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Abstract 

Background: Computational cell type deconvolution enables the estimation of cell 

type abundance from bulk tissues and is important for understanding tissue micro-

enviroment, especially in tumor tissues. With rapid development of deconvolution 

methods, many benchmarking studies have been published aiming for a comprehen-

sive evaluation for these methods. Benchmarking studies rely on cell-type resolved 

single-cell RNA-seq data to create simulated pseudobulk datasets by adding individual 

cells-types in controlled proportions.

Results: In our work, we show that the standard application of this approach, 

which uses randomly selected single cells, regardless of the intrinsic difference 

between them, generates synthetic bulk expression values that lack appropriate 

biological variance. We demonstrate why and how the current bulk simulation pipe-

line with random cells is unrealistic and propose a heterogeneous simulation strategy 

as a solution. The heterogeneously simulated bulk samples match up with the variance 

observed in real bulk datasets and therefore provide concrete benefits for benchmark-

ing in several ways. We demonstrate that conceptual classes of deconvolution meth-

ods differ dramatically in their robustness to heterogeneity with reference-free meth-

ods performing particularly poorly. For regression-based methods, the heterogeneous 

simulation provides an explicit framework to disentangle the contributions of reference 

construction and regression methods to performance. Finally, we perform an extensive 

benchmark of diverse methods across eight different datasets and find BayesPrism 

and a hybrid MuSiC/CIBERSORTx approach to be the top performers.

Conclusions: Our heterogeneous bulk simulation method and the entire benchmark-

ing framework is implemented in a user friendly package https:// github. com/ humen 

gying 0907/ decon vBenc hmark ing and https:// doi. org/ 10. 5281/ zenodo. 82065 16, ena-

bling further developments in deconvolution methods.
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Background

Bulk RNA-sequencing experiments reveal average gene expression values for all cells 

present in a sample mixture. Computational deconvolution methods separate the mixed 

signals from the aggregated expression and provide estimation of cellular components 

without physical isolations. �e inferred cellular proportions are important to under-

stand the ecosystem of the tissue and can be used as covariates in differential expres-

sion, reducing false positives and false negatives [1, 2]. Moreover, for heterogeneous bulk 

samples like tumor [3], deconvolution enables identification and quantification of the 

infiltrating immune populations, which provides rich prognostic values and can guide 

targeted therapy (e.g., in immunotherapy) [4–8].

Numerous deconvolution methodologies have been developed (see [1], for review), 

aiming at estimation of cell-type abundance from bulk transcriptomic data. Depending 

on if and how priori knowledge used, these methods can be broadly classified into four 

categories: regression-based, marker-based, and reference-free methods. Regression-

based methods require an expression matrix as input, which consists of a cell type-spe-

cific expression profile for selected genes. �ese methods then solve the deconvolution 

as a regression problem. A comprehensive evaluation of factors involved in regression-

based methods, like data transformation, normalization, and regression algorithms, can 

be found elsewhere [9]. Marker-based methods require a set of genes that characterize 

the expression patterns in different cell types and return either an enrichment score [10] 

that is unitless or abundance estimates [11, 12].

Reference-free methods [12–14] are completely unsupervised and do not require any 

prior knowledge as input. Such methods are based on finding a simplex, which is a geo-

metric data structure expected under ideal mixture proportion scenarios. Finally, we 

note that a recent advance in deconvolution uses a Bayesian framework that relies on 

a reference matrix but uses it in a way that is distinct from reference based approaches 

[15].

Rapid development of deconvolution methodologies now raises another challenge of 

evaluating their performance across diverse realistic settings. Many benchmarking stud-

ies have been undertaken to meet this demand [2, 9, 16, 17]. Regardless of the focus of 

their evaluation, all benchmarking efforts rely on datasets with known ground truth. To 

acquire such data, one traditional approach involves using real bulk data with paired cell 

type fraction information, which can be derived from fluorescence-activated cell sort-

ing (FACS) or immunohistochemistry (IHC) staining [17, 18]. However, this approach 

is restricted by the extensive experimental labor and limited sample availability, making 

it less practical for large-scale benchmarking studies. An alternative approach is com-

putational mixing where purified expressions of different cell-types are mixed in con-

trolled proportions [10, 19, 20]. While the purely computational strategy can generate 

large datasets, this approach has the clear limitation that it makes the strong assumption 

that proportion variation and random noise are the only source of variance in the data.

Increasing availability of single-cell data [21] offers the opportunity to create more 

realistic simulations. Instead of computational mixing of pure expression states, indi-

vidual single cell profiles are added together in controlled proportions [9, 17, 18, 22]. 

�is has the explicit advantage over pure computational mixing as it introduces more 

variations in the simulated samples. However, as we will show in this work, while this 
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approach has rapidly become the standard method for bulk simulation, the problem 

with unrealistic biological variance is only partially resolved. To simulate data compat-

ible with bulk measurements, a large number of cells (typically hundreds) are added for 

each simulated sample. As such the pure cell type-specific expression in each sample, 

while not exactly identical, tends towards the global mean of that cell type in the source 

scRNA data, enforcing the unrealistic assumption that there is no systematic variation 

beyond cell-type proportions. One possible solution is to take into account intra-sam-

ple heterogeneity in the simulated bulk mixtures. In Chu et al.’s [15] study, they created 

such simulated bulk mixtures by restricting that the malignant cells aggregated to form a 

simulated bulk sample originating from the same biological sample. Dong et al. [23] and 

Menden et al. [24] implemented a simulation strategy that involved repetitively sub-sam-

pling cells from the same patient, ensuring proper inter-sample heterogeneity. However, 

there is currently no general evaluation of how heterogeneity affects the deconvolution 

results, as compared with bulk simulation using random cells.

In this study, we introduce a novel heterogeneous simulation approach that aims at 

capturing accurate biological variance. �rough systematic comparison of these simu-

lation methods, we demonstrated that bulk simulation methods using random cells do 

not reflect realistic biological heterogeneity while our newly proposed approach does. 

Leveraging the varying heterogeneity levels in the simulated bulk samples, we provided 

an in-depth comparison of different categories of deconvolution methods using our sys-

tematic benchmarking frameworks (Additional file  1: Fig. S1), aiming to elucidate the 

impact of heterogeneity on the results. By summarizing deconvolution performance 

across experimental repeats, we found that introducing biological heterogeneity has a 

notable effect on the deconvolution results, with reference-free methods being most 

affected. Our study can guide researchers in choosing the most appropriate deconvolu-

tion methods, and the highly realistic simulation framework we proposed can facilitate 

further methodological development.

Results

Exploring biological variance in simulated bulk data: in�uence of di�erent simulation 

strategies

In previous benchmarking studies [2, 9, 17], the evaluation of deconvolution perfor-

mance relied on simulated bulk expression using predefined cell-type fractions as 

ground truth. �ese studies employed a “homogeneous” simulation approach, where 

single-cell profiles from single-cell data were combined randomly within each cell type 

and aggregated in proportions. However, this approach only accounts for cell-type pro-

portion level variance and overlooks other sources of biological variance.

