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Abstract—In recent years, the rise of social media platforms
such as Twitter/X has provided social scientists with a wealth
of user-content data. Combining social media and survey data
has the potential to produce a comprehensive source of in-
formation for social research. These data are often collected
from multiple sources and combined by probabilistic record
linkage. For the analysis of these linked data files, advanced
machine learning techniques, such as random forests, boosting,
and related ensemble methods, have become essential tools for
survey methodologists and data scientists. There is, however, a
potential pitfall in the widespread application of these techniques
to linked data sets that needs more attention. Linkage errors
such as mismatch and missed-match errors can distort the
true relationships between variables and adversely alter the
performance metrics routinely output by predictive modeling
techniques, such as variable importance, confusion matrices,
RMSE, etc. Thus, the actual predictive performance of these
machine-learning techniques may not be realized. In this paper,
we describe a methodology designed to adjust modern predictive
modeling techniques for the presence of mismatch errors in linked
data sets. The proposed approach, based on mixture modeling,
is general enough to accommodate various predictive modeling
techniques in a unified fashion. We evaluate the performance of
our proposed methodology with simulations implemented in R.
We conclude with recommendations for future work.

Index Terms—record linkage, data integration, social media,
Twitter/X, ensemble methods, bagging trees, random forests,
mismatch error, mixture model, secondary analysis

I. INTRODUCTION
A. Background and Motivation

In recent years, the rise of social media platforms such as
Twitter/X has provided social scientists with a wealth of user-
content data [1]-[4]. The research methodology of combining
social media and survey data has the potential to produce
a richer and more comprehensive source of information for
social research [5], [6]. These data are often collected from
multiple sources and combined using probabilistic record
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linkage (RL). Advanced machine learning techniques, such as
random forests, boosting, and related ensemble methods, are
then applied to these linked data sets to analyze relationships
between variables of interest. These techniques have become
essential tools for survey methodologists and data scientists
conducting both methodological and substantive research [7],
[8]. There is, however, a potential pitfall in the widespread
application of these techniques to linked data sets that needs
more attention. Linkage errors such as mismatch errors and
missed-match errors can distort the true relationships between
variables in these linked data sets and adversely alter the
performance metrics used to evaluate the predictive power
of these techniques, such as variable importance, confusion
matrices, RMSE, etc.; see [9], [10] and the references within.
Thus, the actual predictive performance of these machine
learning techniques may not be fully realized due to the errors
in RL.

RL is an essential task when combining data from hetero-
geneous data sources [11]-[13]. The fundamental RL task is
to identify the records in different data sets that belong to
the same entity. Examples include the linkage of data from
survey respondents and corresponding administrative records
for those respondents; insurance claims from patients and
corresponding hospital records from those patients; data from
historical censuses; social media and survey data; and many
others. In most applications, due to the lack of common and
unique identifiers, RL relies on a probabilistic matching pro-
cess. The probabilistic process of identifying matching is not
exact and subject to error. For instance, privacy considerations
often prevent the use of unique identifiers for RL. Missing data
and quality issues (e.g., formatting or spelling variations) can
also induce substantial uncertainty, with one record yielding
many candidate matches in the other data set. A linkage error
could be either a false match (henceforth mismatch) or a false
non-match (missed match). Both types of errors can negatively
affect downstream statistical analyses (post-linkage analysis)
and predictive modeling performed on the linked data set.

Missed matches can result in a non-representative sample
and subsequently selection bias in estimates similar to that
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produced by nonresponse in survey data [14]. Mismatches, on
the other hand, can cause data contamination and typically
distorted relationships when analyzing associations between
variables, e.g., in regression analysis. This is a well-studied
problem pioneered by [15] with important follow-up work by
[16], [17] and [18]. More recently, various approaches have
been proposed to account for mismatches in post-linkage data
analysis. This body of work can be roughly divided according
to whether it addresses primary analysis or secondary analysis.
The former refers to scenarios in which the same individual
performs RL and downstream analysis, or the data analyst has
at least significant insights into the details of the underlying
RL [19]-[24].

