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Unlocking gene regulation with sequence-to-

function models
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By exploiting recent advances in modern
artificial intelligence and large-scale functional
genomic datasets, sequence-to-function
models learn the relationship between
genomic DNA and its multilayer gene
regulatory functions. These models are poised
to uncover mechanistic relationships across
layers of cellular biology, which will transform
our understanding of cis gene regulation and
open new avenues for discovering disease
mechanisms.

Afundamental goal of modern biology is building models that caninfer
phenotype from genotype. Such models are also key to a mechanistic
understanding of disease heterogeneity and to tailoring medicines
to individuals. This is particularly relevant in the context of complex
disease. Even though complex diseases are a result of both genetics
and environment, and the genetic component may even be relatively
small, genetic analysis offers a unique perspective because — unlike any
other disease biomarker — the causal direction is controlled as there
isnoway for aphenotype to gobackin time and change the genotype.

Genetic influence on phenotypes can manifest either through
modifications of the protein structureitself or by affecting regulatory
processes thatinfluence the temporal and spatial dynamics of protein
expression (Fig. 1a, left). In this Comment, we focus on the ‘when and
where’ of protein expression. More specifically, we focus on the regula-
tion of mMRNA abundance — animportant, but not the only, determinant
of proteinlevels.

What would it take to have a model that interprets a personal
genome in terms of gene regulatory effects and does so in a way that
is relevant for disease? Historically, this question has been tackled in
pieces through the lens of astatistical genetics association framework’.
However, afundamentally different approach is emerging at the inter-
section of functional genomics and deep learning, and culminates in
sequence-to-function models (Fig. 1a, right). Sequence-to-function
models use variants of deep convolutional neural networks tolearn the
mapping between DNA sequence and functional readouts (chromatin
accessibility, histone modification, gene expression and so on) in
one or several cellular contexts? (Fig. 1b). Formulating the genotype-
phenotype question as a prediction problem enables computation
approachestointegratelarge collections of functional genomic assays
inasingle unifying framework.

Inpractice, such models are trained on large collections of func-
tional genomic datasets across a variety of cellular contexts that are

assembled by consortia such as ENCODE (Encyclopedia of DNA Ele-
ments)>. Most state-of-the-art models use the same training recipe
and evaluation strategy. They take as input short subsequences of
genomic DNA (thousands of base pairs to hundreds of kilobases)
from the reference genome to predict functional outputs, including
gene expression froma particular cellular context* . During training,
model generalization is assessed on left-out regions of the genome
(forexample, random chromosomes left out during training) — atask
that current models perform very well. Importantly, their ability to
generalize to unseen genomic DNA can be attributed to their ability
to learn ‘sequence grammar’; that is, the rules for how the interac-
tions between proteins and DNA, as well as higher-order complexes,
govern functional output. Many studies have shown that for a variety
of models, the learned sequence grammar recapitulates detailed
mechanistic biological knowledge that has been acquired through
years of genomics experimentation and analysis. For example, the
models recapitulate transcription factor binding motifs’, transcrip-
tion factor complexes’ and relationships between CTCF sites and 3D
chromatin organization’.

Importantly, because sequence-to-functionmodels operate onthe
DNA sequence, they offer the ability to predict the effect of arbitrary
genetic variation on functional outputs ina cell-type-specific manner
(Fig. 1b) — a process referred to as in silico mutagenesis. An exciting
application of this ability is to predict differences in gene expression
(or other regulatory processes) among alleles within a population. In
some cases, these models canalready accurately predict variant effects,
and approachthe precision of experimental mutagenesis‘. However, it
isincreasingly evident that effectively applying sequence-to-function
models to interpret the complete spectrum of genetic variation on
gene expression, inaway thatisrelevant to disease outcomes, requires
enhancing their prediction resolution®”’.

Predictingacrosslociof the sameindividual’s genome and predict-
ing across different genomes at the same locus (that is, allelic effects)
differ in two important ways: the amount of variance between the
DNA sequence inputs is markedly reduced, and the variance among
the expression output of a single gene is relatively small compared to
the expression differences between different genes. Yet, high-quality
intergenome predictions are precisely what are needed to leverage
this framework in the context of population genetics and disease
susceptibility.

