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putational homogenization (CCH). In this study, building on the recently developed solver-free
CCH, we propose a fine-scale solver-free reduced order homogenization approach that avoids
solving the fine-scale equilibrium equations and approximates the phase-average eigenstrains by
sampling the fine-scale eigenstrain at a small number of points. The proposed method, which we
call solver-free ROH, works by pre-computing history-dependent eigenstrain influence function
tensors and sampling point contribution factors based on training data from a small set of CCH
simulations. Then, during the online stage of the computation, phase-average eigenstrains are
computed from sampling point eigenstrains and used to compute homogenized stresses and
strains. Focusing on small-deformation problems, this paper formulates and verifies the solver-
free ROH approach for nonlinear periodic heterogeneous media. First, in the formulation, we
delineate a sampling point approximation of the phase eigenstrains and describe the use of this
approximation within the coarse-scale stress update. Next, we verify the solver-free ROH using
loading cases outside the training data set. Finally, we use the proposed method to simulate
a multilayer composite plate in three point bending (3pt-bend) and open hole tension (OHT),
demonstrating the method’s efficiency and accuracy relative to the CCH.

1. Introduction

The wide applicability of composite materials has stimulated significant research interest in computational multiscale methods
for simulating their behavior. Generally speaking, multiscale methods may employ constitutive models at multiple length and time
scales and bridge these models based on mathematical or physical considerations. A review article by Fish, Wagner, and Keten [1]
and one by Matous, Geers, Kouznetsova, and Gillman [2] describe the following significant milestones in multiscale modeling. The
Cauchy-Born Rule [3] is an early principle that relates macroscale deformations to displacements of atoms within chemical bonds.
The Voigt model [4], which posits constant strain in each representative volume element (RVE), and the Reuss model [5], which
assumes constant stress in each RVE, are other early examples. Books by Bakhvalov and Panasenko [6], Sanchez-Palencia [71,
Zohdi and Wriggers [8], and Suquet [9] contain descriptions of significant developments in mathematical homogenization. The
transformation field analysis (TFA) [10,11] and related reduced order homogenization [12,13] are examples of methods based on
mathematical homogenization. The Hill-Mandel macrohomogeneity condition assumes equality between the internal virtual work
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computed from fine-scale quantities and that computed from coarse-scale quantities [14]. Other significant developments include
statistical mechanics [15], quantum mechanics [16], archetype-blending continuum theory (ABC) [17], generalized finite element
methods (GFEM) [18,19], multiscale finite element methods (MsFEM) [20], the heterogeneous multiscale method (HMM) [21,22],
the variational multiscale method (VMM) [23,24], multiscale enrichment based on partition of unity (MEPU) [25], generalized
space-time mathematical homogenization (GMH) [26-28], multigrid methods [29], domain decomposition [30], global-local finite
elements [31], hierarchical modeling of heterogeneous bodies based on adaptive refinement [32], large hierarchically parallelized
multiscale simulation [33], and homogenization-based multigrid [34-38]. More recent exciting developments include mean-field
homogenization [39,40], surrogate modeling of the microscale based on deep learning [41,42], an adaptive wavelet method for
dynamic high-strain damage problems [43], a self-consistent approach for high strain rate loading of composites [44], a wavelet-
enhanced fast Fourier transform-based approach [45], a ROH approach for polycrystalline microstructures with cracks [46], and
data-physics-driven reduced order homogenization [47].

As described in greater detail in [1], the two broad categories of multiscale methods are resolved-scale methods and upscaling
methods. In resolved-scale methods, a coarse-scale model and a model that resolves fine-scale fields are used in different regions
within the domain. Interface or interscale transfer operators are employed to bridge the regional solutions. Examples of resolved-
scale methods include domain decomposition and multigrid methods. Upscaling methods, in contrast, homogenize fine-scale fields
to compute coarse-scale quantities. Subcategories of upscaling methods include physics-based, data-driven, and mathematics-based
methods. The reader may refer to [1] for more details about resolved-scale approaches as well as physics-based and data-driven
upscaling approaches.

The method proposed in this study is closely related to mathematics-based methods for upscaling of continua and associated
reduced-order methods. Some math-based methods assume separation of scales, such as the asymptotic approaches [6,7,9] and the
approach based on the Hill-Mandel macrohomogeneity condition [14]. Other methods account for interscale transitions directly;
these methods include multiresolution analysis [48-51] based on wavelets and others (FE? [52], MsFEM [20], HMM [21,22],
VMM [23,24], and MEPU [25]) based on finite element approximations. These math-based methods and associated reduced-order
methods have been applied in the context of metamaterials [53,54], acoustics [53], composite materials [9,12,13,26,27,46,55,56],
multiphysics problems [57,58], stochastic methods [59,60], and wave propagation [61].

Classical computational homogenization (CCH) is a math-based upscaling method, in which a system of nonlinear governing
equations is solved numerically at the coarse scale and the stress at each Gauss point is determined by solving a separate nonlinear
system of equations at the unit cell level [62,63]. Though significantly more efficient than direct numerical simulation, CCH is
therefore still impractical for many problems. Many reduced-order methods have been devised to reduce the computational cost of
homogenization. Many of these are listed and described in [1], including the Voronoi cell method [64,65], the spectral method [66],
the network approximation method [67], methods based on fast Fourier transforms (FFT) [68], the mesh-free reproducing
kernel particle method [69], finite-volume direct-averaging micromechanics [70], uniform and nonuniform transformation field
analysis [10,11,71-73], methods of cells [74], control theory-based methods such as balanced truncation [75,76], optimal Hankel
norm approximation [77], proper orthogonal decomposition [78-80], data-driven reduced-order methods [81-84], reduced order
homogenization (ROH) [12,13], and recently data-physics-driven ROH [47]. The FFT, in combination with the Lippmann-Schwinger
reformulation of the unit cell problem using an equivalent volume integral equation [68,85] is a particularly exciting recent
development.

While these reduced-order methods achieve a significant computational cost savings, they often suffer a great loss of accuracy.
For example, the authors of [86] observed inaccurate prediction of the beginning of eigenstrain accumulation in the unit cell and
overly stiff behavior of the unit cell in certain loading modes (inclusion locking). Even re-calibration of constituent phase material
parameters can fail to make reduced-order approaches reliable for predicting material behavior of composites. More details of
reduced-order homogenization’s advantages and shortcomings are described in Section 2.1.

This study presents the fine-scale solver-free reduced order homogenization (solver-free ROH hereafter). The proposed approach
uses pre-computed eigenstrain influence function tensors that depend on the unit cell material history and are computed based on
CCH training simulations, built on the framework of the recent solver-free CCH [87]. The key novel idea of the solver-free ROH
that distinguishes it from solver-free CCH is the following: whereas the solver-free CCH constructs the fine-scale eigenstrain field by
performing stress updates at every unit cell Gauss point, the solver-free ROH approximates the phase-average eigenstrains by a linear
combination of eigenstrains evaluated at a number of sampling points. The weights of the sampling point eigenstrains, as well as
the locations of the sampling points themselves, are determined by optimization techniques to be consistent with the same training
data that is used to compute the influence function tensors. By considerably reducing the number of unit cell stress updates that
need to be performed, the solver-free ROH considerably reduces the computational cost relative to the CCH and to the solver-free
CCH.

