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We study the evolution of close triple black hole system with full numerical relativity techniques. We

consider an equal mass non spinning hierarchical system with an inner binary ten orbits away from merger

and study the effects of the third outer black hole on the binary’s merger time and its eccentricity evolution.

We find a generic time delay and an increase in the number of orbits to merger of the binary, that can be

modeled versus the distance D to the third black hole as ∼1=D2.5. On the other hand, we find that the

orientation of the third black hole orbit has little effect on the binary’s merger time when considering a

fiducial initial distance of D ¼ 30M to the binary (with initial orbital separation d ¼ 8M). In those

scenarios the evolution of the inner binary eccentricity presents a steady decay, roughly as expected, but in

addition shows a modulation with the timescale of the outer third black hole orbital semiperiod around the

binary, resembling a beating frequency.

DOI: 10.1103/PhysRevD.108.064045

I. INTRODUCTION

Triple black hole systems have a renewed interest since

the observation that some of the gravitational waves signals

detected by the LIGO-Virgo collaboration may be the

product of highly eccentric black hole mergers [1] and

that one of the scenarios for creating those eccentricities

may be the product of three body Lidov-Kozai interactions

[2]. In this scenario, a tertiary companion on a sufficiently

inclined outer orbit could drive the inner binary to extreme

eccentricities, leading to efficient gravitational radiation

and orbital decay. Also see [3] for a formation scenario of

GW190521 via three-body encounters in young massive

star clusters.

The triple channel predicts a distinct region of the total

mass, mass ratio, and spin parameter space for merging

binary black holes, which can be used to disentangle the

triple contribution to the overall observed gravitational wave

sources. For a detailed study of the mass ratio distribution of

binary black hole mergers induced by tertiary companions in

triple systems see Ref. [4]. Close encounters of stars with

stellar-mass black hole binaries have been studied in [5] and

massive black hole triplets in galactic nuclei in [6–8].

Close encounters of three black holes require numerical

relativity techniques. Full numerical evolution of triple

systems are challenging due to the need to track three black

holes and the different scales of time-integration involved

in the solution. In Refs. [9,10] we have performed

prototypical evolutions of such systems and evaluated its

accuracy compared to Newtonian and post-Newtonian

evolutions [11].

In this paper we will revisit this scenario and evolve

triple systems using full numerical techniques to assess the

prompt or delayed merger and eccentricity evolution of a

binary in a hierarchical triple system.

II. APPROXIMATE INITIAL DATA

In Ref. [10] we have performed the three black holes

prototypical studies from approximate initial data, based on

[12] and extended to include terms of the sort S⃗i × P⃗i

representing interactions of spin with linear momentum in

an expansion to leadingorder on those intrinsic parameters of

the holes. In [13] a similar study wasmade using exact initial

data and found (when using the same raw 3BH parameters)

some deviations in the long term evolutions when compared

to the corresponding approximate initial data. Here we will

introduce two sets improvements to the approximate initial

data for multi black hole configurations. As already pointed

out in [10], a normalization for the parameters makes notable

improvements in, for instance, the resulting waveforms of

2BH (See Fig. 1 in [10]). To that end we will normalize data

to the initial (sum of) horizon masses as computed fully

numerically. The second improvement is to compute the next

order expansion in the solutions to the Bowen-York [14]

initial dataset. We will test those improvements by direct

comparison with the “exact” initial data for 2BH.

Here we provide some details on how we find a

perturbative solution of the Hamiltonian constraint equa-

tion, since in the Bowen-York approach [14] the momen-

tum constraint is solved exactly. Hence, the scope of this

section is to solve perturbatively the partial differential

equation for the 3-metric ϕ4 conformal factor

Δϕ ¼ −
1

8
ϕ−7ÂijÂij; ð1Þ
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where we label the momentum and the spin of the holes as

Pi and Ji, following the notation of [10].

For this purpose we start from the analytical solution at

order 0th given by

ϕ0 ¼ 1þ
X

NBHs

a

ma

2ra
; ð3Þ

which solves

Δϕ0 ¼ 0: ð4Þ

To find the first perturbative order u of the solution,

defined as ϕ ¼ ϕ0 þ u, we consider the equation

Δu1 ¼ −
1

8
ϕ−7
0
ÂijÂij: ð5Þ

A. One black hole

Let us consider Eq. (5) for a single black hole. The term

ÂijÂij is given by

ÂijÂij ¼
18J2

r6
ð1− x2

J
Þ þ

9P2

2r4
ð2x2

P
− 1Þ þ

18

r5
xP×JkP× Jk;

ð6Þ

where xJ, xP, and xP×J are respectively cos θJ, cos θP, and

cos θP×J and θJ is the angle between J and r (analogously

we can define θP and θP×J).

