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INTRODUCTION: Vocal production learning (“vocal

learning”), or the ability tomodify vocalizations

according to the social environment, forms the

basis of human speech production. Among the

Boreoeutherianmammals, this trait has evolved

independently in four different lineages: hu-

mans, bats, cetaceans, and pinnipeds. In verte-

brates, the evolution of vocal learning behavior

has been associated with the evolution of brain

anatomical features, including cortical long-

range projection neurons (e.g., songbirds and

humans). Moreover, neural circuits for the

production of learned vocalization display con-

vergent evolution in patterns of gene expression.

RATIONALE: Despite evidence for the conver-

gent evolution of vocal learning at the behav-

ioral, anatomical, and gene expression levels

in vertebrates, the genetic underpinnings

of vocal learning and human speech in mam-

mals are poorly understood. New machine

learning approaches and the newly sequenced

mammalian genomes of the Zoonomia

Consortium provide the foundation to rigo-

rously study this question. The repeated evo-

lution of vocal learning across mammals

allows us to determine which parts of the

genome are significantly associated with

the behavior.

RESULTS: First, we studied convergent evolution

in protein-coding regions using the RERconverge

and HyPhy methods to find 200 significantly

associated genes. The genes that tend to be

under higher constraint in vocal learningmam-

mals are enriched for genes involved in human

autism. However, the vast majority of genes are

driven by signals fromonly one or two clades of

vocal learningmammals, suggesting that a large

component of the genetic basis for the trait may

lie instead in the convergent evolution of regu-

latory elements. To explore that hypothesis, we

performedananatomical and functional charac-

terization of the Egyptian fruit batmotor cortex.

We identified a subregion of the motor cortex

that is implicated in vocal production and direct-

ly projects to the motoneurons controlling the

bat’s larynx. This allowed us to profile candidate

regulatory elements active in this vocalization-

associated subregion of themotor cortex bymea-

suring open chromatin. These open chromatin

regions and 222 mammalian genomes of the

Zoonomia Consortium served as input to the

Tissue-Aware Conservation Inference Toolkit

(TACIT)machine learning approach, which was

applied to find 50 candidate regulatory elements

whose predicted motor cortex open chromatin

measurements across mammals are highly cor-

relatedwith the presence of vocal learning behav-

ior. Many of these open chromatin regions were

neargenesassociatedwithautism,andtheytended

to overlap with open chromatin specific to the

long-range projection neurons that have been

implicated in the evolution of vocal learning.

CONCLUSION: Although it is impossible to know

which parts of the genome evolved for human

speechproduction,weare able touse the repeated

evolution of a component of that behavior, vocal

learning, to find significantly associated genes

andnoncoding regions.Our results demonstrate

that the presence of vocal learning behavior in a

givenclade leads toweak selectivepressureacross

a broad range of genes and stronger selective

pressure across a smaller number ofmotor cortex

noncoding regions. These genes and noncoding

regions show an association with autism, which

suggests that there are shared regulatory net-

works for vocal and social behavior that tend to

adapt in similar ways when a lineage evolves

vocal learning behavior. More broadly, our re-

sults suggest that the evolutionary history of se-

lective pressures across a location in the genome

can provide insight into how that region might

influence human behavior. ▪
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Finding vocal learning–associated regions of the mammalian genome. We compared the evolution of

vocal learning behavior to the evolution of coding and noncoding elements of the genome, leveraging

anatomical, electrophysiological, and epigenomic experiments in the Egyptian fruit bat orofacial motor cortex

(ofM1). We show convergent evidence of the importance of long-range projection neurons and autism-

associated gene networks.
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Vocal production learning (“vocal learning”) is a convergently evolved trait in vertebrates. To identify

brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical,

and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the

genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal

learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent

vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor

cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed

50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners.

Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal

learning evolution.

V
ocal production learning (“vocal learning”),

the ability of an organism to modify the

acoustic properties of its vocalizations as

a result of social experience, is an exam-

ple of convergent evolution, havingevolved

independentlywithinmultiple lineages of birds

and mammals, including humans, where it

manifests as speech (Fig. 1A) (1, 2). Vocal

learning has been extensively studied in song-

birds, highlighting numerous shared behavioral

features of birdsong and speech learning, such

as a dependence on auditory input during a

critical developmental period and a juvenile

babbling phase of sensorimotor exploration

prior to the maturation of the adult vocaliza-

tions (1). Convergence between song-learning

birds and humans extends to neuroanatomical

specializations, including direct corticobulbar

projections from the vocalmotor cortex analog

to the hindbrain motoneurons controlling the

vocal apparatus (3) and shared transcriptional

specializations in analogous speech- and song-

specialized brain regions (4). Thus, songbirds

have become a premier model for exploring

the fundamental brain anatomical, molecular,

and genomic features associated with vocal

learning (1, 3). An expanding literature on vocal

learning behavior across mammals suggests

an underappreciated diversity in the pheno-

typic expression of vocal learning across the

taxa traditionally thought to possess it (2, 5–8).

