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We performed a series of 1381 full numerical simulations of high energy collision of two
black holes to search for the maximum recoil velocity after their merger. We studied
equal mass binaries with opposite spins pointing along the orbital plane to maximize
asymmetric gravitational radiation and performed a search of spin orientations in the
plane, impact parameters, and initial linear momenta to find a maximum recoil velocity
extrapolated to the extreme spinning case of 28, 562 ± 342 km/s, thus tightly bounding
recoil by 10% the speed of light.
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1. Introduction

The search for the maximum recoil the remnant of a binary black hole merger could

achieve from the radiation reaction of the gravitational waves emitted is a problem

that attracted researchers since at least 35 years,1 and can only be solved with full

numerical relativity techniques,2 since most of the asymmetric radiation takes place

during the formation of a common horizon, a highly nonlinear process.

Ever since the discovery through full numerical simulations3,4 that the merger of

binary black holes may lead to large (astrophysically speaking) gravitational recoil

velocities, a fascinating search for such events in nature takes place.5,6 Since the

first modeling of large recoils,7 it was clear that the spins of the black holes played

a crucial role in their merger remnant reaching up to several thousand km/s speeds.

∗This essay received an Honorable Mention in the 2023 Essay Competition of the Gravity Research
Foundation.
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It was next found a configuration8 that maximized the recoil nearing 5,000km/s.

This configuration combined the opposite spins of Ref. 7 that maximized asym-

metry with the hangup effect9 that maximized radiation. All those configurations

assumed negligible eccentricities at the time of merger, when most of the asymmet-

ric radiation takes place. While this is the most plausible astrophysical scenario, new

gravitational waves observations show the potential for large residual eccentricity

in some binary black hole merger events.10

The growth of structure seeded by primordial black holes has been studied in

Ref. 11, and the effects of gravitational-wave recoil on the dynamics and growth

of supermassive black holes has been studied in Ref. 12. While the scenario of

supermassive rotating black holes potentially accelerating orbiting black holes to

high energies was discussed in Ref. 13.

Here we will explore the extreme scenario of high energy collisions of black

holes, in the realm of high-energy colliders,14,15 to discover the fundamental laws

of nature,16–18 with applications to gauge/gravity duality, holography,19 primordial

black hole collisions in the early universe,20–22 and as tests of the radiation bounds

theorems and the cosmic censorship conjecture in General Relativity.23–25

This high energy collision of black holes scenario was studied in Ref. 26 to

compute the energy radiated by equal mass, nonspinning black holes in an ultra-

relativistic headon collision. This first study was then followed up by the claim

in Ref. 27 that the spin effects did not matter for these collisions. Non-headon

high energy collisions have also been studied in Ref. 28, and analytically in Ref. 29

leading to a wide range of maximum recoil velocity estimates from simulations of

10,000km/s and 15,000km/s to potential extrapolations up to 45,000km/s.30,31

Some of the early reviews on the subject are Refs. 16 and 18, and more recent ones

are Refs. 32–34.

Here we perform studies with much larger data sets obtained by numerically

solving General Relativity field equations on supercomputers, and focusing on the

computation of the maximum achievable gravitational recoil from grazing, high

energy collisions of binary black holes, where the holes’ spin orientation and mag-

nitude play a crucial role.

2. Numerical Techniques

The full numerical simulations were performed using the LazEv code35 imple-

mentation of the moving puncture approach.36 We use here the general relativis-

tic BSSNOK evolution system formalism.37–39 The LazEv code uses the Cac-

tus40/Carpet41/EinsteinToolkit42,43 infrastructure. The Carpet mesh refine-

ment driver provides a “moving boxes” style of mesh refinement. To compute the

numerical (Bowen–York) initial data, we use the TwoPunctures44 code. We use

AHFinderDirect45 to locate apparent horizons and measure the magnitude of

the horizon spin SH , using the isolated horizon algorithm as implemented in Ref. 46.