Since Eq. (5) is linear, the solution can be written as

u1 ¼ Fðr; xPÞP
2 þGðr; xJÞJ

2 þHðr; xP×JÞkJ × Pk: ð7Þ

In this way we can solve the equation separately for the

functions Fðr; xPÞ, Gðr; xJÞ, Hðr; xP×JÞ.
In particular, it is convenient to write the source term in

terms of Legendre polynomials. By doing so, we can solve

the angular part of the equations algebraically

ΔFðr; xPÞ ¼
3

2r4
ð5P0ðxPÞ þ 4P2ðxPÞÞ;

ΔGðr; xJÞ ¼
12J2

r6
ðP0ðxJÞ − P2ðxJÞÞ;

ΔHðr; xP×JÞ ¼
18

r5
P1ðxP×JÞ: ð8Þ

Thus the solution to first order is

ϕ1 ¼ ϕ0 þ Fðr; xPÞP
2 þGðr; xJÞJ

2 þHðr; xP×JÞkJ × Pk;

ð9Þ

where the functions Fðr; xPÞ, Gðr; xJÞ, Hðr; xP×JÞ are

explicitly given by

Fðr; xPÞ ¼
1

160ðμþ 1Þ5
½μ4ð3x2

P
− 1Þð84μ5 þ 378μ4

þ 658μ3 þ 539μ2 þ 192μ

þ 84ðμþ 1Þ5μ logðμÞ

− 84ðμþ 1Þ5μ logðμþ 1Þ þ 15Þ�

þ
μ2

32

�

1 −
1

ðμþ 1Þ5

�

;

Gðr; xJÞ ¼
μ5ð1 − 3x2

J
Þ

40ðμþ 1Þ5

þ
ðμ4 þ 5μ3 þ 10μ2 þ 5μþ 1Þμ3

40ðμþ 1Þ5
;

Hðr; xP×JÞ ¼ −
μ4ðμ2 þ 5μþ 10ÞxP×J

80ðμþ 1Þ5
; ð10Þ

where μ ¼ m
2r

and this solution agrees with the one given

in [10].

Thus when we want to solve the second order perturba-

tion equation for a single BH we have

Δϕ2 ¼ −
1

8
ϕ−7
0

�

1 − 7
u1

ϕ0

�

ÂijÂij; ð11Þ

where we used the fact that ϕ−7
1

≈ ϕ−7
0
ð1 − 7

u1
ϕ0

Þ and hence

Δu2 ¼
7

8
ϕ−8
0
u1Â

ijÂij ð12Þ

Using the same expansion reasoning we used for the 1st

order case we can write

u2 ¼ FP4ðr; xPÞP
4 þ FJ4ðr; xJÞJ

4

þ FðP×JÞ2ðr; xP×JÞkP × Jk2

þ FPðP×JÞðr; xP;ϕPÞPkP × Jk

þ FJðP×JÞðr; xJ;ϕJÞJkP × Jk

þ FJ2P2ðr; xP;ϕPÞJ
2P2: ð13Þ

Note that in Eq. (13) there are terms that involve

combinations of the vectors P, J, P × J. For example,

when solving for the term FJðP×JÞðr; xJ;ϕJÞ we need to

write xP×J in terms of xJ and ϕJ, as described in the

Appendix. At this point, we can solve for the single

functions in Eq. (13) as we did for Eq. (5) with the only

difference that we need a decomposition in spherical

harmonics and then solve the resulting ordinary differential

equation in the variable r.
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B. Two black holes

When we want to consider two BHs we proceed in the

following way. First, let us assume that our system is bound

so that we can then assume the virial theorem to hold

approximately true, P2 ≈ 1

r12
where r12 is the distance

between the two BHs. Then we treat the solution as a

superposition of the solutions for single black holes, where

we also add a term due to the interaction between the two.

Under this assumptions let us solve Eq. (5) for two BHs

considering the perturbation of the second black hole on the

first one. In this case we have

1

r2
¼

1

r12
þO

�

1

r12

�

2

; ð14Þ

here r2 is the distance from the second black hole.

Hence we get

ÂijÂ
ij ¼

18J2
1

r6
1

ð1 − x2
J1
Þ þ

9P2

1

2r4
1

ð2x2
P1

− 1Þ

þ
18

r5
1

xP1×J1
P1 × J1 þO

�

1

r12

�

2

ð15Þ

and

ϕ0 ¼ 1þ
m1

2r1
þ

m2

2r2
¼ 1þ

m1

2r1
þ

m2

2r12
þO

�

1

r12

�

2

; ð16Þ

Thus we can write

ϕ−7
0
ÂijÂ

ij ¼

�

1þ
m1

2r1

�

−7
�

18J2
1

r6
1

ð1 − x2
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Þ

þ
9P2

1

2r4
1

ð2x2
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�
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�

P2

r12

�

þO

�

J2

r12

�

þO

�

P × J

r12

�

: ð17Þ

As a result we can see that to first order the solution of

Eq. (5) for two BHs is the superposition of the solutions for

single black holes.

To second order we have

ϕ−7
1
ÂijÂ

ij ¼

�

1þ
m1

2r1
þ

m2

2r2
þ u1

1
þ u2

1

�

−7

½Â1ijÂ1
ij þ Â2ijÂ2

ij þ 2Â1ijÂ2
ij�

¼

�

1þ
m1

2r1

�

−7

Â1ijÂ1
ij
− 7ϕ−7

01
u1
1
Â1ijÂ1

ij
− 7ϕ−7

01

m2

2r12
Â1ijÂ1

ij þO

�

P4

r12

�

þO

�

J4

r12

�

þO

�
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�

þOðJ6Þ þOðP6Þ þOðP5JÞ þOðJ5PÞ þOðJ4P2Þ þOðJ3P3Þ þOðJ2P4Þ: ð18Þ

In this case we considered the second black hole as a perturbation of the first one, but the opposite is also true, so that the

complete source term at second order is given by

ϕ−7
1
ÂijÂ

ij ¼

�

1þ
m1

2r1
þ

m2
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þ u1

1
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1
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−7
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ij�
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�
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m1