To address this limitation, we explored alternative simulation methods aiming at 

introducing more biological variance within the simulated samples. We proposed a 

“heterogeneous” simulation setting where cells used to compose the cell type com-

ponents of a simulated bulk sample are constrained to come from the same biologi-

cal samples (Additional file 1: Fig. S2), thus capturing the sample-level heterogeneity 

[25, 26]. We also considered a less “heterogeneous” setting where only malignant 

cells are originated from the same sample in the simulation, which we referred to as 

“semi-heterogeneous” simulation, inspired from Chu’s benchmarking work [15].
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We postulated that these three simulation methods—homogeneous, semi-hetero-

geneous, and heterogeneous—will inherently produce samples with distinct levels of 

variance, reflecting varied capacity to mimic real biological complexity. To test this, we 

applied these simulation strategies on four distinct single-cell datasets (Table 1, Addi-

tional file 2: Table S1), resulting in a total of 12 simulated expression profiles for evalu-

ation. For cell type fraction simulation, we adopted a beta distribution-based strategy, 

allowing the mean and variances of each cell-type fractions to be approximately matched 

to those of real data (see the  “Methods” section; Additional file  1: Fig. S3). To create 

baseline bulk expression for variance comparison, we aggregated single cells from the 

same patients and used them as approximations of real bulk samples (see the “Methods” 

section). We also collected expression profiles from the TCGA datasets [27] when the 

relevant tumor type is available. A detailed description of bulk datasets used in variance 

comparison can be found in Additional file 2: Table S2.

We illustrate our framework with bulk data simulated from Jerby_Arnon2018_SKCM. 

Utilizing the coefficient of variation (CV) of gene expressions as a measure of intra-

sample variance, we first compared gene-level CV between simulated bulk samples and 

baseline bulk expression. Our findings revealed that the heter-simulated bulk samples 

exhibited variance closely aligned with that of actual bulk samples, while the homo-sim-

ulated samples displayed generally lower variability and semi-heter simulated samples 

failing between (Fig. 1a). Summarized gene-CV at pathway levels [43] further confirmed 

this finding, and by extending the CV analysis to include real TCGA bulk samples from 

the same tumor type, we showed that heter-simulated samples retained proper biologi-

cal variance compared with real bulk samples (Fig. 1b).

Moving forward, we calculated pairwise correlations between the simulated sam-

ples to gain further insight into biological variance (Fig.  1c). �e distribution of pair-

wise correlations across different simulation settings revealed distinct variance levels, 

with homo-simulated samples showing the highest pairwise correlations, and the heter-

simulated samples exhibiting the least pairwise similarities, aligning more closely with 

real-world settings. Moreover, as we visualized pairwise correlation between genes 

under different simulation settings, we found that the heter-simulated samples effec-

tively captured proper gene correlations (Fig.  1d). �ey maintained appropriate gene 

clusters, similar to those seen in baseline bulk expression, and demonstrated reasonable 

Table 1 Single-cell datasets used in benchmarking

HNSCC head and neck squamous cell carcinomas, SKCM skin cutaneous melanoma, MB medulloblastoma, CRC  colorectal 

cancer, BRCA  breast cancer, LUAD lung adenocarcinoma, OV ovarian cancer

 ascRNA datasets marked with a superscript (a) are also utilized for simulation strategy comparisons

Dataset Tumor type # of cells Publication Data

Puram2017_HNSCCa HNSCC 5901 Puram et al. 2017 [25] [28]

Tirosh2016_SKCMa SKCM 4645 Tirosh et al. 2016 [29] [30]

Riemondy2022_MBa MB 39,946 Riemondy et al. 2022 [31] [32]

Jerby_Arnon2018_SKCMa SKCM 7186 Jerby-Arnon et al. 2018 [33] [34]

Lee2020_CRC CRC 21,657 Lee et al. 2020 [35] [36]

Qian2020_BRCA BRCA 16, 537 Qian et al. 2020 [37] [38]

Kim2020_LUAD LUAD 32,493 Kim et al. 2020 [39] [40]

Izar2020_OV OV 10,788 Izar et al. 2020 [41] [42]
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coefficient correlations. In contrast, homo-simulated samples resulted in false-positive 

gene clustering structures and spuriously high gene correlations. We note that in this 

comparison we only focused on the top 300 most variant genes due to the immense scale 

Fig. 1 Comparison of different bulk simulation strategies. a Scatter plots comparing coefficient of variation 

(CV) for all genes between the simulated samples and baseline expression. b Heatmap comparing average 

CV of genes from different biological pathways. c Boxplot comparing pairwise correlations between 

simulated bulk samples, with the dashed line indicating the average pairwise correlation in baseline 

expression. d Heatmaps showing gene correlations in bulk samples, using the top 300 most variable genes 

from the baseline expression. e Scatter plots comparing variance of 50 hallmark gene sets between simulated 

and baseline bulk expression, with each dot representing the averaged CV of genes from a hallmark gene 

set. In a–d, all simulated datasets and baseline expression are derived from the Jerby_Arnon2018_SKCM 

dataset. Throughout the comparison, each simulated dataset comprises 100 simulated samples, and baseline 

expression is generated by aggregating single-cell expression from the same biological sample, serving as an 

approximation to real bulk samples
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of the gene-gene correlation matrix; the same patterns hold when specifically consider-

ing cell-type marker genes as well (Additional file 1: Fig. S4, Additional file 2: Table S3).

In Fig. 1e, we extended the variance comparison to all datasets by comparing pathway-

level variance in simulated samples against real bulk expressions. Our results showed 

that across each dataset, the heter-simulated samples closely mirrored the actual vari-

ance observed in real data, exhibiting pathway-level CVs that align closely with those of 

real bulk samples, whereas the homo-simulated samples are in general less variable. We 

note that for bulk data simulated from Riemondy2022_MB dataset, the semi-simulated 

and heter-simulated samples show little difference with respect to pathway variances; 

this is because the simulated MB samples are mainly dominated by malignant cells, mak-

ing it less distinguishable between two strategies.

In addition to the three simulation methods mentioned above, we also investigated 

four additional bulk simulation approaches: the “favilaco” method [9], the “immune-

deconv” method, [17], the “SCDC” method [23], and one “heterogeneous” simulation 

method that does not rely on single-cell sampleID information, which we referred to as 

the “heterogeneous-sampleIDfree” method (see the “Methods” section). �ese expanded 

methodologies, along with our original simulation strategies, have been integrated into 

our published package, offering a comprehensive toolkit for bulk simulations.

An extensive comparison of all seven simulation methods is detailed in Additional 

file 1: Fig. S4-S7. Our analysis revealed that the “heterogeneous-sampleIDfree” method 

successfully maintained comparable variance without the constraints of sample ID 

dependency, offering a significant advantage for single-cell datasets where sample IDs 

may be limited or absent. Conversely, the other two methods, “immunedeconv” and 

“favilaco,” which were originally implemented for deconvolution benchmarking studies 

[9, 17], exhibited a notable lack of variance in simulated samples. Finally, the “SCDC” 

method [23], although it achieved variance comparable to that of real bulk samples, car-

ries the risk of generating empty gene expression values. �is is due to its reliance on 

repeated sub-sampling from the same patient, which can easily suffer from the sparsity 

issue in single cells [44] when aggregating over only a limited number of cells.

Together, our results suggested that different simulation strategies result in simu-

lated bulk samples with diverse levels of biological variance. Specially, stepping through 

homogeneous, semi-heterogeneous, and heterogeneous simulation, the heterogeneity 

level inside samples is increasing with the final heterogeneous simulation closely retain-

ing the characteristics observed in real bulk samples.

