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We study the evolution of close triple black hole system with full numerical relativity techniques. We
consider an equal mass non spinning hierarchical system with an inner binary ten orbits away from merger
and study the effects of the third outer black hole on the binary’s merger time and its eccentricity evolution.
We find a generic time delay and an increase in the number of orbits to merger of the binary, that can be
modeled versus the distance D to the third black hole as ~1/D?*3. On the other hand, we find that the
orientation of the third black hole orbit has little effect on the binary’s merger time when considering a
fiducial initial distance of D = 30M to the binary (with initial orbital separation d = 8M). In those
scenarios the evolution of the inner binary eccentricity presents a steady decay, roughly as expected, but in
addition shows a modulation with the timescale of the outer third black hole orbital semiperiod around the

binary, resembling a beating frequency.
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I. INTRODUCTION

Triple black hole systems have a renewed interest since
the observation that some of the gravitational waves signals
detected by the LIGO-Virgo collaboration may be the
product of highly eccentric black hole mergers [1] and
that one of the scenarios for creating those eccentricities
may be the product of three body Lidov-Kozai interactions
[2]. In this scenario, a tertiary companion on a sufficiently
inclined outer orbit could drive the inner binary to extreme
eccentricities, leading to efficient gravitational radiation
and orbital decay. Also see [3] for a formation scenario of
GW190521 via three-body encounters in young massive
star clusters.

The triple channel predicts a distinct region of the total
mass, mass ratio, and spin parameter space for merging
binary black holes, which can be used to disentangle the
triple contribution to the overall observed gravitational wave
sources. For a detailed study of the mass ratio distribution of
binary black hole mergers induced by tertiary companions in
triple systems see Ref. [4]. Close encounters of stars with
stellar-mass black hole binaries have been studied in [5] and
massive black hole triplets in galactic nuclei in [6-8].

Close encounters of three black holes require numerical
relativity techniques. Full numerical evolution of triple
systems are challenging due to the need to track three black
holes and the different scales of time-integration involved
in the solution. In Refs. [9,10] we have performed
prototypical evolutions of such systems and evaluated its
accuracy compared to Newtonian and post-Newtonian
evolutions [11].

In this paper we will revisit this scenario and evolve
triple systems using full numerical techniques to assess the
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prompt or delayed merger and eccentricity evolution of a
binary in a hierarchical triple system.

II. APPROXIMATE INITIAL DATA

In Ref. [10] we have performed the three black holes
prototypical studies from approximate initial data, based on

[12] and extended to include terms of the sort §i X I3i
representing interactions of spin with linear momentum in
an expansion to leading order on those intrinsic parameters of
the holes. In [13] a similar study was made using exact initial
data and found (when using the same raw 3BH parameters)
some deviations in the long term evolutions when compared
to the corresponding approximate initial data. Here we will
introduce two sets improvements to the approximate initial
data for multi black hole configurations. As already pointed
outin [10], a normalization for the parameters makes notable
improvements in, for instance, the resulting waveforms of
2BH (See Fig. 1 in [10]). To that end we will normalize data
to the initial (sum of) horizon masses as computed fully
numerically. The second improvement is to compute the next
order expansion in the solutions to the Bowen-York [14]
initial dataset. We will test those improvements by direct
comparison with the “exact” initial data for 2BH.

Here we provide some details on how we find a
perturbative solution of the Hamiltonian constraint equa-
tion, since in the Bowen-York approach [14] the momen-
tum constraint is solved exactly. Hence, the scope of this
section is to solve perturbatively the partial differential
equation for the 3-metric ¢* conformal factor

1 PPN
Ap = —§¢‘7A”Aij, (1)
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with A the flat Laplacian and

NBHs
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where we label the momentum and the spin of the holes as
P; and J;, following the notation of [10].

For this purpose we start from the analytical solution at
order Oth given by

NBH:

$o =

3
2}" ( )
which solves

Ay = 0. 4)

To find the first perturbative order u of the solution,
defined as ¢ = ¢y + u, we consider the equation

1 i
Auy = —§¢57A”Aij- (5)

A. One black hole
Let us consider Eq. (5) for a single black hole. The term

A”A is given by
Apin 1872 9p? 18
A’A,-/-:r—6(1—x§)+2 - (2xp — 1)+F

(6)

where xj, xp, and xp,j are respectively cos 8y, cosdp, and
cos Op,y and Oy is the angle between J and r (analogously
we can define Op and Opyj).