The sampling point approximation of the phase-average eigenstrain proposed in this study is related to a number of efficient
quadrature schemes found in the literature. The most common method of numerical integration over complex geometries is
tessellation by simple volume cells such as triangles, quadrilaterals, tetrahedra, or hexahedra, followed by application of well-
established Gauss quadrature rules within in each volume cell. Alternatives to this common approach include non-conforming
meshing and adaptive quadrature as in [19], Monte Carlo integration [88], integration over general convex polyhedra via mean-
value interpolation functions [89], and conversion of volume integrals to contour integrals for self-equilibriating enrichment
functions [90], among others. A particularly notable class of efficient quadrature schemes is based on moment fitting equations,
including the generalized Gauss quadrature rules developed in [91] for polygons and [92] for polyhedra. A related method,
developed by Sudhakar and Wall [93], extended the moment-fitting approach to non-convex polytopes using repeated application
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of the Divergence Theorem rather than Laserre’s method. These quadrature schemes achieve high accuracy with a reduced number
of integration points.

The proposed sampling point approximation is distinguished from these other efficient quadrature schemes by the dependence
of the quadrature weights on the unit cell material history and the determination of integration point locations and weights based
on observations of the variable being integrated (fine-scale eigenstrain) within a set of training simulations. Typically, quadrature
schemes seek a set of point locations and weights such that a set of basis functions is integrated exactly (or very accurately) over a
given class of polytope, and are therefore applicable to all domains within this class and all integrands that can be well-approximated
by these basis functions. In contrast, while the sampling point procedure proposed in this study is applicable to a variety of integrands
and domain geometries, each quadrature rule resulting from this procedure is tailored to the material system and geometry of the
unit cell to which it was applied. This allows the number of sampling points to be remarkably small relative to the number of unit
cell Gauss points, resulting in marked speedup of the proposed integration scheme relative to full Gauss integration of the fine-scale
eigenstrain.

The remainder of this paper is organized as follows: Section 2 begins with a review of relevant ideas from CCH and ROH, followed
by a review of the solver-free CCH eigenstrain influence tensors and their proper use during the online stage of the computation,
culminating in a detailed formulation of the sampling point approximation of the phase eigenstrains that distinguishes the proposed
method from its precursors. Section 3 presents numerical results from four studies: (i) reproduction of the training data following
computation of the eigenstrain influence tensors and sampling point contribution factors, (ii) verification by subjecting a single
coarse-scale element to non-monotonic mixed tensile and shear loading, and (iii) demonstration of combined accuracy and efficiency
of the solver-free ROH compared to CCH for three-point bending and open-hole tension of a multilayer composite plate. Finally,
Section 4 summarizes the findings of this study and suggests future research directions.

2. Formulation of the solver-free ROH approach

In the context of nonlinear periodic heterogeneous media, the computational cost of the CCH becomes prohibitive as the number
of degrees of freedom in the coarse-scale and fine-scale problems increases. The need to (i) solve the fine-scale equilibrium equations
and (ii) perform fine-scale stress updates at every unit cell Gauss point share much of the responsibility for this high computational
cost. Building on the solver-free CCH approach described in [87], the solver-free ROH formulated in this section eliminates both of
these expensive features of the unit cell computation. In this scheme, the fine-scale strain is expressed in terms of the influence of
coarse-scale strain and homogenized eigenstrain, while the phase-average eigenstrain is approximated by a linear combination of
samples of the fine-scale eigenstrain field. Section 2.1 briefly reviews CCH and ROH, laying the groundwork for the solver-free ROH
approach proposed in this study. Section 2.2 reviews the procedure from [87] for pre-computing snapshots of the solver-free CCH
eigenstrain influence tensors, which are used in the proposed method. Section 2.3 formulates the sampling point approximation of
the phase eigenstrains and describes how the sampling points are selected. Section 2.4 details how the eigenstrain influence tensors
and sampling points are used in the online stage of the computation.

2.1. Review of CCH and ROH

This section contains a review of CCH and ROH adapted from [87] as well as Chapters 2 and 4 of [94]. The following scale-
separated small-deformation governing equations for the coarse scale domain £ and the unit cell ©, written in terms of coarse- and
fine-scale variables, are typical of a CCH scheme. A superscript c is used to denote “coarse-scale” quantities and a superscript f is
used to denote “fine-scale” quantities. The coarse-scale governing equations are given by

ij’j(x) +b,(x)=0 Vx € Q (2.1a)
uf(x) = i;(x) VX € 08, (2.1b)
oicj(x)n;?(x) =1;(x) Vxe€oan (2.1¢)

Here, o¢ is the coarse-scale stress, u¢ is the coarse-scale displacement, b is the body force, n¢ is the normal to the coarse-scale
boundary, u is a prescribed displacement, and t is a prescribed traction. The fine-scale equations governing a unit cell at coarse-scale
point x are given by

ij’yj x,y)=0 Vy € © (2.2a)
oY) = Ly (y) (e, (. ¥) = iy, (x.y)) Vy € O (2.2b)
eifj (x,y) = eicj(x) + uﬁi!yj)(x, y) Vy € © (2.2¢)
uf(x,y) periodic on © (2.2d)

Here, of is fine-scale stress, ef is the fine-scale strain, uf is the fine-scale eigenstrain, €° is the coarse-scale strain, and uf is the
fine-scale displacement correction. The fourth-order tensor L is the elastic constitutive tensor, which is assumed to depend only on
the fine-scale coordinate y. The coarse-scale and fine-scale stress are related via

Crey L £
oij(x)— ol /gaij(x,y) de (2.3)
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For a composite material with N, homogeneous individual material phases denoted oM @@ .. @WNm) the fine-scale eigen-
strain at (x,y) is found using the constitutive law governing the phase to which y belongs. For each g =1,2, ..., Nohs let ¢¥ be the
constitutive law governing material phase g within every unit cell, which in general takes strain, stress, and a state variable array
sf as inputs and gives eigenstrain as output. Then

G} [y, ofxy),sfxy)]  ifyeo®

67 lefxy).ofxy).sfixy)]  ifyeo®

ux.y) = @9

) N,
Qf, W [ef(x,y), ot (%, y), six,y)] if y € @

Typically, the Galerkin form of the coarse-scale equations (2.1) is solved iteratively in a Newton-Raphson (NR) loop using the
finite element method. The fine-scale solver likewise solves the Galerkin form of the fine-scale equations (2.2) in an inner Newton—
Raphson loop, with the current iteration of the coarse-scale strain from the coarse-scale solver as input. At each coarse-scale solver
iteration, fine-scale stress obtained from the fine-scale solver (2.3) is homogenized to give the coarse-scale stress at each Gauss point.
At each coarse-scale Gauss point, for each coarse-scale NR iteration, and for each fine-scale NR iteration, two expensive operations
must be performed:

1. One of the phase constitutive equations (2.4) is evaluated at every fine-scale Gauss point.
2. A new fine-scale tangent stiffness matrix is constructed and factorized.

If many finite elements are required to resolve the unit cell geometry, it is easy to see that the CCH procedure can be extremely
computationally intensive.

