbivores, a result
of their higher population density (Fig. 4). Among the four species, the
wild ungulate (i.e., chamois) deposited the smallest amount of nutrients
into the ecosystem. In fact, cattle deposited 28 times more C, 14 times
more K, 23 times more N, and 24 times more P than chamois. Sheep
deposited the second largest quantity of K and P, while horses deposited
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Fig. 3. Monthly faecal nutrient content variation (%; mean and SE) is shown for carbon (A), nitrogen (B), phosphorus (C), potassium (D), and carbon to nitrogen
ratio (E). Small herbivores (chamois and sheep) are presented in orange and large herbivores (horse and cattle) are presented in blue. Growing season is presented

with a green section. Monthly n can be found in Table Al.

the second largest quantity of C and N.

4. Discussion

Our analyses revealed considerable variation in faecal nutrient
content among four alpine herbivores, largely depending on their body
size. Nutrient contributions by the different herbivores also differed
along the growing season, highlighting the importance of considering
the whole herbivore assemblage and seasonality when studying nutrient

dynamics in alpine environments. Our results demonstrate the impor-
tant role of herbivores as natural fertilizers in alpine ecosystems, as they
contribute material with higher nutrient concentrations than those
typically found in the soils.

Unsurprisingly, there was significant variation between species in
terms of faecal nutrient content. The fact that the horse had the lowest
levels of faecal N is consistent with its non-ruminant digestion. Non-
ruminants have greater tolerance of structural plant fiber in their diet
and low losses of bacterial protein (de Iongh et al., 2011; Edwards, 1991;
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Table 2

Summary of the repeated measures ANOVA analysing the monthly variation of
faecal nutrient content (%) of each herbivore species (chamois, sheep, horse, and
cattle). C = carbon, K = potassium, N = nitrogen, P = phosphorus, C/N = carbon
to nitrogen ratio.

Sum sq Mean sq F value
C
Chamois 168 42 5.013 **
Sheep 14.76 3.689 0.85
Horse 38 9.501 0.967
Cattle 4.88 1.22 0.895
N
Chamois 2.466 0.617 11.17 ***
Sheep 1.295 0.324 12.45 ***
Horse 0.645 0.161 1.812
Cattle 0.910 0.227 3.946 *
P
Chamois 2.855 0.714 11.25 ***
Sheep 7.011 1.753 *
Horse 2.336 0.584 3.833 *
Cattle 1.898 0.474 2.438
K
Chamois 2.758 0.689 2923 *
Sheep 5.334 1.333
Horse 49.63 12.41 7.088 ***
Cattle 11.56 2.89 2.877 *
C/N
Chamois 367.9 91.97 22.85 ***
Sheep 77.46 19.365 5.452 **
Horse 307.3 76.84 2.859 *
Cattle 211.7 52.93 3.991 *

Significance levels: p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.

Macandza et al., 2014). On the other hand, small ruminants have higher
fermentation rates and a large surface-to-volume ratio in the alimentary
tract compared to large ruminants (Arman et al., 1975), and this could
explain why chamois and sheep had the highest levels of faecal N.
Different feeding strategies could also correspond to species differences
in dung stoichiometry. Our results show a higher N concentration in the
dung of the browsers (chamois and sheep) compared to the grazers
(horse and cattle), as seen in other studies (Codron et al., 2007b; Grant
et al., 1995; Le Roux et al., 2020; Sitters et al., 2014; Sitters and Olde
Venterink, 2021a; Zhu et al., 2020). This might be a consequence of the
ability of browse plants to survive and retain most of their nutritional
value throughout the seasons, contrary to grass species (Ravhuhali et al.,
2022). However, despite its widespread acceptance, there is a big
disagreement in the distinction of feeding guilds (i.e., grazer, browser,
mixed-feeder) since this classification is insufficient to explain the full
extent of dietary diversity among herbivores (reviewed in Ditchkoff,
2000), and comparisons between feeding strategies should be made with
caution (Codron et al., 2007a, 2007b).

Our results also showed that body size had a significant effect on
dung stoichiometry, with small herbivores having larger C, N, and P
faecal concentrations and smaller K concentrations and C/N ratios than
large herbivores. This supports the theory that small body-sized herbi-
vores select N-richer food (Jarman, 1974), and contrasts the prediction
that large mammal dung is richer in N and poorer in P due to metabolic
processes and skeletal investment (Le Roux et al., 2020; Sitters et al.,
2017). Higher levels of faecal C, N, and P content in small herbivores
have been reported before (Codron et al., 2007b; Edwards, 1991; Zhu
et al., 2020) however other studies have found contrasting results,
where higher levels were reported for large herbivores (de Iongh et al.,
2011; Pérez-Barberia et al., 2004). Moreover, higher levels of K (Esse
etal., 2001) and C/N ratio (Zhu et al., 2020) in large herbivores has also
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been previously reported. Of note, our comparisons are based on a few
herbivore species. Data from a larger range of herbivores will be needed
to reach robust conclusions about the influence of body size, digestive
system and/or feeding strategy on the faecal nutrient content and stoi-
chiometry. In addition, previous literature about herbivore dung stoi-
chiometry mainly focuses on faecal N and/or diet quality and is mostly
focused on savannah ecosystems (e.g. Codron et al., 2007b; Sitters et al.,
2014), which makes it difficult to compare our results with other studies
with the same characteristics.