In the secondary analysis setting, by contrast, the data
analyst has no access to the original data sets being linked
and only has access to the linked data set, which may also
include some ancillary information about the mismatches. For
instance, the data analyst may be given scores reflecting the
likelihood of every linked record being a correct match, as
in the recent study by [25]. Our focus in this paper is on the
secondary analysis setting, and empirically evaluating potential
tools that data analysts applying machine learning techniques
to linked data sets can use to avoid the attenuation in predictive
performance engendered by errors in record linkage.

B. Research Contributions

In this paper, we describe a methodology designed to adjust
modern predictive modeling techniques, in particular, bagging
trees and random forests, for the presence of mismatch errors
in a secondary analysis setting. We propose a mixture model to
account for data contamination resulting from incorrect links.
The proposed approach is general enough to accommodate var-
ious predictive modeling techniques in a unified fashion. We
will evaluate the performance of our proposed methodology
via an empirical simulation study.

Our simulation study is motivated by research investiga-
tions where only limited information is available for linking
microdata from survey respondents with data from some other
source, such as social media data, administrative records, or
historical data, and the secondary data analyst only has the
linked data set with which to work. In such applications, the
available identifying information for a given respondent may
not be sufficiently unique for correct RL, resulting in many
candidate matches in one or both data sets. For example,
suppose that we wish to link responses from an economic
survey, including a dependent variable of interest Y (e.g.,
current salary) with administrative records on employment,
including a vector of predictor variables of interest X (e.g.,
establishment size and type of industry), but only socio-
demographic information and job classifications are available
for RL in the administrative data. In this setting, probabilistic
record linkage may be employed, resulting in uncertainty about
the quality of the matches and possible mismatch error.

With our simulation study, we demonstrate that our new
methodology, which we have implemented in R [26], can
recover predictive performance results from applications of

modern predictive modeling techniques to such linked data
sets that would have been seen prior to the introduction of
mismatch errors in the RL process.

II. METHODOLOGY

Before we formally describe our proposed methodology, we
provide some conceptual insight. We focus on bagging, an ab-
breviation for bootstrap aggregating [27], and random forests
[28]. Bagging trees start by generating some decision trees,
say T, each trained by bootstrap sampling with replacement
from the observed data. In the setting of complex probability
sampling, the bootstrap sampling needs to account for the
features of the complex sample design, such as weighting,
stratification, and cluster sampling [29], [30]. Thus, some
observations may appear more than once, while others may not
be present in the sample. The predictions are then aggregated
by averaging the predictions of the 7" decision trees. Random
forests are an extension of bagging trees in which, during the
construction of a decision tree, an algorithm first randomly
selects a subset of predictors at each step of determining splits.

There are two ways that variable weights for different cases
(e.g., frequency weights, analytic weights, survey weights,
etc.) can be incorporated into these ensemble methods. One
option is to incorporate the weights in bootstrap sampling.
This option is available in the R package "ranger” for a
fast implementation of the random forest by specifying case
weights [31]:

ranger (formula, data, case.weights, ...)

Weights can also be incorporated into the construction of the
decision tree, which is available in the R package "rpart”
for Recursive Partitioning and Regression Trees, by specifying
weights [32]:

rpart (formula, data, weights,...)

As explained in the package manual, the sum of the case
weights for those observations reaching a node is used to
decide how to split the tree at that node. In the weighting-
reweighting adjustment method proposed in subsection II-C,
we use these options by specifying weights that reflect uncer-
tainty about the matches in a linked data set and, accordingly,
gauging their influence on training the ensemble method.

A. Notation and setup

We assume that there are n observations (y;,x;), ¢ =
1,...,n, generated from the joint distribution f(y,x), with y;
representing a dependent variable of interest and x; represent-
ing a vector of predictor variables. The y; and x; are collected
from two separate data sources, with y; arising from data set
A and x; arising from data set B. These variables are then
paired in D, obtained by RL of the data sets A and B. Due
to mismatch errors, observations in the merged data set are
(9i,xi), in which with a probability, say «, §; # y;. This
means that the observations in the merged data are from the
joint density of y and x.
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Let p1,x denote the regression function Efy | x]. In terms
of mean squared error, ji,, is the best prediction of y given
x. The main objective in applications of machine learning
methods is to accurately estimate fi,|, from the random sample
(y1,%1),-..(y1,%Xn) generated from f(y,x). However, since
the observations in the linked data set are from the joint density
of y and x, the estimated regression function is an estimate
fgx Of pgx. Here we propose a general method for using
flj|x to obtain an improved estimate fi,|x.