Bulk simulation using random cells ignores heterogeneity within constituent cell types

Heterogeneity of tumors between different patients with the same tumor type has long 

been recognized [45]. Despite similar histological appearance, different patients can 

have intrinsically different genomic landscapes. In clinical practice, this heterogeneity 

motivates molecular subtyping and enables personalized treatment protocols [46, 47]. 

Retaining biological heterogeneity within simulated bulk samples is essential for realistic 

bulk simulation.

To illustrate the limitation of bulk simulation using randomly selected cells (namely 

homogeneous simulation), we considered a simulation setup using single cell Medullo-

blastoma (MB) dataset from Riemondy et al. [31]. Medulloblastoma is a well-recognized 
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heterogeneous brain cancer with four distinct subtypes based on genetic characteristics: 

WNT, SHH, Group 3, and Group 4 [48, 49]. Analyzing the tSNE clustering of malignant 

populations (Fig.  2a), we found that cells from the same subtype predominantly clus-

tered together, revealing marked differences between subtypes. Additionally, within each 

subgroup, further patient-specific heterogeneity was observed. We note that such intra-

heterogeneity of malignant cells extends beyond this scRNA dataset and is also found in 

other tumor types (Additional file 1: Fig. S8). Additionally, beyond just malignant popu-

lations, non-malignant cells may also exhibit diverse patterns across different samples 

(Additional file 1: Fig. S9). Together, these findings suggested even among cells identified 

as the same cell type, intra-tumor heterogeneity is not uncommon.

Despite this prevalent intra-heterogeneity, random selection of cells results in an 

evenly distributed selection of cells (Fig. 2b), and such selection, if performed repeatedly, 

will create a homogeneous expression profile with low variance. In Fig. 2c, we simulated 

a bulk expression dataset in this manner and compared it to actual MB patient profiles 

(Additional file 2: Table S2). By analyzing the expression levels of 22 MB-subtype spe-

cific genes (Additional file  2: Table  S4) [46], we observed distinct expression patterns 

across different MB subtypes in real patient profiles, whereas the simulated samples 

exhibited minimal heterogeneity in expression values of these genes, with the 10% and 

90% expression quantiles fluctuate around the average level.

Fig. 2 Bulk simulation using random cells failed to retain intra-tumor variations. a tSNE plot of n = 

31,823 malignant cells from 28 medulloblastoma patients in Riemondy2022_MB dataset, colored by MB 

subtypes (left) and patient ID (right). b tSNE plot showing that 500 randomly selected malignant cells are 

evenly dispersed among 31,823 malignant cells. c Barplot showing the average expression levels of 22 

MB subtype-specific genes in different groups of samples, colored by different MB subtypes. Upper panel: 

average expression levels of these genes across different MB subtype patients from Riemondy2022_MB; 

bottom panel: average expression values in 100 homogeneous simulated bulk samples, with error 

bars indicating the 10th and 90th quantiles. d Diverging bar plot comparing variance of hallmark 

gene-sets between homo-simulated and patient-specific bulk expression from Riemondy2022_MB, with 

patient-specific expression defined as the aggregated expression of single cells from the same patient
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Moreover, analyzing the variation at the pathway level using the hallmark genes [43], 

we found that systematic pathway-level variance is pervasive in real data but is not reca-

pitulated in the random cell simulation (Fig. 2d). Together, these results suggested that 

bulk simulation  methods employing random single-cell selection overlook meaningful 

biological variability, resulting in a “homogeneous” profile characterized by low variance.

Benchmarking framework

To systematically evaluate the performance of different categories of deconvolution 

methods and examine how different bulk simulation strategies will impact the perfor-

mance, we designed a benchmarking framework as depicted in Additional file 1: Fig. S1. 

�e deconvolution methods we included span four categories of deconvolution meth-

odologies as mentioned in previous sections: reference-free, regression-based, marker-

based, and Bayesian method.

For reference-free methods, we selected debCAM (referred to as CAMfree) [12] and 

linseed [14]. For regression-based methods, we included five regression algorithms that 

have been previously developed or implemented for deconvolution: MuSiC [50], Robust 

Partial Correlations (RPC) [51], weighted robust linear regression (wRLM) [52], CIB-

ERSORT [53], and non-negative least squares (nnls) [54]. For marker-based method, 

we considered debCAM-marker [12], TOAST-marker [55], and gsva [56]. For Bayesian 

method, we explored the recently published BayesPrism [15].

Procedures to evaluate deconvolution results vary in terms of whether the agreement 

between ground truth and inferred proportions is assessed by correlation or squared 

error and whether performance is evaluated per-cell type or globally. We focused our 

evaluation on per cell-type Pearson correlation, which reflects the accuracy of down-

stream inference such as the difference in proportions between two groups. We also 

calculated root mean square error (RMSE) values, which evaluate if the inferred propor-

tions are correct on the absolute scale across different cell types, with smaller RMSE 

indicating better performance. �e deconvolution pipelines including simulation, 

deconvolution, and evaluation are then applied to eight published single-cell cohorts 

(Table 1) and repeated 10 times for each cohort.

Regression-based methods di�er in their robustness to heterogeneity

Regression based approaches dominate the deconvolution field with many available 

methods and extensive independent benchmarking [9, 50, 57]. All regression methods 

fit a model that assumes that bulk expression matrix Yg×s with g genes and s samples, can 

be expressed as a Yg×s = Xg×kPk×s + Eg×s , where P is the proportion matrix and k is the 

number of cell-types. X is the given reference matrix and the task is to fit P, which is a 

general regression problem.

A first decision in regression-based approaches involves the construction of the ref-

erence matrix X, a process termed as hyper-parameter reference construction. Select-

ing an optimal subset of genes is crucial for effective performance [58], while utilizing 

the entire gene set often results in poor outcomes (data not shown). �e second meth-

odological choice is the form of the regression problem itself, whether to use con-

straints, feature weights, and how to formulate the loss. For example: squared loss with 

constraints gives the basic non-negative least squares formulation (nnls). Alternative 
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approaches involve weighted regression, robust regression, epsilon-insensitive loss (CIB-

ERSORT), etc. Importantly, since the feature selection and regression are decoupled, we 

can combine different methods arbitrarily.

In our benchmarking work, we investigated four different reference matrix con-

struction methods: CIBERSORTx [59], autogeneS [60], and two marker selection 

methods derived from differential expression (DE) analysis: limma [61] and scran 

(see the  “Methods” section for details). Additionally, we considered an “all genes” 

setting, which is applicable exclusively to MuSiC, where all genes are utilized by 

default and no feature selection is performed.

Implementing these reference construction approaches to different regression meth-

ods, we systematically examined all possible combinations of these methodologies 

across eight distinct cohorts (Table 1), with 10 simulations for each cohorts (excluding 

“all genes” from methods other than MuSiC). A representative result using bulk data 

simulated from the Puram2017_HNSCC dataset is presented in Fig. 3a. We found that 

Fig. 3 Impact of bulk simulation strategies on regression based deconvolution. a Heatmap comparing 

the deconvolution performance of regression models (rows) under different bulk simulation strategies, 

as evaluated by average Pearson correlation (upper panel) and average RMSE values (lower panel) over 

10 experimental repeats for the Puram2017_HNSCC dataset. The columns of the heatmaps correspond 

to different reference construction methods, with the “all genes” column being specifically applicable to 

MuSiC, suggesting that all genes will be used as the input, which is the default setting for MuSiC. b Line plot 

comparing Pearson r of regression-based methods under various simulation strategies across eight different 

datasets, with each row representing a reference construction choice and the error bars indicating the min 

and max level of Pearson r over 10 experimental repeats. c Box plot showing the effect size (estimated by 

coefficients from the multivariate regression model) of different methodological choices in deconvolution 

performance across different simulated bulk conditions. The error bars indicate the 95% confidence intervals 

of the coefficients
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in the homogeneous setting, the results from different methodological combinations are 

remarkably consistent, with correlations spanning from 0.98 to 1. However, the perfor-

mance of methods diverges with increasing heterogeneity. �e results on all datasets is 

presented in Fig. 3b, where we showed that the performance of all methods decays as 

heterogeneity is added, while some methods decay less rapidly. We further summarized 

the influence of various methodological decisions by fitting a multi-linear regression to 

the Pearson correlation results with dataset and cell-type as a covariate (Fig. 3c; see the 

“Methods” section).