2r1

�

−7

Â1ijÂ1
ij
− 7ϕ−7

01
u1
1
Â1ijÂ1

ij
− 7ϕ−7
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m2

2r12
Â1ijÂ1

ij þ

�

1þ
m2

2r2

�

−7

Â2ijÂ2
ij

− 7ϕ−7
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u2
1
Â2ijÂ2

ij
− 7ϕ−7

02

m1

2r12
Â2ijÂ2

ij þO

�

P4

r12

�

þO

�

J4

r12

�

þO

�

J2P2

r12

�

þOðJ6Þ þOðP6Þ þOðP5JÞ þOðJ5PÞ þOðJ4P2Þ þOðJ3P3Þ þOðJ2P4Þ: ð19Þ

Equation (19) implies that at second order we have to solve the partial differential equation

Δu2 ¼ þ
7

8
ϕ−7
01
u1
1
Â1ijÂ1

ij þ
7

8
ϕ−7
01

m2

2r12
Â1ijÂ1

ij þ
7

8
ϕ−7
02
u2
1
Â2ijÂ2

ij þ
7

8
ϕ−7
02

m1

2r12
Â2ijÂ2

ij: ð20Þ

Then if we write u2 ¼ u1
2
þ u2

2
we can solve independently for the two BHs

Δu1
2
¼ þ

7

8
ϕ−7
01
u1
1
Â1ijÂ1

ij þ
7

8
ϕ−7
01

m2

2r12
Â1ijÂ1

ij

Δu2
2
¼ þ

7

8
ϕ−7
02
u2
1
Â2ijÂ2

ij þ
7

8
ϕ−7
02

m1

2r12
Â2ijÂ2

ij: ð21Þ

CLOSE ENCOUNTER OF THREE BLACK HOLES REVISITED PHYS. REV. D 108, 064045 (2023)

064045-3



And again, by performing a decomposition in spherical

harmonics we can reduce this system of partial differential

equations to a set of independent ordinary differential

equations. We also point out that this method can be

straightforwardly generalized to an arbitrary number of

BHs as follows

Δuα
2
¼þ

7

8
ϕ−7
0αu

α
1
ÂαijÂα

ij þ
X

NBHs

β≠α

7

8
ϕ−7
0α

mβ

2rαβ
ÂαijÂα

ij: ð22Þ

with α ¼ 1; 2; 3;…; NBHs.

The total ADM mass at the second perturbative order is

MADM ¼
X

NBHs

i

X

NBHs

j≠i

P2
i

2640000m5

i

��

160J2i ð1448R
31
PJ

2

þ 1448R32

PJ
2 þ 1529R33

PJ
2 − 8000Þ

þ
1650000m4

i ðsij − 3mjÞ

sij
− 520157m2

iP
2
i

��

−
266J4i
825M7

i

−
2J2i ð2mj − sijÞ

5m3

i sij
−
3kPi × Jik

110m5
i

þmi;

ð23Þ

where RPJ is the rotation matrix from the system with P̂ ¼

ð0; 0; 1Þ to the system with Ĵ ¼ ð0; 0; 1Þ defined in the

Appendix.

The total ADM linear momentum and angular momen-

tum of the Bowen-York data are given by:

P⃗ADM ¼
X

NBHs

i

P⃗i; ð24Þ

J⃗ADM ¼
X

NBHs

i

ðJ⃗i þ r⃗i × P⃗iÞ: ð25Þ

III. FULL NUMERICAL TECHNIQUES

In order to perform the full numerical simulations we use

the LazEv code [15] with 8th order spatial finite differences

[10], 4th order Runge-Kutta time integration with a

Courant factor ðdt=dx ¼ 1=4Þ.
To compute the numerical initial data, we use the

puncture approach [16] along with the TwoPunctures [17]

code. We use AHFinderDirect [18] to locate apparent horizons.

We measure the magnitude of the horizon spin SH, using
the isolated horizon algorithm as implemented in Ref. [19].

We can then calculate the horizon mass via the

Christodoulou formula mH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

irr þ S2H=ð4m
2

irrÞ
p

, where

mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AH=ð16πÞ
p

and AH is the surface area of the

horizon.

The Carpet [20] mesh refinement driver provides a

“moving boxes” style of mesh refinement. In this approach,

refined grids of fixed size are arranged about the coordinate

centers of the holes. The code then moves these fine grids

about the computational domain by following the trajecto-

ries of the black holes.

The grid structure of our mesh refinements have a size of

the largest box for all simulations of �400M. The number

of points between 0 and 400 on the coarsest grid is XXX in

nXXX (i.e., n100 has 100 points). So, the grid spacing

on the coarsest level is 400=XXX. The resolution in the

wave zone is 100M=XXX (i.e. n100 has M=1.00, n120
has M=1.2 and n144 has M=1.44) and the rest of the

levels is adjusted globally. For instance, the grid around

one of the black holes (m1) is fixed at �0.6M in size and

is the 9th refinement level. Therefore the grid spacing

is 400=XXX=28.
We evaluate eccentricity during evolution via the simple

formula, as a function of the separation of the holes, d,

ed ¼ d2d̈=m, as given in [21].

