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INTRODUCTION: Vocal production learning (“vocal
learning”), or the ability to modify vocalizations
according to the social environment, forms the
basis of human speech production. Among the
Boreoeutherian mammals, this trait has evolved
independently in four different lineages: hu-
mans, bats, cetaceans, and pinnipeds. In verte-
brates, the evolution of vocal learning behavior
has been associated with the evolution of brain
anatomical features, including cortical long-
range projection neurons (e.g., songbirds and
humans). Moreover, neural circuits for the
production of learned vocalization display con-
vergent evolution in patterns of gene expression.
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RATIONALE: Despite evidence for the conver-
gent evolution of vocal learning at the behav-
ioral, anatomical, and gene expression levels
in vertebrates, the genetic underpinnings
of vocal learning and human speech in mam-
mals are poorly understood. New machine
learning approaches and the newly sequenced
mammalian genomes of the Zoonomia
Consortium provide the foundation to rigo-
rously study this question. The repeated evo-
lution of vocal learning across mammals
allows us to determine which parts of the
genome are significantly associated with
the behavior.
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Finding vocal learning—associated regions of the mammalian genome. We compared the evolution of
vocal learning behavior to the evolution of coding and noncoding elements of the genome, leveraging
anatomical, electrophysiological, and epigenomic experiments in the Egyptian fruit bat orofacial motor cortex
(ofM1). We show convergent evidence of the importance of long-range projection neurons and autism-

associated gene networks.
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RESULTS: First, we studied convergent evolu Cf;)%caktégf ‘
in protein-coding regions using the RERconv.. ;o
and HyPhy methods to find 200 significantly
associated genes. The genes that tend to be
under higher constraint in vocal learning mam-
mals are enriched for genes involved in human
autism. However, the vast majority of genes are
driven by signals from only one or two clades of
vocal learning mammals, suggesting that a large
component of the genetic basis for the trait may
lie instead in the convergent evolution of regu-
latory elements. To explore that hypothesis, we
performed an anatomical and functional charac-
terization of the Egyptian fruit bat motor cortex.
We identified a subregion of the motor cortex
that is implicated in vocal production and direct-
ly projects to the motoneurons controlling the
bat’s larynx. This allowed us to profile candidate
regulatory elements active in this vocalization-
associated subregion of the motor cortex by mea-
suring open chromatin. These open chromatin
regions and 222 mammalian genomes of the
Zoonomia Consortium served as input to the
Tissue-Aware Conservation Inference Toolkit
(TACIT) machine learning approach, which was
applied to find 50 candidate regulatory elements
whose predicted motor cortex open chromatin
measurements across mammals are highly cor-
related with the presence of vocal learning behav-
ior. Many of these open chromatin regions were
near genes associated with autism, and they tended
to overlap with open chromatin specific to the
long-range projection neurons that have been
implicated in the evolution of vocal learning.

CONCLUSION: Although it is impossible to know
which parts of the genome evolved for human
speech production, we are able to use the repeated
evolution of a component of that behavior, vocal
learning, to find significantly associated genes
and noncoding regions. Our results demonstrate
that the presence of vocal learning behavior in a
given clade leads to weak selective pressure across
a broad range of genes and stronger selective
pressure across a smaller number of motor cortex
noncoding regions. These genes and noncoding
regions show an association with autism, which
suggests that there are shared regulatory net-
works for vocal and social behavior that tend to
adapt in similar ways when a lineage evolves
vocal learning behavior. More broadly, our re-
sults suggest that the evolutionary history of se-
lective pressures across a location in the genome
can provide insight into how that region might
influence human behavior.
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Vocal production learning (“vocal learning”) is a convergently evolved trait in vertebrates. To identify
brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical,
and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the
genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal
learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent
vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor
cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed
50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners.
Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal

learning evolution.

ocal production learning (“vocal learning”),

the ability of an organism to modify the

acoustic properties of its vocalizations as

a result of social experience, is an exam-

ple of convergent evolution, having evolved
independently within multiple lineages of birds
and mammals, including humans, where it
manifests as speech (Fig. 1A) (I, 2). Vocal
learning has been extensively studied in song-
birds, highlighting numerous shared behavioral
features of birdsong and speech learning, such
as a dependence on auditory input during a
critical developmental period and a juvenile
babbling phase of sensorimotor exploration
prior to the maturation of the adult vocaliza-
tions (7). Convergence between song-learning
birds and humans extends to neuroanatomical
specializations, including direct corticobulbar
projections from the vocal motor cortex analog
to the hindbrain motoneurons controlling the
vocal apparatus (3) and shared transcriptional
specializations in analogous speech- and song-
specialized brain regions (4). Thus, songbirds
have become a premier model for exploring

the fundamental brain anatomical, molecular,
and genomic features associated with vocal
learning (7, 3). An expanding literature on vocal
learning behavior across mammals suggests
an underappreciated diversity in the pheno-
typic expression of vocal learning across the
taxa traditionally thought to possess it (2, 5-8).
Study of the diverse forms of mammalian vocal
learning behaviors could broaden our under-
standing of the core molecular, anatomical, and
physiological brain mechanisms of vocal learn-
ing and of the mechanisms underlying the con-
vergent evolution of skilled motor behaviors
more broadly.