We measure radiated energy, linear momentum, and angular momentum, in terms
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Fig. 1. Maximum high energy collision kicks binary black hole initial configurations. On the
orbital plane of equal mass m black holes with opposing spins ±�S and momentum ±�P at the
critical impact parameter bc and initial separation D = 50M .

of the radiative Weyl scalar ψ4, using the formulas provided in Refs. 47 and 48.

As described in Ref. 49, we use the Teukolsky equation to analytically extrapolate

expressions for ψ4 from a finite observer location (Robs > 100M) to infinity (I +).

One can argue on asymmetry properties that the maximum recoil can be

searched for in black holes configurations with equal masses and opposite spins

on the orbital plane, as displayed in Fig. 1. The compromise with maximizing the

energy radiated via the hangup effect9 that we needed for quasicircular orbits is here

replaced by the determination of the critical impact parameter, bc and momentum

Pc, separating direct merger from scattering. Here we study this problem in detail

with our specially designed set of simulations to explicitly model the problem in

terms of the Bowen–York dimensionless initial momentum of the holes, γv, impact

parameter, b, and spin, s = SH/m2
H (where mH = m1,2 is the horizon mass of each

hole), i.e. a four-dimensional parameter search.

3. Simulations’ Results

Our simulations families consist of a choice of an initial (Bowen–York) data spin

magnitude, here s = 0.40, 0.70, 0.80, 0.85, 0.90, and for each of them an initial

momentum per irreducible mass, γv, and impact parameter, bM , as measured at

the initial separation of the holes D = 50M (with M = m1 +m2 the addition of the

horizon masses of the system). We then vary the orientation of the spins pointing

on the orbital plane by an angle ϕ with respect to the line initially joining the black

holes. This allows us to model the leading ϕ-dependence of the recoil velocity as a

cosϕ.50 In practice one needs about 4–7 simulations to fit this dependence and to

determine the amplitude of the curve leading to the value of the maximum recoil

for this configuration.

This process is repeated now for each impact parameter b to find the value bmax

that leads to the largest recoil velocity. In practice, the bmax corresponds closely to

the critical value of the impact parameter bc separating the direct merger from the

scattering of the holes.
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Table 1. All simulations have equal mass m1 = m2, and are initially placed at x1,2 = ±25M .
The relaxed spin magnitude, |sr|, are used for the final fit. Measured maximal recoil velocities

and its extrapolation (order) to infinite resolution are given on the right panel.

# Runs ±s |sr| bmax
c (γv)max V n100

max [km/s] V n120
max [km/s] V n144

max [km/s] V ∞
max [km/s] Order

72 0.40 0.400 2.38 1.20 11,637± 67 11,827± 67 11,944± 64 12,133± 189 2.7
233 0.70 0.699 2.38 1.10 19,832± 267 20,163± 267 20,360± 262 20,649± 289 2.9
472 0.80 0.789 2.38 1.10 22,212± 228 22,583± 226 22,800± 217 23,104± 304 3.0
305 0.85 0.838 2.38 1.10 23,291± 514 23,666± 486 23,892± 482 24,231± 339 2.8
299 0.90 0.885 2.38 1.09 24,172± 579 24,609± 565 24,870± 552 25,256± 386 2.8

A similar analysis can be done to complete the two-dimensional search, by vary-

ing the initial velocity, v, or rather the linear momentum per irreducible mass of the

holes, γv = P/mirr, with γ = (1 − v2)−1/2, the Lorentz factor, and AH = 16πm2
irr

the measured horizon area. We observe the same feature of maximization of the

recoil velocity for values about the critical momentum, Pc, separating the direct

merger from the scattering of the holes.

The final results of the maximum recoil velocities for each individual spin s1,2

value and the (more physical) corresponding relaxed (at around t = 30M) spin

magnitude, |sr| are summarized in Table 1. Those results are used for the fit in

Fig. 2, where we also display the measurement error bars of each point and a fit to

a quadratic dependence on sr to extrapolate to the ultimate recoil velocity, finding

28, 562± 342 km/s for the extremely spinning binary black holes case, sr = 1.