Reduced-order computational homogenization methods, such as reduced order homogenization (ROH), circumvent these costs
by assuming a reduced basis for the fine-scale displacement correction field that automatically satisfies (2.2). The displacement
correction is assumed to take the form

uf(x,y) = H¥ (y)eS, (x) + / R (y. $)ut,(x,5) 46 (2.5)
o
and, from (2.2c¢), the fine-scale strain is correspondingly given by

f _ kl 7kl N < A
€, (x,y) = EJ (Y)eg, (%) + /@ i ¥ Dy (x, ) dO 26)
EN W) = Ly + HE ()

Next, influence functions H and h are pre-computed in the offline stage so as to satisfy (2.2) for arbitrary coarse-scale strain and
fine-scale eigenstrain distributions. Taking uf = 0 yields the H tensor, since the fine-scale equilibrium equations become

[Lijkl [lklmn + H(IZT’D(y)HJ =0

H™'(y) periodic on ©

2.7)

It is less straightforward to characterize h for an arbitrary fine-scale eigenstrain distribution. In the literature, the unit cell is
frequently divided into disjoint partitions O,k = 1,2, ... » Npart> each consisting of one or more finite elements. It is then assumed
that the eigenstrain may be decomposed as

Npart
uhy = Y NPl o (2.8)
k=1

The eigenstrain need only be C~! continuous on 6, so the simplest choice for eigenstrain shape functions N is

I, ifyeoe®
kl(k) ) _ ijkl
NV =1;,0) = (2.9
Y ikl 0 otherwise
For such a piecewise-uniform eigenstrain distribution, partition eigenstrain influence functions are naturally defined by
5 ki( - i
IOE / h(y.y) d6
o) (2.10)
skil(x) _ qkl(x)
Py =h ()
Substituting (2.9) and (2.8) into (2.2c) and choosing €€ = 0 yields
7, mn(K) () _
[Lijkl [h(k,/) (ke [klmn]].j =0 (2.11)

h™®(y)  periodic on ©

The one-partition-per-element approach that appears in the literature [86,95] is one extreme example of this piecewise-uniform
eigenstrain framework. This approach preserves much of the accuracy of the CCH but is nearly as computationally intensive: The
fine-scale eigenstrain must be computed in each unit cell element, the fine-scale strain at a single point in the unit cell must be
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assembled from the influence of each element’s eigenstrain on that point, and this process must be performed iteratively because
the updated strain field yields an updated eigenstrain field from the nonlinear constitutive equations.

The opposite extreme case of the piecewise-uniform framework is the one-partition-per-material-phase approach. This approach
lends itself to a reduced-order unit cell computation in the online stage, wherein the full CCH unit cell equations (2.2) are replaced
by analogous reduced-order equations with greatly reduced dimension. Reduced-order methods, while computationally inexpensive,
are plagued by inaccuracies. The main sources of these inaccuracies relative to the CCH are

1. Failure to account for non-uniform strain and eigenstrain in the unit cell

2. Failure to account for variation of the shape of the fine-scale eigenstrain distribution with unit cell material history

3. Erroneous computation of phase-average eigenstrains based on evaluation of constitutive models at phase-average strain,
stress, and state variables

Extensive calibration of phase material parameters is required to preserve some accuracy of the ROH compared to the CCH.
However, the calibrated material parameters of the composite are often unphysical or differ enormously from values provided
by the manufacturer. The following are other examples of related reduced-order approaches that seek to preserve accuracy while
reducing computational cost:

. Nonuniform eigenstrain shape functions [96]

. Hybrid compatible-incompatible eigenstrains [86]

. Adaptive partitioning [12]

. Tangent-based updating of influence functions [97]

. Data-physics-driven reduced order homogenization [47]

g b wWwhN -

2.2. Pre-computed eigenstrain influence tensors

Recently, a solver-free CCH approach has been proposed, which pre-computes eigenstrain influence tensors that are assumed
to be dependent on the unit cell material history [87]. These tensors are utilized during the unit cell computation in such a way
as to eliminate the need to solve the unit cell equilibrium equations. The solver-free CCH thereby proves less computationally
intensive than CCH, while retaining considerable accuracy. The procedure for pre-computing the eigenstrain influence tensors of
the solver-free CCH, first described in [87] by the authors of this manuscript, lays the groundwork for the solver-free ROH method.
This section is mostly reproduced from this source. To formulate the eigenstrain influence tensors, we begin with the expression for
fine-scale displacement correction (2.5) used as the basis for the ROH. The influence tensors H and E associated with the coarse-scale
strain remain the same as for ROH, but a different approach is taken to decompose the fine-scale eigenstrain field.

Observe the following about the nature of an increment of the fine-scale eigenstrain field. As illustrated by (2.4), two different
initial strain fields, two different strain field increments, two different initial stress fields, two different stress field increments, or two
different material histories will, generally speaking, all result in two different distributions of the incremental fine-scale eigenstrain
field. It is no wonder, then, that assumptions such as “uniform eigenstrain in each material phase” would inadequately capture the
fine-scale constitutive behavior. On the other hand, some simplifying assumptions must be made about the eigenstrain distribution
in order to reduce the computational complexity of the CCH.

Rather than assuming uniform eigenstrain in each material phase, we make the following assumptions about the fine-scale
eigenstrain increment:

1. The increment of each component mn of the fine-scale eigenstrain field has a shape dependent only on the unit cell material
history.

2. This material history dependence is only through a scalar variable |yu| representing the norm of the homogenized unit cell
eigenstrain accumulated prior to the current load increment. This variable is defined by

2
loml ) = 1| D (k)
mn (2.12)
oM (%) = g€ (%) = CF (%) g0}, (%)
Here, (€€ is the coarse-scale strain from the previous increment, 4o¢ is the coarse-scale stress from the previous increment,

and C¢ is the homogenized elastic compliance tensor.

Under these assumptions, the eigenstrain may be decomposed as
Ay, (X, ¥) = N2 (|op (%), ¥ ) Ape, (%) (2.13)
Here, the underlined indices indicate no summation. Inserting (2.13) into the fine-scale strain yields
Ae,fd(X, Y) = Ej'(D e, (x) + P (loul (%), y)Auy,, (x)

= mn - o a1 (2.14)
P out.y = [ (09N G5) a6
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We emphasize here that the P(|,u|(x),y) tensor fields described here represent the influence of the homogenized eigenstrain on the
fine-scale strain at each point in the unit cell. This is in contrast to the one-partition-per-element approach described in Section 2.1,
in which element influence tensor fields P/)(y) must be constructed for all unit cell elements I =1, ..., N;. The next order of business
is to identify suitable components of P for a given array of |,u|. Because we wish to evaluate the fine-scale strain at each unit cell
Gauss point y*), x = 1,2, .. -» Ngp, we will pre-compute each eigenstrain influence tensor at each y*®. Roughly speaking, this will
be accomplished by conductlng a small number of inexpensive uni-directional load tests simulated by CCH, taking snapshots of
the resulting data, and setting the fine-scale strain increment from each of these snapshots equal to our influence function-based
expression for the fine-scale strain (2.14). Suppose we have obtained the fine-scale strain and eigenstrain over the course of six CCH
simulations mn = 11,22,33,23, 13, 12, each corresponding to incremental loading of a single macroscale element that produces a stress
primarily in direction mn. As long as eigenstrain has been allowed to develop in each of the CCH tests, then the data in each test will
exhibit a range of the variable |u|. Choose a list of representative values |opul|;, J = 1,2, ..., Ny, (snapshots) from the intersection
of these ranges. Let Ae;’]:" and Au il represent the kI component of the coarse-scale strain and eigenstrain increment, respectively,
from CCH test mn at snapshot J, for which |yu| = |oul;. Likewise, let Aeﬁ)[m" represent the kI component of the fine-scale strain
increment at Gauss point y*) from CCH test mn at snapshot J. If, as we assume above, the fine-scale eigenstrain increment at y*
depends only on |yul, it is also true that the P tensor at y**) depends only on |yu|. Thus, for each snapshot J and Gauss point y*),

(2.6) leads to the simultaneous equations

Ef DA, + PEloml 1.y )AKG,, = Acf)

c b =,
by () A b ©) A x
Ef (Ve + P Uopl Y Ausy = Ay (2.15)

12 12 12
EN(y*)aes, + Pe(loml -y AuG,; = 4ef))

In matrix form, the system for a given snapshot can be written as follows (no sum over J):
M,p,(v*™) = e, (") (2.16)

Here, the matrix components are given by

A 4ol !
P R
M, = 'MJll Hin ”112 (2.17)
c512 c12 c12
Augiy Aupy o Ay
Pl oml s ¥y™) P opl s ¥™) oo PLoml 1, ¥®)
P22 (x) P22 (x) P22 (x)
p, ") = (Ioulj v (Iou|, ¥ : (Ioﬂlj ¥ (2.18)
P”(Ioﬂlpy(’”) P12(|0ﬂ|1,y(K)) P12(|0H|J y®)
S B 4 B
e,(y") = : (2.19)
2 2
Acr) WWW%~~mﬁﬂWWW

To summarize, a system of equations of the form (2.16) is solved for each snapshot J to determine the components of the P tensor
for that snapshot at a given unit cell Gauss point y*). In this system, the matrices M, p,(y"), and e, (y*)) each have dimensions
6 x 6. Note that the matrix M; is the same for all Gauss points. Thus, it needs to be factorized only once; the components of P at
each Gauss point are then found by back-substitution.