As a general pattern, we found decreasing levels of faecal N and P,
and an increase of C/N as the summer progressed; a result of the loss of
the nutrient value of the most abundant grasses and forb species in the
study area (Marinas et al., 2003). These results are in line with previous
studies linking faecal concentration with seasonality (e.g., Arnuti et al.,
2020; Espunyes et al., 2022; Galvez-Ceron et al., 2013; Leslie and
Starkey, 1985; Valdés-Correcher et al., 2019). However, seasonal
changes were inconsistent across nutrients and species. For example,
chamois’ faecal C increased throughout the summer months, while
horses and cattle had consistent faecal C concentrations. This may reflect
diet shifts, where chamois shift to a more ligneous diet composition from
summer to autumn, whereas horses and cattle maintain similar feeding
habits (Espunyes et al., 2019a). Interestingly, sheep followed the same
diet pattern as chamois but did not exhibit the same changes in faecal C
among seasons. Further, while the general pattern of nutrient concen-
tration across the seasons may mirror overall plant nutrient patterns
(Jarque-Bascunana et al., 2022), we did not find a link between diet and
herbivores with the rest of the nutrients, since similar diet choices
among domestic herbivores (i.e., sheep, horse, and cattle), did not result
in similar concentrations of faecal nutrient content.

Herbivore faeces represented an important local source of soil
fertilization in our study area, especially for C, N, and P. N and P are
particularly important inputs, as they are limiting nutrients for plant
productivity in terrestrial ecosystems (Penning de Vries et al., 1980;
Vitousek and Howarth, 1991). Greater levels of herbivore’s faecal C, N,
and P content compared with soil have also been found in savannah
(Augustine et al., 2003) and boreal forest ecosystems (Pastor et al.,
1993), but the difference between faecal and soil nutrient content in
these systems are not as marked as in our study. Additionally, in the
Pyrenees, a positive effect of livestock on nutrient content has been seen
before for organic soil C (Badia et al., 2008; Rodriguez et al., 2020),
which our study further supports.

5. Implications for management

Herbivore contributions to nutrient fluxes through waste products
have the potential to influence ecosystem nutrient cycling (Barbero-
Palacios et al., 2020) and functioning (Le Roux et al., 2018; Schmitz
et al., 2018; Ferraro et al., 2022). Alpine ecosystems have relatively
nutrient-poor soils, and therefore herbivore dung can provide a
disproportionate contribution to nutrient dynamics in those systems. In
the Spanish Pyrenees, as in other alpine ecosystems across Europe, there
has been a dramatic decrease in pastoralism activities (Espunyes et al.,
2019b). Abandonment of traditional grazing practices has a negative
impact on grassland production (Jarque-Bascunana et al., 2022),
allowing bush encroachment. Consequently, this leads to an increase in
soil carbon-to-nitrogen ratio and the reduction of N, P or K content
(Grau et al., 2019), impoverishing ecosystem services. Nutrient depo-
sition by herbivores in alpine areas might enhance nutrient cycling in
soils and ultimately in the resilience of alpine grasslands to global
changes (Kinugasa et al., 2012).

6. Conclusions
This is the first quantification of the nutrient content of chamois,

sheep, horse, and cattle faeces in an alpine ecosystem. Moreover, this is
the first seasonal examination of excreted nutrient content in these
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Fig. 4. Estimates of the nutrient contribution of each herbivore per hectare and year, based on their relative abundance, average defecation rates and time spend in
the field (see Methodology and Table 1 for details on calculations). Small herbivores (chamois and sheep) are presented in orange and large herbivores (horse and

cattle) are presented in blue.

ecosystems. This field study showed that the faecal nutrient content of
four alpine herbivores varies considerably among species, body size, and
seasons, and highlights the important local fertilization effect they can
have. Our study suggests that changes in species density and/or
composition of the herbivore community in a specific location might
change soil biogeochemistry. Therefore, special attention should be paid
when planning management practices, given the current trend of
changes in wild and domestic herbivore populations. Finally, we want to
make a call for more data about nutrient stoichiometry in the dung of
herbivores which vary in body size, feeding strategy, and digestive
system, and a synthesis of available data.
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