Increasing the resolution of models fundamentally requires aug-
menting the training data, which raises the question of what kind
of training data would be most effective. Several orthogonal strate-
gies merit investigation. First, current models have been trained on
arange of epigenomic and gene expression datasets, yet there is a
notable absence of models that combine assays from all regulatory
process stages (particularly post-transcriptional regulation). For exam-
ple, variants could affect the abundances of isoforms or influence
post-transcriptional processes (such as polyadenylation, translation

nature methods

Volume 21| August 2024 | 1374-1377 | 1374


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02331-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02331-5&domain=pdf

Comment

a Nucleus Chromatin organization Genome
GWAS
Genome
Epigenome ------ |
| Histone |
l modifications |
Transcriptome ! e e |
\ ! ! ‘ @ RNA !
H ! ! L L polymerase !
v k ; !
Proteome 1 ‘ 4 1
. | LUl Exond LLLLLILLL Exon 2 |
5 1 Intron Intron Intron Intron Intron ,
H | Alternative splicing l |
H | Transcript 1 ‘ mRNA 1 Transcript 2 |
Phenot ! ' Phenot Phenot
SHOEO | mRNA structure Translation Degradation i enotype enotype
| T |
=] O T
| P ,
b Mechanistic insights Variant effect predictions
. cAAA TCC or
Allele A
RN ol | APeed 1 e o.Tohorch .
c e o Arlchabr TTCC Crr oe oz ccx C
PUT CﬂC JUN Allele B
%*"WW—A‘ALCAAAQW'V—CM—A—M T T TCCTTTT Act. scc T ActCA T A
IVCT I
c S AT CAAAT - Trec ot aa cTAcoT o Variant
C effect
POU2F3 SPIC Cell type specificity
Synthetic genomics Development/ Regulatory Drug targets
environment processes

Fig.1| The complexity of genotype-to-phenotype relationship. a, Left,
interpreting personal genomes requires a mechanistic understanding of the
different layers of gene regulation and how intermediate processes (chromatin
organization, epigenomic modifications, transcriptional regulation, post-
transcriptional regulation and so on) are affected by genetic variation. Right,
two approaches to genome interpretation, through statistical association and
cell-type-specific sequence-to-function (S2F) models. b, Sequence-to-function

models take as input genomic DNA and learn to predict its functional properties
such as gene expressionin a cell-type-dependent and cell-state-dependent
manner. Once trained, these models can be used to predict the impact of
arbitrary genetic variations (right) and to derive biological insights into the
sequence grammar that determines context-dependent gene regulation (left).
Ac, acetylation; Me, methylation; Me3, trimethylation; RBPs, RNA-binding
proteins; TAD, topologically associating domain.
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or mRNA stability), leading to changes in steady-state gene expression
without affecting transcriptional rates.

Second, it stands to reason that more examples of sequence and
gene expression pairs would enhance the model’sinternal representa-
tion of the genotype-to-function map. This can be achieved in several
ways. Cohort studies (in which both whole-genome sequencing and
gene expression are measured for the same individuals) offer asubstan-
tialincreasein training data points, as each individual contributes all of
their alleles. However, enhancements to current model architectures
areneeded so that training performance does not become dominated
by strong variance in the data across genes; instead, models should
focus on the subtle variance across individuals. Another method to
boostsequence diversity is through the incorporation of evolutionary
information by, for example, jointly training sequence-to-function
models on data from multiple species'®, as many gene regulatory
mechanisms are conserved between distal descendants of the same
ancestor. Moreover, nonhuman model organisms provide researchers
with opportunities for additional experiment (such as various types of
perturbations) that would be ethically unfeasible otherwise.

However, it is important to acknowledge that native genomic
DNA represents only a small part of the space of possible genomic
DNA composition, and that certain variations will never be observed
in nature owing to their deleterious effects. Therefore, it is compel-
ling to assume that incorporation of genomic readouts from syn-
thetic sequences might be needed to learn a comprehensive map
from DNA subsequences to their regulatory functions". For exam-
ple, massively parallel reporter assays enable measurements from
>100,000 sequence variants for multiple regulatory processes, such
as expression, splicing or degradation. However, although it is clear
that these synthetic systems capture many of the gene regulatory
mechanisms used by cells, how to translate what has been learned in
these systems to the context of cell-type-specific sequence grammar
remains an open problem.

Third, concurrent with advancements in sequence-to-function
models, genomic language models present an approach inspired
by the success of large language models such as ChatGPT. These
models use self-supervised learning, drawing on vast quantities of
unlabeled genomic DNA across different species to learn the sta-
tistical relationships between DNA sequence composition within
and across genomic positions. As such, genomic language models
provide ageneral foundation for various downstream applications,
including the prediction of functional elements, gene expression
and sequence design'. They have been widely benchmarked on a
variety of classification tasks for functional noncoding elements;
however, recent work has shown that this representation lacks
cell-type-specific information, and predictors of cell-type-specific
functional elements do not benefit from this resource-intensive
pretraining step®. Cis-regulatory elements evolve rapidly and, fur-
thermore, the functional consequence of their sequence divergence
is cell-type-dependent. Current genomic language models learn
their representations from a couple of hundred to a few thousand
genomes, whereas large language models such as ChatGPT use data
corporathatare orders of magnitude larger for training. Itis unclear
whether such acomplex cell-type-specific DNA language — develop-
ing over the course of1.5-2.3 billion years of evolution of eukaryotes —
can be learned from genomes that are currently sequenced. Thus,
further research is needed to determine how to combine genomic
language models and supervised sequence-to-function models that
predict cell-type-specific events®.