Study of the diverse forms of mammalian vocal

learning behaviors could broaden our under-

standing of the coremolecular, anatomical, and

physiological brain mechanisms of vocal learn-

ing and of themechanisms underlying the con-

vergent evolution of skilled motor behaviors

more broadly.

Weevaluated evidenceof convergent genomic

specializations shared among four lineages of

vocal learning mammals that independently

evolved this trait—bats, cetaceans, pinnipeds,

and humans (Fig. 1A)—using whole-genome

datasets and recently developed computational

approaches. Specifically, we used protein-coding

sequences from genomes generated by the

Zoonomia Consortium (9, 10) and models

of evolutionary rate convergence (11, 12) to

identify protein-coding regions repeatedly asso-

ciatedwith the evolution of vocal learning across

mammals. Although we found 200 protein-

coding genes significantly associated with

vocal learning, none of them showed strong

evidence of selection in all four mammalian

clades, and only five showed strong evidence

of selection in three out of the four clades.

Owing to individual lineages contributing dis-

proportionately to many of the protein-coding

results, we hypothesized that noncoding regu-

latory elements might also be under constraint

for the evolution of vocal learning. We next

profiled open chromatin, a proxy for regula-

tory element activity (13), in multiple brain

regions and somatic tissues in the Egyptian

fruit bat (Rousettus aegyptiacus), a mammal

with robust vocal plasticity (14–16), to identify

vocalization-associated regulatory genomic spe-

cializations. We accomplished this by combin-

ing anatomical tracing and electrophysiological

recordings in vocalizing bats to identify a

region of the motor cortex associated with

vocal production. The vocalization-associated

epigenomic data collected from this bat spe-

cies, combined with hundreds of mammalian

genomes (17, 18), their associated reference-

free whole-genome alignments (19), and high-

quality epigenomic data from themotor cortex of

multiple additionalmammalian species (20–22),

provided the foundation to apply a machine

learning approach, the Tissue-Aware Conserva-

tion Inference Toolkit (TACIT) (23). This ap-

proach allowed us to identify putative enhancers,

distal regulatory elements that tend to be highly

tissue specific, associated with the convergent

evolution of vocal learning. We combined

recently developed computational tools and

neuroanatomical experiments in the Egyptian

fruit bat and found evidence of convergent

evolution in both protein-coding and noncod-

ing DNA sequences.

Results

Convergent evolution in protein sequence

associated with vocal learning behavior

To explore the possibility of shared genomic

specializations associated with vocal learning,

we first applied RERconverge (11) to recent-

ly released protein-coding alignments obtained

for hundreds of mammals (10) to identify

protein-coding genes whose relative rates of
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evolution differ between vocal learners and

other mammals and those that may thus be

under selection related to vocal learning (11, 24).

We analyzed 16,209 high-quality protein-coding

gene alignments across 215 boreoeutherian

mammals, including 26 vocal learning species,

164 vocal nonlearners, and 25 species without

confident annotations (Fig. 1A and data S1)

(materials and methods). We found evidence

for lower evolutionary rates in vocal learners

compared with nonlearners in 804 genes and

evidence for elevated evolutionary rates in

102 genes [t adjusted (adj.) P < 0.01 and per-

mulations (24) adj. P < 0.01] (fig. S1 and data

S2). To identify which specific clades were

driving the differential rates of evolution, we

applied a Bayes factor analysis that examined

each clade individually for evidence of selection

(18) (data S2). Despite the large number of

significant associations based on RERconverge,

we found no single protein-coding gene with

consistently lower or elevated evolutionary

rates in all four vocal learning clades. Among

the genes with reduced evolutionary rates in

vocal learning species, we found only 5 out

of 804 protein-coding genes with strong evi-

dence of selective pressure in three out of the

four vocal learning clades: CENPC, CATSPERG,

MGA, TREML2, and ZCWPW1 (Bayes factor > 5)

(Fig. 1, B and C). None of these proteins reached

the threshold for selection in the human lineage

(materials and methods), which could indicate

different mechanisms of evolution in the lau-

rasiatherian vocal learning clades relative to hu-

mans. Our results suggest that the vast majority

of protein-coding genes that we identified are

evolving much faster or much slower in one

clade but are only weakly associated with vocal

learning across the other lineages.

Among the most strongly associated genes

wereCENPC (fig. S2A) (t = –0.30; t adj.P= 8.7 ×

10
−6
; permulations adj. P ≤ 0.001), andGRM8

(fig. S2B) (t = 0.26; t adj. P = 3.5 × 10
−4
; per-

mulations adj. P ≤ 0.001). GRM8 represents

an especially promising candidate because it

has previously been linked to anatomical spe-

cializations for vocal learning in songbirds (25)

and is a known target of the speech-associated

FOXP2 transcription factor (TF) (26). In pri-

mates and rodents, both GRM8 and FOXP2

are markers of a rare class of medium spiny

neurons implicated in motor control that co-

express both DRD1 and DRD2 dopamine re-

ceptors (27–29). Our results support a model

in which vocal learning behavior is only par-

tially explainedby differences in protein-coding

gene evolutionary rates.