We also use the proper distance between the two

horizons as measured along the coordinate line joining

the two punctures [22], which we call the simple proper

distance, or dspd, below (note that the minimal geodesic

does not necessarily follow this line).

The extraction of gravitational radiation from the

numerical relativity simulations is performed using the

formulas (22) and (23) from [23] for the energy and

linear momentum radiated, respectively, in terms of the

extracted Weyl scalar Ψ4 at the observer location

Robs ¼ 113M. For angular momentum radiated we use

the formulas in [24].

A. Two black holes test

In order to evaluate quantitatively the improvements of

this next to leading parameters ðP⃗i; S⃗i; 1=diÞ expansion

with respect to the leading (labeled for the sake of

simplicity second and first order respectively), we compare

the evolution of a binary black hole system from initial data

generated by these two expansions and that of the “exact”

TwoPunctures [17] numerical solver.

We will consider an equal mass, nonspinning binary with

a separation of the holes d ¼ 12m, where m is the sum of

the horizon masses, that in preparation to use this binary in

the three black holes case (3BH) (See Fig. 4), we will take

asmH
i ¼ 1=3. The orbital parameters are taken as those of a

quasicircular orbit [25] and are given in the first column of

Table I, and labeled as 2BH0.

We first observe that placing those sets of initial data

on the numerical grid that will serve for its evolution, allow

us to evaluate the violations of the Hamiltonian constraint

jHj. Figure 1 displays those violations along the line

joining the black holes. The spikes (in log-scale) shown

particularly in the TwoPunctures solution have to do with

crossing the zero-value at those points and the plotting of

the Hamiltonian magnitude jHj. The first and second order
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approximation fall well above the “exact” solution, with the

second order improving on the first order violations around

the black holes and asymptotically away.

The evolution of these initial data leads to potentially

different tracks and hence waveforms. A comparison of the

three cases of initial data considered here (but using the

same binary parameters as in Table I, 2BH0) is given in

Fig. 2 where we observe the close match of the second

order and “exact” TwoPunctures data in comparison with the

first order case. This later difference (already observed in

Fig. 1 of Ref. [10]) can be in part traced back to the effects

of the violations of the Hamiltonian constraint in the initial

data that propagates in the numerical grid or is accreted by

the black holes. In fact we can observe this effect in the

evolution of the individual horizon masses until merger in

Fig. 3. That would lead to deviations in their relative tracks

explaining the differences in their corresponding wave-

forms in Fig. 2.

We supplement the information of the initial data here

with another measure of the initial data quality as is the

computation of the “binding” energy of the two black holes

Eb ¼ MADM −m as the difference of the total ADM mass

MADM and the sum of the horizon masses m ¼ mH
1
þmH

2
.

We compare here its computation via the TwoPunctures

numerical solution to the Hamiltonian constraint to the

first and second order analytic approximations as given in

Eq. (23). For our binary separated by d ¼ 12m we find

EN
b ¼ −0.00588611 for the TwoPunctures numerical solution

while E
f
b ¼ −0.00350055, and Es

b ¼ −0.00486506, for the

first and second order solutions, representing a 40% and

17% differences, respectively.

FIG. 1. Violation of the constraints for the different sets of

initial data considered here for the 2BH0 reference binary.

FIG. 2. Weyl scalar ψ4 extracted at rex ¼ 113M from the

evolution of the binary system started with the three different sets

of initial data.

TABLE I. Initial data parameters for the base binary (2BH0)

and the two coplanar (3BH1, 3BH2) configurations with a third

black hole at a distance D from the binary along the x-axis.

ðxi; yi; ziÞ and ðp
x
i ; p

y
i ; p

z
i Þ are the initial position and momentum

of the puncture i, m
p
i is the puncture mass parameter, mH

i is the

horizon mass, MΩ is the binary’s orbital frequency, d is the

binary’s initial coordinate separation and dspd is the binary’s

simple proper distance. Parameters not specified are zero.

Configurations 2BH0 3BH1 3BH2

x1=M −9.95027835 −9.95027835 −9.98428541

y1=M 3.96401481 3.96401481 3.96401481

px
1
=M −0.05706988 −0.05705839 −0.05705731

p
y
1
=M −0.00036813 −0.02179566 0.02154356

m
p
1
=M 0.32546442 0.32362400 0.32359400

mH
1
=M 0.33334615 0.33335960 0.33332705

x2=M −9.95027835 −9.95027835 −9.98428541

y2=M −3.96401481 −3.96401481 −3.96401481

px
2
=M 0.05706988 0.05708137 0.05708246

p
y
2
=M 0.00036813 −0.02105940 0.02227982

m
p
2
=M 0.32546442 0.32362400 0.32362400

mH
2
=M 0.33334654 0.33335185 0.33333734

d=M 7.92802962 7.92802962 7.92802962

dspd=M 10.55538506 10.65527971 10.65538017

x3=M � � � 19.76412526 19.73192339

y3=M � � � 0 0

px
3
=M � � � −0.00002299 −0.00002515

p
y
3
=M � � � 0.04285506 −0.04382339

m
p
3
=M � � � 0.32908500 0.32901500

mH
3
=M � � � 0.33334994 0.33330884

MΩ 0.03273404 0.00586017 0.00590334

D=M � � � 29.7144036 29.7162088

CLOSE ENCOUNTER OF THREE BLACK HOLES REVISITED PHYS. REV. D 108, 064045 (2023)

064045-5



IV. THREE BLACK HOLES EVOLUTIONS

We will consider a series of prototypical simulations

involving three black holes. In this first exploration we

will consider a hierarchical system with the inner binary

at an initial separation of 12m ¼ 8M and a third black

hole at separation 30M. All black holes in this first set

will initially have equal masses (as measured by their

individual horizons) and no spins, but with different

relative orbital orientations. This set up is depicted

in Fig. 4.