Following a mixture modeling approach and assuming that
no selection bias is introduced by any missed matches [33],
the conditional density of ¢; | (x1,...,%Xy) is equal to
(1 = @) fy1x: @i | xi) + afy(g;), where f,, |x, denotes the
conditional density of y; | x; and f, denotes the marginal
density of y. A slightly more generalized form of this mixture
model is fy,|x,, .. x, (Ui | X1,...,%X,), equal to

ey

where the mixing coefficient ; is interpreted as the probability
that ¢; # y;. This mixture density implies that

(1 — i) fy 1, (Ui | xi) + i fy (32),

1 Q5

Mytlxi = 1 _alM?lez - 1 _azl'l'y

2

By interpreting 1 — «; as the probability of a correct match,
the posterior probability of ¢; = y; | D is

(1 — o) fy(3:)
(1 — i) fyc (@i | i) + i fy (Gi)

Equations (2) and (3) suggest two different adjustment meth-
ods for estimating fi,|x. Although the proposed adjustments
generally apply to any ensemble method, we focus on the
adjustments applied to bagging trees and random forests in
the sequel.

Finally, we note that our proposed methods do not require
that the preceding RL step generates one-to-one matching.
Because we are excluding the more general setting where
there are missed matches, in addition to mismatches, our use
of one-to-one matching for the evaluation ensures that the
effect of linkage error on the post-linkage analysis is due to
mismatches.

3)

B. The optimal-o adjustment method

In a semi- parametric setting, suppose f,, |x, is parameterized
by fiy,|x; and G'y Ixi® and f, is parameterized by 1, and 05. We
assume that ay_ ., is the same for each 4, i.e., homoscedastic
variances. The pseudo-likelihood function for the mixture

. . 2 2
density in (1), denoted by £ ((/ly,;\xmai)?=17/lyvUy|x70y>’
can be written as:

n

H ((1 = ) fya i (G | Xi7ﬂyi|xw‘7§|x) + i fy (i | vaaz)) :

i=1

“)
Note that the main parameters of interest are fiy,|x,. Among
these parameters, u, and 0 can be directly estimated as the

sample mean and variance of T1s- -, Tn. An estimate of o2 ulx

can be obtained from an ordinary least squares regression of
y on x. Plugging in the estimates fiy, |, and [, in (2) yields

1 R (673

ﬂyilxi = 1 _aiuﬂﬁxi 1z aiﬂy' ®)

By replacing these estimates in the right-hand side of
(4), we maximize the pseudo-likelihood as a function of

(al, ey Oén)T, i.e.,
(d‘l)pt, Aot = argmaxg<,, <1 £(Q1, ..., an).

More precisely,

OA[;)p - argnla“x0<oc <1( )fyl|xl (yi |
1. O . 9 L a2
Xi, 1 _ a lu??q|xz - 1_7Zailj’y7o-y\x) + alfy(yl ‘ My,Uy), (6)

Since estimation here involves many parameters (one per
observation), improvements can be achieved via regulariza-
tion, the use of a suitable prior distribution for “borrowing
strength”, or an additional layer of modeling. For example,
the «; parameters can be modeled conditional on information
regarding the correctness of links from a preceding (external)
record linkage step (e.g., predicted matching probabilities). We
also note that to proceed with (6), we need to specify a semi-
parametric density for the conditional density f,|x. In Algo-
rithm 1, we use bagging to aggregate the optimal estimates
of aq,...,a, obtained from bootstrap samples. The optimal

Algorithm 1: Obtaining an optimal «

Input : regression formula, data, ntrees
(number of trees)
Output: o = (a7, ..., a%)
1 initiate estimates of s, 05 and oi‘x
2 /x We estimate p, and 03 as the sample
mean and variance of ¢;’s, and o2

ylx
from the ordinary least squares

regression of §~ x. */
3 for t < 1 to ntrees do
4 subdata <- subsample with replacement from
data
5 obtain estimates u( ) from a decision tree applied

to formula and subdata

6 for i < 1 to n do
7 ‘ calculate a"") using (6)
8 end for
9 end for
optyn ntrees Aopt (t) "
10 return (&;")i, = (>o,_ /ntrees) )
1=