Since Eq. (5) is linear, the solution can be written as

u = F(r, )CP)P2 + G(r, XJ)J2 + H(r, xPXJ)”J X P” (7)

In this way we can solve the equation separately for the
functions F(r,xp), G(r,xy), H(r, Xpyj)-

In particular, it is convenient to write the source term in
terms of Legendre polynomials. By doing so, we can solve
the angular part of the equations algebraically

AF(r,xp) = %(5130()@) + 4P, (xp)).
>
AG(r.x) = 2 (Py(xg) - Palxy).
AH(I", xPxJ) = gPl ('xPXJ)' (8)

Thus the solution to first order is

$1 = o+ F(r.xp)P> + G(r, xy)J* + H(r, xpyy)

©)

where the functions F(r,xp), G(r,xy), H(r,xpyy) are
explicitly given by

1
F(r, XP) = m [/44<3X%, - 1)(84/15 + 378/14
+ 6584 + 539u% + 192u
+ 84(u + 1)°ulog(u)
—84(u+ 1)ulog(u + 1) + 15)]
2
u 1
Ly ()
(-5 )
w(1=3x3)
0 ) = Gagut 15
N (1 + 5p° + 10p> + 5+ 1)i?
40(u + 1) ’
40,2
uH(p? + 5+ 10)xpy
H(r, xpyy) = — 8004+ 17° B (10)
where y = 7 and this solution agrees with the one given
in [10].

Thus when we want to solve the second order perturba-
tion equation for a single BH we have

1
Ap, = —8¢a7(1 - ¢O)A”A”’ (11)

where we used the fact that ¢p77 ~ ¢ (1 — 74 4) and hence
7 PO
Auy = §¢68”1A”Aij (12)

Using the same expansion reasoning we used for the 1st
order case we can write

Uy = Fps(r,xp)P* + F e (r, xy)J*
+ Fpsyp (roxpg) [P > J?
+ Fp(psy) (7 Xp, ¢p) P[P x ||
+ F ey (roxy. py)J [P < J||
+ F ppo(r, xp, ¢pp)J> P2 (13)

Note that in Eq. (13) there are terms that involve
combinations of the vectors P, J, P x J. For example,
when solving for the term Fp,y (7, Xy, ¢py) we need to
write xp,j in terms of xj and ¢y, as described in the
Appendix. At this point, we can solve for the single
functions in Eq. (13) as we did for Eq. (5) with the only
difference that we need a decomposition in spherical
harmonics and then solve the resulting ordinary differential
equation in the variable r.

064045-2



CLOSE ENCOUNTER OF THREE BLACK HOLES REVISITED PHYS. REV. D 108, 064045 (2023)

B. Two black holes and

When we want to consider two BHs we proceed in the
following way. First, let us assume that our system is bound 1\2
so that we can then assume the virial theorem to hold ¢ =1 R S L L o . (16)

2r ry 2r ry 2}’1 2}"12

approximately true, P*~;- where r, is the distance

between the two BHs. Then we treat the solution as a
superposition of the solutions for single black holes, where ~ Thus we can write
we also add a term due to the interaction between the two.
Under this assumptions let us solve Eq. (5) for two BHs ,
ideri i 18J3
considering the perturbation of the second black hole on the dr 74, A’ i (1 n my ) ( L1 - le )

first one. In this case we have 2r ,
1 1 12 9P; 18
a——— — ZLoxE -1 — P, x
7 V12+0<r12> ’ (14) +24( P )+ ?XPIXJ] : Jl)
here r, is the distance from the second black hole. + O<P_2 ) + O(J 2) + (’)(P X J>. (17)
Hence we get T T2 T2
n o 187 9p?
DAL 1 ) 71
AyAY = r? (1 Xy 1) +53 2”1 (2x P, -1 As a result we can see that to first order the solution of

18 5 Eq. (5) for two BHs is the superposition of the solutions for
+— xPliIPI xJy + (9( ) (15) single black holes.
2 To second order we have
|

A T A A A N A
¢y A AT = (1 +2—r1+2—2+ Uy +”1) [A1jAY + AgiA0Y + 24, ;A5

mg ij P4 J4
= 1+2_r1 A1UA1 —7¢01“A1UA1 —7(/’012 AIIJAI +Ol ) +O(—

2 2

+0 (ﬂPZ) +OJ®) + O(P%) + O(P]) + O(J°P) + O(J*P2) + O(PP?) + O(2PY).  (18)

2

In this case we considered the second black hole as a perturbation of the first one, but the opposite is also true, so that the
complete source term at second order is given by

PO =7 . .. N A A
P77 AAT = <1 +F+; +uj + “1) [A1A1Y 4 AgijAyY + 2A,,;A5" ]
1 2

m A A A My A~ o~ m-r\~7 A~ ...
= <1 +2—1> A A =Tg5]ui A A — 7¢517—2A1UA1” + <1 +2—2> Ay ALY

r 2 r

~ N P4 J4 J2P2
—745527”%14251142” 7‘/’02 Azl/Az - O( ) + O( ) + O( >
r2 r2 2

+ O(J®) + O(P%) + (’)(P5J) + O(J3P) + O(J*P?) + O(J*P3) + O(J?PH). (19)

Equation (19) implies that at second order we have to solve the partial differential equation
Au, = +%¢617M{AAl ijAAl U ¢01 2 Alz]Al '+ ¢027 zAzz,Az +3 ¢02 o, Azqul/ (20)
Then if we write u, = ul + u3 we can solve independently for the two BHs
Aub = + %qﬁgfu}fflijffl"f + %47517 %AlijAlff