As a first estimate of the orbital periods we can use

the Keplerian expression P ¼ 2π=Ω where the orbital

frequency is Ω ¼ m=r3=2. Thus for the binary (at

r ¼ 12m ¼ 8M), we find an initial period of PB ¼
174M while for the orbit of the third black hole (at

r ¼ 30M), a period of P3 ¼ 1032M. From the quasicir-

cular initial orbit [25] from the third post-Newtonian

order (3PN) given in the Table I we find P3PN
B ¼ 192M

and P3PN
3

¼ 1072M, respectively. What we measure from

the simulation tracks is in close correspondence with

those values, i.e. PNR
B ≈ 205M and PNR

3
≈ 1060M.

In order to choose parameters leading to small initial

eccentricities we first consider the inner binary as isolated

and apply the quasicircular formulas of Ref. [25] to obtain

the parameters reported in the first column of Table I and

referred to as 2BH0. Once we have the inner binary

parameters we apply the same quasicircular criteria to

the outer orbit of the third black hole with an effective

spinning black hole having the added masses and angular

momentum of the inner binary. In practice this process

works to provide low enough eccentricities (e≲ 0.05) for

our initial study purposes.

A. Three black holes in a hierarchical system

To start exploring this vast parameter space we have

chosen to consider two coplanar cases, when the third black

hole orbit is corotating with the binary (3BH1) and when it

is counter-rotating (3BH2). Those parameters are given in

Table I. We also consider precessing cases with the third

black hole momentum perpendicular to the orbital plane of

the binary (3BH3) and at �45 degrees with respect to that

(3BH4 and 3BH5), as depicted in Fig. 4. In all cases we

considered the quasicircular orbit of the third black hole

with the inner binary as an effective single black hole. The

corresponding parameters for these cases are given in

Table II.

In Fig. 5 we display the extracted waveform of the three

black hole simulation 3BH1. The gravitational radiation is

completely dominated by the inner binary. The difference

FIG. 3. Evolution of the black holes horizon masses starting

from the same normalization. Differences are due to different

initial violations of the constraints for the sets of approximate

initial data considered here.

FIG. 4. Initial configurations considered for the three black hole evolutions, labeled as 3BH1-5 (3’, 4’, 5’ are quasisymmetric

counterparts).
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with an isolated binary is given by the delay in the merger

due to the presence of the third black hole. Similar results

are obtained for the 3BH2-5 cases. Another effect is the

motion of the binary and its merger product around the
center of mass of the triple system, as displayed in Fig. 6.

This leads to a mixing of modes as seen by a fixed observer

location, but its effects can be disentangled with techniques

like those used in Refs. [26,27].

In Fig. 7 we also display the trajectories of the three

black holes in the fully precessing case 3BH3 in three

dimensions. They clearly display the precession of the third

black hole orbital plane over the three orbits of our

simulation.

In Table III we report the merger times of the first

five cases studied here. We first note the clear delay of

the merger of 3BH1-5 with respect to the isolated binary

2BH0. We then note the relatively weak dependence of

the merger times and number of orbits on the orientation

of the orbit, at this initial separation of the third

hole, D ¼ 30M.

The other interesting property that we want to study here

is the evolution of the eccentricity of the binary due to

the presence of the third black hole in a hierarchical

orbit around the binary. In Fig. 8 we display the

TABLE II. Initial data parameters for the precessing three black

hole cases (3BH3, 3BH4, and 3BH5).

Configurations 3BH3 3BH4 3BH5

x1=M −9.96709434 −9.95516516 −9.97921106

y1=M 3.96401481 3.96401481 3.96401481

z1=M 0 0 0

px
1
=M −0.05705789 −0.05705825 −0.05705749

p
y
1
=M −0.00036813 −0.01556934 0.01507516

pz
1
=M −0.02166824 −0.01520121 0.01544329

m
p
1
=M 0.32359400 0.32359400 0.32359400

mH
1
=M 0.33332740 0.33332841 0.33332691

x2=M −9.96709434 −9.95516516 −9.97921106

y2=M −3.96401481 −3.96401481 −3.96401481

z2=M 0 0 0

px
2
=M 0.05708188 0.05708152 0.05708228

p
y
2
=M 0.00036813 −0.01483308 0.01581142

pz
2
=M −0.02166824 −0.01520121 0.01544329

m
p
2
=M 0.32359400 0.32359400 0.32359400

mH
2
=M 0.33332869 0.33332239 0.33333438

d=M 7.92802962 7.92802962 7.92802962

dspd=M 10.65491937 10.65499784 10.65513690

x3=M 19.74820210 19.75949795 19.73672848

y3=M 0 0 0

z3=M 0 0 0

px
3
=M −0.00002398 −0.00002326 −0.00002479

p
y
3
=M 0 0.03040241 −0.03088657

pz
3
=M 0.04333649 0.03040241 −0.03088657

m
p
3
=M 0.32910500 0.32906500 0.32906500

mH
3
=M 0.33338457 0.33333346 0.33335498

MΩ 0.00588143 0.00586633 0.00589685

D=M 29.7152964 29.7146631 29.7159395

FIG. 5. Waveforms generated by the case 3BH1 in comparison

with the isolated binary 2BH0.