Altogether these results revealed that effect of methodological choices to be more 

pronounced with increased heterogeneity levels. Considering the summary in Fig.  3c, 

we find that in the homogeneous setting the reference choice method contributes 

relatively little (0.0067 to 0.016) and the coefficients are not significantly different. 

However, as heterogeneity levels in the bulk samples increase, the choice of reference 

becomes increasingly important and the CIBERSORTx reference dominates compared 

to other methods. We also note that the recently proposed optimization-based method 

autogeneS is indeed best in the homogeneous setting but is no better than differential 

expression-based method under heterogeneous settings.

Regarding regression choices, MuSiC consistently outperforms the others, irrespective 

of the chosen reference, under heterogeneous settings (Fig. 3b, c). On the other hand, 

nnls demonstrates the highest sensitivity to heterogeneity, exhibiting a sharp decline 

in performance as heterogeneity escalates and consistently ranking as the least effec-

tive among the regression models. �e method of intermediate performance wRLM, 

RPC, and CIBERSORT are conceptually similar in that they make the regression prob-

lem robust in the technical statistical sense of robustness to outliers. �is achieved by 

altering the loss function from squared loss to a function that grows less rapidly: epsilon 

insensitive loss for CIBERSORT and Huber loss for both RPC and wRLM (both use R 

based “rlm” function with default parameters). Overall these three conceptually similar 

approaches are indistinguishable when using sophisticated reference algorithms (CIB-

ERSORTx or autogeneS, Fig. 3b top two rows), except that CIBERSORT regression lags 

behind the other two on DE-based references in four out of eight datasets. In Additional 

file  1: Fig. S11, we expanded our analysis to include another robust regression-based 

method, FARDEEP [62], which utilizes adaptive least trimmed squares in its optimiza-

tion. Similar to the results discussed above, all robust regression-based methods dem-

onstrated comparable sensitivity to changes in heterogeneity levels, each exhibiting 

decreased deconvolution capability in heterogeneous settings.

Notably, the MuSiC weighted regression which performs best differs conceptually 

from other regression approaches. Rather than altering the loss MuSiC weights the fea-

tures based on the variance/covariance proprieties in the reference data. Our analysis 

showed that while the improvement afforded by this more complex approach is negligi-

ble in the homogeneous setting, its advantages are clearly evident in the heterogeneous 

one. Results were consistent across correlation and RMSE (Additional file 1: Fig. S10),

Finally, we note that the effects of the two regression methodological choices are 

additive. While MuSiC is originally designed to work with all genes—the only method 

capable of yielding satisfactory outcomes in an unfiltered context, adding an addi-

tional feature selection step further increases its performance. Specifically, the MuSiC 
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(regression choice) and CIBERSORTx (reference construction choice) combination 

stood out as the best overall. We will refer to this combination as “MuSiC_CIBER-

SORTx” to highlight the difference from “MuSiC_default.”

Marker-based methods are robust to heterogeneity

Marker-based methods represent a conceptually different class. Instead of solving a 

regression problem, these methods infer the cell type proportions based on the aggre-

gate behavior of cell-type specific genes. �e approaches can be broken down into two 

steps: selection of cell-type specific gene sets and the summarization of these gene sets. 

Depending on the summarization method the output may be either unitless scores (e.g., 

gsva [56]) or adhere to a sum-to-one constraint, providing a direct estimate of propor-

tions that can be assessed using RMSE.

Since lack of proportion estimates is a major criticism of marker-based methods, we 

focused our analysis on two methods that report proportions: debCAM-marker (referred 

to as debCAM) [12] and TOAST-marker (referred to as TOAST) [55]. Additionally, we 

considered gsva [56], which is a widely used score-based method that does not provide 

proportions. For gene set selection process, we employed the same approaches that were 

applied in the reference construction for reference-based methods. Instead of taking 

quantitative expression values, in this step we only considered list of genes associated 

with each cell type: given a reference, we assigned each gene from the reference to the 

cell-type with the highest expression (see the “Methods” section).

Overall, our findings revealed that performance varies significantly across different 

combinations of marker selection and summarization methods, with debCAM emerg-

ing as the best summarization technique (Fig. 4a, Additional file 1: Fig. S12). Specifically, 

the combination of debCAM and scran-based gene set selection consistently delivered 

the best overall results. Similar to regression-based approaches, we observed a decline 

in performance with the introduction of heterogeneity in simulations. However, unlike 

regression-based methods where performance disparities are only apparent under het-

erogeneous conditions, the relative performance of marker-based methods remains sta-

ble across both homogeneous and heterogeneous settings, with debCAM consistently 

excelling.

Finally, we compared best-in-class marker-based method (debCAM_scran) with 

two regression-based methods, MuSiC_CIBERSORTx, the best composite method we 

proposed and CIBERSORT_CIBERSORTx, the default CIBERSOTx method that has 

been widely used (Fig.  4b). Using Pearson correlation as the evaluation metric, our 

results indicated that while debCAM does not outperform regression-based methods 

in homogeneous simulation settings, it is highly competitive in heterogeneous set-

tings, matching or even exceeding the performance of CIBERSORTx. �is suggested 

that the gene set scoring technique employed by debCAM shows robustness against 

sample heterogeneity, even if it uses less information compared with regression-based 

methods. However, we also observed that debCAM demonstrates more variation in 

the RMSE values across experimental repeats, and generally exhibits higher RMSE 

compared to regression-based methods. �is suggested that while debCAM accu-

rately captures correlations, it is less effective at capturing the correct magnitude of 
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the cell type fractions. Indeed, for debCAM, the absolute fraction inference is per-

formed as a post-hoc adjustment to the scores; therefore, it does not consistently 

yield accurate estimations.

We note that the unitless marker-based method “gsva,” which typically exhibits the 

lowest performance when assessed through Pearson correlation, actually correlates 

non-linearly with the actual cell fractions. When evaluated using the Spearman cor-

relation metric, the performance of “gsva” becomes considerably comparable to other 

marker-based methods, underscoring its potential for preliminary assessments of rel-

ative cell type proportions (Additional file 1: Fig. S13).

Additionally, we investigated the marker-based method “xCell” [10], which 

employs a built-in reference for estimating cell-type abundance. We compared the 

ground truth fractions with the matched cell-type signatures and observed that xCell 

signatures effectively predicts the true abundance within each immune cell type 

(Additional file 1: Fig. S14), Furthermore, most abundance estimates are highly coor-

dinated between homogeneous and heterogeneous simulated samples, indicating its 

applicability as a preliminary investigation of bulk samples with unknown composi-

tion or unavailable single cell data. However, it is worth noting that xCell does not 

provide malignant fraction estimation and multiple xCell signatures can be mapped 

to the same cell type, making it difficult to distinguish and interpret the relevant sig-

natures. For example, multiple B-cell related signatures are found to be closely cor-

related with B cell fractions (Additional file 1: Fig. S14).