To effectively apply sequence-to-function models to organism-
level phenotypes (including disease), it is critical to enhance their
cellular resolution to incorporate data from diverse cell types and
states. With the exponential growth in single-cell-resolution meas-
urements, we can now envision such models trained on thousands of
cellular states. In the future, incorporating additional dimensions of
variation — such as age, sex and environmental exposures that affect
genotype-to-gene expression relationships — may require new model
architectures that are capable of effectively learning at scale from
diverse measurements, at cell-type resolution. As the biotechnology
industry becomes increasingly interested in these causal models of
cellularbiology, traditional academic institutions may face challenges
incompeting with themonscale. Ifthese models are developed outside
of academia, we hope they will be shared openly with the commu-
nity. ‘Open’ benchmarking datasets and models will be essential for
future progress, by enabling other researchers to apply and evaluate
these models, identify limitations, and offer valuable feedback to
the developers.

With maturing research in the directions discussed above, it is
reasonable to assume that in the near future the community will be
ableto develop sequence-to-function models that excel at predicting
gene regulatory effects from personal genomes. However, it remains
unclear whether such models are sufficient to characterize missing
phenotype-causing variants. It is critical to assess our ability to iden-
tify variants that do not merely alter gene expression but have direct
implications for the organism-level phenotype. This entails a deeper
understanding of the genotype-phenotype relationship beyond tran-
scriptional regulation, as many variants that alter mRNA levels have no
effecton phenotype (thatis, are not hits inagenome-wide association
study (GWAS)). Conversely, many noncoding variants that do affect
phenotypes — presumably through regulatory mechanisms — do not
produce expression alterations in currently available expression quan-
titative trait locus (QTL) datasets™.

Whenwe consider intermediate levels of regulation such as chro-
matin accessibility or histone modifications (for example, chromatin
accessibility QTLs and histone acetylation QTLs), the coverage of GWAS
hits by variants that are molecular QTLs increases®. As chromatin fea-
tures affect phenotypes viagene expression, the statistical disconnec-
tion between the two is intriguing. Several explanations are possible.
Because gene expression controlis distributed across many regulatory
elements, the final output may be well buffered, which implies that a
relatively large effect size in the chromatin state of asingle regulatory
element may translate to a much smaller one when we measure the
expression of the target gene. Another possibility is that chromatin
features reflect either the history or the future potential for regula-
tion in some highly specific cell-type, developmental or signaling
context that is not captured by current assays. Finally, it is possible
that phenotype-associated variants alter aproperty of gene regulation
other than mean expression at steady state. For example, they could
affect the kinetics or the variation in expression instead. Regardless
of the specific mechanisms, it is likely that we will need to measure
additional outputs beyond standard gene-expression measurements
across multiple individual genomes to build a comprehensive model
of regulatory variant effects.

Ultimately, the model of the effects of sequence changes on
gene regulation will need to be reconciled with the protein-centric
coding-variant perspective. Both views bring something to the table.
Rare variant studies often uncover coding mutations that pinpoint
specific cellular processes. However, mutations in broadly expressed
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genesare also observed, whichindicates that asubtle loss-of-function
or gain-of-function effectis adequately compensated in all but a few
select conditions. The critical contribution of regulatory variants is
that they can precisely identify the disease-relevant cellular contexts.

Finally, current models are often designed on principles that were
developed for language models. Although our genome can be repre-
sented as a sequence of strings, its ‘function’ is manifested through
intricate layers of biology that span many millions of interactions across
regulatory layers. This expansive space is exponential in nature, and
high-throughput experimental data alone may not provide adequate
training material to comprehensively learn this space. Therefore,
new model architectures that leverage known biology to incorporate
meaningfulinductive biases will be crucial components to effectively
learn from diverse data modalities.

In summary, with maturing of sequence-to-function models and
their continuousimprovements, we are entering unprecedented times
for understanding cellular biology in a tractable and causal manner.
These models are appealing because they capture the causal relation-
ship between regulatory layers, revealing the encoding of function
in our genomes. There is lots to be done here to build models that
enable the community to simulate how genome function unfolds
in different cellular and organismal contexts through the lens of cis
generegulation. It seems plausible that we can leverage the controlled
causal direction of genotype analysis to begin to shed light on the elu-
sive contributions of environmental factors to phenotypes. Although
establishing causality in environmental influences remains a daunting
challenge, a genetically anchored framework may provide new avenues
to untangle this complexity.
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