We evaluated evidence of convergent genomic
specializations shared among four lineages of
vocal learning mammals that independently
evolved this trait—bats, cetaceans, pinnipeds,
and humans (Fig. 1A)—using whole-genome
datasets and recently developed computational
approaches. Specifically, we used protein-coding
sequences from genomes generated by the
Zoonomia Consortium (9, 10) and models
of evolutionary rate convergence (11, 12) to

identify protein-coding regions repeatedly asso-
ciated with the evolution of vocal learning across
mammals. Although we found 200 protein-
coding genes significantly associated with
vocal learning, none of them showed strong
evidence of selection in all four mammalian
clades, and only five showed strong evidence
of selection in three out of the four clades.
Owing to individual lineages contributing dis-
proportionately to many of the protein-coding
results, we hypothesized that noncoding regu-
latory elements might also be under constraint
for the evolution of vocal learning. We next
profiled open chromatin, a proxy for regula-
tory element activity (13), in multiple brain
regions and somatic tissues in the Egyptian
fruit bat (Rousettus aegyptiacus), a mammal
with robust vocal plasticity (14-16), to identify
vocalization-associated regulatory genomic spe-
cializations. We accomplished this by combin-
ing anatomical tracing and electrophysiological
recordings in vocalizing bats to identify a
region of the motor cortex associated with
vocal production. The vocalization-associated
epigenomic data collected from this bat spe-
cies, combined with hundreds of mammalian
genomes (17, 18), their associated reference-
free whole-genome alignments (79), and high-
quality epigenomic data from the motor cortex of
multiple additional mammalian species (20-22),
provided the foundation to apply a machine
learning approach, the Tissue-Aware Conserva-
tion Inference Toolkit (TACIT) (23). This ap-
proach allowed us to identify putative enhancers,
distal regulatory elements that tend to be highly
tissue specific, associated with the convergent
evolution of vocal learning. We combined
recently developed computational tools and
neuroanatomical experiments in the Egyptian
fruit bat and found evidence of convergent
evolution in both protein-coding and noncod-
ing DNA sequences.

Results
Convergent evolution in protein sequence
associated with vocal learning behavior

To explore the possibility of shared genomic
specializations associated with vocal learning,
we first applied RERconverge (I1) to recent-
ly released protein-coding alignments obtained
for hundreds of mammals (70) to identify
protein-coding genes whose relative rates of
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Fig. 1. Convergent changes in protein sequence associated with vocal
learning evolution across 215 mammalian species. (A) A cladogram of
mammalian species whose genomes were analyzed in this study highlights the
convergent evolution of vocal learning species (red) relative to vocal nonlearners
(black). The phylogenetic tree used in our analyses was derived from (98).

(B and C) Each of the genes implicated by RERconverge with lower (B) or higher
(C) evolutionary rates in vocal learners is annotated based on whether it

evolution differ between vocal learners and
other mammals and those that may thus be
under selection related to vocal learning (71, 24).
We analyzed 16,209 high-quality protein-coding
gene alignments across 215 boreoeutherian
mammals, including 26 vocal learning species,
164 vocal nonlearners, and 25 species without
confident annotations (Fig. 1A and data SI)
(materials and methods). We found evidence
for lower evolutionary rates in vocal learners
compared with nonlearners in 804 genes and
evidence for elevated evolutionary rates in
102 genes [t adjusted (adj.) P < 0.01 and per-
mulations (24) adj. P < 0.01] (fig. S1 and data
S2). To identify which specific clades were
driving the differential rates of evolution, we
applied a Bayes factor analysis that examined
each clade individually for evidence of selection
(18) (data S2). Despite the large number of
significant associations based on RERconverge,
we found no single protein-coding gene with

Wirthlin et al., Science 383, eabn3263 (2024

Adjusted P value

consistently lower or elevated evolutionary
rates in all four vocal learning clades. Among
the genes with reduced evolutionary rates in
vocal learning species, we found only 5 out
of 804 protein-coding genes with strong evi-
dence of selective pressure in three out of the
four vocal learning clades: CENPC, CATSPERG,
MGA, TREML2, and ZCWPWI (Bayes factor > 5)
(Fig. 1, B and C). None of these proteins reached
the threshold for selection in the human lineage
(materials and methods), which could indicate
different mechanisms of evolution in the lau-
rasiatherian vocal learning clades relative to hu-
mans. Our results suggest that the vast majority
of protein-coding genes that we identified are
evolving much faster or much slower in one
clade but are only weakly associated with vocal
learning across the other lineages.

Among the most strongly associated genes
were CENPC (fig. S2A) (t = -0.30; T adj. P = 8.7 x
107%; permulations adj. P < 0.001), and GRM8

29 March 2024

shows a significant signature within the four vocal learning clades based on a
Bayes factor =5 (18). (D and E) All significant gene ontology categories

(adj. P < 0.10, EnrichR) are plotted for the 200 genes with conserved (D) and
accelerated (E) selection in vocal learning clades on the basis of results from
the RERconverge and HyPhy RELAX analyses. The points are colored by the
odds ratio within the set of implicated genes relative to the genes outside of the
set, which corresponds to the degree of enrichment within that set.

