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Unlocking gene regulation with sequence-to- 
function models

Alexander Sasse, Maria Chikina & Sara Mostafavi

By exploiting recent advances in modern 

arti�cial intelligence and large-scale functional 

genomic datasets, sequence-to-function 

models learn the relationship between 

genomic DNA and its multilayer gene 

regulatory functions. These models are poised 

to uncover mechanistic relationships across 

layers of cellular biology, which will transform 

our understanding of cis gene regulation and 

open new avenues for discovering disease 

mechanisms.

A fundamental goal of modern biology is building models that can infer 

phenotype from genotype. Such models are also key to a mechanistic 

understanding of disease heterogeneity and to tailoring medicines 

to individuals. This is particularly relevant in the context of complex 

disease. Even though complex diseases are a result of both genetics 

and environment, and the genetic component may even be relatively 

small, genetic analysis offers a unique perspective because — unlike any 

other disease biomarker — the causal direction is controlled as there 

is no way for a phenotype to go back in time and change the genotype.

Genetic influence on phenotypes can manifest either through 

modifications of the protein structure itself or by affecting regulatory 

processes that influence the temporal and spatial dynamics of protein 

expression (Fig. 1a, left). In this Comment, we focus on the ‘when and 

where’ of protein expression. More specifically, we focus on the regula-

tion of mRNA abundance — an important, but not the only, determinant 

of protein levels.

What would it take to have a model that interprets a personal 

genome in terms of gene regulatory effects and does so in a way that 

is relevant for disease? Historically, this question has been tackled in 

pieces through the lens of a statistical genetics association framework1. 

However, a fundamentally different approach is emerging at the inter-

section of functional genomics and deep learning, and culminates in 

sequence-to-function models (Fig. 1a, right). Sequence-to-function 

models use variants of deep convolutional neural networks to learn the 

mapping between DNA sequence and functional readouts (chromatin 

accessibility, histone modification, gene expression and so on) in 

one or several cellular contexts2 (Fig. 1b). Formulating the genotype–

phenotype question as a prediction problem enables computation 

approaches to integrate large collections of functional genomic assays 

in a single unifying framework.

In practice, such models are trained on large collections of func-

tional genomic datasets across a variety of cellular contexts that are 

assembled by consortia such as ENCODE (Encyclopedia of DNA Ele-

ments)3. Most state-of-the-art models use the same training recipe 

and evaluation strategy. They take as input short subsequences of 

genomic DNA (thousands of base pairs to hundreds of kilobases) 

from the reference genome to predict functional outputs, including 

gene expression from a particular cellular context4–6. During training, 

model generalization is assessed on left-out regions of the genome 

(for example, random chromosomes left out during training) — a task 

that current models perform very well. Importantly, their ability to 

generalize to unseen genomic DNA can be attributed to their ability 

to learn ‘sequence grammar’; that is, the rules for how the interac-

tions between proteins and DNA, as well as higher-order complexes, 

govern functional output. Many studies have shown that for a variety 

of models, the learned sequence grammar recapitulates detailed 

mechanistic biological knowledge that has been acquired through 

years of genomics experimentation and analysis. For example, the 

models recapitulate transcription factor binding motifs5, transcrip-

tion factor complexes5 and relationships between CTCF sites and 3D 

chromatin organization7.

Importantly, because sequence-to-function models operate on the 

DNA sequence, they offer the ability to predict the effect of arbitrary 

genetic variation on functional outputs in a cell-type-specific manner 

(Fig. 1b) — a process referred to as in silico mutagenesis. An exciting 

application of this ability is to predict differences in gene expression 

(or other regulatory processes) among alleles within a population. In 

some cases, these models can already accurately predict variant effects, 

and approach the precision of experimental mutagenesis4. However, it 

is increasingly evident that effectively applying sequence-to-function 

models to interpret the complete spectrum of genetic variation on 

gene expression, in a way that is relevant to disease outcomes, requires 

enhancing their prediction resolution8,9.

Predicting across loci of the same individual’s genome and predict-

ing across different genomes at the same locus (that is, allelic effects) 

differ in two important ways: the amount of variance between the 

DNA sequence inputs is markedly reduced, and the variance among 

the expression output of a single gene is relatively small compared to 

the expression differences between different genes. Yet, high-quality 

intergenome predictions are precisely what are needed to leverage 

this framework in the context of population genetics and disease 

susceptibility.