To further explore selection on these vocal

learning–associated protein-coding genes, we

applied an additional set of tools from the

HyPhy package that compare nonsynonymous

(dN) and synonymous (dS) substitution rates

in the nucleotides of the amino acid sequence

Human
 1 species

Cetaceans
  6 species

Pinnipeds
  4 species

Bats
 15 species

s

Mammals
 190 species with genomes

A

Vocal nonlearning
 164 species

Vocal learning
 26 species

B

C

Adjusted P value

Bats

Pinnipeds Human

Cetaceans

Bats

Pinnipeds Human

Cetaceans

1e−041e−031e−02

0.0030.0100.030

D

E

0 3 6 9 12 15

Odds Ratio Color

Fig. 1. Convergent changes in protein sequence associated with vocal

learning evolution across 215 mammalian species. (A) A cladogram of

mammalian species whose genomes were analyzed in this study highlights the

convergent evolution of vocal learning species (red) relative to vocal nonlearners

(black). The phylogenetic tree used in our analyses was derived from (98).

(B and C) Each of the genes implicated by RERconverge with lower (B) or higher

(C) evolutionary rates in vocal learners is annotated based on whether it

shows a significant signature within the four vocal learning clades based on a

Bayes factor ≥5 (18). (D and E) All significant gene ontology categories

(adj. P < 0.10, EnrichR) are plotted for the 200 genes with conserved (D) and

accelerated (E) selection in vocal learning clades on the basis of results from

the RERconverge and HyPhy RELAX analyses. The points are colored by the

odds ratio within the set of implicated genes relative to the genes outside of the

set, which corresponds to the degree of enrichment within that set.

RESEARCH | RESEARCH ARTICLE

Wirthlin et al., Science 383, eabn3263 (2024) 29 March 2024 2 of 10

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 at U
n
iv

ersity
 o

f P
ittsb

u
rg

h
 o

n
 A

u
g
u
st 1

2
, 2

0
2
4



(30). In this study, these sensitive evolutionary

models of codon substitution formally com-

pare selective regimes, modeled as dN/dS dis-

tributions, between branches annotated with

the vocal learning phenotype and the rest of

the phylogenetic tree (12, 30). The results were

largely consistentwith amino acid–levelmethods:

the protein-coding genes with lower protein

evolutionary rates in vocal learning clades also

tended to be under higher constraint in vocal

learning clades (Wilcoxon P = 2.5 × 10
−4
), and

the genes with higher evolutionary rates in

vocal learning species showed evidence of ac-

celerated evolution in these same clades (Wilcoxon

P = 7.9 × 10
−9
) (fig. S3 and data S3). To further

explore the functional trends of protein-coding

genes associated with the evolution of vocal

learning,we focused on the set of proteins that

showedconsistentbehaviorbetweenRERconverge

and the HyPhy RELAX model (Benjamini-

Hochberg false discovery rate q < 0.05). This

yielded a set of 126 proteins that were more

slowly evolving in vocal learning clades and

74 with an elevated rate of evolutionary changes

relative to other species. The complementary

approaches of RERconverge andHyPhy RELAX

identified a total of 200 vocal learning–associated

genes, which suggests that this behavior, vo-

cal learning, is having a substantial impact on

protein evolutionary rates.

We further interrogatedevolutionarypressures

across the vocal learning–associated genes by

looking for evidence of diversifying position

selection using the HyPhy BUSTED-PHmodel.

Evidence of diversifying positive selection was

found in 6.3% (13 transcripts, 9 genes) of the set

of genes with elevated rates of evolution in

vocal learning species based on RERconverge

and the HyPhy RELAX model. As expected,

we identified much lower rates of diversifying

positive selection in the gene with lower rates

of evolution in vocal learning species (1.0%)

and within the set of randomly chosen tran-

scripts (2.0%). Among thenine genes that showed

evidence of positive selection, eight have been

associated with neurodevelopment (CCDC136,

KIDINS220, LRRN1, RSG5, CYLD, GABRA5,

NETO2, and KIAA1109) (31–38). The gene

CCDC136 has more directly been associated

with multiple language-related phenotypes in

humans (31, 39, 40). These results suggest that

the vocal learning–associated genes acrossmam-

mals may tend to play a role in human brain

development and vocal behavior.

To more systematically explore the functional

trends within these 126 and 74 protein-coding

genes, we conducted a gene ontology analysis

using EnrichR. Protein-coding genes with lower

evolutionary rates in vocal learning species were

associated with regulation of DNA-templated

transcription (P = 1.10×10
−6
, adj. P = 1.9 × 10

−5
),

regulation of canonical Wnt signaling pathway

(P = 5.1 × 10
−5
, adj. P = 0.013), and the autism

human phenotype ontology (P = 5.8 × 10
−6
, adj.

P = 0.0028) (Fig. 1, D and E, and data S4). The

genes with accelerated evolutionary rates were

not enriched for any pathways at an adjusted

P < 0.05 with at least five genes contributing.