Fig. 4 Impact of bulk simulation strategies on marker based deconvolution. a Line plot comparing Pearson r 

of marker-based methods under different simulation strategies across eight different datasets, with each row 

representing a marker construction method and the error bars indicating the min and max level of Pearson 

r over 10 experimental repeats. b Line plot comparing the best-in-class marker based method (debCAM_

scran) with two regression based methods (MuSiC_CIBERSORTx and CIBERSORT_CIBERSORTx), with the 

performance being evaluated by Pearson r and the error bars indicating the min and max level of Pearson r 

over 10 experimental repeats
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Overall, we found that some marker-based methods are competitive with regression-

based approaches and in some cases can offer advantages such as not requiring precise 

knowledge of reference values.

Comprehensive assessment of deconvolution performance across conceptual classes

So far, we have performed a detailed evaluation of two major categories of deconvolu-

tion methods: the regression-based and marker-based approaches. In our final evalua-

tion, we also included two additional classes: reference-free and BayesPrism, which uses 

a quantitative reference in a unique way that sets it apart from conventional regression-

based approaches and thus constitutes its own class. While regression approaches fit an 

equation of the form Y = XP + E , where E represents error, BayesPrism solves a Latent 

Dirichlet Allocation (LDA) problem allocating all of the observed gene expression to a 

cell type so there is no residual [15]. Moreover, BayesPrism differs from conventional 

regression-based methods in that it uses all genes by default and its performance is not 

improved by subsetting (data not shown).

Since regression-based and marker-based methods are dependent on the feature selec-

tion procedure, for this evaluation we used the best performing choices. We selected 

reference matrices constructed with CIBERSORTx and markers generated from scran-

derived DE analysis. For MuSiC, we included both the default implementation which 

uses all genes and the composite approach MuSiC_CIBERSORTx.

We summarized the final results both in terms of average Pearson correlations and 

relative rankings. �e comparison between homogeneous and heterogeneous condi-

tions is insightful for assessing shifts in performance under varying simulation scenarios 

and determining whether performance is influenced by changes in heterogeneity levels. 

Focusing on the rank-based comparison (Fig. 5a), methods that demonstrate consistent 

performance in both settings are located diagonally, while methods with significant per-

formance disparities are positioned off-diagonal, for example, methods on the top left 

excel in homogeneous conditions but underperform in heterogeneous scenarios. Across 

dataset being tested, the relative rankings of different methods can be indeed drastically 

different under different simulation settings.

Specifically, the reference-free methods (purple) appear to perform well on some 

homogeneous datasets but they are ranked towards the bottom in the heterogeneous 

settings in all cases. �is pattern suggested that their performance is highly context 

dependent and can be easily impacted by the increased heterogeneity level. Reference-

free methods are conceptually attractive and continue to be developed and our simula-

tion approach thus provides a valuable evaluation platform.

One the other hand, marker-based methods (green) are clearly overrepresented 

among those methods whose ranking improved in the heterogeneous setting. Maker-

based methods are widely used [63] despite the advance of more sophisticated and more 

accurate approaches. Our analysis showed that they are particularly resilient to hetero-

geneity, which is likely an important property contributing to their popularity.

Out of all the methods being evaluated, we found that the rankings of BayesPrism and 

MuSiC (with CIBERSORTx reference) are consistently either unaffected or improved 

under heterogeneous settings.
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We also provided the quantitative correlation plot as ranking can artificially inflate 

small differences. In the correlation based visualization (Fig.  5b), as expected we 

observed a systematic decrease in performance in the heterogeneous setting across all 

methods. It is not unusual to get correlations near 1 in the homogeneous setting, reflect-

ing performance levels that can be unrealistically high, whereas in heterogeneous envi-

ronments, correlations noticeably decline. �is observation is further supported by a 

quantitative comparison of RMSE values under both homogeneous and heterogeneous 

settings (Additional file 1: Fig. S15). We expect that this indeed reflects real world per-

formance. When deconvolution methods are tested against independent measurements 

of proportion as can be done with the malignant cell fractions in TCGA samples, even 

the best-performing methods BayesPrism does not achieve a correlation of > 0.8 [64]. 

�us, beyond ranking methods the heterogeneous simulation provides value in produc-

ing realistic performance estimates.

Overall, we found that BaysePrism and MuSiC_CIBERSORTx stand out as best over-

all. BayesPrism ranks first in the heterogeneous setting in 5 out of 8 datasets and is in 

the top 3 in another 2. MuSiC_CIBERSORTx is another top performer ranking in the 

top 2 for 5 datasets and always in the top 3. We note that in the ranking performance 

of BayesPrism on Tirosh2016_SKCM is ranked 7 and appears inconsistent with this 

assessment. However, from quantitative correlation plot the low performance of Bayes-

Prism on Tirosh2016_SKCM is less remarkable as it is quantitatively similar to other top 

Fig. 5 Deconvolution performance comparison under homogeneous and heterogeneous simulation. 

Scatter plot comparing a the ranking and b the average Pearson correlations of different deconvolution 

methods under homo and heter simulations, where the correlations are averaged over multiple experimental 

repeats. Different colors indicate different categories of deconvolution methods. All the regression-based 

methods are using CIBERSORTx-derived reference and all the marker-based methods are using scran-derived 

markers, while “MuSiC_default” means the default MuSiC setting where all the genes are being used as input
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performing methods. A detailed performance summary for all methods under heteroge-

neous setting can be found in Additional file 1: Fig. S16.

Taken together, our findings emphasized the impact of heterogeneity on deconvolu-

tion results and indicated that benchmarking using homogeneous samples may not 

accurately represent real-world performance. In realistic bulk simulation scenarios, 

the Bayesian method BayesPrism and the regression methods MuSiC stand out as the 

top-performing approaches. �ese results shed light on the importance of consider-

ing heterogeneity when evaluating and selecting deconvolution methods for practical 

applications.

Discussion

In this study, we introduced the importance of heterogeneity in bulk sample simulation 

and examined how heterogeneity could influence the deconvolution results. We inves-

tigated four major categories of deconvolution methods by applying them to simulated 

samples with different heterogeneity levels and identified the top performing ones. Our 

results showed that introducing biological heterogeneity has a notable effect on decon-

volution performance, leading to a global performance drop as heterogeneity level 

increases, while some methods being more robust to this change.

Specifically, BayesPrism is one of the top-performed method across all the datasets 

we tested. Our results align with a recent study [65] that benchmarked deconvolution 

methods on real bulk and single cell data finding that BayesPrism strongly outperforms 

all tested reference based methods when evaluated for consistency across different bio-

chemical and bioinformatic processing pipelines for the same biological sample. We rea-

soned that this can be attributed to its explicit consideration of heterogeneity within the 

malignant cells. �e novelty of incorporating “cell-state” information within the same 

cell-type and reporting the posterior sum over various cell states makes BayesPrism par-

ticularly effective in handling heterogeneous settings.