Remark: It is possible for matrix M; to be singular due to relationships between components of the homogenized eigenstrain
imposed by the phase material properties and the unit cell geometry. In practice, we have found M, to be nonsingular. However, if
the matrix were found to be singular, the special techniques described in the Appendix of [87] could be used to find a minimum-norm
least squares solution to (2.16).

2.3. Sampling point approximation of phase eigenstrains

The primary limitation of the solver-free CCH is the need to perform stress updates at every unit cell Gauss point. The solver-
free ROH method proposed in this study seeks to reduce the number of fine-scale stress updates by reconstructing phase average
eigenstrain increments from a linear combination of a small number of sampling point eigenstrain increments.

To develop our sampling point approximation, we begin by choosing a number of sampling points N, ¥ i phase f. Let

sampl
{yl(f )} tk=1,.. Ns(fr)n ) be a set of sampling Gauss points within phase f and let ¥’ denote the vector of indices of these Gauss
points. We approximate the phase-average eigenstrain Au® by
N® ’
4P x) = Z &P omlx) auf, ") (2.20)
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The coefficients J;;(ﬂ ) multiplying the sampling point eigenstrain increments, which we call the sampling point contribution factors,
are assumed like the influence tensors to depend on the unit cell material history only through the previous-increment eigenstrain
norm. Also like the P tensors, the contribution factors will be interpolated during the online stage of the computation from a set of
pre-computed snapshots. Each sampling point eigenstrain increment Aufj(yfcﬁ ) is computed by stress update using the constitutive
model corresponding to the material phase containing the sampling point. It remains to specify (i) how the sampling points should

be selected and (ii) how the contribution factors should be computed for a given set of sampling points.

2.3.1. Choosing sampling points

A natural choice for the set of sampling points would be that which minimizes the error between the phase eigenstrain increments
observed in the training set of CCH simulations and the best possible approximation to these phase eigenstrain increments that can
be achieved by a linear combination (2.20) of the eigenstrains observed at these sampling points in the training data. This can be

formalized as follows. Let {&,} : k = 1,... ,Ns(fr)npl be a set of numbers in ascending order drawn without replacement from the

set of indices of Gauss points in phase f, and assemble the elements of this set into a vector k. Let {§,} : k = 1,...,N, B pe
the set of Gauss points corresponding to the indices in &. Recasting the sampling point eigenstrain increments in terms of &, let

Aﬂ(f")'"" = A,u?”’"(yk). The optimal set of sampling point indices x» in the least squares sense would satisfy

kP = argmin C(K)

rek®

%) >
Nsampl (221)
o . 2 (R)

=SS 5| s 5 b iy

7 ¢ mn iy k=1

The objective function can be rewritten as

@ =3 % 3 (5o

mn ij
o (2.22)
. ., . . b b
rOm gy — (P AP [Z ( A(Jﬂ)pq(K)) T A(Jﬁ)‘”"(x)] [Z (Ay’)“ (x‘)) T e ]
rq ab
Here, the matrices A(Jﬂ)'”"(fr) and c(Jﬁ)'"" are defined by
4 fmn,_(B) fomn ,_(B)
Ay 0D e A )
sampl
ABmn _ : . :
J : . :
fomn ,_(B) fomn . (F)
Ap; 57 Ay )
| TN (2.23)
[ (Bymn
Apgyy
B _ [
) :
(Bymn
| 4H) 1

Here, A(Jﬂ ™" has dimensions 6 X Ns(fr)npl and contains components of the sampling point eigenstrain increments at snapshot J of

training simulation mn in phase g. The vector c(f ™M has six components and contains the phase-average eigenstrain increment in

phase f observed at snapshot J of training simulation mn. Observe that A(Jﬂ » ‘(&) depends on the set of sampling points chosen since

the entry at row ij and column k of this matrix is A(fi}"q(fr) = autkomn

k Jij
The size of the sample space K» of vectors of Gauss point indices is the binomial coefficient Ch(Néff, Ns(filpl) elements:
N(ﬁ)!
Ch(N&, N® = gp (2.24)
samp ® (D _ B
N '{ N, N !
sampl 8p sampl

In general, this is an enormous number. For example, the number of possible sets of 10 sampling points in a unit cell phase with
5000 Gauss points is on the order of 103, Moreover, gradient-based methods are not an option for a discrete optimization problem
such as this. For the purposes of finding a set of sampling points to approximate the phase eigenstrain by (2.20), it is sufficient
to find a set of sampling points which achieves a value of the objective function C(k) below a user-specified tolerance, or else the
best set that can be found within a user-specified maximum number of iterations. The specific locations of the sampling points have
little importance outside of their success in minimizing the objective function. Based on these considerations, a heuristic approach
to optimization is most suitable for our purposes. We employ a simple genetic algorithm, described as follows:

Algorithm 1:
Given the following hyperparameters:

+ np: number of parents, taken from sample set X
+ nc: number of children, taken from sample set K
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+ pimm: probability of immigration

pmut: probability of mutation

+ ngen max: maximum number of generations

+ tol: maximum acceptable value of objective function

1. Generate an initial population of parents {xP} : ip = 1,...,np via the immigration operation.

2. Evaluate the objective function (2.22) for each of these parents and sort the parents on this basis.

3. Let igen be the current generation number. Let tar min_igen be the minimum value of the objective function achieved by
any of the current parents. While igen < ngen max and tar_min_igen > tol, do the following:

3.1 Generate a population of children {xi°} : ic = 1,...,nc based on the set of parents. A child is generated by
the immigration operation (Algorithm 2) with probability pimm and by the mutation operation (Algorithm 3) with
probability pmut.

3.2 Evaluate the objective function for each of these children and sort the children on this basis.

3.3 From among all np + nc parents and children, choose the np members that achieve the lowest values of the objective
function. These members survive to the next generation as the new parents.

It should be noted that a crossover operation is commonly included in genetic algorithms. However, crossover has been omitted
here because it was not found to speed up convergence or otherwise improve the solution during the implementation of this
algorithm. The algorithm for the immigration operation is as follows:

Algorithm 2:
Output: Child x*°.
1. Draw an equal-probability sample from K. In other words, randomly choose without replacement Ngfr)npl from among the
Ng(f,) Gauss points within phase f. List their indices in a vector.

2. Sort these indices in ascending order and assign this list to x°.

Conceptually, the immigration operation can be thought of as importing a new genetic sequence with no relation to the existing
population. The algorithm for the mutation operation is as follows:

Algorithm 3:
Output: Child x*¢.

1. Draw an integer ip from 1, ...,np with uniform probability.
2. Draw an integer isamp from 1, ... ’Ns(:r)npl with uniform probability.

3. Let K;':amp be the Gauss point index at position jsamp of parent x*P. Draw a Gauss point index igp within phase g in the
. i»

. lp . . e
interval (Kisamp_ 1K camp 1> with uniform probability.