The enrichment of autism-associated genes

among the set of genes with greater levels of

conservation in vocal learners (MECP2, RAD21,

DYRK1A, SIM1, FTSJ1,MEIS2, and FGFR1) is

particularly interesting given the prevalence of

speech delay and early vocal production differ-

ences in human subjects with autism (41, 42)

as well as the previous association between

autism genes and the evolution of vocal behav-

ior in birds and bats (43, 44). On the basis of

the association with autism, we further ex-

plored the function of the vocal learning–

conserved gene set in the context of early vocal

production differences. Although only four

human loci have been associatedwithdifferences

in early vocal production, protein-coding genes

overlapping two of these loci showhigher levels

of conservation in vocal learning clades (INSC

and DAPK3) (45).

Identification of a vocal production region in

Egyptian fruit bats

The enrichment of TFs in the set of vocal

learning–associated proteins suggests that dif-

ferences in gene regulation are likely to be a

major factor in the evolution of vocal learning.

Because gene regulation is often tissue specific,

we sought to identify motor regions of the

brain involved in vocal production and con-

trast their epigenomic profiles with that of

those not involved in vocal production. We

conducted this comparison in the Egyptian

fruit bat,R. aegyptiacus, a mammalian species

with robust vocal plasticity (16, 46) and with

data on its motor cortex mapping (47). To

identify a candidate region, wewere guided by

the hypothesis that fine vocal motor control, a

key ability in vocal learning,may be associated

with the anatomical specialization of themotor

cortex (48–51). Previous work suggested that a

cortical region controlling complex vocal be-

havior would be characterized by a direct,

monosynaptic projection onto themotoneurons

controlling the vocal source (in mammals, the

larynx) (48–52). Such a direct connection has

been observed robustly in humans (53–56)

and vocal learning birds [songbirds, parrots,

and hummingbirds (57–59)] but has not been

reliably found in vocal nonlearning species such

as chimpanzees (41) or mice (60).

We first determined whether a direct corti-

cobulbar anatomical connection existed in

R. aegyptiacus. Guided by cortical mapping

experiments (47), we injected anterograde tra-

cers into the part of the motor cortex that has

been associated with orofacial motor control,

the orofacial motor cortex (ofM1), and identi-

fied fluorescently labeled descending cortical

fibers in the hindbrain regionwhere the laryn-

geal motoneurons reside, the nucleus ambiguus

(NA) (Fig. 2A; fig. S4, A and B; andmovie S1). To

test the existence of a direct monosynaptic

projection, we also specifically identified laryn-

geal motoneurons in the NA by retrogradely

labeling them through bilateral muscular in-

jection of cholera toxin B (CTB) into the crico-

thyroid muscles of the bat larynx (Fig. 2A). We

validated the colocalization of descending cor-

tical fibers and local synaptic boutons with

laryngeal motoneurons by using two comple-

mentary labeling approaches: one relying

on the immunostaining of synapses (vesicular

glutamate transporter 1, VGLUT1) and one

using viral labeling of synapses (synapsin or

synaptophysin dual-label virus, SYN) (Fig. 2,

B to F, and fig. S5). Across five bats, 79.2%of the

retrogradely labeled motoneurons (61/77) colo-

calized with descending cortical fibers, and

26% of them (20/77) colocalized with both cor-

tical fibers and synaptic boutons, pointing to

the existence of a robust direct corticospinal

projection to laryngeal motoneurons (Fig. 2G).

This colocalization in the NA was consistent

across the different techniques (Fig. 2G and

fig. S5) and could not be found in any other

brainstem motor nuclei, including the hypo-

glossal nucleus, which controls the tongue and

neck muscles (fig. S4, C to E). We noted that

the corticobulbar fibers crossed the midline

anterior to the NA at the level of the facial

nucleus, offering a direct contralateral path for

the innervation of the NA (fig. S4F). These ana-

tomical findings highlight the bat ofM1 as a

possible candidate region associated with vocal

production.

To further corroborate the role of ofM1 in

vocal control, we tested whether ongoing single-

cell neural activity in this area was associated

with vocal production. We performed wireless

electrophysiological recordings from four bats

engaged in free vocal interactions with peers

(Fig. 2H). Vocalizations were identified and

recorded by using wireless call detectors placed

around the necks of the individual bats (mate-

rials and methods) (46). We found that about

half of the recorded single units in ofM1 (115/

237) showed a significant change in firing rates

when the bats produced vocalizations compared

with when they stayed quiet (fig. S6, A to C)

[analysis of variancewith a Poisson generalized

linear model per cell; P value threshold = 0.001

(materials and methods)]. In 25% of ofM1 cells

that were excited during vocal production

(26/104), the change of activity could not be

accounted for by jaw or tongue movements,

indicating that these cells were engaged in the

motor control of movements specific to vocal

production (fig. S6D). Furthermore, many of

the single units had a sustained increase of

activity during production of vocalizations, but

not during perception of vocalizations (Fig. 2I).

To further assess this specific neural modula-

tion during vocalmotor production, we quan-

tified the information between the time-varying
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firing rate and the amplitude modulation of the

vocalizations. This analysis confirmed that ofM1

neurons had significantly higher motor than

auditory information (Fig. 2J) (likelihood-ratio

test on linear mixed-effects models, n = 219,

c
2
= 62.515, df = 1, P = 2.6645 × 10

−5
; average

d′ change in information gain during motor

production = 0.15 ± 0.13, corresponding to an

increase of 0.286 ± 0.035 bits/s). Combined, the

results of the anatomical and electrophysiolo-

gical study defined ofM1 as amotor cortical area

associatedwithvocalproduction inR.aegyptiacus.