Another method that exhibits high robustness in our evaluation is MuSiC, which also 

accounts for heterogeneity within a cell type. Specifically, MuSiC employs a weighting 

scheme that prioritizes genes with low cross-subject variance. It then solves the decon-

volution task as a weighted non-negative least squares regression problem. Although it 

has been proposed that pre-selecting marker genes for the weighted regression is not 

necessary, our findings indicated that incorporating marker genes pre-filtered from CIB-

ERSORTx can significantly enhance the deconvolution performance of MuSiC.

In addition to the aforementioned methods, it is worth noting the outstanding per-

formance of the marker-based method debCAM. It ranked in the top 3 in 6 out 8 data-

sets surpassing many reference-based methods. It may appear counter-intuitive that 

maker-based methods can outperform regression-based ones as marker-based methods 

seemingly use less of the available prior information. However, in the heterogeneous set-

ting, this may be an advantage. In the heterogeneous setting, the regression objective 

becomes only an approximation as the true cell-type means are altered and genes have 

considerable residual covariance. �e various feature selection and weighing schemes 

using by top performing methods serve to account for this but may do so imperfectly. 
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On the other hand, marker-based methods are highly robust to these effects as the resid-

ual covariance of marker genes is low by construction and the exact mean values are not 

relevant.

In line with the view, BayesPrism presents an interesting case of a method that is 

fully quantitative but has some conceptual similarity with marker-based approach. 

BayesPrism uses the full reference matrix but does so in a way that does not rely on 

the exact reference values. One of the sampling steps of BayesPrism involves distrib-

uting the counts in the observed bulk expression for a gene over the current estimate 

of cell-type specific contributions with a multinomial distribution [66]. As such the 

absolute scale of gene expression in the reference matrix is not relevant, as the values 

are interpreted as probabilities and normalized to sum to 1. Moreover, in this setting, 

the contribution of a single gene to the final proportion estimate is directly propor-

tional to its relative cell-type specificity times its expression value in the bulk sample. 

Consequently, the BayesPrism approach to a large degree negates the model mis-

specification sensitivity of regression-based methods.

Finally, our finding suggested that reference-free methods perform poorly under 

the heterogeneous scenario. Reference-free methods are attractive as they require no 

prior knowledge and it has been repeatedly suggested that these methods produce 

reliable proportion estimates [13, 14]. However, we showed that the more realistic the 

simulation strategy the accuracy is much lower than would be expected from the pre-

viously reported results. Reference-free methods rely on fitting a simplex structure 

which is the expected data geometry if the only source of variation is cell-type pro-

portions. However, adding variation beyond cell-type proportions introduces addi-

tional lower dimensional structure making the proportion associated simplex difficult 

to isolate.

Our analysis provides valuable insights into the performance and tradeoffs of differ-

ent conceptual approaches in a highly realistic simulation scenario thus establishing 

a framework for future methodological development. Beyond the specific deconvolu-

tion problem addressed in this work, the heterogeneous simulation strategy can be 

employed in other simulation pipelines to produce more realistic performance bench-

marks for additional tasks such as cell-type specific differential expression [67].

We also acknowledge some limitations of our approach. While we demonstrated 

that our heterogeneous simulation strategy matches the variance observed in real 

bulk samples, not all aspects of real data will be preserved. For example, the depend-

encies between cell types can be violated as we randomly combine cell types from 

different patients. Chu et al. [15] found that certain biological pathway activation in 

malignant cells could be negatively correlated with cell type fractions of other non-

malignant cells and the heterogeneous simulation we propose does not take into 

account such correlations. Methods that overcome this limitation would need to take 

the ground truth cell-type covariance into account necessitating development of new 

proportion sampling strategies.

Additionally, our study did not directly account for potential batch effects between 

the single-cell data used to generate references and the bulk data undergoing decon-

volution. �e benchmarking framework we introduced was based on a simplified sce-

nario where matched single-cell data is available for reference construction. In real 
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practice, there could be technical variation between signature matrices and bulk mix-

tures due to differences in assay platform [59, 68]. A complete evaluation for complex 

prior mis-specification will be the subject of future work.

Conclusions

Overall, our work suggests specific recommendations for creating realistic bulk simu-

lations and highlights counterintuitive findings regarding the performance of decon-

volution approaches from different conceptual classes. Together, we expect that these 

contributions will provide the groundwork for future methodological improvements.

Methods

Single-cell RNA seq datasets and quality control

A total of eight single-cell RNA sequencing datasets from seven tumor types are used in 

this paper (Table 1): (i) head and neck squamous cell carcinomas (HNSCC) from Puram 

et al. [25], (ii) melanoma (SKCM) from Tirosh et al. [29] and Jerby-Arnon et al. [33], (iii) 

medulloblastoma (MB) from Riemondy et al. [31], (iv) colorectal cancer from Lee et al. 

[35], (v) breast cancer from Qian et al. [37], (vi) lung adenocarcinoma from Kim et al. 

[39], and (vii) ovarian cancer from Izar et al. [41]. A detailed description of single-cell 

datasets used in this paper can be found in Additional file 2: Table S1.

UMI counts were converted to counts per million (CPM) prior to downstream simula-

tion tasks. We removed genes that are expressed in less than 5 cells and discarded genes 

from mitochondrial or ribosomal content. All expression matrices are in linear (non-log) 

scale.

For melanoma dataset Tirosh2016_SKCM, we used cell-type labels re-classified in 

Schelker et  al.’s [69, 70] study. For MB dataset Riemondy2022_MB, we re-annotated 

the immune population based on immune cell subtyping information from the interac-

tive website of the original paper [71]. We included major immune cell types from their 

annotations for further study: DC, Neutrophil, NK cell, T cells. For all the macrophage 

subpopulations: chemokine myeloid, complement myeloid, M2-activated myeloid, 

and non-activated microglia, we relabeled them into macrophages to ensure a reason-

able resolution of cell types. Immune cells that are classified as “Proliferate” or do not 

have any subtyping label are excluded from further study. For ovarian cancer dataset 

Izar2020_OV, we excluded cell type “Erythrocyte” due to limited single-cell size. For the 

remaining scRNA datasets, we used their original cell-type labels.

Bulk data used for variance comparison

When comparing the variance of the simulated bulk expression, we considered two 

types of “real” bulk data for comparison. First, baseline expression: we aggregated sin-

gle cells from the same biological samples within the scRNA-seq data, which serves as 

an approximation of actual bulk samples [72, 73]. Specifically, this was achieved by cal-

culating the mean expression from the CPM-normalized expression of cells from the 

same biological samples. �e resulting profiles maintain consistent library sizes and are 

ready for variance analysis. Second, real bulk expression data from �e Cancer Genome 

Atlas (TCGA): we accessed the TCGA cohorts from https:// xenab rowser. net/. �e gene 

expression data was acquired in HTSeq-FPKM format and subsequently transformed to 

https://xenabrowser.net/
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Transcript Per Million (TPM) for variance comparison. Only samples from primary and 

metastatic sites were selected for the analysis. A detailed description of the datasets used 

for variance comparison can be found in Additional file 2: Table S2.

Simulation of cell-type frequencies

Cell-type fractions simulation from beta distribution

To introduce variances into the cellular compositions of simulated bulk samples, we 

simulated cell-type frequencies that are close to that in real bulk samples. �e cell-

type proportions of each patient from the scRNA dataset were used as an approxima-

tion to the cell-type frequencies of real bulk samples. We fitted a beta distribution for 

each cell type and drew random values from the fitted distribution as the simulated 

frequencies. Randomly selected frequencies for different cell types are then scaled 

and summed to one for each simulated bulk sample. �is fraction simulation method, 

refereed to as “beta” method in Additional file 1: Fig. S3, is implemented throughout 

the simulated bulk expression in this study.