4. Perform the following assignment operations:

k¢ « kP

(2.25)

C

i )
Kigamp < 18P

1

The mutation operation can be thought of as asexual reproduction of a member of the parent population, in which one link
in the parent’s genetic sequence is changed to a new value. As a whole, genetic algorithms are meant to strike a balance at each
iteration between randomly probing an enormous sample space and perturbing the best candidate solutions so far. In this way, with
the right choices of hyperparameters, the algorithm is likely to find a variety of locally-best solutions, from which a good-quality
global solution can be chosen. A more detailed treatment of genetic algorithms may be found in [98].

2.3.2. Sampling point contribution factors

Restricting our attention to material phase g, now suppose we have chosen sampling points {yff N oik=1,..., Ns(:l)npl according

to the procedure outlined in the previous section and we are given a candidate set of contribution factor snapshots {£,} : k =

I,... Ns(f :)n ol arranged in a vector & Using the same training data set as in Section 2.2, let Ay(f ™1 denote the average eigenstrain
f.mn

increment in phase f at snapshot J of CCH training simulation mn. Similarly, let 4u ;™" (y) denote the fine-scale eigenstrain increment
at fine-scale coordinate y at snapshot J of CCH training simulation mn. For a given snapshot J of training simulation mn, we can
define the residual between the observed phase eigenstrain increment and the sampling point approximation as follows:

N®
sampl

A ~ f,
e E = 4] Y Gan ) (2.26)
k=1

The optimal set of contribution factors (arranged in a vector §(Jﬂ)) at snapshot J in the least squares sense would be that which
minimizes the sum of squared residual components over all training simulations:

& —argmin ¥ ¥ (40 2.27)
4

mn ij



A. Beel and J. Fish Computer Methods in Applied Mechanics and Engineering 425 (2024) 116932

Equivalently, the vector of contribution factors is the solution of the following least squares system of equations, with A(Jﬁ ™ and
c(Jﬂ)m" defined in (2.23):

(Bymn \ T A (Bymn | £(B) _ Bymn \ T (P)mn
[Z(AJ ) AY ]5J _Z<AJ ) o (2.28)
mn mn
The least squares system in (2.28), which has dimensions Ns(fr)npl X Ns(:r)npl’ is solved for each unit cell material phase and each

snapshot.
2.4. Online stage of the solver-free ROH

During the online stage of the computation, unit cell phase stresses and strains are computed with the help of the eigenstrain
influence tensors described in Section 2.2 and the eigenstrain sampling procedure described in Section 2.3. From the offline stage

of the computation, we have a set of sampling point indices {K,Eﬂ )} and corresponding Gauss points coordinates {y](f )}, sampling
» 0]

point coarse-scale strain influence tensors {E*« '}, snapshots of sampling point eigenstrain influence tensors {P(JK" )} and snapshots

of sampling point contribution factors {f(Jﬂk) L, withk=1,..., Ns(g r)npl; B=1..,NpJ=1.. Ngap At the beginning of each load

increment, the appropriate P tensors and sampling point contribution factors are interpolated from the precomputed values using

the following procedure:

1. The value of |yu| at the current increment is situated between snapshots |qu|, and |yu|,,,, corresponding to eigenstrain

; ! O ®
influence tensor snapshots P, * * and P LDk

(h)
k

Py loul = lomly <<K§,”’> (K}f”))
L

) . . . .
.41 and sampling point contribution factors §(Lﬂk) and &
2. For each sampling point «,”’, the interpolated eigenstrain influence tensor is computed as

®
P(’fk ) =P —-P (229)
|oﬂ|L+1 - |0I1|L L+l L

Each phase-average eigenstrain influence tensor P is computed in the same fashion. Similarly, the interpolated sampling
point contribution factors are given by

5,@ _ giﬂk) + losl = lomly (éi) e — fiﬁk)) (2.30)
|0H|L+1 - |0ﬂ|L (L+D)

It may be noted that this interpolation procedure is based only on the norm of homogenized eigenstrain, despite the fact that
different individual components of the eigenstrain may be activated. Recall that the fourth-order eigenstrain influence tensors are
computed based on CCH training simulations in which different eigenstrain components are activated. Each column mn of the
eigenstrain influence tensor P, represents the increment of fine-scale strain due to a unit increment of homogenized eigenstrain in
the mn-direction during a unit cell material history for which |yu| = |yul,. Thus, the influence of different eigenstrain components
on the fine-scale strain are captured by the operation of the influence function tensor on the homogenized eigenstrain tensor (2.14).
Now that the P tensors and sampling point contribution factors are established for the current load increment, the coarse-scale stress
is computed using the following fixed-point iteration scheme:

qulO-iCj — Z d’(ﬂ) o’}jﬂ)(qac)
p

(2.31)
06¢ = 00+ CC @ A€t (Initial condition)
Each phase stress is given in terms of the phase strain increment and phase eigenstrain increment by
ol 109 = 01 + L, (46 10%) - 4 05 232)
The phase strain increment is computed using the phase-average influence function tensors:
b b
46 16%) = EFP aeS, + PP Ay, (16°) (2.33)

In this expression, the increment of homogenized eigenstrain is computed from the previous iteration of the coarse-scale stress in
the current increment, according to

Ay,.cj(qac) = Aeicj -C¢

Can (1055 = 005s) (2.34)

ab ab
As described in Section 2.3, the phase eigenstrains are given by

N®

sampl

P
oy = Y &P aul o) (2.35)
k=1

Each sampling point eigenstrain increment is computed from the sampling point stress and strain using the phase constitutive model,
according to
fi fi ~ fi fi fi fi
A”k(z€>(qac) = Aek(il;)(qac) - Ci(f;b [Ufzi)(oek(ﬂ) + Aek(ﬁ)(qo'c)’ Osk(ﬂ)) - 0"/((513] (2.36)

9
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Here, the sampling point strain increments are found using the sampling point influence function tensors, via

(ﬁ (ﬁ
f(ﬂ)(q ) = a ( A c +P )AMSb(qo-c) (2.37)

®

The variables Oaf(ﬂ ) Oei(ﬁ) and Osk are tracked as state variables for the sampling point «,”. The increment of homogenized

eigenstrain in (2.37) is again given by (2.34).

2.4.1. Coarse-scale tangent modulus
The following is a formulation of an algorithmically consistent coarse-scale tangent modulus for use in the Newton-Raphson
loop of the coarse-scale solver. Applying the chain rule to (2.31) and (2.32) yields

c ®
odsy; 3 g0 94!
(Mefrm 7 dAe;n
(2.38)
- Z POFSLN ity
tjab (Mefnn dAefnn
Differentiating (2.33) with respect to coarse-scale strain yields
()Ae@ 0A MC
'CJ _ Eir;n(ﬂ)+ Pit;b(ﬂ) cﬂb (2.39)
d4eS 04¢S
Using the chain rule to differentiate (2.35) with respect to coarse-scale strain, then inserting (2.36) and (2.37), yields
®»
(x) N, £(p) f(p)
OAp;; = %pl aAM’“/ 94e k(fb
04¢e¢ K a4e B 04ec
mn k=1 kub mn
(2.40)

0)
~ sampl » ) gep (K,((m) mn(r,ﬂﬂ>> cd(x,‘f)) aAMEd

- 6 ljﬂb Clququab Eab + Pab 0AeC

k=1 emn

The gradient of homogenized eigenstrain with respect to coarse-scale strain, which appears in both (2.39) and (2.40), is found in
terms of the coarse-scale tangent modulus by differentiating (2.34):

()A[,{’C/ c aAD—Zb
Tace = o~ Clanggee (2.41)

Combining (2.38)—(2.41) yields the following system of equations for the coarse-scale tangent modulus:
04c¢