FIG. 6. Trajectories of the coplanar case 3BH1 and the

evolution of the center of masses of the binary and of the three

black holes.
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instantaneous [21] eccentricity eðtÞ ≈ e cosðΩtÞ ≈ d2d̈=M,

of the inner binary for the three black hole cases 3BH1-5

and the isolated reference binary 2BH0 (B1). We first

observe that the amplitude of the eccentricity slightly

decrease notably during evolution and presents a modula-

tion with the third black hole orbital frequency.

In order to visualize better the evolution of the eccen-

tricity we take the values of the extremes of oscillations per

orbit to model the eðtÞ ≈ e cosðΩtÞ dependence and extract
the values of e per each half orbit of the coplanar cases

3BH1 (corotating orbits) and 3BH2 (counterrotating

orbits). The results of this analysis are displayed in Fig. 9.

This is first contrasted with what we expect from an

isolated binary on the grounds of the decay of the

eccentricity with the instantaneous separation as ∼d1.735,
found from numerical simulations, see also Fig. 9 in

Ref. [28]. We observe that even if the inner binary starts

at a relatively close separation, 12m, leading to ten orbits

before merger compared to the nearly fifty orbits of the

simulation analyzed in Ref. [28], a general trend toward

decrease can be observed. Particularly closer to merger,

during the last few orbits, we see a decrease in the

eccentricity in as expected on the fact that at those close

separations the relative influence of the third black hole

should be reduced. We have also verified that the 1PN

predictions [29] that should show a decay of the eccen-

tricity with the instantaneous separation as ∼d19=12, give
very close results to those displayed in Fig. 9. See also

recent 2PN studies in Ref. [30].

Another feature that appears in both cases displayed

in Fig. 9 is a modulation superposed over an steady

decrease of the eccentricity. This modulation has a period

of around ∼500M which seems to correspond to the

semiperiods of the third black hole, that we estimated

above to be initially of the order of ≈1060M. It also bears

resemblance to a beating frequency of the two orbital

motions ðΩ2BH − Ω3BHÞ=2 ≈ 468M.

TABLE III. Number of orbits to merger and merger time of the

inner binary for different orbital orientations of the third black

hole. Cases 3BH1-5.

Label #Orbits tmerger=M

2BH0 9.949 1216.9

3BH1 10.637 1376.6

3BH2 10.821 1419.9

3BH3 10.523 1341.2

3BH4 10.582 1358.0

3BH5 10.705 1387.5

FIG. 8. Eccentricity evolution of the inner binary as measured

by d2d̈ðtÞ=M for the triple black hole cases 3BH1-5 and the

isolated reference binary 2BH0.

FIG. 7. Trajectories of the fully precessing case 3BH3.
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Finally, we can look at the eccentricity evolution of the

orbit of the third black hole. Before merger we can refer

its motion around the center of mass of the binary

system, as displayed in the bottom of Fig. 6 and then

after the merger of the inner binary to its remnant, as

displayed on the right panel of Fig. 10. We note that the

eccentricity measure from the center of mass of the

binary seems to grow in time and reaches relatively large

values before merger. This seems to be an effect of the

use of the coordinates of the center of mass as a reference

of this extended system. We note that right after merger

the eccentricity measure produces an order of magnitude

less eccentricity for the subsequent two orbits and with

values more in line with what we expect and found for

the inner binary studies above. Qualitatively similar

results have been found for the precessing cases

3BH3-5.

B. Numerical convergence

Here we explore the dependence of the previous results

on the numerical resolution of the finite difference inte-

grations to perform the evolutions of three black holes. To

that end we perform a series of three simulation of the

representative case 3BH1, with increasing global resolu-

tions by factors of 1.2, namely the original simulation

at n100 resolution and two additional ones at n120 and

n144 resolutions. The results of such simulations is

summarized in Table IV, were we report the merger times

and number of orbits of the inner binary as defined by its

trajectories approaching at a distance of dm ¼ 0.7M (this

corresponds closely to the first appearance of a common

apparent horizon within a Δt ∼ 5M, as we verified directly

for 3BH1).

We observe that those values align in a convergence

order leading to high powers of convergence, as computed
FIG. 9. Eccentricity evolution of the inner binary as measured

by the amplitude of d2d̈ðtÞ=M for the triple black hole cases

3BH1-2 and the expected decay d1.735 of Ref. [28].

FIG. 10. Eccentricity evolution of the outer black hole as

measured by the amplitude of D2D̈ðtÞ=M for the three coplanar

black hole cases 3BH1-2. (Note the zoom factor ×10 on the

right panel).

TABLE IV. Convergence of number of orbits and merger time

for the 3BH1 configuration using three resolutions. Richardson

extrapolation is used to determine convergence order and

infinitely extrapolated values. We point out that the difference

between different resolutions is smaller than differences between

the different configurations.