Increasing the resolution of models fundamentally requires aug-

menting the training data, which raises the question of what kind 

of training data would be most effective. Several orthogonal strate-

gies merit investigation. First, current models have been trained on 

a range of epigenomic and gene expression datasets, yet there is a 

notable absence of models that combine assays from all regulatory 

process stages (particularly post-transcriptional regulation). For exam-

ple, variants could affect the abundances of isoforms or influence 

post-transcriptional processes (such as polyadenylation, translation 
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Fig. 1 | The complexity of genotype-to-phenotype relationship. a, Left, 

interpreting personal genomes requires a mechanistic understanding of the 

different layers of gene regulation and how intermediate processes (chromatin 

organization, epigenomic modifications, transcriptional regulation, post-

transcriptional regulation and so on) are affected by genetic variation. Right, 

two approaches to genome interpretation, through statistical association and 

cell-type-specific sequence-to-function (S2F) models. b, Sequence-to-function 

models take as input genomic DNA and learn to predict its functional properties 

such as gene expression in a cell-type-dependent and cell-state-dependent 

manner. Once trained, these models can be used to predict the impact of 

arbitrary genetic variations (right) and to derive biological insights into the 

sequence grammar that determines context-dependent gene regulation (left). 

Ac, acetylation; Me, methylation; Me3, trimethylation; RBPs, RNA-binding 

proteins; TAD, topologically associating domain.
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or mRNA stability), leading to changes in steady-state gene expression 

without affecting transcriptional rates.

Second, it stands to reason that more examples of sequence and 

gene expression pairs would enhance the model’s internal representa-

tion of the genotype-to-function map. This can be achieved in several 

ways. Cohort studies (in which both whole-genome sequencing and 

gene expression are measured for the same individuals) offer a substan-

tial increase in training data points, as each individual contributes all of 

their alleles. However, enhancements to current model architectures 

are needed so that training performance does not become dominated 

by strong variance in the data across genes; instead, models should 

focus on the subtle variance across individuals. Another method to 

boost sequence diversity is through the incorporation of evolutionary 

information by, for example, jointly training sequence-to-function 

models on data from multiple species10, as many gene regulatory 

mechanisms are conserved between distal descendants of the same 

ancestor. Moreover, nonhuman model organisms provide researchers 

with opportunities for additional experiment (such as various types of 

perturbations) that would be ethically unfeasible otherwise.

However, it is important to acknowledge that native genomic 

DNA represents only a small part of the space of possible genomic 

DNA composition, and that certain variations will never be observed 

in nature owing to their deleterious effects. Therefore, it is compel-

ling to assume that incorporation of genomic readouts from syn-

thetic sequences might be needed to learn a comprehensive map 

from DNA subsequences to their regulatory functions11. For exam-

ple, massively parallel reporter assays enable measurements from 

>100,000 sequence variants for multiple regulatory processes, such 

as expression, splicing or degradation. However, although it is clear 

that these synthetic systems capture many of the gene regulatory 

mechanisms used by cells, how to translate what has been learned in 

these systems to the context of cell-type-specific sequence grammar 

remains an open problem.

Third, concurrent with advancements in sequence-to-function 

models, genomic language models present an approach inspired 

by the success of large language models such as ChatGPT. These 

models use self-supervised learning, drawing on vast quantities of 

unlabeled genomic DNA across different species to learn the sta-

tistical relationships between DNA sequence composition within 

and across genomic positions. As such, genomic language models 

provide a general foundation for various downstream applications, 

including the prediction of functional elements, gene expression 

and sequence design12. They have been widely benchmarked on a 

variety of classification tasks for functional noncoding elements; 

however, recent work has shown that this representation lacks 

cell-type-specific information, and predictors of cell-type-specific 

functional elements do not benefit from this resource-intensive 

pretraining step13. Cis-regulatory elements evolve rapidly and, fur-

thermore, the functional consequence of their sequence divergence 

is cell-type-dependent. Current genomic language models learn 

their representations from a couple of hundred to a few thousand 

genomes, whereas large language models such as ChatGPT use data 

corpora that are orders of magnitude larger for training. It is unclear 

whether such a complex cell-type-specific DNA language — develop-

ing over the course of 1.5–2.3 billion years of evolution of eukaryotes — 

 can be learned from genomes that are currently sequenced. Thus, 

further research is needed to determine how to combine genomic 

language models and supervised sequence-to-function models that 

predict cell-type-specific events13.