«;’s obtained in Algorithm 1 now can be used to estimate the
Hy,|x; S- First, we apply the analyst’s favorite predictive model
to the D data. This gives us estimates fig |x,;- - -
Using (5), the optimal « adjustment method yields:

» Ko |51, -

~opt
s =~ s —
YilXi ~opt MYi|Xi ~opt I'Y*
1—a; 1—aq;
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If the desired setting is ay,...,q, = a, we use &Pt =
S G /n in the equation above. We refer to this adjust-
ment method as the mean-optimal o adjustment. The mean-
optimal « can be efficiently approximated by a small sample of
a? **s, which results in a computationally much less expensive
adjustment method than that of the optimal-aw method, as the
latter requires computing &;” * for all observations. In terms of
mean squared error (MSE) and mean squared prediction error
(MSPE), we did not find any significant difference between
the optimal o and the mean-optimal version of the adjustment
methods in our simulation study, presented in Section III.

Finally, we note that if estimated probabilities of correct
matches are available for each linked case from an external
record linkage process, we could forego the computation
of aif " and simply use these estimated probabilities in the
adjustment described above. That is,

1 “ 1-— w;j .

Elu'gi‘xi - Hy,

Hyi|x; = W
T

where w; is the estimated probability of a correct match.

C. The weighting-reweighting adjustment method

As mentioned at the beginning of this section, uncertainty
about the matches can be incorporated into random forests
via either bootstrap sampling or the construction of decision
trees. The main idea in either method is that observations with
greater certainty of being true matches get larger contributions
in training the predictive model. If these weights are known
(e.g., estimated probabilities of correct matches are provided
from an external probabilistic record linkage process), we
propose to initially weight each observation (g;,x;) based on
its (estimated) probability of being a match. Otherwise, we
give each observation the same weight, which is essentially the
specification of a “non-informative prior” for this method. The
availability of external information about probabilities of cor-
rect matches has the potential to lead to faster convergence of
the algorithm described below and more accurate predictions.
After estimating 1, from our predictive model, we update
each weight as the posterior probability of being a match using
(3). Then, we refit the model with the new weights to update
the predictions. We repeat this procedure until the likelihood
function indicates that the new weights achieve no significant
improvement.

In Algorithm 2, we apply the bagging method to decision
trees such that their estimates of ji,,x are adjusted according
to the weighting-reweighting method. Note that depending on
whether the weights are incorporated via the case weights
option in bootstrap sampling or via the weights option in
decision trees, Algorithm 2 results in two different weighting-
reweighting adjustment methods. We denote the former as
Adj-rf and the latter as Adj-trees. We compare these two
versions of the weighting-reweighting adjustment methods in
Section III.

D. Combining proposed adjustment methods

With the optimal-« adjustment method and the weighting-
reweighting method described in II-B and II-C, a natural

Algorithm 2: The weighting-reweighting adjustment
method
Input

: regression formula, data, ntrees,
num. iter (number of iterations),
weights, and the mismatch probabilities
A1y...,0p
Output: (fiy, |x,»- - fly, |x,)
1. /% We choose weights = 1 and
Qiy ooy Oy =D for default values. x/
initiate estimates of i, a and ay‘x

3/« We estimate py and o,

[ 5]

as the sample

mean and variance of ¢;’s, and Uilx
from the ordinary least squares
regression of y~x. */

4 for t < 1 to ntrees do

5 subdata <- subsample with replacement from
data

6 obtain estimates u( )‘x from a decision tree applied

to formula, subdata and weights

7 iter <1

8 while iter < num.iter do

9 update each «; as the posterior probability of
mismatch /* this is 1 -
posterior probability of
match in (3) using the

previous value of q;. */
10 update weights; = 1 — ay, for each ¢
11 update ,u( )‘ by rerunning the decision tree

with the new weights

12 evaluate L(ayq, ..., ay) for the current and
previous «;’s
13 if the difference between the two likelihood

values is not significant, e.g., 10e-8, then
14 | break

15 end if
16 end while
17 end for
n
N n ntrees ~(t)
18 return ([, |x, )iz = ( t=1 yilx /ntrees .

extension is to combine these two methods by applying
the optimal-a adjustment to the fi,x estimated from the
weighting-reweighting adjustment method Adj-rf or Adj-trees.