Ly + PiicaC — e 4P,
( ijab ijed cdab) 0455,," ijmn ijmn
[ N® 1
DL | g " ® @ oo W e
— k
gijm" - 2 ¢ Lljab + Z é ( abed Cabpq qucd ) Ecd
B (2.42)
[ ND 7
@O | pr) .0 @ e &\ s
pijmn z ¢ Lljah + Z 6 ”bfd Cahpquqed Pcd
s

3. Numerical results

In this section, four numerical examples are used to demonstrate the capabilities of the solver-free ROH approach outlined in
Section 2. First, the geometry, discretization, and material properties of the unit cell used for the four examples are described in
Section 3.1. Next, in Section 3.2, the eigenstrain influence function tensors and eigenstrain sampling point contribution factors are
computed and used to reproduce the coarse-scale stress—strain curves from the CCH training data set. Section 3.3 verifies the solver-
free ROH for a single coarse-scale element subjected to combined non-monotonic loading in tension and shear. Section 3.4 contains
results from three-point bending of an eight-layer composite coupon, which demonstrate the combined accuracy and computational
efficiency of the proposed method. Finally, Section 3.5 presents coarse-scale stress—strain results from tensile loading of a three-layer
composite plate with a center hole.

3.1. Unit cell description
A continuous fiber unit cell with geometry shown in Fig. 1 is used in each of the numerical examples presented here. Its overall
shape is a cube with edges of unit length. This unit cell is commonly used to model a carbon fiber-reinforced polymer composite. In

this study, a fiber volume fraction 26% has been chosen, giving a fiber radius of 0.29. A J2-elastoplastic constitutive model is chosen

10
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Fig. 1. Continuous fiber unit cell.

Table 1

Material properties of the unit cell matrix and fiber.
Property Matrix (f=1) Fiber (4 =2)
E Young’s modulus, MPa 3800 252000
v Poisson’s ratio 0.32 0.02
o Yield strength, MPa 28.0 3400
o, Ultimate strength, MPa 28.0 3800
s Hardening exponent 1.0 600
H Hardening modulus, MPa 380.0 2000

Hardening type kinematic kinematic

P Volume fraction 0.74 0.26

for the fiber, with high stiffness and high yield stress relative to the matrix material. A more realistic model of carbon fiber would
be a damage model. However, damage models present convergence and mesh-dependency challenges (even for the CCH reference
solutions). Thus, more realistic constitutive models for the fiber will be considered in a future study. The matrix material is also
modeled as a J2-elastoplastic material. The hardening law has a linear and an exponential term:

H(a) = (65 — 67)(1 — exp(=6a)) + Ha (3.1)

The specific matrix elastoplastic properties and fiber elastic properties chosen, given in Table 1, approximate those of epoxy resin
and carbon fiber respectively [87,95]. The finite element mesh used for the majority of the examples here has 1500 nodes and 6593
linear tetrahedron elements, as shown in Fig. 1.

3.2. Reproduction of CCH training data

As described in Section 2, eigenstrain influence tensors and sampling point contribution factors are computed based on a small
set of training data generated with the CCH. This section details how the training data is generated and evaluates how well the
solver-free ROH is able to reproduce the coarse-scale stress—strain curves from the training data.

In this study, as in [87], training data is generated by six uni-directional loadings of a single coarse-scale 8-Gauss point brick
finite element occupying the volume [0, 1] x [0, 1] x [0, 1] in R3. In each test mn, a minimum of constraints are applied so that stress
in directions other than mn is close to zero. The specific boundary conditions used for the CCH tests are described in Tables 2 and
3 in terms of a control parameter »™". The parameter ™" corresponds to the magnitude of strain in the loading direction and may
be chosen by the user to cover a desired range of values of accumulated eigenstrain.

From these training data, 10 snapshots of the eigenstrain influence tensors are computed according to the procedure described
in Section 2.2. Fig. 2 shows the variation of the Euclidean norm of four columns of the phase-average influence tensors over a range
of values of the homogenized eigenstrain norm. As shown, these influence tensors vary gradually as the homogenized eigenstrain
norm increases. For the unit cell presented here, the most marked variation is in the shear components of the influence tensors for
values of eigenstrain norm close to zero, i.e., near the onset of accumulation of eigenstrain in the unit cell. Capturing this variation
is key to accurately capturing the stress response near the onset of eigenstrain accumulation in the unit cell.

11
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Table 2
Boundary conditions for unidirectional tensile tests (mn = 11,22,33).
Location on boundary BC
x;=0,x,=0,x3=0 u; =0 uy, =0 uy =0
x; =0 u =0
X, =0 u, =0
x3=0 uy; =0
X, =1 u, =n""
Table 3
Boundary conditions for unidirectional shear tests (mn = 23,13,12).
Location on boundary BC
x,=0 u, =0 (for p# m and p # n)
%, =0 P
%, =0 U, = =" /2
%=1 Uy = 17 /2
Xy =1 u, =™ /2
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Fig. 2. Influence of individual components of eigenstrain on magnitude of phase-average strains: variation with homogenized eigenstrain norm.

Next, the locations of sampling points are chosen using the genetic algorithm described in Section 2.3.1. Because evaluation
of the objective function used by the genetic algorithm is relatively inexpensive, we can use the following procedure to select the
number of sampling points in each material phase:

1. Run the genetic algorithm with ngen max = 100 (or some other small number) for various trial values of Ns(f;n ol recording

the minimum value of the objective function CNw) given in (2.22) achieved for each trial.

sampl

2. Define the 100-generation relative error § for each Ns(gznpl by

Cyw 1
§=—2 3.2
2 (3.2)
The minimum value of C achievable in 100 generations of the genetic algorithm by a one-sampling-point approximation,
C,, is a useful worst-case reference value for evaluating the quality of an Ns(aﬁr)npl—point approximation. For chosen relative
threshold 6,,,, and absolute threshold C,,,,, choose the minimum number of sampling points that achieves § < §,,,, and/or

C < Crax-

Fig. 3 shows the value of the objective function vs. the number of sampling points resulting from the above procedure for the
matrix phase. The y-value of each data point in this plot is C, ) , the minimum value of the objective function returned by the

sampl
genetic algorithm after 100 generations. The 48 points were generpated in 114 s on a machine with an Intel(R) Core(TM) i7-9850H
CPU @ 2.60 GHz. From this data, we choose NS(;I)HPI = 10 in the matrix phase and NS(Z;HPI = 6 in the fiber phase for the numerical
examples in this study because they achieve § < 1x 107! and C < 2x10~*. We have found this threshold to be sufficient to reproduce

the training data. Below this threshold, the error due to the influence function approximation of fine-scale strain begins to dominate

12
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Fig. 3. 100-generation objective function in genetic algorithm vs. number of matrix sampling points.

Table 4

Choices of hyperparameters for the genetic algorithm.
Parameter Value
np Number of parents 100
nc Number of children 100
pimm Immigration probability 10%
pmut Mutation probability 90%
ngen_max Maximum number of generations 5000
tol Stopping threshold for obj func 1.0e—4

the error due to the sampling point approximation of eigenstrain. Next, the location of the 10 sampling points are determined from
one last application of the genetic algorithm, with chosen hyperparameters given in Table 4. Finally, the sampling point contribution
factors are computed using the procedure described in Section 2.3.2.

Remark. Suitable hyperparameters for the genetic algorithm such as pmut, some of which affect the rate of convergence, may be
selected using the 100-generation procedure described above. From Fig. 4, for example, we see that the range 0.6 < pmut = 1—pimm <
1.0 achieves the smallest minimum values of the objective function on average within 100 generations, with pmut = 0.9 achieving
the minimum overall. A value of pmut = 0.9 has therefore been chosen for the numerical examples in this study.