(fig. S2B) (1 = 0.26; t adj. P = 3.5 x 10~*; per-
mulations adj. P < 0.001). GRMS8 represents
an especially promising candidate because it
has previously been linked to anatomical spe-
cializations for vocal learning in songbirds (25)
and is a known target of the speech-associated
FOXP2 transcription factor (TF) (26). In pri-
mates and rodents, both GRM8 and FOXP2
are markers of a rare class of medium spiny
neurons implicated in motor control that co-
express both DRDI and DRD2 dopamine re-
ceptors (27-29). Our results support a model
in which vocal learning behavior is only par-
tially explained by differences in protein-coding
gene evolutionary rates.

To further explore selection on these vocal
learning-associated protein-coding genes, we
applied an additional set of tools from the
HyPhy package that compare nonsynonymous
(dN) and synonymous (dS) substitution rates
in the nucleotides of the amino acid sequence
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(30). In this study, these sensitive evolutionary
models of codon substitution formally com-
pare selective regimes, modeled as dN/dS dis-
tributions, between branches annotated with
the vocal learning phenotype and the rest of
the phylogenetic tree (12, 30). The results were
largely consistent with amino acid-level methods:
the protein-coding genes with lower protein
evolutionary rates in vocal learning clades also
tended to be under higher constraint in vocal
learning clades (Wilcoxon P = 2.5 x 10™%), and
the genes with higher evolutionary rates in
vocal learning species showed evidence of ac-
celerated evolution in these same clades (Wilcoxon
P =79 x 107 (fig. S3 and data S3). To further
explore the functional trends of protein-coding
genes associated with the evolution of vocal
learning, we focused on the set of proteins that
showed consistent behavior between RERconverge
and the HyPhy RELAX model (Benjamini-
Hochberg false discovery rate g < 0.05). This
yielded a set of 126 proteins that were more
slowly evolving in vocal learning clades and
74 with an elevated rate of evolutionary changes
relative to other species. The complementary
approaches of RERconverge and HyPhy RELAX
identified a total of 200 vocal learning-associated
genes, which suggests that this behavior, vo-
cal learning, is having a substantial impact on
protein evolutionary rates.

We further interrogated evolutionary pressures
across the vocal learning-associated genes by
looking for evidence of diversifying position
selection using the HyPhy BUSTED-PH model.
Evidence of diversifying positive selection was
found in 6.3% (13 transcripts, 9 genes) of the set
of genes with elevated rates of evolution in
vocal learning species based on RERconverge
and the HyPhy RELAX model. As expected,
we identified much lower rates of diversifying
positive selection in the gene with lower rates
of evolution in vocal learning species (1.0%)
and within the set of randomly chosen tran-
scripts (2.0%). Among the nine genes that showed
evidence of positive selection, eight have been
associated with neurodevelopment (CCDCI36,
KIDINS220, LRRN1, RSG5, CYLD, GABRAS5,
NETO2, and KIAA1109) (31-38). The gene
CCDC136 has more directly been associated
with multiple language-related phenotypes in
humans (31, 39, 40). These results suggest that
the vocal learning-associated genes across mam-
mals may tend to play a role in human brain
development and vocal behavior.

To more systematically explore the functional
trends within these 126 and 74 protein-coding
genes, we conducted a gene ontology analysis
using EnrichR. Protein-coding genes with lower
evolutionary rates in vocal learning species were
associated with regulation of DNA-templated
transcription (P = 1.10x107, adj. P = 1.9 x 107%),
regulation of canonical Wnt signaling pathway
(P =51 %107 adj. P = 0.013), and the autism
human phenotype ontology (P = 5.8 x 1075, adj.

Wirthlin et al., Science 383, eabn3263 (2024

P =0.0028) (Fig. 1, D and E, and data S4). The
genes with accelerated evolutionary rates were
not enriched for any pathways at an adjusted
P < 0.05 with at least five genes contributing.
The enrichment of autism-associated genes
among the set of genes with greater levels of
conservation in vocal learners (MECP2, RAD21,
DYRKIA, SIM1, FTSJ1, MEIS2, and FGFRI) is
particularly interesting given the prevalence of
speech delay and early vocal production differ-
ences in human subjects with autism (41, 42)
as well as the previous association between
autism genes and the evolution of vocal behav-
ior in birds and bats (43, 44). On the basis of
the association with autism, we further ex-
plored the function of the vocal learning-
conserved gene set in the context of early vocal
production differences. Although only four
human loci have been associated with differences
in early vocal production, protein-coding genes
overlapping two of these loci show higher levels
of conservation in vocal learning clades (INSC
and DAPK3) (45).