III. SIMULATIONS AND EVALUATION RESULTS

In this section, we compare and evaluate the performance of
the proposed adjustment methods with two simulation studies.
We use the MSE to measure the fit of a model and the
MSPE to measure the quality of the model predictions. The
MSE is calculated as the mean of squared residuals, i.e.,
(1/n) 3=, (9 — yi)?, where n denotes the size of the data
and §; denoted the fitted y- value for the i*" observation. The
MSPE is calculated similarly but by averaging over the test
data set, which is obtained by randomly splitting the data to
30% for the test data and the rest for the training data.
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mismatch rate 0% 10% 15% 20%
bagging trees 22.0 287 417 502
random forest 184 58.6 90.2 112
Adj-rf 185 251 336 40

Adj-trees 220 288 416 50

Optimal-a-bagging 219 240 336 370
Optimal-a-rf 19.1 60.0 92,6 115
Optimal-a-Adj-rf 191 277 375 459
Optimal-a-Adj-trees | 21.9 241  33.6  36.9
mismatch rate 25% 30% 35% 40%
bagging trees 61.7 789 917 109
random forest 132 156 176 202
Adj-rf 555 779 908 108
Adj-trees 61.8 790 91.6 109
Optimal-a-bagging 453 602 692 78.6
Optimal-a-rf 135 161 184 210
Optimal-a-Adj-rf 624  86.8 102 125
Optimal-a-Adj-tree 453 602 691 784

TABLE I

EACH CELL VALUE IS THE MSE OF THE PREDICTION METHOD SPECIFIED
BY THE ROW NAME APPLIED TO THE LINKED DATA WITH A MISMATCH
RATE SPECIFIED BY THE COLUMN NAME. THE MISMATCH RATES VARY

BETWEEN 0% - 40%.

A. Simulation with a single predictor variable

In the first simulation study, the simulated data set contains
n = 1000 observations and two variables: a single predictor
x and a response variable y generated via the equation y; =
g(x;)+4N(0,1), where g(-) is a non-linear function of z, and
N(0,1) is Gaussian noise.

The experiment begins by creating a new data set resem-
bling a linked data set, in which & percent of the pairs (y;, ;)
are mismatched. The mismatches are created by randomly
permuting k percent of the indices of y. The prediction and
adjustment methods are trained by this data set, and the MSE
and MSPE are calculated. To see the effects of different
mismatch rates on these methods, the MSE and MSPE are
computed for £ = 0,10, 15,20, 25,30, 35,40. Henceforth,
when no mismatches are in the data, i.e., k = 0, we refer
to the data as the exact data. Each run of the experiment thus
results in two tables, one for MSE and another for MSPE, each
with 8 columns representing the mismatch rate and 8 methods
applied. We run each experiment 1000 times and report the
averages in Table I for the MSE and Table II for MSPE over
the 1000 replications.

These tables show that the best adjustment is achieved
by combining the optimal-a adjustment with the Adj-trees
method. Among the methods with a single adjustment,
Optimal-a-bagging, i.e., Optimal-a adjustment with i, es-
timated from bagging trees, has the best performance.

Table III shows the running time of each method in sec-
onds in every single implementation of the method on the
data. Optimal-o and Adj-trees are computationally expensive;
therefore, when the computational cost is a concern, mean-
optimal o combined with bagging trees, random forests, or
Adj-rf may be preferable.