In Fig. 5a—f, the coarse-scale stress—strain curves from the CCH training data are compared with solver-free ROH reproductions
of these training data. The solver-free ROH results agree with the load test data, as expected. In practice, the assumption that the
influence tensors and sampling point contribution factors depend on the unit cell material history only through a scalar variable
lou| is imperfect. The manner in which these tensors and factors are pre-computed seeks to balance the discrepancy between the
solver-free ROH solution and the CCH solution across training simulations. Thus, the small discrepancies between the solver-free
ROH results and the CCH results shown in Fig. 5a—f are to be expected.

3.3. Multiaxial loading of a single coarse-scale element

In this section, we verify whether the solver-free ROH approach is sufficiently robust to capture the behavior of this composite
in mixed-loading cases. For this purpose, we apply non-monotonic loading to the coarse-scale element from the previous section in
two combinations of tension and shear. The prescribed displacements of the vertices of the coarse-scale element have been chosen to
cause a significant amount of both types of strain simultaneously. The non-monotonic loading is achieved by applying the boundary
conditions incrementally according to the following amplitude function of pseudo-time given by

t 0<r<l1
amp(f) =42—-t 1<t<2 (3.3)
t—2 2<t<3

Here, pseudo-time ¢ = 3 corresponds to the end of the simulation. The boundary conditions are described in more detail in Tables 5
and 6. The same unit cell mesh and material properties from the previous example are used in this example. The eigenstrain influence

13
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Fig. 4. 100-generation objective function in genetic algorithm vs. probability of mutation.

Table 5
Boundary conditions at conclusion of zz-xz loading.
Location on boundary BC €33 = 0.007 €3 = 0.0045
X, =0 u, =0
x;=0,x3=0 u =—€3/2 uy =—€3/2
x;=0,x3=1 u =é&3/2 Uy =—€13/2+ &3
x=1,x=0 u =—€;3/2 uy =€3/2
xp=1,x3=1 up =8&;3/2 uy =€3/2+ 63
Table 6
Boundary conditions at conclusion of zz-yz loading.
Location on boundary BC &3 = 0.004 &3 = 0.006
x, =0 up =0
x;=0,x3=0 Uy = —é3/2 uy = —éy3/2
X =0, x3 =1 Uy = &;3/2 uy = =€y /2 + &3
x,=1,x,=0 Uy =—é;/2 uy = &y3/2
xX;=1,x3=1 Uy =&€y/2 Uy =&y /2 + E33

tensors and sampling point contribution factors from the previous example are re-used as well, since they are pre-computed for the
same unit cell mesh and material properties.

As shown in Fig. 6, there is agreement between the stress—strain curves from the proposed approach and the CCH reference
solutions for the mixed-loading cases given. As with the uni-directional results, the discrepancy between the CCH and solver-free
ROH results for zz-xz loading stems from the assumption about equivalent unit cell states. In this case, complex interactions between
tensile and shear loading are not fully captured by the unidirectional test data. Despite this assumption and despite pre-computation
of the eigenstrain influence tensors and sampling point contribution factors using only uni-directional load test results, the solver-
free ROH is sufficiently robust that it can capture the behavior of the composite under mixed loading conditions with reasonable
accuracy. This is particularly evident when the solver-free ROH results are compared with results from the un-calibrated hybrid
compatible-incompatible eigenstrain ROH (labeled ROH in the plot legend). Also notably, while the solver-free ROH does not resolve
fine-scale fields like the solver-free CCH is able to do, the solver-free ROH still retains accuracy in the coarse-scale fields relative to
the CCH.

In Fig. 7, relevant components of phase-average stress are plotted against the corresponding components of phase-average strain
in the matrix phase for both multi-axial loading examples. Since plastic strain does not develop in the fiber phase in these examples,
the plots of fiber stress vs. strain have been omitted for brevity. As with the coarse-scale stress—strain results, the solver-free ROH
matrix stress—strain curves agree with the CCH results. The improvement in accuracy of the proposed method over the standard
ROH method is pronounced near the onset of eigenstrain accumulation in each of the plots. Fig. 8 contains phase-average plots
of plastic strain vs. strain in the matrix phase. When the eigenstrain in the unit cell is well-developed (e.g. during the unloading),
deviation in plastic strain between the solver-free ROH and CCH is evident. However, the solver-free ROH still retains significantly
greater accuracy than the standard ROH in most of the plots. Moreover, in the transverse tension/transverse shear loading example,
the solver-free ROH captures the continued development of eigenstrain during unloading and reloading, whereas the standard ROH
predicts no change in plastic strain during this stage.
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Fig. 5. Uni-directional load tests: coarse-scale stress vs strain in primary loading direction.

3.4. Computational cost savings: Three-point bending

To demonstrate the combination of accuracy and computational efficiency of the proposed solver-free ROH, we examine the
results from a simulated three-point bending test of a composite coupon. The geometry of the bending coupon is shown in Fig. 9.
The coupon is a thin plate with large-face dimensions 40 mm x 8 mm. The total thickness is 1.04 mm, divided into eight composite
layers. The same continuous-fiber unit cell used in the previous examples is used to model all layers of the plate, with the unit cells
oriented differently in each layer. The unit cell orientations in each layer, expressed as angle between fiber direction and coarse-scale
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Fig. 7. Multi-axial loading: components of stress vs. strain in the matrix phase.

x axis, are provided in Table 7. The mesh used for this coarse-scale geometry contains 160 8-node brick elements. Such a coarse
mesh has been chosen so that the CPU time required to compute the solution would be dominated by the unit cell computations
rather than the coarse-scale solver. Moreover, using a coarse macro-scale mesh allowed us to minimize the high computational
cost of generating CCH reference solutions for this example while still obtaining a meaningful comparison of the computational
efficiency of the two methods.
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Fig. 9. Three-point bending: coarse-scale geometry and mesh. Critical elements highlighted.

Table 7

Unit cell orientations in layers of bending coupon.
Layer (Bottom to top) 1 2 3 4 5 6 7 8
Orientation —45° 0° +45° 90° —45° 0° +45° 90°

The coarse-scale boundary conditions used in the three-point bending are provided in Table 8. Fig. 10a-h show the stress—strain
curves in the column of critical elements highlighted in Fig. 9, according to both the CCH reference solution and the solver-free

ROH solution. The solver-free ROH stress-strain curves closely match those from CCH.

In Fig. 11, the von Mises stress distribution in the bottom layer of the coupon is shown for both CCH and solver-free ROH
simulations. Fig. 11 shows that there is agreement between the CCH and solver-free ROH coarse-scale stress fields as a whole.
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Table 8
Boundary conditions for three-point bending example.
Location on boundary x BC y BC z BC
x=0,y=0,z=0 u, =0 u, =0 u, =0 (fixed corner)
x=0,z=0 u, =0 u, =0 (pinned end)
x =40 mm, z=0 u, =0 (roller end)
x =20 mm, z=1.04 mm u, =—1.8 mm (displ. at center)
Table 9
Breakdown of computational cost for solver-free ROH: 15,000-element unit cell.
Offline stage 1.01E4+03 s
Generating CCH data 6.79E+02 s
Pre-computing influence tensors 2.74e+01 s
Genetic algorithm 2.95e+02 s
Online stage 160 CS GP, 20 load incr 3.30E+01 s
All CS stress updates per load incr 5.89E-01 s
CS solver per load incr, per NR iter 4.65E—03 s
Avg number of NR iterations per load incr 2.7

Table 10
Boundary conditions for plate with hole example.
Location on boundary x BC y BC z BC
x=0 u, =0 u, =0 u, =0 (fixed left end)
x =40 mm u, = 0.32 mm (prescribed displ.)