Resolution #Orbits tmerger=M

n100 10.637 1376.6

n120 10.603 1370.4

n144 10.597 1369.6

Inf. Extrap. 10.596 1369.5

Inf.- n100 −0.041 −7.1

% difference −0.387 −0.518

Conv. order 9.51 11.23
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by the formulas (5a)–(5c) of [31], still comparable to the

expected 8th order convergence from the spatial finite

difference stencils used in our integration algorithm. The

relevant point here is that the differences of the n100

simulations values we use as a basis to extract conclusions

about delays in merger times and number of orbits to

merger to its (Richardson’s) extrapolation to infinite res-

olution is very small compared to the physical changes we

observe. We hence conclude they are a numerically reliable

result and will keep using this n100 resolution as the

standard for the following studies.

C. The distance dependence to the third black hole

Given the weak sensitivity of the binary evolution with

the direction of the third black hole momentum, we will

next explore how the merger times and eccentricity

evolution of the binary vary versus the initial separation

of the outer black hole. For that end we look again for

quasicircular effective parameters at different initial sepa-

rations as given in Table V.

We are interested in studying the effect the third hole has

on the inner binary dynamics. In particular how it affects

the merger, if prompts or delays it. In Table VI we give the

results of our simulations versus the initial third black hole

distance to the binary’s center of mass. We find a clear trend

toward the delay of the merger, in both measures, the

merger time and the number of orbits as measured by the

tracks of the holes and using a definition of merger when

the binary distance reaches d ¼ 0.7M (which corresponds

closely to the formation of a common horizon).

In order to model the merger delay as a function of the

initial distance to the third black hole we consider devia-

tions with respect to the merger time and number of orbits

to merger isolated binary, 2BH0. We thus fit a dependence

to the data in Table VI of the form 2BH0þ a1=Da2. The

results are displayed in Fig. 11 and lead to a consistent

dependence of the form 1=D2.5.

We again study the instantaneous eccentricity evolution

of the inner binary as we vary the orbital distance of the

third black hole. The results are displayed in Fig. 12. While

the initial magnitude of the eccentricity is due to the choice

of the orbital parameters their evolution shows a trend

toward reduction for all cases, particularly very close to

merger.

TABLE V. Initial data parameters for coplanar-corotating configurations with a third black hole placed at different

distances D from the binary along the x-axis, 3BHD1-5.

Configurations 3BHD1 3BHD2 3BHD3 3BHD4 3BHD5

x1=M −8.28225635 −11.61795003 −13.28540069 −14.95270161 −19.95406346

y1=M 3.96401481 3.96401481 3.96401481 3.96401481 3.96401481

px
1
=M −0.05705000 −0.05706264 −0.05706503 −0.05706647 −0.05706844

p
y
1
=M −0.02408677 −0.02005564 −0.01867731 −0.01755115 −0.01511026

m
p
1
=M 0.32325400 0.32386400 0.32406400 0.32421600 0.32453600

mH
1
=M 0.33335247 0.33333709 0.33334068 0.33333886 0.33335088

x2=M −8.28225635 −11.61795003 −13.28540069 −14.95270161 −19.95406346

y2=M −3.96401481 −3.96401481 −3.96401481 −3.96401481 −3.96401481

px
2
=M 0.05708976 0.05707712 0.05707474 0.05707329 0.05707133

p
y
2
=M −0.02335051 −0.01931938 −0.01794106 −0.01681489 −0.01437400

m
p
2
=M 0.32325400 0.32386400 0.32406400 0.32421600 0.32453600

mH
2
=M 0.33334355 0.33332930 0.33333270 0.33333175 0.33334414

d=M 7.92802962 7.92802962 7.92802962 7.92802962 7.92802962

dspd=M 10.67520743 10.64064151 10.63015429 10.62193283 10.60525218

x3=M 16.46307522 23.06578078 26.36782091 29.67012192 39.57796287

y3=M 0 0 0 0 0

px
3
=M −0.00003976 −0.00001448 −0.00000970 −0.00000682 −0.00000288

p
y
3
=M 0.04743728 0.03937502 0.03661837 0.03436605 0.02948426

m
p
3
=M 0.32823500 0.32968500 0.33014500 0.33048500 0.33116543

mH
3
=M 0.33333394 0.33334810 0.33335404 0.33333988 0.33330813

MΩ 0.00763429 0.00465268 0.00384912 0.00323775 0.00211854

D=M 24.7453316 34.6837309 39.6532216 44.6228235 59.5320263

TABLE VI. Number of orbits to merger and merger time of the

inner binary for different initial separation of the third black hole.

Cases 3BHD1-5.

D=M #Orbits tmerger=M

30 10.63 1376.6

35 10.40 1323.6

40 10.25 1292.6

45 10.18 1275.0

60 10.09 1250.5

∞ 9.94915 1216.875
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V. CONCLUSIONS AND DISCUSSION

Although full numerical solutions to three black holes

initial data have been presented in Refs. [13,32,33] we

found a valid and practical option, validated for the two

black hole cases, to provide analytic initial data for prompt

use and with enough accuracy for current exploratory

studies.