Identification of a vocal production region in
Egyptian fruit bats

The enrichment of TFs in the set of vocal
learning-associated proteins suggests that dif-
ferences in gene regulation are likely to be a
major factor in the evolution of vocal learning.
Because gene regulation is often tissue specific,
we sought to identify motor regions of the
brain involved in vocal production and con-
trast their epigenomic profiles with that of
those not involved in vocal production. We
conducted this comparison in the Egyptian
fruit bat, R. aegyptiacus, a mammalian species
with robust vocal plasticity (16, 46) and with
data on its motor cortex mapping (47). To
identify a candidate region, we were guided by
the hypothesis that fine vocal motor control, a
key ability in vocal learning, may be associated
with the anatomical specialization of the motor
cortex (48-51). Previous work suggested that a
cortical region controlling complex vocal be-
havior would be characterized by a direct,
monosynaptic projection onto the motoneurons
controlling the vocal source (in mammals, the
larynx) (48-52). Such a direct connection has
been observed robustly in humans (53-56)
and vocal learning birds [songbirds, parrots,
and hummingbirds (57-59)] but has not been
reliably found in vocal nonlearning species such
as chimpanzees (41) or mice (60).

We first determined whether a direct corti-
cobulbar anatomical connection existed in
R. aegyptiacus. Guided by cortical mapping
experiments (47), we injected anterograde tra-
cers into the part of the motor cortex that has
been associated with orofacial motor control,
the orofacial motor cortex (ofM1), and identi-
fied fluorescently labeled descending cortical
fibers in the hindbrain region where the laryn-
geal motoneurons reside, the nucleus ambiguus

29 March 2024

(NA) (Fig. 2A; fig. S4, A and B; and movie S1). To
test the existence of a direct monosynaptic
projection, we also specifically identified laryn-
geal motoneurons in the NA by retrogradely
labeling them through bilateral muscular in-
jection of cholera toxin B (CTB) into the crico-
thyroid muscles of the bat larynx (Fig. 2A). We
validated the colocalization of descending cor-
tical fibers and local synaptic boutons with
laryngeal motoneurons by using two comple-
mentary labeling approaches: one relying
on the immunostaining of synapses (vesicular
glutamate transporter 1, VGLUT1) and one
using viral labeling of synapses (synapsin or
synaptophysin dual-label virus, SYN) (Fig. 2,
B to F, and fig. S5). Across five bats, 79.2% of the
retrogradely labeled motoneurons (61/77) colo-
calized with descending cortical fibers, and
26% of them (20/77) colocalized with both cor-
tical fibers and synaptic boutons, pointing to
the existence of a robust direct corticospinal
projection to laryngeal motoneurons (Fig. 2G).
This colocalization in the NA was consistent
across the different techniques (Fig. 2G and
fig. S5) and could not be found in any other
brainstem motor nuclei, including the hypo-
glossal nucleus, which controls the tongue and
neck muscles (fig. S4, C to E). We noted that
the corticobulbar fibers crossed the midline
anterior to the NA at the level of the facial
nucleus, offering a direct contralateral path for
the innervation of the NA (fig. S4F). These ana-
tomical findings highlight the bat ofM1 as a
possible candidate region associated with vocal
production.

To further corroborate the role of ofM1 in
vocal control, we tested whether ongoing single-
cell neural activity in this area was associated
with vocal production. We performed wireless
electrophysiological recordings from four bats
engaged in free vocal interactions with peers
(Fig. 2H). Vocalizations were identified and
recorded by using wireless call detectors placed
around the necks of the individual bats (mate-
rials and methods) (46). We found that about
half of the recorded single units in ofM1 (115/
237) showed a significant change in firing rates
when the bats produced vocalizations compared
with when they stayed quiet (fig. S6, A to C)
[analysis of variance with a Poisson generalized
linear model per cell; P value threshold = 0.001
(materials and methods)]. In 25% of ofM1 cells
that were excited during vocal production
(26/104), the change of activity could not be
accounted for by jaw or tongue movements,
indicating that these cells were engaged in the
motor control of movements specific to vocal
production (fig. S6D). Furthermore, many of
the single units had a sustained increase of
activity during production of vocalizations, but
not during perception of vocalizations (Fig. 2I).
To further assess this specific neural modula-
tion during vocal motor production, we quan-
tified the information between the time-varying
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A

Cricothyroid
laryngeal muscles

ChR2 SYN
Fig. 2. Identification of an anatomically specialized motor cortical region
targeting laryngeal motoneurons in the Egyptian fruit bat. (A) (Right)
Schematic of anatomical tracing approaches. Retrograde tracer CTB

(purple) was injected bilaterally into the cricothyroid muscles to label
brainstem motoneurons in NA. Simultaneously, an anterograde viral tracer
[channelrhodopsin-2 (ChR2) or SYN, green] was injected bilaterally into the ofM1
to label corticobulbar projections into NA. (Left) Example coronal section
showing cortical injection sites with anterograde tracer (ChR2, green) and

4' 6-diamidino-2-phenylindole (DAPI) labeling (cyan). (B to F) Laryngeal
motoneurons in the NA identified by using a retrograde tracer (CTB, purple),
cortical fibers labeled with ChR2 (green), corticobulbar synapses labeled with
VGLUTI (red), and DAPI (blue). (B) and (C) are overlaid images showing
colocalization of fibers with a synaptic bouton on the retrograde-labeled cell
(white arrow). (C) to (F) are magnifications of the yellow-boxed area in (B).
(G) Percentage of laryngeal motoneurons labeled with CTB that are colocalized
with cortical fibers (blue) or with both cortical fibers and synaptic boutons (red).