Fig. 2. Identification of an anatomically specialized motor cortical region

targeting laryngeal motoneurons in the Egyptian fruit bat. (A) (Right)

Schematic of anatomical tracing approaches. Retrograde tracer CTB

(purple) was injected bilaterally into the cricothyroid muscles to label

brainstem motoneurons in NA. Simultaneously, an anterograde viral tracer

[channelrhodopsin-2 (ChR2) or SYN, green] was injected bilaterally into the ofM1

to label corticobulbar projections into NA. (Left) Example coronal section

showing cortical injection sites with anterograde tracer (ChR2, green) and

4′,6-diamidino-2-phenylindole (DAPI) labeling (cyan). (B to F) Laryngeal

motoneurons in the NA identified by using a retrograde tracer (CTB, purple),

cortical fibers labeled with ChR2 (green), corticobulbar synapses labeled with

VGLUT1 (red), and DAPI (blue). (B) and (C) are overlaid images showing

colocalization of fibers with a synaptic bouton on the retrograde-labeled cell

(white arrow). (C) to (F) are magnifications of the yellow-boxed area in (B).

(G) Percentage of laryngeal motoneurons labeled with CTB that are colocalized

with cortical fibers (blue) or with both cortical fibers and synaptic boutons (red).

Both tracing techniques qualitatively yielded similar results: ChR2, n = 51 cells from

three bats; SYN, n = 26 cells from two bats. (H) Illustration of the experimental

setup during which wireless electrophysiological recordings were conducted from

the identified cortical region in freely behaving and vocalizing bats. (I) Spiking

activity of an example ofM1 neuron aligned to the onset of vocalizations produced

(bat’s own calls, orange) or heard (other bats’ calls, blue) by the bat subject.

(Top) Time-varying mean firing rate and (bottom) corresponding raster plot.

Colored lines in the raster plot show the duration of each vocalization. Note the

increased firing rate during vocal production as compared with that of hearing.

(J) Information (materials and methods) between the time-varying firing rate

and the amplitude of produced (x axis) versus heard (y axis) vocalizations for

219 single units (marker shapes indicate bat ID, n = 4 bats). The cell shown in (I) is

highlighted in red. (Inset) The distribution of d′ between motor and auditory

information for the same cells. Note that the distribution is heavily skewed toward

higher motor information rather than auditory information coded in the activity

of the recorded neurons. Error bars are mean ± SEM throughout the figure.
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Epigenomic specializations in the vocal

production region of the Egyptian fruit bat

motor cortex

We next sought to epigenomically profile

candidate regulatory elements in vocal and

nonvocal brain regions in R. aegyptiacus

to identify vocal learning–associated regulatory

genomic specializations. We generated a multi-

tissue atlas of open chromatin data, indicative

of regulatory activity, by performing assay for

transposase-accessible chromatin sequencing

(ATAC-seq) (61) across seven brain regions and

three somatic tissues of R. aegyptiacus (mate-

rials and methods), including ofM1 (Fig. 3A).

From a total set of 88,389 noncoding, non-

promoter open chromatin regions (OCRs) in

the primary motor cortex (M1), we identified

348 candidate enhancerswith differential open

chromatin between ofM1 and wing motor

cortex (wM1) (P < 0.05) (Fig. 3B and data S5)

(materials and methods). Genes proximal to

OCRs with differential open chromatin be-

tweenofM1andwM1were significantly enriched

for functional association with neuronal projec-

tions and transcriptional regulation (data S6).

These included OCRs near the genes of 51

known TFs, including FOXP2, a TF that has

been extensively implicated in human speech

and vocal learning (Fig. 3C) (62). Notably, genes

near OCRs differentially open between bat ofM1

andwM1, including genes thatwehad identified

as being under convergent acceleration in vocal

learners using the evolutionary approaches of

RERconverge (n = 11) and HyPhy RELAX anal-

ysis (n = 3; GATA3, LRRN1, and TNIP3) (data

S6). These specialized regions of open chro-

matin, coupled with an enrichment of TFs in

the set of vocal learning–associated protein-

coding genes, suggest that both cis and trans

differences in gene regulation contribute to

the evolution of vocal learning behaviors.

Convergent evolution in candidate

enhancer sequences associated with

vocal learning behavior

Because there is accumulating evidence that

cis-regulatory differences in enhancer regions

are driving the evolution of complex traits

(63–65), we sought to identify OCRs whose

tissue- and cell type–specificity would be shared

across species of vocal learners. Detecting cis-

regulatory element differences associatedwith

trait evolution is challenging because many

enhancers can preserve the same regulatory

function even when the underlying genome

sequence is highly divergent, and many cis-

regulatory elements have tissue-specific activity

(66–68). Thus,methods for convergent evolution

that rely on the alignment of individual nucleo-

tides between species (11, 69, 70) are likely to

miss a substantial proportion of key candidate

enhancers.