To effectively apply sequence-to-function models to organism- 

level phenotypes (including disease), it is critical to enhance their 

cellular resolution to incorporate data from diverse cell types and 

states. With the exponential growth in single-cell-resolution meas-

urements, we can now envision such models trained on thousands of 

cellular states. In the future, incorporating additional dimensions of 

variation — such as age, sex and environmental exposures that affect 

genotype-to-gene expression relationships — may require new model 

architectures that are capable of effectively learning at scale from 

diverse measurements, at cell-type resolution. As the biotechnology 

industry becomes increasingly interested in these causal models of 

cellular biology, traditional academic institutions may face challenges 

in competing with them on scale. If these models are developed outside 

of academia, we hope they will be shared openly with the commu-

nity. ‘Open’ benchmarking datasets and models will be essential for 

future progress, by enabling other researchers to apply and evaluate 

these models, identify limitations, and offer valuable feedback to  

the developers.

With maturing research in the directions discussed above, it is 

reasonable to assume that in the near future the community will be 

able to develop sequence-to-function models that excel at predicting 

gene regulatory effects from personal genomes. However, it remains 

unclear whether such models are sufficient to characterize missing 

phenotype-causing variants. It is critical to assess our ability to iden-

tify variants that do not merely alter gene expression but have direct 

implications for the organism-level phenotype. This entails a deeper 

understanding of the genotype–phenotype relationship beyond tran-

scriptional regulation, as many variants that alter mRNA levels have no 

effect on phenotype (that is, are not hits in a genome-wide association 

study (GWAS)). Conversely, many noncoding variants that do affect 

phenotypes — presumably through regulatory mechanisms — do not 

produce expression alterations in currently available expression quan-

titative trait locus (QTL) datasets14.

When we consider intermediate levels of regulation such as chro-

matin accessibility or histone modifications (for example, chromatin 

accessibility QTLs and histone acetylation QTLs), the coverage of GWAS 

hits by variants that are molecular QTLs increases15. As chromatin fea-

tures affect phenotypes via gene expression, the statistical disconnec-

tion between the two is intriguing. Several explanations are possible. 

Because gene expression control is distributed across many regulatory 

elements, the final output may be well buffered, which implies that a 

relatively large effect size in the chromatin state of a single regulatory 

element may translate to a much smaller one when we measure the 

expression of the target gene. Another possibility is that chromatin 

features reflect either the history or the future potential for regula-

tion in some highly specific cell-type, developmental or signaling 

context that is not captured by current assays. Finally, it is possible 

that phenotype-associated variants alter a property of gene regulation 

other than mean expression at steady state. For example, they could 

affect the kinetics or the variation in expression instead. Regardless 

of the specific mechanisms, it is likely that we will need to measure 

additional outputs beyond standard gene-expression measurements 

across multiple individual genomes to build a comprehensive model 

of regulatory variant effects.

Ultimately, the model of the effects of sequence changes on 

gene regulation will need to be reconciled with the protein-centric 

coding-variant perspective. Both views bring something to the table. 

Rare variant studies often uncover coding mutations that pinpoint 

specific cellular processes. However, mutations in broadly expressed 
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genes are also observed, which indicates that a subtle loss-of-function 

or gain-of-function effect is adequately compensated in all but a few 

select conditions. The critical contribution of regulatory variants is 

that they can precisely identify the disease-relevant cellular contexts.

Finally, current models are often designed on principles that were 

developed for language models. Although our genome can be repre-

sented as a sequence of strings, its ‘function’ is manifested through 

intricate layers of biology that span many millions of interactions across 

regulatory layers. This expansive space is exponential in nature, and 

high-throughput experimental data alone may not provide adequate 

training material to comprehensively learn this space. Therefore, 

new model architectures that leverage known biology to incorporate 

meaningful inductive biases will be crucial components to effectively 

learn from diverse data modalities.

In summary, with maturing of sequence-to-function models and 

their continuous improvements, we are entering unprecedented times 

for understanding cellular biology in a tractable and causal manner. 

These models are appealing because they capture the causal relation-

ship between regulatory layers, revealing the encoding of function 

in our genomes. There is lots to be done here to build models that 

enable the community to simulate how genome function unfolds 

in different cellular and organismal contexts through the lens of cis 

gene regulation. It seems plausible that we can leverage the controlled 

causal direction of genotype analysis to begin to shed light on the elu-

sive contributions of environmental factors to phenotypes. Although 

establishing causality in environmental influences remains a daunting 

challenge, a genetically anchored framework may provide new avenues 

to untangle this complexity.
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