firing rate and the amplitude modulation of the
vocalizations. This analysis confirmed that ofM1
neurons had significantly higher motor than
auditory information (Fig. 2J) (likelihood-ratio

Wirthlin et al., Science 383, eabn3263 (2024 29 March 2024

test on linear mixed-effects models, n = 219,
x% = 62,515, df = 1, P = 2.6645 x 107°; average
d' change in information gain during motor
production = 0.15 + 0.13, corresponding to an
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Both tracing techniques qualitatively yielded similar results: ChR2, n = 51 cells from
three bats; SYN, n = 26 cells from two bats. (H) lllustration of the experimental
setup during which wireless electrophysiological recordings were conducted from
the identified cortical region in freely behaving and vocalizing bats. (I) Spiking
activity of an example ofM1 neuron aligned to the onset of vocalizations produced
(bat's own calls, orange) or heard (other bats’ calls, blue) by the bat subject.
(Top) Time-varying mean firing rate and (bottom) corresponding raster plot.
Colored lines in the raster plot show the duration of each vocalization. Note the
increased firing rate during vocal production as compared with that of hearing.
(J) Information (materials and methods) between the time-varying firing rate
and the amplitude of produced (x axis) versus heard (y axis) vocalizations for
219 single units (marker shapes indicate bat ID, n = 4 bats). The cell shown in (I) is
highlighted in red. (Inset) The distribution of d' between motor and auditory
information for the same cells. Note that the distribution is heavily skewed toward
higher motor information rather than auditory information coded in the activity
of the recorded neurons. Error bars are mean + SEM throughout the figure.

increase of 0.286 + 0.035 bits/s). Combined, the
results of the anatomical and electrophysiolo-
gical study defined ofM1 as a motor cortical area
associated with vocal production in R. aegyptiacus.
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Epigenomic specializations in the vocal
production region of the Egyptian fruit bat
motor cortex

We next sought to epigenomically profile
candidate regulatory elements in vocal and
nonvocal brain regions in R. aegyptiacus
to identify vocal learning-associated regulatory
genomic specializations. We generated a multi-
tissue atlas of open chromatin data, indicative
of regulatory activity, by performing assay for
transposase-accessible chromatin sequencing
(ATAC-seq) (61) across seven brain regions and
three somatic tissues of R. aegyptiacus (mate-
rials and methods), including ofM1 (Fig. 3A).
From a total set of 88,389 noncoding, non-
promoter open chromatin regions (OCRs) in
the primary motor cortex (M1), we identified
348 candidate enhancers with differential open
chromatin between ofM1 and wing motor
cortex (wM1) (P < 0.05) (Fig. 3B and data S5)
(materials and methods). Genes proximal to
OCRs with differential open chromatin be-
tween ofM1 and wMI1 were significantly enriched
for functional association with neuronal projec-
tions and transcriptional regulation (data S6).
These included OCRs near the genes of 51
known TFs, including FOXP2, a TF that has
been extensively implicated in human speech
and vocal learning (Fig. 3C) (62). Notably, genes

Rostral <€——> Caudal

near OCRs differentially open between bat ofM1
and wM]1, including genes that we had identified
as being under convergent acceleration in vocal
learners using the evolutionary approaches of
RERconverge (n = 11) and HyPhy RELAX anal-
ysis (n = 3; GATA3, LRRN1, and TNIP3) (data
S6). These specialized regions of open chro-
matin, coupled with an enrichment of TFs in
the set of vocal learning-associated protein-
coding genes, suggest that both cis and trans
differences in gene regulation contribute to
the evolution of vocal learning behaviors.

Convergent evolution in candidate
enhancer sequences associated with
vocal learning behavior

Because there is accumulating evidence that
cis-regulatory differences in enhancer regions
are driving the evolution of complex traits
(63-65), we sought to identify OCRs whose
tissue- and cell type-specificity would be shared
across species of vocal learners. Detecting cis-
regulatory element differences associated with
trait evolution is challenging because many
enhancers can preserve the same regulatory
function even when the underlying genome
sequence is highly divergent, and many cis-
regulatory elements have tissue-specific activity
(66-68). Thus, methods for convergent evolution

—log10(P value)

Medial €—> Lateral ©

that rely on the alignment of individual nucleo-
tides between species (11, 69, 70) are likely to
miss a substantial proportion of key candidate
enhancers.