We therefore sought to extend our search

for cis-regulatory elements whose evolution is

associated with vocal learning behavior using

a recently developedmachine learning approach,

TACIT (23). Given that it is infeasible to map

the brains and collectmotor cortex tissue from

each vocal learning and closely related non-

learning species, the TACIT approach uses

machine learning models (23) to predict mo-

tor cortex open chromatin across ortholo-

gous regions of the genome (66–68). TACIT

then associates predictions with vocal learn-

ing in a way that corrects for phylogenetic

relationships (Fig. 4A). We used the predic-

tions from convolutional neural networks

(CNNs) trained by usingDNA sequence–based

M1 open chromatin data obtained in this study

for R. aegyptiacus with ATAC-seq and collected

earlier for the mouse (21), rat, and macaque

(20) to predict motor cortex open chromatin

across 222 mammalian genomes (materials

and methods) (23). Given that parvalbumin

has been shown to be a sharedmarker of brain

areas critical for vocal learning in songbirds

and humans (4), we also used CNNs trained
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Fig. 3. Differential open chromatin in bat ofM1 relative to wM1. (A) Open chromatin was profiled from seven dissected brain regions of the Egyptian fruit bat.

Premotor vocal area, PreM; auditory cortex, A; cerebellum, Cb; caudate, C; putamen, P. (B) Volcano plot of ATAC-seq OCRs with differential activity between

ofM1 and wM1 of the Egyptian fruit bat. (C) Genome browser showing ofM1 and wM1 ATAC-seq traces at the 3′ end of the FOXP2 locus. Reproducible M1 open

chromatin regions (OCRs) are indicated in blue, with a differentially active OCR in ofM1 relative to wM1 indicated in red.
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to predict cell type–specific open chromatin by

using ATAC-seq data from mouse and human

M1 parvalbumin-positive neurons (M1-PV+)

(22, 23, 71). We identified regions whose pre-

dicted open chromatin was consistently lower

or higher in vocal learners relative to vocal

nonlearners by using phylogenetic logistic

regression (72, 73) with phylogenetic permuta-

tions (24) [permulations adj. P < 0.1; materials

and methods, (23)] (Fig. 4A). We identified

33 open chromatin regions from our M1 CNN

models that had lower predicted open chroma-

tin in vocal learning species and 11 that had

higher predicted open chromatin in vocal

learning species (Fig. 4D, table S1, and data S7).

From theM1-PV+ predictions, we identified five

candidate enhancers that had lower predicted

activity in vocal learning species and one candi-

date enhancer that had higher predicted regu-

latory activity in vocal learning species. (table

S2 anddataS7).Unlike theprotein-codinggenes,

most vocal learning–associatedenhancers showed

evidence of higher or lower activity in at least

three out of the four vocal learning clades (Fig. 4,

B toD, and data S8). Consistent with the finding

that convergent vocal learning–associated gene

regulation is primarily repressive (4), we found

thatmost candidate enhancers (n=38/50OCRs,

76%) had lower predicted open chromatin ac-

tivity in vocal learning relative to vocal non-

learning mammals (fig. S7).

To interpret potential functions of the vocal

learning–associated candidate enhancers, we

annotated the nearest genes in themouse (data

S9). In many cases, the genes closest to these

putative enhancers have been associated with
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Fig. 4. Vocal learning–associated convergent evolution in motor cortex

open chromatin regions implicates specific neuron subtypes. (A) Overview

of the TACIT (23) approach to vocal learning. OCRs were identified in the

motor cortex (M1). Measured open chromatin from the M1 (four species) was

used to train CNNs to predict M1 open chromatin from sequence alone. Red

bars and corresponding arrows indicate the presence of a peak, whereas the blue

bars represent the absence. The same OCRs were then mapped across 222

mammalian genomes (left), and the identified sequences were used as input to

the CNNs to predict open chromatin activity. TACIT identified OCRs whose

predicted open chromatin across species was significantly associated with those

species’ vocal learning status. (B and C) The four-way Venn diagrams represent

the number of OCRs implicated by TACIT (both M1 and PV+) as displaying

low (B) or high (C) activity in each of the vocal learning clades based on a t test.

(D) The heatmap visualizes specific open chromatin regions along the

rows (predicted higher in vocal learners, green; predicted lower in vocal learners,

purple) across 222 mammals in the columns (vocal learners, red; vocal

nonlearners, black; insufficient or conflicting evidence, gray). The color in

each cell corresponds to the z-scored predicted open chromatin, with low open

chromatin in blue, mean open chromatin in white, and high open chromatin

in red. (E and F) Plots comparing vocal learning–associated open chromatin

regions with those from cortical mouse cell types. For open chromatin regions

predicted to be significantly less (E) or more (F) open in vocal learning species