Next, we use some visualization tools to compare the
bagging trees, random forests, and the proposed adjustment

mismatch rate 0% 10% 15% 20%
bagging trees 35.1 40.7 483 60

random forest 184 613 81 108
Adj-rf 184 265 337 43.1
Adj-trees 239 294 374 49

Optimal-a-bagging 357 378 41.6 488
Optimal-a-rf 19.1 63.2 83 111

Optimal-a-Adj-rf 19.1 297 382 502
Optimal-a-Adj-trees 24 25 29 354
mismatch rate 25% 30% 35% 40%
bagging trees 74.5 87.4 105 124
random forest 133 156 181 218
Adj-rf 554 686 832 113
Adj-trees 63 762 92.8 116
Optimal-a-bagging 58 659 787 929
Optimal-a-rf 137 162 188 229
Optimal-a-Adj-rf 65.1 81 103 134
Optimal-a-Adj-trees | 44.2 523 64 81.2

TABLE II

EACH CELL VALUE IS THE MSPE OF THE PREDICTION METHOD SPECIFIED
BY THE ROW NAME APPLIED TO THE LINKED DATA WITH A MISMATCH
RATE SPECIFIED BY THE COLUMN NAME. THE MISMATCH RATES VARY

BETWEEN 0% - 40%

Optimal-« Mean-optimal o | bagging trees

15.455 1.911 0.614

random forest | Adj-rf Adj-trees

0.041 0.26 7.569
TABLE I

THE RUNNING TIME OF EACH METHOD IN SEC

methods further. Fig. 1, based on Table II, visualizes the
comparison between bagging trees, random forests, and the
optimal-a trees and Adj-rf in terms of relative prediction
errors. The relative prediction errors are computed relative to
the smallest prediction error in column one of Table II, i.e.,
18.4, which is the prediction error of random forest with the
exact data. Fig. 1 confirms that the optimal-a-Adj-trees have
the lowest prediction error.

Instead of comparing the alternative methods based on their
MSE and MSPE, we now compare these based on fiy,, their
estimates of the regression function. In the plots, fi,, is
depicted by drawing the scatter or line plot of (g, x), where

Comparing relative prediction errors

- bagging trees
- random forest

- op-Adj-trees
Adj-rf

©

relative prediction error
@

w

0 10 20 30 40
mismatch rate x 100

Fig. 1. Relative prediction error plot of bagging trees, random forests, optimal-
« trees and Adj-rf.
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Regression function estimated by random forest (exact data)

- Scatter plot (x, y)
-rf(k=0)
50

predicted y

predictor x

Fig. 2. The scatter plot of (z,y) in black and the scatter plot of (z,9) in
red , where § is the fitted y-value obtained from the random forest trained by
the exact data. The scatter plot (x, §) closely matches that of (z,y).

Comparing regressions estimated by random forest

~ Scatter plot (x, y)
)

predicted y

s

predictor x

Fig. 3. The scatter plot of (z,9) is drawn when, respectively, 10%, 20% and
40% of the observations are mismatched. As the mismatch rate increases, the
associated scatter plot rapidly deviates from the scatter plot of (z,y) from
the exact data.

y is the average, over 1000 replications, of the fitted y-value
obtained from the associated method. Since we are averaging,
the plot depicts the expectation of fiy,.

Fig. 2 shows that the random forest trained by the exact data
very well estimates the regression function. However, as the
mismatch rate increases, Fig. 3 shows that the ﬂmm estimated
from the random forest rapidly deviates from the scatter plot
of (x,y) based on the exact data.

In Fig. 4, we compare the regression functions estimated
from the random forest, Adj-rf and optimal-a-trees trained by
the data when 20% of the observations are mismatched. It
is somewhat surprising that Adj-rf more closely matches the
regression function estimated from the random forest trained
by the exact data. As we mentioned earlier, since the estimated
functions are averaged over 1000 replications, this shows that
the regression function estimated from Adj-rf is less biased
than that of optimal-a-trees but has a larger variance.

Finally, in Fig. 5, we compare the regression functions
estimated from the optimal-a-trees when the mismatches in
the training data are respectively 10%, 25% and 40%. Fig.
5 shows that the optimal-a-trees method, as opposed to the
random forest, is more robust to mismatches in the data.

B. Simulation with multiple predictor variables

In the next simulation study, the simulated data set also has
n = 1000 observations with 10 predictors x1,...,x10. The

Comparing estimated regression functions

150

-rf(k=0)
- rf (k = 20)
- op-Adj-trees (k = 20)
Adj-rf (k = 20)

o
L

predicted y

predictor x

Fig. 4. The plots show the regression functions estimated from the random
forest, Adj-rf and optimal-a-trees trained by the data when 20% of the
observations are mismatched. The comparison is based on how closely they
match the regression function estimated from the random forest trained by
the exact data.