We therefore sought to extend our search
for cis-regulatory elements whose evolution is
associated with vocal learning behavior using
a recently developed machine learning approach,
TACIT (23). Given that it is infeasible to map
the brains and collect motor cortex tissue from
each vocal learning and closely related non-
learning species, the TACIT approach uses
machine learning models (23) to predict mo-
tor cortex open chromatin across ortholo-
gous regions of the genome (66-68). TACIT
then associates predictions with vocal learn-
ing in a way that corrects for phylogenetic
relationships (Fig. 4A). We used the predic-
tions from convolutional neural networks
(CNNs) trained by using DNA sequence-based
M1 open chromatin data obtained in this study
for R. aegyptiacus with ATAC-seq and collected
earlier for the mouse (21), rat, and macaque
(20) to predict motor cortex open chromatin
across 222 mammalian genomes (materials
and methods) (23). Given that parvalbumin
has been shown to be a shared marker of brain
areas critical for vocal learning in songbirds

and humans (4), we also used CNNs trained

Motor cortex ATAC-seq

ofM1-biased <€———3 wM1-biased

significance (P < 0.05)
= nonsignificant
o significant

NW_023416288.1:73,465,835-73,639,819

-1 0 1 2
log2(wM1-0fM1) peak signal

73,500 kb
|

173 kb

73,600 kb
| |

ofM1

ATAC-seq

A
|

Bat M1 OCRs 1

Bat ofM1-
upreg. OCRs

Human-unique 1
M1 upreg. OCRs

Bat M1-expr.
transcripts

FOXP2 m—~«————«—+H

Fig. 3. Differential open chromatin in bat ofM1 relative to wM1. (A) Open chromatin was profiled from seven dissected brain regions of the Egyptian fruit bat.
Premotor vocal area, PreM; auditory cortex, A; cerebellum, Cb; caudate, C; putamen, P. (B) Volcano plot of ATAC-seq OCRs with differential activity between
ofM1 and wM1 of the Egyptian fruit bat. (C) Genome browser showing ofM1 and wM1 ATAC-seq traces at the 3' end of the FOXP2 locus. Reproducible M1 open
chromatin regions (OCRs) are indicated in blue, with a differentially active OCR in ofM1 relative to wM1 indicated in red.
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Fig. 4. Vocal learning—associated convergent evolution in motor cortex
open chromatin regions implicates specific neuron subtypes. (A) Overview
of the TACIT (23) approach to vocal learning. OCRs were identified in the
motor cortex (M1). Measured open chromatin from the M1 (four species) was
used to train CNNs to predict M1 open chromatin from sequence alone. Red
bars and corresponding arrows indicate the presence of a peak, whereas the blue
bars represent the absence. The same OCRs were then mapped across 222
mammalian genomes (left), and the identified sequences were used as input to
the CNNs to predict open chromatin activity. TACIT identified OCRs whose
predicted open chromatin across species was significantly associated with those
species’ vocal learning status. (B and C) The four-way Venn diagrams represent
the number of OCRs implicated by TACIT (both M1 and PV+) as displaying

low (B) or high (C) activity in each of the vocal learning clades based on a t test.
(D) The heatmap visualizes specific open chromatin regions along the
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rows (predicted higher in vocal learners, green; predicted lower in vocal learners,
purple) across 222 mammals in the columns (vocal learners, red; vocal
nonlearners, black; insufficient or conflicting evidence, gray). The color in

each cell corresponds to the z-scored predicted open chromatin, with low open
chromatin in blue, mean open chromatin in white, and high open chromatin

in red. (E and F) Plots comparing vocal learning-associated open chromatin
regions with those from cortical mouse cell types. For open chromatin regions
predicted to be significantly less (E) or more (F) open in vocal learning species
(P < 0.05), the red point indicates the number of overlapping regions (y axis)
across mouse cortical cell types (x axis). The bar plot shows the distribution
across 1000 permutations of the peaks implicated by TACIT. The notches extend
1.58 x IQR/+/n (IQR, interquartile range), which gives a confidence interval of
roughly 95%. Cell types were ordered based on their enrichment measured by
permutation for the peaks lower in vocal learning species.

to predict cell type-specific open chromatin by
using ATAC-seq data from mouse and human
M1 parvalbumin-positive neurons (M1-PV+)
(22, 23, 71). We identified regions whose pre-
dicted open chromatin was consistently lower
or higher in vocal learners relative to vocal
nonlearners by using phylogenetic logistic
regression (72, 73) with phylogenetic permuta-
tions (24) [permulations adj. P < 0.1; materials
and methods, (23)] (Fig. 4A). We identified
33 open chromatin regions from our M1 CNN
models that had lower predicted open chroma-

Wirthlin et al., Science 383, eabn3263 (2024

tin in vocal learning species and 11 that had
higher predicted open chromatin in vocal
learning species (Fig. 4D, table S1, and data S7).
From the M1-PV+ predictions, we identified five
candidate enhancers that had lower predicted
activity in vocal learning species and one candi-
date enhancer that had higher predicted regu-
latory activity in vocal learning species. (table
S2 and data S7). Unlike the protein-coding genes,
most vocal learning-associated enhancers showed
evidence of higher or lower activity in at least
three out of the four vocal learning clades (Fig. 4,

29 March 2024

Bto D, and data S8). Consistent with the finding
that convergent vocal learning-associated gene
regulation is primarily repressive (4), we found
that most candidate enhancers (2 = 38/50 OCRs,
76%) had lower predicted open chromatin ac-
tivity in vocal learning relative to vocal non-
learning mammals (fig. S7).