7 Ao T My ~  a i
Auz = +§¢627M%A2ijA2U + §¢6277112A2ij’42 g (21)
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And again, by performing a decomposition in spherical
harmonics we can reduce this system of partial differential
equations to a set of independent ordinary differential
equations. We also point out that this method can be
straightforwardly generalized to an arbitrary number of
BHs as follows

Ny 7

m A~ A ss
Z§¢6(Z 2 / AaijAal]-
p#a Fap

7 N A
Auf = +§¢EZM?A(1ijA{IIJ + (22)

with a = 1, 2, 3, ...,NBHS.
The total ADM mass at the second perturbative order is

NgHs NBHs P2
e i | {16072(1448R3! 2
ADM Z ; 2640000/} K 3 "

+ 1448R33? + 1529R3}* — 8000)

. 1650000 (s =3m)) o0 2 P?)]
sij
266J% 207 (2m; —s;)  3||P; < 3|
T8sM] T Ssmisy, om0
(23)

where Rp; is the rotation matrix from the system with P =
(0,0,1) to the system with J = (0,0, 1) defined in the
Appendix.

The total ADM linear momentum and angular momen-
tum of the Bowen-York data are given by:

NBHs
Papm = ZP," (24)
. NgHs . R
JADM:Z(Ji+7iXPi)- (25)

1

III. FULL NUMERICAL TECHNIQUES

In order to perform the full numerical simulations we use
the LazEv code [15] with 8th order spatial finite differences
[10], 4th order Runge-Kutta time integration with a
Courant factor (dt/dx = 1/4).

To compute the numerical initial data, we use the
puncture approach [16] along with the TwoPunctures [17]
code. We use AHFinderDirect [ 18] to locate apparent horizons.
We measure the magnitude of the horizon spin Sy, using
the isolated horizon algorithm as implemented in Ref. [19].
We can then calculate the horizon mass via the
Christodoulou formula m* = \/m2_+ S%,/(4m?,), where
miy = \/Ay/(167) and Ay is the surface area of the
horizon.

The carpet [20] mesh refinement driver provides a
“moving boxes” style of mesh refinement. In this approach,

refined grids of fixed size are arranged about the coordinate
centers of the holes. The code then moves these fine grids
about the computational domain by following the trajecto-
ries of the black holes.

The grid structure of our mesh refinements have a size of
the largest box for all simulations of +400M. The number
of points between 0 and 400 on the coarsest grid is XXX in
nXXX (i.e., n100 has 100 points). So, the grid spacing
on the coarsest level is 400/XXX. The resolution in the
wave zone is 100M /XXX (i.e. n100 has M/1.00, n120
has M/1.2 and nl44 has M/1.44) and the rest of the
levels is adjusted globally. For instance, the grid around
one of the black holes (m,) is fixed at 0.6M in size and
is the 9th refinement level. Therefore the grid spacing
is 400/XXX/28.

We evaluate eccentricity during evolution via the simple
formula, as a function of the separation of the holes, d,
ey = d*d/m, as given in [21].

We also use the proper distance between the two
horizons as measured along the coordinate line joining
the two punctures [22], which we call the simple proper
distance, or dq, below (note that the minimal geodesic
does not necessarily follow this line).

The extraction of gravitational radiation from the
numerical relativity simulations is performed using the
formulas (22) and (23) from [23] for the energy and
linear momentum radiated, respectively, in terms of the
extracted Weyl scalar W, at the observer location
Ry, = 113M. For angular momentum radiated we use
the formulas in [24].

A. Two black holes test

In order to evaluate quantitatively the improvements of
this next to leading parameters (f’,-, S.1/ d;) expansion
with respect to the leading (labeled for the sake of
simplicity second and first order respectively), we compare
the evolution of a binary black hole system from initial data
generated by these two expansions and that of the “exact”
TwoPunctures [17] numerical solver.

We will consider an equal mass, nonspinning binary with
a separation of the holes d = 12m, where m is the sum of
the horizon masses, that in preparation to use this binary in
the three black holes case (3BH) (See Fig. 4), we will take
as mf = 1/3. The orbital parameters are taken as those of a
quasicircular orbit [25] and are given in the first column of
Table I, and labeled as 2BHO.

We first observe that placing those sets of initial data
on the numerical grid that will serve for its evolution, allow
us to evaluate the violations of the Hamiltonian constraint
|H|. Figure 1 displays those violations along the line
joining the black holes. The spikes (in log-scale) shown
particularly in the TwoPunctures solution have to do with
crossing the zero-value at those points and the plotting of
the Hamiltonian magnitude |#|. The first and second order
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TABLE I. Initial data parameters for the base binary (2BHO)
and the two coplanar (3BH1, 3BH2) configurations with a third
black hole at a distance D from the binary along the x-axis.
(x;, yi,z;) and (p?, pl, p?) are the initial position and momentum
of the puncture i, m! is the puncture mass parameter, m¥ is the
horizon mass, MQ is the binary’s orbital frequency, d is the
binary’s initial coordinate separation and dg,q is the binary’s

simple proper distance. Parameters not specified are zero.