(P < 0.05), the red point indicates the number of overlapping regions (y axis)

across mouse cortical cell types (x axis). The bar plot shows the distribution

across 1000 permutations of the peaks implicated by TACIT. The notches extend

1:58� IQR=
ffiffiffi

n
p

(IQR, interquartile range), which gives a confidence interval of

roughly 95%. Cell types were ordered based on their enrichment measured by

permutation for the peaks lower in vocal learning species.
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significant developmental delay or complete

absence of speech when disrupted in humans

(tables S1 and S2). Four of the OCRs identified

by the M1 model were proximal to genes—

GALC,TCF4,TSHZ3, andZNF536—thatwerealso

near OCRs with differential activity between

bat ofM1 and wM1 (data S6). Two of the vocal

learning–associated M1 OCRs were proximal

to genes DAAM1 and VIP, which were pre-

viously shown to have convergent gene expres-

sion between humans and song-learning birds

(4). To further explore the function of the vocal

learning–associated OCRs in the motor cortex,

we annotated their cell-type specificity using

publicly available mouse BICCN data (74). The

cell type most enriched for OCRs predicted

to be lower in vocal learning species was the

layer V extratelencephalic (ET) neuron, which

has previously been implicated in vocal learn-

ing (75), but strong enrichmentswere also found

for other cortical excitatory neurons (Fig. 4,

E and F, and data S10).

Among genes near vocal learning–associated

OCRs, the DACT1 (TACIT adj. P = 0.0014;

RERconverge t adj. P < 0.0001) and CELF4

(TACIT adj. P < 0.023; RERconverge t adj. P <

0.0034) proteins also displayed significantly

lower relative evolutionary rates in vocal learn-

ers. Despite the lack of direct evidence in the

literature for its role in speech production,

CELF4 has been associated with autism in

the human population (76), and its function in

layer V pyramidal neurons has been linked

with seizures in mice (77).

Multiple M1-PV+ interneuron OCRs associ-

ated with vocal learning are near genes pre-

viously associated with autism. For example,

an OCR that is negatively associated with vocal

learning evolution is in an intron of the gene

CCSER1, which has nonsense mutations impli-

cated in autism (78) and is in a locus associated

withmusical beat synchronization (79). An OCR

that is positively associated with the evolution

of vocal learning is in an intron of the gene

CNTNAP4, whose deletions and copy number

variation in humans and mice have been im-

plicated in neurological disorders, including

autism in humans (80, 81). To test whether

these associations would have been identified

by chance, we tested whether vocal learning–

associated OCRs tended to be near genes asso-

ciated with autism.We found that theM1-PV+

OCRs with human orthologs near genes asso-

ciated with autism (82) tended to be more

significantly associated with vocal learning

evolution than other OCRs with human ortho-

logs (Wilcoxon P = 0.0071).

Discussion

Convergent evolution of vocal learning has

been associated with convergent evolution at

the neuroanatomical level: Cortical motor re-

gions driving vocal production in humans and

songbirds [human motor cortex and songbird

robust nucleus of the arcopallium (RA)] show

increased connectivity with the brainstem and

striatum(3). These samemotor regions also show

convergent evolution in patterns of gene expres-

sion, with commonly decreased gene expression

found in both song-learning birds and humans

(4). In this study, we investigated convergent

evolution of vocal learning in mammals, both at

the anatomical and the genetic levels. Firstly, we

found a direct motor corticobulbar connection

from a cortical region implicated in vocal pro-

duction in a vocal learning bat. Secondly, we

revealed widespread evidence of convergent

evolution across vocal learning mammals in

protein-coding sequences and candidate regu-

latory enhancers.

Our parallel study of both coding and non-

coding regions linked with the vocal learning

trait identifiedmany protein-coding genes (200)

and a smaller number of noncoding regions

(50), distal sites of open chromatin that are

associated with vocal learning. Although a

larger number of significant protein-coding

genes were identified, the vast majority of

these were primarily driven by strong evidence

in one of the vocal learning clades and only

weak evidence in the other three. By contrast,

most significant noncoding regions showed

robust evidence of convergent selective pressure

in at least three out of the four clades. The larger

number of identified proteins relative to open

chromatin regions could have beendue to better

statistical power from being able to directly

model nucleotide evolution in protein-coding

sequences, which tend to be more stable than

regulatory elements across species (11, 12). How-

ever, only 5/200 of the significantly associated

protein-coding genes showed robust evidence

of differential rates of evolution in at least three

of four vocal learning clades. Out of these 200

proteins, many were neurodevelopmental tran-

scription factors, which are among the most

highly conserved genes in mammals (83) and

thus likely to play roles in a broad range of

contexts that could constrain their evolution.

It is also possible that some of the identified

proteins could be associated with other con-

vergent traits that correlate with vocal learn-

ing across mammals, including echolocation

(bats and cetaceans), marine adaptations (ceta-

ceans and pinnipeds), or increased longevity

(bats, cetaceans, and humans).

By contrast, 33/50 vocal learning–associated

candidate enhancers had differential predicted

open chromatin in at least three of four vocal

learning clades; this independent convergence

of gene regulatory function suggests that these

enhancers may be critical for the evolution of

vocal learning. Enhancers tend to have functions

that are much more context- and tissue-specific

(68), making them less functionally constrained

than protein-coding genes, which could perhaps

allowmore flexibility for an individual enhancer

to evolve a new role for a specific trait such as

vocal learning. Our results suggest that the evo-

lution of mammalian vocal learning is largely

driven by changes to the noncoding regulatory

elements that orchestrate gene expression

rather than by changes to the protein-coding

genes themselves.