To interpret potential functions of the vocal
learning-associated candidate enhancers, we
annotated the nearest genes in the mouse (data
S9). In many cases, the genes closest to these
putative enhancers have been associated with
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significant developmental delay or complete
absence of speech when disrupted in humans
(tables S1 and S2). Four of the OCRs identified
by the M1 model were proximal to genes—
GALC, TCF4, TSHZ3, and ZNF536—that were also
near OCRs with differential activity between
bat ofM1 and wM1 (data S6). Two of the vocal
learning-associated M1 OCRs were proximal
to genes DAAMI and VIP, which were pre-
viously shown to have convergent gene expres-
sion between humans and song-learning birds
(4). To further explore the function of the vocal
learning-associated OCRs in the motor cortex,
we annotated their cell-type specificity using
publicly available mouse BICCN data (74). The
cell type most enriched for OCRs predicted
to be lower in vocal learning species was the
layer V extratelencephalic (ET) neuron, which
has previously been implicated in vocal learn-
ing (75), but strong enrichments were also found
for other cortical excitatory neurons (Fig. 4,
E and F, and data S10).

Among genes near vocal learning-associated
OCRs, the DACTI (TACIT adj. P = 0.0014;
RERconverge 1 adj. P < 0.0001) and CELF4
(TACIT adj. P < 0.023; RERconverge t adj. P <
0.0034) proteins also displayed significantly
lower relative evolutionary rates in vocal learn-
ers. Despite the lack of direct evidence in the
literature for its role in speech production,
CELF4 has been associated with autism in
the human population (76), and its function in
layer V pyramidal neurons has been linked
with seizures in mice (77).

Multiple M1-PV+ interneuron OCRs associ-
ated with vocal learning are near genes pre-
viously associated with autism. For example,
an OCR that is negatively associated with vocal
learning evolution is in an intron of the gene
CCSERI, which has nonsense mutations impli-
cated in autism (78) and is in a locus associated
with musical beat synchronization (79). An OCR
that is positively associated with the evolution
of vocal learning is in an intron of the gene
CNTNAP4, whose deletions and copy number
variation in humans and mice have been im-
plicated in neurological disorders, including
autism in humans (80, 8I). To test whether
these associations would have been identified
by chance, we tested whether vocal learning-
associated OCRs tended to be near genes asso-
ciated with autism. We found that the M1-PV+
OCRs with human orthologs near genes asso-
ciated with autism (82) tended to be more
significantly associated with vocal learning
evolution than other OCRs with human ortho-
logs (Wilcoxon P = 0.0071).

Discussion

Convergent evolution of vocal learning has
been associated with convergent evolution at
the neuroanatomical level: Cortical motor re-
gions driving vocal production in humans and
songbirds [human motor cortex and songbird

Wirthlin et al., Science 383, eabn3263 (2024

robust nucleus of the arcopallium (RA)] show
increased connectivity with the brainstem and
striatum (3). These same motor regions also show
convergent evolution in patterns of gene expres-
sion, with commonly decreased gene expression
found in both song-learning birds and humans
(4). In this study, we investigated convergent
evolution of vocal learning in mammals, both at
the anatomical and the genetic levels. Firstly, we
found a direct motor corticobulbar connection
from a cortical region implicated in vocal pro-
duction in a vocal learning bat. Secondly, we
revealed widespread evidence of convergent
evolution across vocal learning mammals in
protein-coding sequences and candidate regu-
latory enhancers.

Our parallel study of both coding and non-
coding regions linked with the vocal learning
trait identified many protein-coding genes (200)
and a smaller number of noncoding regions
(50), distal sites of open chromatin that are
associated with vocal learning. Although a
larger number of significant protein-coding
genes were identified, the vast majority of
these were primarily driven by strong evidence
in one of the vocal learning clades and only
weak evidence in the other three. By contrast,
most significant noncoding regions showed
robust evidence of convergent selective pressure
in at least three out of the four clades. The larger
number of identified proteins relative to open
chromatin regions could have been due to better
statistical power from being able to directly
model nucleotide evolution in protein-coding
sequences, which tend to be more stable than
regulatory elements across species (17, 12). How-
ever, only 5/200 of the significantly associated
protein-coding genes showed robust evidence
of differential rates of evolution in at least three
of four vocal learning clades. Out of these 200
proteins, many were neurodevelopmental tran-
scription factors, which are among the most
highly conserved genes in mammals (83) and
thus likely to play roles in a broad range of
contexts that could constrain their evolution.
It is also possible that some of the identified
proteins could be associated with other con-
vergent traits that correlate with vocal learn-
ing across mammals, including echolocation
(bats and cetaceans), marine adaptations (ceta-
ceans and pinnipeds), or increased longevity
(bats, cetaceans, and humans).

By contrast, 33/50 vocal learning-associated
candidate enhancers had differential predicted
open chromatin in at least three of four vocal
learning clades; this independent convergence
of gene regulatory function suggests that these
enhancers may be critical for the evolution of
vocal learning. Enhancers tend to have functions
that are much more context- and tissue-specific
(68), making them less functionally constrained
than protein-coding genes, which could perhaps
allow more flexibility for an individual enhancer
to evolve a new role for a specific trait such as
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vocal learning. Our results suggest that the evo-
lution of mammalian vocal learning is largely
driven by changes to the noncoding regulatory
elements that orchestrate gene expression
rather than by changes to the protein-coding
genes themselves.