Comparing regressions estimated by op-Adj-trees

150 (- Scatter plot (x, y)

- op-Adj-trees (k = 10)
- op-Adj-trees (k = 25)
1001\ - op-Adj-trees (k = 40)

predicted y

-100

predictor x

Fig. 5. The regression functions estimated from the optimal-o Adj-trees when
the mismatches in the training data are respectively 10%, 25% and 40%. The
scatter plot of (z,y) from the exact data is drawn for comparison.

response variable y is generated via equation y; = h(x;) +
V/2/2N(0,1), where h(-) is a non-linear real-valued function
of x = (21,...,710) " . The experiment is performed similarly
to the one described in III-A with 1000 replications. Table
IV presents the MSE and Table V the MSPE over the 1000
replications.

These tables show that the best adjustment based on MSPE
is achieved by combining the optimal-o adjustment with
Adj-rf, although Optimal-a-bagging and Optimal-a-Adj-trees
have lower MSE. These tables also show, as opposed to the
previous experiment in III-A with a single predictor, that the
random forest approach is robust to contamination caused by
mismatches. This could also be due to more minor noise in
generating y.

The running times of these methods shown in Table VI are
consistent with those in Section III. Although the number of
observations in both simulation studies is 1000, the increase
in running time in this experiment is due to the larger number
of predictors.

Fig. 6 shows the relative prediction error plot of bagging
trees, random forests, optimal-a-trees, and optimal-a-Adj-rf,
based on Table V. The plot shows that optimal-a-Adj-rf has
a smaller MSPE than other methods. In this simulation, the
random forest is more robust to mismatches in the data.
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mismatch rate 0% 10% 15% 20%
bagging trees 0.75 0.79 082 0.87
random forest 0.84 0.91 094  0.99
Adj-rf 084 086 0.89 092
Adj-trees 075 079 0.82 0.87
Optimal-a-bagging 0.7 071 073  0.77
Optimal-a-rf 079 083 0.86 091
Optimal-a-Adj-rf 0.8 082 0.84 0.86
Optimal-a-Adj-trees 0.7 071 073  0.77
mismatch rate 25% 30% 35% 40%
bagging trees 0.92 0.96 1 1.04
random forest 1.04 1.08 1.11 1.14
Adj-rf 094 097 1 1.03
Adj-trees 092 096 1 1.04
Optimal-a-bagging 0.82 0.86 0.9 0.94
Optimal-a-rf 0.95 0.99 1.02 1.05
Optimal-a-Adj-rf 0.87 0.9 093 096
Optimal-a-Adj-trees | 0.82 0.86 0.9 0.94
TABLE IV

EACH CELL VALUE IS THE MSE OF THE PREDICTION METHOD SPECIFIED
BY THE ROW NAME APPLIED TO THE LINKED DATA WITH A MISMATCH
RATE SPECIFIED BY THE COLUMN NAME. THE MISMATCH RATES VARY

BETWEEN 0% - 40%.

0% 10% 15% 20%
bagging trees 1.25 1.28 1.31 1.33
random forest 0.88 095 098 1.02
Adj-rf 088 092 094 097
Adj-trees 0.97 1.01 1.03 1.05
Optimal-a-bagging 1.33 1.35 1.37 1.39
Optimal-a-rf 083 088 092 095
Optimal-a-Adj-rf 084 087 0.89 091
Optimal-a-Adj-trees | 0.96 097 098 1
mismatch rate 25%  30% 35% 40%
bagging trees 1.36 1.39 1.43 1.47
random forest 1.06 1.11 1.16 1.21
Adj-rf 1 1.03 1.07 1.11
Adj-trees 1.08 .12 1.15 1.2
Optimal-a-bagging 1.4 1.44 1.47 1.51
Optimal-c-rf 0.99 1.03 1.08 1.13
Optimal-a-Adj-rf 093 0.96 1 1.04
Optimal-a-Adj-trees | 1.02 1.05 1.08 1.13

TABLE V

EACH CELL VALUE IS THE MSPE OF THE PREDICTION METHOD SPECIFIED
BY THE ROW NAME APPLIED TO THE LINKED DATA WITH A MISMATCH
RATE SPECIFIED BY THE COLUMN NAME. THE MISMATCH RATES VARY

BETWEEN 0% - 40%

Optimal-o Mean-optimal-a« | bagging trees

26.544 2.886 3.029

random forest | Adj-rf Adj-trees

0.065 0.239 121.836
TABLE VI

THE RUNNING TIME OF EACH METHOD IN SECONDS.