Configurations 2BHO 3BHI 3BH2

x /M —9.95027835 —9.95027835 —9.98428541
n/M 3.96401481 3.96401481 3.96401481
pi/M —0.05706988 —0.05705839  —0.05705731
p/M —0.00036813 —0.02179566 0.02154356
mf /M 0.32546442  0.32362400 0.32359400
mi /M 0.33334615  0.33335960 0.33332705
x/M —9.95027835 —9.95027835 —9.98428541
y2/M —3.96401481 —3.96401481 —3.96401481
py/M 0.05706988  0.05708137 0.05708246
py/M 0.00036813  —0.02105940 0.02227982
my /M 0.32546442  0.32362400 0.32362400
mil /M 0.33334654  0.33335185 0.33333734
d/M 7.92802962  7.92802962 7.92802962
dypa/M 10.55538506  10.65527971  10.65538017
x3/M e 19.76412526  19.73192339
y3/M 0 0
py/M —-0.00002299  —-0.00002515
py/M 0.04285506  —0.04382339
mh /M 0.32908500 0.32901500
mil /M e 0.33334994 0.33330884
MQ 0.03273404  0.00586017 0.00590334
D/M 29.7144036 29.7162088

approximation fall well above the “exact” solution, with the
second order improving on the first order violations around
the black holes and asymptotically away.

The evolution of these initial data leads to potentially
different tracks and hence waveforms. A comparison of the
three cases of initial data considered here (but using the
same binary parameters as in Table I, 2BHO) is given in
Fig. 2 where we observe the close match of the second
order and “exact” TwoPunctures data in comparison with the
first order case. This later difference (already observed in
Fig. 1 of Ref. [10]) can be in part traced back to the effects
of the violations of the Hamiltonian constraint in the initial
data that propagates in the numerical grid or is accreted by
the black holes. In fact we can observe this effect in the
evolution of the individual horizon masses until merger in
Fig. 3. That would lead to deviations in their relative tracks
explaining the differences in their corresponding wave-
forms in Fig. 2.

We supplement the information of the initial data here
with another measure of the initial data quality as is the
computation of the “binding” energy of the two black holes
E, = M py — m as the difference of the total ADM mass
M spp and the sum of the horizon masses m = m{’ + m'zq .

101 —— [T'woPunctures
=== Approximate ID - First Order
o Approximate ID - Second Order
10~
10°°

M?IH|

1077 Al . N
L ATV AN
W

ﬁhhhh

107 — —
1071
—-30 =20 —10 O 10 20 30
y/M
FIG. 1. Violation of the constraints for the different sets of

initial data considered here for the 2BHO reference binary.

We compare here its computation via the TwoPunctures
numerical solution to the Hamiltonian constraint to the
first and second order analytic approximations as given in
Eq. (23). For our binary separated by d = 12m we find
EQ’ = —0.00588611 for the TwoPunctures numerical solution
while E{) = —0.00350055, and Ej, = —0.00486506, for the

first and second order solutions, representing a 40% and
17% differences, respectively.

0.10
0.05
N
% 0.00 S At
=
"
15
&~
—0.05
—— TwoPunctures
—0.10 —-=- Approximate ID - First rder
- Approximate ID - Second Order

900 1050 1200

(t —7Tex)/M

1350

FIG. 2. Weyl scalar y, extracted at r,, = 113M from the
evolution of the binary system started with the three different sets
of initial data.
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FIG. 3. Evolution of the black holes horizon masses starting

from the same normalization. Differences are due to different
initial violations of the constraints for the sets of approximate
initial data considered here.

IV. THREE BLACK HOLES EVOLUTIONS

We will consider a series of prototypical simulations
involving three black holes. In this first exploration we
will consider a hierarchical system with the inner binary
at an initial separation of 12m = 8M and a third black
hole at separation 30M. All black holes in this first set
will initially have equal masses (as measured by their
individual horizons) and no spins, but with different
relative orbital orientations. This set up is depicted
in Fig. 4.

As a first estimate of the orbital periods we can use
the Keplerian expression P = 2z/Q where the orbital
frequency is Q = m/r/>. Thus for the binary (at

pl ml

r=12m =8M), we find an initial period of Py =
174M while for the orbit of the third black hole (at
r = 30M), a period of P; = 1032M. From the quasicir-
cular initial orbit [25] from the third post-Newtonian
order (3PN) given in the Table I we find P3N = 192M
and P3PV = 1072M, respectively. What we measure from
the simulation tracks is in close correspondence with
those values, i.e. PR ~205M and PYR ~ 1060M.