We study the computational efficiency of the solver-free ROH approach relative to the CCH by repeating the bending simulation
for four increasingly dense unit cell meshes. The CPU time required for the online stage of the computation is recorded for each
mesh in both the CCH simulation and the solver-free ROH simulation. As shown in Fig. 12, the computational cost required for the
online stage of the solver-free ROH method hardly changes as the number of elements in the unit cell mesh increases. In contrast,
the computational cost of the CCH method is nearly a factor of 10 higher for the finest mesh than for the coarsest mesh. For our
implementation, the online stage of the solver-free ROH approach achieved a speedup of 3300 for the most dense unit cell mesh
of about 22,000 elements. For reference, the overall speedup reported for the solver-free CCH in [87] in a similar example was
on the order of 10. This comparison indicates that the reduction in the number of fine-scale stress updates results in a significant
additional reduction in computational time compared to both the solver-free CCH and the CCH. The computational costs of various
components of the solver-free ROH algorithm are broken down in Table 9 for a unit cell mesh with approximately 15,000 elements.
As expected, the coarse-scale solver accounts for very little computational cost relative to the unit cell computation in this example;
this is true for both the CCH and solver-free ROH. It stands to reason that the solver-free ROH would achieve the most significant
speedup over CCH in problems with complex unit cell geometries requiring many finite elements to resolve.

3.5. Open-hole tension of a composite plate

The final example considered in this study, open-hole tension of a thin composite plate, further demonstrates the accuracy
achievable by the solver-free ROH. Following the example of [87], we consider a rectangular plate with dimensions 40 mm x
24 mm and total thickness 0.4088 mm, with a 8 mm-diameter circular hole at the center. The thickness (z) dimension comprises
three layers, each represented at the fine scale by the unit cell used in the previous examples, with varying fiber orientations. The
orientations from bottom to top layer, expressed as angle between fiber direction and coarse-scale x axis, are —45°, +45°,90°. The
mesh used to discretize the coarse-scale domain consists of 14,562 linear tetrahedral elements.

To simulate tensile loading, the left end of the plate is fixed in every direction and a prescribed x displacement is applied to the
right end. Table 10 contains the details of the boundary conditions applied.

Plots of coarse-scale von Mises stress and strain are given in Fig. 13 for the maximum-stress and maximum-strain elements
appearing in Figs. 14 and 15. Both the overall stress and strain fields and the critical element stress—strain curves show agreement
between the CCH and solver-free ROH solutions. Figs. 14 and 15 compare the von Mises stress and strain distributions respectively
in each layer of the plate that result from the CCH and solver-free ROH simulations.

4. Conclusion

The solver-free ROH approach devised in this study considerably reduces the computational cost of homogenization of
heterogeneous media relative to the CCH, while preserving a great deal of accuracy. Like the ROH, the solver-free ROH relies on a
set of pre-computed eigenstrain influence tensors. Unlike the ROH, however, snapshots of the solver-free ROH eigenstrain influence

tensor are allowed to depend on the unit cell material history and computed based on a set of low-cost CCH training simulations,

18



A. Beel and J. Fish Computer Methods in Applied Mechanics and Engineering 425 (2024) 116932

40 : . T T 150
%30 1 %
[} [}
LV-; L; 100 - 1
wn
g 20 2
= =
g o 50r 1
210t 1 2
—8—CCH —=—CCH
—x— solver-free ROH —*—solver-free ROH
0 : : : : 0 . : .
0 0.002  0.004  0.006  0.008 0.01 0 2 4 . 6 8
von Mises strain von Mises strain «10°
(a) Layer 1 (bottom) (b) Layer 2
250 T T T T 100
P 200 [ 1 @ 80+ 1
[} [}
B2 2
% 150 - . %60 ]
0 @
7 Z
= 100 1 = 401 ]
=] o
g g
507 —=—CCH 1 20F —=—CCH 1
—x— solver-free ROH —*—solver-free ROH
0 . . . : 0 .
0 0.002  0.004  0.006  0.008 0.01 0 2 4 . 6 8
von Mises strain von Mises strain 1073
(c) Layer 3 (d) Layer 4
20 100
815¢ 1 % 8oy ]
- -
% e ]
wn wn
g 1ol |8
= = 407 1
5 .l ] g
> 5 > | |
—e—CCH 20 —e—CCH
—*—solver-free ROH —>—solver-free ROH
0 . - : - : 0 - . - -
0 1 2 3 4 5 6 0 1 2 3 4 5
von Mises strain %1073 von Mises strain %1073
(e) Layer 5 (f) Layer 6
300 T T T T 120
100 [ ]
w wn
8 8
= 200 1 B 80r 1
wn wn
g $ 60t ]
= =
= 100 1 = 40 R
g g
—=—CCH o0 —=—CCH |
—*—solver-free ROH —>—solver-free ROH
0 . . . : 0 . . .
0 1 2 3 4 5 0 2 4 6 8
von Mises strain %1078 von Mises strain %1073
(g) Layer 7 (h) Layer 8 (top)

Fig. 10. Three-point bending: coarse-scale von Mises stress vs strain in critical elements.

as first described in [87] for the solver-free CCH. Unlike both the ROH and solver-free CCH, the solver-free ROH approximates
the phase-average eigenstrains using a linear combination of fine-scale eigenstrains computed at pre-chosen sampling points. The
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sampling points and snapshots of their weights in this linear combination are pre-computed using the same training data as has
been used for the influence tensors.

The proposed approach has first been verified by reproducing the training set of stress-strain curves from uni-directional one-
coarse-scale-element CCH simulations. Following this verification, the consistency of the solver-free ROH approach with CCH results
has been further demonstrated in mixed-mode loading outside the training set, as well as bending coupon and open-hole plate
tension examples. In addition to producing results consistent with CCH, the solver-free ROH approach has been shown to achieve
a remarkable computational cost savings, which rises steeply as the density of the unit cell mesh is increased.

Part of this speedup is due to the removal of the fine-scale solver, as first described in [87]. This reduces the cost from
approximately G(Ngof) to O(Nyp), where Ny is the number of unit cell degrees of freedom and Ngp is the number of unit cell
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Fig. 13. Plate with hole: coarse-scale von Mises stress vs strain.

Gauss points, which is dramatic as unit cell density grows very large. Comparing the solver-free ROH to the solver-free CCH,
however, we find the more significant cause of the speedup: the introduction of the sampling point approximation of the phase-
average eigenstrains. This approximation reduces the cost of each coarse-scale stress update from O(Ngp) t0 O(Ngap1), Where N,y
is the user-specified number of unit cell sampling points. For a fixed number of sampling points relative to the density of the
unit cell mesh, the solver-free ROH coarse-scale stress update is approximately constant-time, a characteristic it shares with the
one-partition-per-phase ROH.
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Fig. 14. Plate with hole: coarse-scale von Mises stress.

In the offline stage of the computation, a genetic algorithm is employed to identify suitable eigenstrain sampling points in the
unit cell. While this approach works well for our purposes, it is cumbersome for large numbers of snapshots, sampling points, or
training simulations. Moreover, it is a heuristic approach to optimization, so it lacks a guarantee that a globally optimum solution
has been reached. In a future study, it would be worthwhile to devise a physically-based approach to identifying suitable sampling
points, utilizing insight about the unit cell geometry and material properties.

Another possible area for improvement would be in the choice of proxy variable (or variables) for the unit cell material history,
perhaps using a data-driven approach. In this way, appropriate snapshots of eigenstrain influence tensors and sampling point
contribution factors could be taken over a wide representative range of unit cell material histories.
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Fig. 15. Plate with hole: coarse-scale von Mises strain.
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