Cell-type fractions simulation from external resources

In Additional file 1: Fig. S3, we evaluated the performance of our fraction simulation 

approach by comparing it with an external method employed by Avila Cobos et al. [9] 

(referred to as “favilaco”), and a basic fraction simulation utilizing the Dirichlet distri-

bution. �e “favilaco” method, which is part of the bulk simulation pipeline proposed 

by Avila et al., is now available as the bulkSimulator_favilaco() function in the decon-

vBenchmarking package. �is function simultaneously simulates bulk expression data 

and fractions, which we used to extract and compare the simulated fraction distribu-

tions with other methods.

For the Dirichlet-based simulation, we set the shape parameter α to reflect the rela-

tive abundance of each cell type. Specifically, α is set to the cell type frequencies from 

the single-cell dataset used for bulk simulation and adjusted by a dispersion param-

eter to modulate the spread of the distribution. We considered a set of varying levels 

of dispersion parameters 0.01, 0.05, 0.001 in the simulation. �e Dirichlet-based sim-

ulation was conducted using the fracSimulator_Dirichlet() function from the decon-

vBenchmarking package.

By comparing the distribution of the simulated fractions under different settings, 

we showed that “favilaco”-based method significantly deviates from the baseline’s 

mean and variance, and while Dirichlet distribution exhibits comparable distribu-

tions, it requires additional tuning of the dispersion parameter, making it less efficient 

than the beta distribution based method we proposed.

Bulk simulation strategies

Using the same source scRNA-seq dataset and simulated cell-type fractions, each 

simulated bulk expression in this study was comprised of 100 simulated samples, cre-

ated using the following strategies:
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Homogeneous simulation

We standardized the widely used bulk simulation method that aggregates over ran-

dom cells as homogeneous simulation. Specifically, in each simulated sample, n single 

cells are aggregated linearly, with their proportions aligned to the simulated cell-type 

frequencies. �e value of n is set to approximate the typical number of single cells of a 

biological sample from the scRNA data (Additional file 2: Table S1).

Semi-heterogeneous simulation

We restricted that the malignant parts of each simulated bulk sample come from the 

same patient, while the non-malignant parts are randomly selected regardless of where 

they are from. Specifically, for each simulated bulk sample i, the malignant expression 

signal come exclusively from a randomly selected patient’s malignant profile Cmalignant 

and is weighted according to the simulated malignant fraction, and the non-malignant 

single cells are randomly selected and weighted according to the corresponding simu-

lated frequencies.

Heterogeneous simulation

We restricted that both malignant and non-malignant parts of each simulated bulk sam-

ple come from the same biological sample. Specifically, for each simulated bulk sample 

i, given a cell-type k, the expression signal of cell-type k comes exclusively from a ran-

domly selected patient’s k profile Ck and is weighted according to the simulated fraction 

(Additional file 1: Fig. S2).

Note that in both semi-heterogeneous and heterogeneous simulation settings, we 

employed additional randomization to prevent using the exact same cells across dif-

ferent simulated samples. Specifically, when aggregating patient-specific single cells to 

create a unique patient profile, we randomly select between 50 and 100% of the single 

cells. Moreover, we introduced a threshold parameter to specify the limited number 

of cells used for aggregation. If the number of patient-specific single cells falls below 

this threshold, we aggregate across multiple samples to prevent sparsity issues [44] 

within the cell-type specific profile. �ese two methods are now implemented as the 

bulkSimulator_semi() and bulkSimulator_heter() function in the deconvBenchmarking 

package.

sampleID independent heterogeneous simulation

We restricted that each cell-type component in the simulated bulk sample is constrained 

to originating from the same sub-cluster. Specifically, sub-cluster information for each 

cell type is obtained using the quickCluster() function from scran R package, with the 

min.size parameter set to 10 [74].

Bulk simulation from external resources

We incorporated three additional published approaches for bulk simulation comparison: 

the “favilaco” method [9], the “immunedeconv” method [17], and the “SCDC” method 

[23]. Note that only the “immunedeconv” method supports user-provided fractions; 
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therefore, we passed the simulated fractions to this method; the “favilaco” and “SCDC” 

methods do not support user-provided fractions, so we retained their default settings 

in the bulk simulation. �ese methods are implemented as bulkSimulator_favilaco() , 

bulkSimulator_SCDC() , and bulkSimulator_immunedeconv() function in the decon-

vBenchmarking package, which we used for bulk simulation.

Calculation of biological variance in bulk samples

�e following statistics are calculated as indicators of biological variance. Note that 

the baseline expression referred to below represents pseudobulk samples from single-

cell expression, which is obtained by aggregating single cells from the same patients, 

as an approximation of real bulk sample.

Coe�cient of variation (CV)

For each gene i in the simulated and baseline bulk samples, we calculated CV values 

on the log transformed expression using the following formula:

Average coe�cient of variation (CV) for biological pathways

We downloaded the hallmark gene list from https:// www. gsea- msigdb. org/ gsea/ msigdb/ 

and calculated the average CV values for genes included in each genelist, which is used 

as indicators for pathway-level variance.

Pairwise correlations between genes

We considered two sets of genes for calculating the gene-gene correlation matrix: (1) 

the top 300 most variable genes from the baseline bulk expression and (2) the cell type 

marker genes derived from limma-based differential expression analysis. �e detailed 

listing of the genes used can be found in Additional file 2: Table S3. Within each simu-

lated bulk expression and the baseline expression, we calculated the Pearson correla-

tions between these genes and visualized them in a heatmap [75, 76].

Pairwise similarities between samples

Using the top 300 most variable genes from the baseline bulk expression, we cal-

culated the pairwise Pearson correlation between samples for each simulated bulk 

expression. We then visualized the distribution of these statistics using a boxplot 

(Additional file 1: Fig. S7).

Reference construction

To generate necessary input for reference-based methods (regression-based, marker-

based, and BayesPrism), we applied the following reference construction methods 

using the training cells.

In particular, for interchangeability between the signature matrices and cell type 

markers, we applied the refMarkers_sigMatrixList() and refMatrix_markerList() 

CVi =

σi

µi

https://www.gsea-msigdb.org/gsea/msigdb/
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functions we developed in the deconvBenchmarking R package. Specifically, to cre-

ate a signature matrix from a set of gene lists, we first averaged the expression values 

of single cells from the same cell type, resulting in a raw gene-by-cell-type matrix; we 

then refined this matrix by subsetting it with the marker genes. To identify cell-type 

markers from a given reference matrix, we assigned each gene to the cell type with 

the highest expression.

We note that for MuSiC, the regression-based method in our benchmarking, 

the values generated in the reference matrix are not directly used by MuSiC itself. 

Instead, they serve as a feature selection step, where the genes identified in the refer-

ence matrix are used as the marker input for MuSiC.