In order to choose parameters leading to small initial
eccentricities we first consider the inner binary as isolated
and apply the quasicircular formulas of Ref. [25] to obtain
the parameters reported in the first column of Table I and
referred to as 2BHO. Once we have the inner binary
parameters we apply the same quasicircular criteria to
the outer orbit of the third black hole with an effective
spinning black hole having the added masses and angular
momentum of the inner binary. In practice this process
works to provide low enough eccentricities (e < 0.05) for
our initial study purposes.

A. Three black holes in a hierarchical system

To start exploring this vast parameter space we have
chosen to consider two coplanar cases, when the third black
hole orbit is corotating with the binary (3BH1) and when it
is counter-rotating (3BH2). Those parameters are given in
Table I. We also consider precessing cases with the third
black hole momentum perpendicular to the orbital plane of
the binary (3BH3) and at £45 degrees with respect to that
(3BH4 and 3BHS), as depicted in Fig. 4. In all cases we
considered the quasicircular orbit of the third black hole
with the inner binary as an effective single black hole. The
corresponding parameters for these cases are given in
Table II

In Fig. 5 we display the extracted waveform of the three
black hole simulation 3BH1. The gravitational radiation is
completely dominated by the inner binary. The difference

FIG. 4.
counterparts).

Initial configurations considered for the three black hole evolutions, labeled as 3BH1-5 (3°, 4°, 5° are quasisymmetric
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TABLEII. Initial data parameters for the precessing three black
hole cases (3BH3, 3BH4, and 3BHS).

Configurations 3BH3 3BH4 3BHS5

x /M —9.96709434 -9.95516516 —9.97921106
yi/M 3.96401481 3.96401481 3.96401481
/M 0 0 0
pi/M —0.05705789  —0.05705825 —0.05705749
py/M —0.00036813 —0.01556934 0.01507516
pi/M —0.02166824 —0.01520121 0.01544329
my /M 0.32359400 0.32359400 0.32359400
mi /M 0.33332740 0.33332841 0.33332691
X2 /M -9.96709434 -9.95516516 —9.97921106
yo/ M —3.96401481 —3.96401481 —3.96401481
/M 0 0 0
py/M 0.05708188 0.05708152 0.05708228
py/M 0.00036813  —0.01483308 0.01581142
p3/M —0.02166824 —0.01520121 0.01544329
mb /M 0.32359400 0.32359400 0.32359400
mil /M 0.33332869 0.33332239 0.33333438
d/M 7.92802962 7.92802962 7.92802962
dgpa/M 10.65491937  10.65499784  10.65513690
x3/M 19.74820210  19.75949795  19.73672848
/M 0 0 0
/M 0 0 0
py/M —0.00002398 —0.00002326 —0.00002479
py/M 0 0.03040241 —0.03088657
pi/M 0.04333649 0.03040241 —0.03088657
mh /M 0.32910500 0.32906500 0.32906500
mil /M 0.33338457 0.33333346 0.33335498
MQ 0.00588143 0.00586633 0.00589685
D/M 29.7152964 29.7146631 29.7159395

with an isolated binary is given by the delay in the merger
due to the presence of the third black hole. Similar results
are obtained for the 3BH2-5 cases. Another effect is the
motion of the binary and its merger product around the

"""" 2BHO waveform
0.0050 —— 3BHI waveform
0.0025
S 0.0000 fAAAAAAR
» :
&
—0.0025
—0.0050
0 500 1000 1500
(t—re)/M
FIG. 5. Waveforms generated by the case 3BH1 in comparison

with the isolated binary 2BHO.

— BH3

20

N\

VN |
) )

/ -10
-20
I COM12 —— BH3 T COM123
20

77 N L
N )
)

s —20

-20 —-10 O 10 20

x/M

FIG. 6. Trajectories of the coplanar case 3BHI and the
evolution of the center of masses of the binary and of the three
black holes.

center of mass of the triple system, as displayed in Fig. 6.
This leads to a mixing of modes as seen by a fixed observer
location, but its effects can be disentangled with techniques
like those used in Refs. [26,27].

In Fig. 7 we also display the trajectories of the three
black holes in the fully precessing case 3BH3 in three
dimensions. They clearly display the precession of the third
black hole orbital plane over the three orbits of our
simulation.

In Table III we report the merger times of the first
five cases studied here. We first note the clear delay of
the merger of 3BH1-5 with respect to the isolated binary
2BHO. We then note the relatively weak dependence of
the merger times and number of orbits on the orientation
of the orbit, at this initial separation of the third
hole, D = 30M.

The other interesting property that we want to study here
is the evolution of the eccentricity of the binary due to
the presence of the third black hole in a hierarchical
orbit around the binary. In Fig. 8 we display the
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— BH1
—— BH2
—— BH3

2 15

FIG. 7. Trajectories of the fully precessing case 3BH3.

instantaneous [21] eccentricity e(f) ~ e cos(Qt) ~ d*d/M,
of the inner binary for the three black hole cases 3BH1-5
and the isolated reference binary 2BHO (B1). We first
observe that the amplitude of the eccentricity slightly
decrease notably during evolution and presents a modula-
tion with the third black hole orbital frequency.