Despite the different methodologies applied

to identify convergent evolution in coding and

noncoding regions, both protein coding– and

regulatory element–focused approaches impli-

cated gene functional pathways associatedwith

human autism. In our protein-coding analyses,

genes with lower evolutionary rates based on

both RERconverge and HyPhy RELAX were

enriched for autism function. Likewise, in our

analyses of regulatory evolution,multiple autism-

linked genes were near human orthologs of

the vocal learning–associated M1-PV OCRs.

In humans, autism is often associated with

speech delays and differences in social behavior,

both of which could be related to the evolution-

ary trait of vocal learning ability (84). Broadly,

this could be evidence that genomic loci asso-

ciated with a complex trait across mammals

may also be associated with variations in re-

lated traits within the human population.

The bulk motor cortex OCRs with lower pre-

dicted open chromatin in vocal learners showed

the strongest tendency to overlap with OCRs

in layer V ET neurons, which form long-range

projections to the hindbrain motoneurons that

control vocal production (Fig. 4E). These results

are consistent with our previous findings that

showed decreases in the expression of axon-

guidance genes in themotor cortex of vocal learn-

ing species (4). Among other functions, the layer

V ET neurons implicated by TACIT create the

corticospinal projections that have been hypoth-

esized as an anatomical landmark of vocal

learners (2, 3, 48, 49, 56, 85, 86). Furthermore,

the neuroethological and anatomical experi-

ments we conducted in R. Aegyptiacus provide

evidence that corticospinal projection neurons

are present in the motor cortex of the bat

species and that this motor cortical region

participates in vocal production. Thus, consis-

tent with previous literature, our results support

a model in which the loss of regulatory element

activity in the motor cortex influences axon

guidance properties of long-range projection

neurons, which allowmore robust connectivity

between the cortex and the brainstem of vocal

learning mammals (4, 85, 87). Alternatively,

these genetic differences could relate to po-

tential differences in the density of disynaptic

connections that have been associated with

skilled motor behavior, including vocalization

in nonhumanprimates (88, 89). Notably, these

long-range projection neurons have also been

associated with predisposition to autism (90).

Materials and methods summary

To find vocal learning–associated conver-

gent evolution in protein-coding sequences
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of the mammalian genome, we began with

amino acid–level multiple sequence alignments

produced by the Zoonomia consortium (10).

Those served as input to two classes ofmethods,

RERconverge (11) andHyPhy (30). RERconverge

with an additional permutations correction

for phylogenetic structure (24) was used to

find protein-coding sequences whose evolu-

tionary rates were associatedwith the presence

or absence of vocal learning. HyPhy RELAX

was used to find protein-coding sequences that

were evolvingmore slowly, neutrally, or faster in

vocal learning species. In addition, the HyPhy

BUSTED-PH method (12) was applied to find

evidence of diversifying positive selection. The

gene ontology analysis was performed on the in-

tersection of the RERconverge and HyPhy re-

sults using EnrichR (91). To control for false

positives across all methods, Benjamini-Hochberg

false discovery rate correction (92) was applied.

To examine the existence of a direct mono-

synaptic projection in a vocal learningmammal,

the corticobulbar projections in Egyptian fruit

bats were mapped by tracing the projections

from the orofacial motor cortex and from the

cricothyroid muscles of the vocal cords. Per-

forming immunohistochemistry in thebrainstem

revealed that synaptic boutons of cortical pro-

jection neurons overlapped with retrogradely-

labeled motoneurons, confirming the existence

of a direct monosynaptic projection. The role of

the orofacial motor cortex during vocal produc-

tion was then validated by quantifying the in-

formation between the vocalization amplitude

and single cortical neuron activity measured

wirelessly in vivo while the bats produced and

listened to vocalizations.

To create an atlas of open chromatin regions

in the bat M1, several brain regions, including

wM1 and ofM1, were separately dissected. The

samples were cryopreserved, then the nuclei

were isolated, and subsequently ATAC-Seq was

performed to measure open chromatin. The

open chromatin regions from this experiment

were combined with previously published ex-

periments in macaque, rat (23), andmouse (21)

to create an atlas of cross-species motor cortex

open chromatin.

To find vocal learning–associated convergent

evolution in noncoding regions of the Boreo-

eutherian mammalian genome, the TACIT

machine learning approach, was applied. Or-

thologous regions across genomes were found

by combining the CACTUS whole-genome

multiple sequence alignment (19), halLiftover

(93), and HALPER (94). Phyloglm (72) was

then used to associate predicted motor cortex

and parvalbumin-positive inhibitory inter-

neuron open chromatin with binary annota-

tions of vocal learning behavior. Phylogenetic

permutations were applied to correct for

phylogenetic tree structure and Benjamini-

Hochberg to correct for multiple hypothesis

testing. To identify potential trends in the cell-

type specificity of the implicated regions, per-

mutations on the regions of the genome that

were predicted to have significantly higher or

lower open chromatin in vocal learning species

were conducted.
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