Despite the different methodologies applied
to identify convergent evolution in coding and
noncoding regions, both protein coding- and
regulatory element-focused approaches impli-
cated gene functional pathways associated with
human autism. In our protein-coding analyses,
genes with lower evolutionary rates based on
both RERconverge and HyPhy RELAX were
enriched for autism function. Likewise, in our
analyses of regulatory evolution, multiple autism-
linked genes were near human orthologs of
the vocal learning-associated M1-PV OCRs.
In humans, autism is often associated with
speech delays and differences in social behavior,
both of which could be related to the evolution-
ary trait of vocal learning ability (84). Broadly,
this could be evidence that genomic loci asso-
ciated with a complex trait across mammals
may also be associated with variations in re-
lated traits within the human population.

The bulk motor cortex OCRs with lower pre-
dicted open chromatin in vocal learners showed
the strongest tendency to overlap with OCRs
in layer V ET neurons, which form long-range
projections to the hindbrain motoneurons that
control vocal production (Fig. 4E). These results
are consistent with our previous findings that
showed decreases in the expression of axon-
guidance genes in the motor cortex of vocal learn-
ing species (4). Among other functions, the layer
V ET neurons implicated by TACIT create the
corticospinal projections that have been hypoth-
esized as an anatomical landmark of vocal
learners (2, 3, 48, 49, 56, 85, 86). Furthermore,
the neuroethological and anatomical experi-
ments we conducted in R. Aegyptiacus provide
evidence that corticospinal projection neurons
are present in the motor cortex of the bat
species and that this motor cortical region
participates in vocal production. Thus, consis-
tent with previous literature, our results support
a model in which the loss of regulatory element
activity in the motor cortex influences axon
guidance properties of long-range projection
neurons, which allow more robust connectivity
between the cortex and the brainstem of vocal
learning mammals (4, 85, 87). Alternatively,
these genetic differences could relate to po-
tential differences in the density of disynaptic
connections that have been associated with
skilled motor behavior, including vocalization
in nonhuman primates (88, 89). Notably, these
long-range projection neurons have also been
associated with predisposition to autism (90).

Materials and methods summary

To find vocal learning-associated conver-
gent evolution in protein-coding sequences
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of the mammalian genome, we began with
amino acid-level multiple sequence alignments
produced by the Zoonomia consortium (10).
Those served as input to two classes of methods,
RERconverge (11) and HyPhy (30). RERconverge
with an additional permutations correction
for phylogenetic structure (24) was used to
find protein-coding sequences whose evolu-
tionary rates were associated with the presence
or absence of vocal learning. HyPhy RELAX
was used to find protein-coding sequences that
were evolving more slowly, neutrally, or faster in
vocal learning species. In addition, the HyPhy
BUSTED-PH method (12) was applied to find
evidence of diversifying positive selection. The
gene ontology analysis was performed on the in-
tersection of the RERconverge and HyPhy re-
sults using EnrichR (91). To control for false
positives across all methods, Benjamini-Hochberg
false discovery rate correction (92) was applied.

To examine the existence of a direct mono-
synaptic projection in a vocal learning mammal,
the corticobulbar projections in Egyptian fruit
bats were mapped by tracing the projections
from the orofacial motor cortex and from the
cricothyroid muscles of the vocal cords. Per-
forming immunohistochemistry in the brainstem
revealed that synaptic boutons of cortical pro-
jection neurons overlapped with retrogradely-
labeled motoneurons, confirming the existence
of a direct monosynaptic projection. The role of
the orofacial motor cortex during vocal produc-
tion was then validated by quantifying the in-
formation between the vocalization amplitude
and single cortical neuron activity measured
wirelessly in vivo while the bats produced and
listened to vocalizations.

To create an atlas of open chromatin regions
in the bat M1, several brain regions, including
wM1 and ofM1, were separately dissected. The
samples were cryopreserved, then the nuclei
were isolated, and subsequently ATAC-Seq was
performed to measure open chromatin. The
open chromatin regions from this experiment
were combined with previously published ex-
periments in macaque, rat (23), and mouse (21)
to create an atlas of cross-species motor cortex
open chromatin.

To find vocal learning-associated convergent
evolution in noncoding regions of the Boreo-
eutherian mammalian genome, the TACIT
machine learning approach, was applied. Or-
thologous regions across genomes were found
by combining the CACTUS whole-genome
multiple sequence alignment (19), halLiftover
(93), and HALPER (94). Phyloglm (72) was
then used to associate predicted motor cortex
and parvalbumin-positive inhibitory inter-
neuron open chromatin with binary annota-
tions of vocal learning behavior. Phylogenetic
permutations were applied to correct for
phylogenetic tree structure and Benjamini-
Hochberg to correct for multiple hypothesis
testing. To identify potential trends in the cell-

Wirthlin et al., Science 383, eabn3263 (2024

type specificity of the implicated regions, per-
mutations on the regions of the genome that
were predicted to have significantly higher or
lower open chromatin in vocal learning species
were conducted.
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