In order to visualize better the evolution of the eccen-
tricity we take the values of the extremes of oscillations per
orbit to model the e() ~ e cos(Qr) dependence and extract
the values of e per each half orbit of the coplanar cases
3BH1 (corotating orbits) and 3BH2 (counterrotating
orbits). The results of this analysis are displayed in Fig. 9.

This is first contrasted with what we expect from an
isolated binary on the grounds of the decay of the
eccentricity with the instantaneous separation as ~d'73,
found from numerical simulations, see also Fig. 9 in
Ref. [28]. We observe that even if the inner binary starts
at a relatively close separation, 12m, leading to ten orbits
before merger compared to the nearly fifty orbits of the
simulation analyzed in Ref. [28], a general trend toward

TABLE III.  Number of orbits to merger and merger time of the
inner binary for different orbital orientations of the third black
hole. Cases 3BH1-5.

Label #0Orbits tmerger/ M
2BHO 9.949 1216.9
3BHI 10.637 1376.6
3BH2 10.821 1419.9
3BH3 10.523 1341.2
3BH4 10.582 1358.0
3BH5 10.705 1387.5
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FIG. 8.  Eccentricity evolution of the inner binary as measured
by d’d(t)/M for the triple black hole cases 3BH1-5 and the
isolated reference binary 2BHO.

decrease can be observed. Particularly closer to merger,
during the last few orbits, we see a decrease in the
eccentricity in as expected on the fact that at those close
separations the relative influence of the third black hole
should be reduced. We have also verified that the 1PN
predictions [29] that should show a decay of the eccen-
tricity with the instantaneous separation as ~d'%/!2, give
very close results to those displayed in Fig. 9. See also
recent 2PN studies in Ref. [30].

Another feature that appears in both cases displayed
in Fig. 9 is a modulation superposed over an steady
decrease of the eccentricity. This modulation has a period
of around ~500M which seems to correspond to the
semiperiods of the third black hole, that we estimated
above to be initially of the order of ~1060M. It also bears
resemblance to a beating frequency of the two orbital
motions (Qopy — Q3py)/2 ~ 468M.
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FIG. 9. Eccentricity evolution of the inner binary as measured
by the amplitude of d?d(t)/M for the triple black hole cases
3BHI1-2 and the expected decay d'73 of Ref. [28].

Finally, we can look at the eccentricity evolution of the
orbit of the third black hole. Before merger we can refer
its motion around the center of mass of the binary
system, as displayed in the bottom of Fig. 6 and then
after the merger of the inner binary to its remnant, as
displayed on the right panel of Fig. 10. We note that the
eccentricity measure from the center of mass of the
binary seems to grow in time and reaches relatively large
values before merger. This seems to be an effect of the
use of the coordinates of the center of mass as a reference
of this extended system. We note that right after merger
the eccentricity measure produces an order of magnitude
less eccentricity for the subsequent two orbits and with
values more in line with what we expect and found for

Before 2BH0O merger After 2BHO merger

0.4 0.04
— 3BH1 {

\ 0.02
G 0.00

4 -0.02

D(t) D(t)*M ™!

—0.04
0 500 1000 1500 2500 3500
t/M

FIG. 10. Eccentricity evolution of the outer black hole as
measured by the amplitude of D>D(t)/M for the three coplanar
black hole cases 3BH1-2. (Note the zoom factor x10 on the
right panel).

the inner binary studies above. Qualitatively similar
results have been found for the precessing cases
3BH3-5.

B. Numerical convergence

Here we explore the dependence of the previous results
on the numerical resolution of the finite difference inte-
grations to perform the evolutions of three black holes. To
that end we perform a series of three simulation of the
representative case 3BHI1, with increasing global resolu-
tions by factors of 1.2, namely the original simulation
at n100 resolution and two additional ones at n120 and
nl44 resolutions. The results of such simulations is
summarized in Table IV, were we report the merger times
and number of orbits of the inner binary as defined by its
trajectories approaching at a distance of d,, = 0.7M (this
corresponds closely to the first appearance of a common
apparent horizon within a At ~ 5SM, as we verified directly
for 3BH1).

We observe that those values align in a convergence
order leading to high powers of convergence, as computed

TABLE IV. Convergence of number of orbits and merger time
for the 3BH1 configuration using three resolutions. Richardson
extrapolation is used to determine convergence order and
infinitely extrapolated values. We point out that the difference
between different resolutions is smaller than differences between
the different configurations.

Resolution #Orbits Imerger/ M
nl100 10.637 1376.6
nl120 10.603 1370.4
nl44 10.597 1369.6
Inf. Extrap. 10.596 1369.5
Inf.- n100 —0.041 -7.1
% difference —0.387 —-0.518
Conv. order 9.51 11.23
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TABLE V.