CIBERSORTx signature matrix

We used the “Create Signature Matrix” module from the online CIBERSORTx portal 

(https:// CIBER SORTx. stanf ord. edu) to generate the signature matrix, with the training 

expression as input and all the parameters set to default values. We note that CIBER-

SORTx has a size limit for the input, so we downsampled the training cells and shrunk 

the input size when necessary. �e resulting signature matrices are used directly as 

input for regression-based methods. Note that the CIBERSORTx-based reference typi-

cally contains thousands of genes in its signature. When converting this reference matrix 

to cell-type marker genes using the refMatrix_markerList() function, we employed the 

maximum_n = 100 parameter to ensure that each cell type can have at most 100 marker 

genes, prioritized by the fold change in the reference matrix.

autogeneS signature matrix

�e python package autogeneS [60] is utilized for signature matrix con-

struction. We used the following parameters in the optimize function: 

ngen = 3000, seed = 0,mode = fixed, nfeatures = 400 . �e resulting optimized refer-

ence matrix with pareto index 0 is selected as autogeneS signature matrix.

limma derived cell-type speci�c markers

R package limma [61] is used to identify cell-type-specific markers that are differentially 

expressed within each cell-type. Specifically, the one-against-rest comparison is per-

formed for the statistical test, comparing each cell-type against all other cell-types com-

bined. Genes with a log fold change greater than 2 are considered as cell-type specific 

markers, and a parameter minimum_n = 5 is introduced to ensure a sufficient number 

of markers for each cell type. Cell types with fewer than minimum_n genes passing the 

log2 fold change threshold will be excluded from the marker list. Note that for the Rie-

mondy2022_MB and Jerby_Arnon2018_SKCM dataset, the log fold change threshold is 

relaxed to 1 to ensure proper number of cell-type specific markers.

scran-derived cell-type-speci�c markers

�e BayesPrism  ::  get.exp.stat() function, which incorporates the pairwiseTTests() 

function from the scran package, is used to identify cell-type specific markers. Specifi-

cally, pairwise comparison between cell types is performed for the statistical test [74]. 

https://CIBERSORTx.stanford.edu
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�e marker gene filtering process here utilizes the same log fold change threshold and 

minimum_n parameter as applied in limma derived marker identification.

Reference for BayesPrism

We designated cell type labels from the single-cell dataset as cell.type.label and subclas-

sified malignant populations based on their biological origins as cell.state.label in the 

BayesPrism  :: new.prism() function, the same BayesPrism reference construction strat-

egy used in Hippen et al.’s study [65]. We adhered to the reference derived directly from 

the scRNA data, bypassing the reference update step in BayesPrism, which entails gener-

ating a new reference from initial deconvolution results. �is decision was based on our 

observation that utilizing the updated reference contributes minimally to performance 

enhancement (Additional file 1: Fig. S17).

Highly variable (hv) genes

For computational efficiency, we selected highly variable genes as candidates to run 

autogeneS and DE analysis. We used the plot.scRNA.outlier() function from R package 

BayesPrism to calculate the maximum cell-type specificity score for each gene. Genes 

with max.spec greater than a threshold value (0.5 for autogeneS and 0.3 for DE analysis) 

are selected for downstream analysis. �is filtering narrows down the gene candidates 

from more than 10 thousands to thousands.

Deconvolution methods

Deconvolution methods are applied to the simulated bulk samples in their linear scale 

(non-log transformed) following recommendations from previous benchmarking studies 

[9, 16]. All methods evaluated in the study are wrapped in the deconvBenchmarking R 

package we developed: https:// github. com/ humen gying 0907/ decon vBenc hmark ing.

Evaluation of deconvolution performance

Pearson correlation and root mean square error (RMES) values are used to evaluate the 

accuracy of different deconvolution methods. Specifically, for Pearson correlation, we 

calculated per cell-type correlations by comparing estimated fractions to known frac-

tions within each cell type, with higher Pearson r corresponding to better performance. 

�is process results in a set of per cell-type correlations for each simulated bulk dataset. 

�ese correlation values are then averaged to yield the overall correlation performance 

score for a given deconvolution method. For RMSE values, we focus on a global com-

parison between the estimated and known fractions for all cell types altogether, with 

smaller RMSE values indicating a lower absolute difference and thus better performance.

�e averaged Pearson r across experimental repeats is used to represent the overall 

performance of a method. Variation in Pearson r and RMSE values across experimen-

tal repeats is visually inspected by comparing the minimum and maximum level across 

10 experimental repeats, which help evaluate the reproducibility and stability of each 

method.

For reference-free deconvolution methods, where cell-type labels are not explicitly 

provided, we calculated pairwise Pearson correlations between the estimated and the 

https://github.com/humengying0907/deconvBenchmarking
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known fractions and assign the unnamed cell type to the cell type with which it showed 

the highest correlation (Additional file 1: Fig. S18).

Multi-linear regression model of deconvolution performance

In order to evaluate the impact of methodological choices on deconvolution perfor-

mance for regression-based methods, we utilized a linear modeling approach. Spe-

cifically, we fitted a linear model using the lm() function in R to predict Pearson 

correlation coefficients based on various predictors, incorporating dataset and cell 

types as covariates. �e model formula employed was:

We designated nnls as the baseline regression choice, and no selection with MuSiC 

regression as the baseline reference choice for comparison. �e coefficients obtained 

from the model indicate, conditional on all other effects, the relative impact of a spe-

cific methodological choice over the baseline. Higher coefficients indicate a more 

significant impact of this methodological choice on overall performance. �e model 

was fitted separately for bulk data simulated from different approaches, in order to 

explore the effect shift of methodological choices under different conditions.
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accession code GSE103322 [28].

 2   Single cell melanoma dataset Tirosh2016_SKCM is downloaded from the GEO database under the accession code 

GSE72056 [30]; the single cell annotation data is downloaded from https:// github. com/ icbi- lab/ immune_ decon volut 

ion_ bench mark [69, 70].

 3   Single cell medulloblastoma dataset Riemondy2022_MB is downloaded from GEO database under the accession 

code GSE155446 [32]; the immune cells meta data is downloaded from the online interactive browser [71].

 4   Single cell melanoma dataset Jerby_Arnon2018_SKCM is downloaded from GEO database under the accession code 

GSE115978 [34].

model = lm(correlation ∼ 1 + regression_choice + reference_choice + dataset × cell_type)
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 5   Single cell colorectal cancer dataset Lee2020_CRC dataset is downloaded from the 3CA database (https:// www. weizm ann. 

ac. il/ sites/ 3CA/ color ectal) under the Title identifier “Lee et al. 2020” [36].

 6   Single cell breast cancer dataset Qian2020_BRCA is downloaded from the 3CA database (https:// www. weizm ann. ac. 

il/ sites/ 3CA/ breast) under the Title identifier “Qian et al. 2020” [38].

 7   Single cell lung cancer dataset is downloaded from the 3CA database (https:// www. weizm ann. ac. il/ sites/ 3CA/ lung) 

under the Title identifier “Kim et al. 2020” [40].

 8   Single cell ovarian cancer dataset is downloaded from the 3CA database (https:// www. weizm ann. ac. il/ sites/ 3CA/ ovari an) 

under the Title identifier “Izar et al. 2020” [42].

 9   TCGA Melanoma cohort is downloaded from UCSC Xena Browser under the cohort identifier "GDC TCGA Melanoma 

(SKCM)" [79].

 10   TCGA Head and Neck Cancer cohort is downloaded from UCSC Xena Browser under the cohort identifier "GDC 

TCGA Head and Neck Cancer (HNSC)" [80].

 11   Hallmark gene sets used in this paper are downloaded from The Molecular Signatures Database (MSigDB): 

https:// www. gsea- msigdb. org/ gsea/ msigdb/ [81].
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