We next revisited the triple black hole scenario to study

their merging times and eccentricity evolution. We found

that the third black hole delays the merger of the binary by

an amount inversely proportional to a power of the

distance, ∼1=D2.5. This behavior was not clearly observed

in some of the configurations simulated in a previous work

[10], due to the closeness of the cases studied that lead to a

prompt breakdown of the binary, as we also observe here if

we start the third black hole closer to ≈30M. We also note

here that the ∼1=D2.5 dependence can be associated to a 5th

post-Newtonian correction and its leading tidal effects on

the inner binary waveforms [34].

A delay in the merger time of the binary due to the

presence of the third black hole has also been observed in

the Post-Newtonian approximation [35] considering much

larger separations of the binary ð130M − 170MÞ and to the
third black hole up to ð10; 000MÞ, thus representing a

complementary study to the one presented here.

Results in Fig. 5 showing the differences in the wave-

forms of a binary in isolation versus one in the presence of a

third body may have consequences for parameter estima-

tion from gravitational wave detections. If we compare the

inspiral to merger part of the waveforms in Fig. 5 and try to

match the 3BH waveform with a 2BH waveform we would

find a match with different mass, i.e., with an effective mass

rescaled by Mðt3BHM =t2BHM Þ ≈ 1.13M, (from the numbers in

Table VI) to match merger times. The effect seems to be

cumulative with the number of orbits of the third, outer

black hole, around the inner binary. On the other hand, the

FIG. 11. Fit to a functional dependence 2BH0þ a1=Da2.

FIG. 12. Eccentricity evolution of the inner binary as measured

by d2d̈ðtÞ=M for the triple black hole cases 3BH1, 3BHD2-5 and

the isolated reference binary 2BH0.
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quasinormal modes of the final merged holes should be

very similar to each other, leading to an inconsistency if we

do not take into account the presence of the third body.

The presence of a nearby third black hole also seems to

confirm a decay of any residual inner binary eccentricity

and to induce a subtle modulation with about a half the

period of the third black hole orbit around the binary. Note

that in Ref. [36] it was studied with post-Newtonian

techniques [11] resonant eccentricity excitation in hierar-

chical three-body systems, another complementary study to

that presented here.

The next natural exploration of 3BH interactions with

our formalism involves the inclusion of spins in the inner

binary, the unequal mass ratio to consider binaries in the

field of a much larger black hole, and the scattering effects

of a passing third black hole. Those will be covered in a

forthcoming study.
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APPENDIX: ROTATION MATRIX

When we want to study the perturbation of the

Hamiltonian constraint at second order we encounter terms

of interaction between the momentum P and spin J of the

same black hole. Since this perturbative solution requires to

choose a specific axis with respect to which we write the

spherical harmonics, we need to be able to write the angle

between the position r and, for example, the spin in terms

of the angular coordinates taken starting from P as z axis.

In order to do so let’s consider the momentum versor P̂

and spin versor Ĵ in a certain coordinate system

P̂ ¼

2

6

4

Px

Py

Pz

3

7

5
Ĵ ¼

2

6

4

Jx

Jy

Jz

3

7

5
ðA1Þ

Let’s call the matrix RGP the matrix that rotates the vector

P̂ into the vector ẑ with

ẑ ¼

2

6

4

0

0

1

3

7

5
ðA2Þ

This matrix is constructed through

RGP ¼ I þ V þ
V · V

1þ C
; ðA3Þ

where

V ¼

2

6

4

0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0

3

7

5
ðA4Þ

and

V ¼ P̂ × ẑ C ¼ P̂ · ẑ ðA5Þ

This is also the matrix that transforms the coordinates of

a given vector in the reference system G to the one in which

the z axis is aligned along P̂ (which we call P).

Analogously we find RGJ and RGJ×P.

Once we have these matrices we can combine them to

find RPJ, RPJ×P, and RJJ×P.

Now let’s consider for example the unit vector n̂ which

has coordinates

n̂ ¼

2

6

4

nxP

nyP

nzP

3

7

5
ðA6Þ

in the P system.

Then the coordinates of n̂ in the J system are

2

6

4

nxJ

nyJ

nzJ

3

7

5
¼ RPJ

2

6

4

nxP

nyP

nzP

3

7

5
ðA7Þ

In particular we are only interested in the 3rd coordinate

nzJ which is

nzJ ¼ R31

PJ
nxP þ R32

PJ
nyP þ R33

PJ
nzP

¼ sin θPðR
31

PJ
cosϕP þ R32

PJ
sinϕPÞ þ R33

PJ
cos θP ðA8Þ

Applying this procedure for all the cases we need we

finally obtain
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nzJ ¼ sin θPðR
31

PJ
cosϕP þ R32

PJ
sinϕPÞ þ R33

PJ
cos θP

nzJ×P ¼ sin θPðR
31

PJ×P cosϕP þ R32

PJ×P sinϕPÞ

þ R33

PJ×P cos θP

nzJ×P ¼ sin θJðR
31

JJ×P cosϕJ þ R32

JJ×P sinϕJÞ þ R33

JJ×P cos θJ

ðA9Þ

To determine let us say the angle ϕP (an analogous

argument holds for ϕJ) we make use of the matrix RGP as

follows. Let us say that in the system of coordinates G the

coordinates of n̂ are

n̂ ¼

2

6

4

nxG

nyG

nzG

3

7

5
ðA10Þ

Then we have,

tanϕP ¼
sinϕP

cosϕP

¼
ðRGP · nÞx
ðRGP · nÞy

ðA11Þ

From this we can obtain ϕP (and ϕJ).
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