Initial data parameters for coplanar-corotating configurations with a third black hole placed at different
distances D from the binary along the x-axis, 3BHD1-5.

Configurations 3BHD1 3BHD2 3BHD3 3BHD4 3BHDS
X1 /M —8.28225635  —11.61795003  —13.28540069  —14.95270161  —19.95406346
yi/M 3.96401481 3.96401481 3.96401481 3.96401481 3.96401481
pi/M —0.05705000 —0.05706264 —0.05706503 —0.05706647 —0.05706844
pIM —0.02408677 —0.02005564 —0.01867731 —0.01755115 —0.01511026
m? /M 0.32325400 0.32386400 0.32406400 0.32421600 0.32453600
mil /M 0.33335247 0.33333709 0.33334068 0.33333886 0.33335088
X/ M —8.28225635  —11.61795003  —13.28540069  —14.95270161  —19.95406346
yo/M ~3.96401481 ~3.96401481 —3.96401481 ~3.96401481 —3.96401481
pEIM 0.05708976 0.05707712 0.05707474 0.05707329 0.05707133
PhIM —0.02335051 —0.01931938 —0.01794106 —0.01681489 —0.01437400
m? /M 0.32325400 0.32386400 0.32406400 0.32421600 0.32453600
mt M 0.33334355 0.33332930 0.33333270 0.33333175 0.33334414
d/M 7.92802962 7.92802962 7.92802962 7.92802962 7.92802962
dpa/M 10.67520743 10.64064151 10.63015429 10.62193283 10.60525218
x3/M 16.46307522 23.06578078 26.36782091 29.67012192 39.57796287
v/ M 0 0 0 0 0
pi/M —0.00003976 —0.00001448 ~0.00000970 —0.00000682 —0.00000288
Pi/M 0.04743728 0.03937502 0.03661837 0.03436605 0.02948426
ml /M 0.32823500 0.32968500 0.33014500 0.33048500 0.33116543
mt /M 0.33333394 0.33334810 0.33335404 0.33333988 0.33330813
MQ 0.00763429 0.00465268 0.00384912 0.00323775 0.00211854
D/M 24.7453316 34.6837309 39.6532216 44.6228235 59.5320263

by the formulas (5a)—(5¢) of [31], still comparable to the
expected 8th order convergence from the spatial finite
difference stencils used in our integration algorithm. The
relevant point here is that the differences of the n100
simulations values we use as a basis to extract conclusions
about delays in merger times and number of orbits to
merger to its (Richardson’s) extrapolation to infinite res-
olution is very small compared to the physical changes we
observe. We hence conclude they are a numerically reliable
result and will keep using this n100 resolution as the
standard for the following studies.

C. The distance dependence to the third black hole

Given the weak sensitivity of the binary evolution with
the direction of the third black hole momentum, we will
next explore how the merger times and eccentricity
evolution of the binary vary versus the initial separation
of the outer black hole. For that end we look again for
quasicircular effective parameters at different initial sepa-
rations as given in Table V.

We are interested in studying the effect the third hole has
on the inner binary dynamics. In particular how it affects
the merger, if prompts or delays it. In Table VI we give the
results of our simulations versus the initial third black hole
distance to the binary’s center of mass. We find a clear trend
toward the delay of the merger, in both measures, the
merger time and the number of orbits as measured by the
tracks of the holes and using a definition of merger when

the binary distance reaches d = 0.7M (which corresponds
closely to the formation of a common horizon).

In order to model the merger delay as a function of the
initial distance to the third black hole we consider devia-
tions with respect to the merger time and number of orbits
to merger isolated binary, 2BHO. We thus fit a dependence
to the data in Table VI of the form 2BHO + al/D%. The
results are displayed in Fig. 11 and lead to a consistent
dependence of the form 1/D?7.

We again study the instantaneous eccentricity evolution
of the inner binary as we vary the orbital distance of the
third black hole. The results are displayed in Fig. 12. While
the initial magnitude of the eccentricity is due to the choice
of the orbital parameters their evolution shows a trend
toward reduction for all cases, particularly very close to
merger.

TABLE VI. Number of orbits to merger and merger time of the
inner binary for different initial separation of the third black hole.
Cases 3BHD1-5.

D/M #Orbits tmerger/M
30 10.63 1376.6
35 10.40 1323.6
40 10.25 1292.6
45 10.18 1275.0
60 10.09 1250.5
0 9.94915 1216.875
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FIG. 11. Fit to a functional dependence 2BHO + al/D%.

V. CONCLUSIONS AND DISCUSSION

Although full numerical solutions to three black holes
initial data have been presented in Refs. [13,32,33] we
found a valid and practical option, validated for the two
black hole cases, to provide analytic initial data for prompt
use and with enough accuracy for current exploratory
studies.