Comparing relative prediction errors

- bagging trees
067] - random forest
- op-Adj-trees

- op-Adj-rf

relative prediction error

0 10 20 30 40
mismatch rate x 100

Fig. 6. Relative prediction error plot of bagging trees, random forest, optimal-
« trees, and optimal-a-Adj-rf.

C. Discussion

The simulation studies in Sections III-A and III-B show
that random forests and bagging trees can perform well on the
exact data; however, their performance can rapidly deteriorate
as mismatch rates increase. In the presence of mismatches
in the data, our proposed methods are generally effective in
adjusting the outputs of random forests and bagging trees and
improving their performance in terms of reduction in MSE,
MSPE, or bias in the estimated regression function. Combining
the optimal-o method with Adj-rf or Adj-trees can be more
effective than a single adjustment method. Both Optimal-a-
Adj-rf and Adj-trees are computationally expensive, however,
and may not be scalable for large data sets. In the case of
the optimal-a: method, the mean-optimal o method is a viable
replacement. The mean-optimal « can be implemented much
faster, and in both of our simulations, the mean-optimal «
method performs almost identically to the optimal-o method.
However, this may be because the mismatches in the data are
created by a permutation selected at random; thus, each ob-
servation has the same probability of being correctly matched.

IV. CONCLUSIONS

The rise of social media platforms such as Twitter/X has
provided social scientists with an excellent opportunity to
create rich, comprehensive data sets better tailored for social
research by linking social media data to survey data. In survey
methodology and data science research, ensemble methods
such as bagging trees, random forests, and gradient boosting
are often gold-standard techniques available for predictive
modeling. However, the simulation studies presented in this
paper show that in the presence of mismatches arising from
imperfect record linkage, the actual predictive performance of
these machine learning techniques may not be realized. Our
simulation studies also indicate that the proposed optimal-c
and weighting-reweighting methods can efficiently improve
the predictive performance of these techniques.

While we focused on bagging trees and random forests in
this empirical evaluation, the methodology described in this
paper can be extended to other popular machine learning ap-
proaches, such as gradient boosting and neural networks. This
is one promising direction for future research and evaluation.
Several other extensions of this research are also possible.
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These include generalizing the adjustment methods to clas-
sification problems, allowing for more flexible distributions in
modeling the conditional density of y | x, and designing a
more specific adjustment method for gradient boosting.
Concerning the simulation study, a recommendation for
future research is a more thorough comparison between the
optimal-o and mean-optimal-av methods by creating a more
complex pattern for matches and mismatches, where the
observations can have different probabilities of being correctly
matched. In this paper, all observations had the same proba-
bility of being correctly matched. In practice, some subgroups
of observations may be more difficult than others to correctly
link to other data sets. For example, certain types of cases
may have a higher likelihood of having missing data on key
linking variables, increasing the probabilities of a mismatch
for those cases (if other less-informative variables need to be
used in the RL algorithm as a result). Future empirical work
could consider evaluations of scenarios where the probabilities
of a correct match vary across different subgroups of cases.
Finally, we also focused on mismatches in this study, as
opposed to missed matches. The latter type of error in record
linkage is more likely to introduce selection bias in estimates
of the relationships between variables based on the linked
data file, depending on the extent to which the linked records
differ from the missed matches in terms of the relationships of
interest. In this paper, we did not consider the possible biasing
effects of missed matches on estimates of the parameters in
the underlying mixture model. Future studies should focus on
the development of adjustment methods that recognize whether
the mechanism underlying the probability of a missed match is
ignorable (in that missed matches can be effectively predicted
as a function of other observed variables), or non-ignorable,
in that it is a function of variables that were not observed in
the two data sets being linked. Future extensions of this work
should focus on adjustment methodologies that can efficiently
accommodate both mismatches and missed matches.
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