±

Fig. 2. Maximum recoil velocity versus the settled spins value sr and its extrapolation to maximal
spin sr = 1.
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For most of the simulations (for spins s = 0.4 to s = 0.85), we use a grid, labeled

as n100, with 10 levels of refinement, the coarsest of which has resolution of 4M

and outer boundary of r = 400M , with each successive grid with twice the previous

resolution. If we label the coarsest grid by n = 0, and the finest grid by n = 9, the

resolution on a given level is M/2(n−2). The wavezone is n = 2 with a resolution

of M/1 and boundary out to r = 125M . The finest grid has a resolution of M/128

with a size of 0.5M centered around each black hole. The spin s = 0.9 case has an

additional refinement level around each black hole with a resolution of M/256 and

a radius of r = 0.3M .

To evaluate the finite differences errors and extrapolation of our simulations, we

have performed two additional sets of simulations with increasingly global resolu-

tions by factors of 1.2 (n120, n144) with respect to our base resolution, n100, for the

peak velocity cases with bc = 2.38, (γv)max, and four ϕ = 0◦, 45◦, 90◦, 150◦ degrees

for each of the spins, s = 0.40, 0.70, 0.80, 0.85, 0.90. The resulting measured recoil

velocities are given on the right panels of Table 1. Infinite resolution extrapolation

leads to V ∞

max values representing about a 3% increase from the n100 results. The

near third-order convergence rate found for the net recoil (computed as large differ-

ences of anisotropic radiation), is what one expects from the fourth Runge–Kutta

time integrator used by our code.

As a further check of our numerical accuracy, we have recalculated a set of cases

for the spin 0.8 with the extra refinement level and increased grid sizes as we used

for the spin 0.9 runs. We then recalculated the sequence that gives a maximum

value for spin 0.8 of 21, 802±191km/s. Compared to the original grid computation

of 21, 903± 213km/s, this leads to a difference of 101km/s or 0.46%.

Fig. 3. The spectrum of the (� = 2-modes) energy radiated dE�=2/dω by a representative set of

simulations (with b = 2.38, s = 0.85, γv = 1.1) for different orientation angles, ϕ, of the spin.
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4. Conclusions

In Fig. 3, we display the spectrum of radiated energy from the leading (� = 2, m =

0,±2)-modes for one of the peak recoil cases (b = 2.38, s = 0.85, γv = 1.1) for

different orientation angles, ϕ of the spin. We observe a bulge at low frequen-

cies, corresponding to the initial and “bremsstrahlung-like” radiation of the holes

approaching each other from D = 50M and that the different spin orientations do

not produce notable differences in this part of the spectrum. Meanwhile, at higher

frequencies (by an order of magnitude), corresponding to when the holes reach the

critical separation 2bcM = 4.76M and the subsequent merger, the spectrum shows

a strong dependence on the spin orientations.

In summary, we have been able to provide an accurate estimate of the ultimate

recoil, product of the high energy collision of two black holes. In order to perform

the four-dimensional search (momentum γv, impact parameter b, spin orientation

ϕ and magnitude s) we performed a total of 1381 simulations to look for the critical

bc marginally leading to merger and the corresponding value of Pc that maximized

the recoil, all as a function of ϕ for each s. Extrapolation to maximum spins has

led us to estimate the value of 28, 562 ± 342km/s for the ultimate recoil, placing

the bound just below 10% the speed of light.

We thus note the crucial relevance of the holes’ spin magnitude and orientation

in the determination of the high energy collision kicks. These accurate results point

towards challenging mathematical relativists to put forward new bound hypothesis

not only for the maximum radiated energy and final spin of the merger of two black

holes,34,51,52 but also for the net linear momentum radiated, perhaps from a horizon

computation like in Ref. 53.
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