We next revisited the triple black hole scenario to study
their merging times and eccentricity evolution. We found
that the third black hole delays the merger of the binary by
an amount inversely proportional to a power of the
distance, ~1/D?7. This behavior was not clearly observed
in some of the configurations simulated in a previous work
[10], due to the closeness of the cases studied that lead to a
prompt breakdown of the binary, as we also observe here if
we start the third black hole closer to ~30M. We also note
here that the ~1/D*> dependence can be associated to a 5th
post-Newtonian correction and its leading tidal effects on
the inner binary waveforms [34].

BH1 -=~- 3BHD2

|
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—_——

0.025

0.000

R pp————rc

—

d(t)d(t)>M !

1 -0.025

—
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---- 3BHD4 - 3BHD5

0.050

0.025

0.000

—0.025
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200 500 800
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FIG. 12.  Eccentricity evolution of the inner binary as measured
by d*d(t)/ M for the triple black hole cases 3BH1, 3BHD2-5 and
the isolated reference binary 2BHO.

A delay in the merger time of the binary due to the
presence of the third black hole has also been observed in
the Post-Newtonian approximation [35] considering much
larger separations of the binary (130M — 170M) and to the
third black hole up to (10,000M), thus representing a
complementary study to the one presented here.

Results in Fig. 5 showing the differences in the wave-
forms of a binary in isolation versus one in the presence of a
third body may have consequences for parameter estima-
tion from gravitational wave detections. If we compare the
inspiral to merger part of the waveforms in Fig. 5 and try to
match the 3BH waveform with a 2BH waveform we would
find a match with different mass, i.e., with an effective mass
rescaled by M(:;2H/12BH) ~ 1.13M, (from the numbers in
Table VI) to match merger times. The effect seems to be
cumulative with the number of orbits of the third, outer
black hole, around the inner binary. On the other hand, the
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quasinormal modes of the final merged holes should be
very similar to each other, leading to an inconsistency if we
do not take into account the presence of the third body.

The presence of a nearby third black hole also seems to
confirm a decay of any residual inner binary eccentricity
and to induce a subtle modulation with about a half the
period of the third black hole orbit around the binary. Note
that in Ref. [36] it was studied with post-Newtonian
techniques [11] resonant eccentricity excitation in hierar-
chical three-body systems, another complementary study to
that presented here.

The next natural exploration of 3BH interactions with
our formalism involves the inclusion of spins in the inner
binary, the unequal mass ratio to consider binaries in the
field of a much larger black hole, and the scattering effects
of a passing third black hole. Those will be covered in a
forthcoming study.
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APPENDIX: ROTATION MATRIX

When we want to study the perturbation of the
Hamiltonian constraint at second order we encounter terms
of interaction between the momentum P and spin J of the
same black hole. Since this perturbative solution requires to
choose a specific axis with respect to which we write the
spherical harmonics, we need to be able to write the angle
between the position r and, for example, the spin in terms
of the angular coordinates taken starting from P as z axis.

In order to do so let’s consider the momentum versor P

and spin versor J in a certain coordinate system

~
=
k&

(A1)

<

~ L~

Z

Let’s call the matrix R;p the matrix that rotates the vector
P into the vector Z with

0
=10 (A2)
1
This matrix is constructed through
V.V
Rop=1+V+——, A3
GP +V+ s (A3)
where
0o =V, v,
V=11V, 0o -V, (A4)
-V, vV, 0
and
V=Px2 C=P-2 (A5)

This is also the matrix that transforms the coordinates of
a given vector in the reference system G to the one in which
the z axis is aligned along P (which we call P).

Analogously we find Rgy and Rgjxp.

Once we have these matrices we can combine them to
find RPJ’ RPJXP’ and RJJXP'

Now let’s consider for example the unit vector i which
has coordinates

nyp
n— nyp (A6)
n,p
in the P system.
Then the coordinates of 1 in the J system are
Nyy Nyp
Ny | = RPJ nyp (A7)
Ny ngp

In particular we are only interested in the 3rd coordinate
n,; which is

_ p3l 32 33
Ny = Rpynep + Rpynyp + Rpynzp

= sin Op(R}] cos p + Ry sin gp) + Ry cosOp  (A8)

Applying this procedure for all the cases we need we
finally obtain
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n.; = sin Op(Ry) cos ¢p + Ryj sin dp) + Ry cos Op
n_yxp = sin Op(Ry,p cOs pp + Ry, p sin ¢p)
+ R%}Xp cos fp
n_yxp = sinOy(R3},p cos ¢y + R3%, p sindy) + R3j,p cos 0
(A9)
To determine let us say the angle ¢p (an analogous
argument holds for ¢j) we make use of the matrix Rgp as

follows. Let us say that in the system of coordinates G the
coordinates of f are

nyg
n=|n, Al10
yG (
n;g
Then we have,
R
tan p = sin ¢p _ (Rgp - m), (AL1)
cosgp  (Rgp- n)y

From this we can obtain ¢p (and ¢y).
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