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DL_POLY Quantum 2.0, a vastly expanded software based on DL_POLY Classic 1.10, is a highly parallelized com-
putational suite written in FORTRAN77 with a modular structure for incorporating nuclear quantum effects into large-
scale/long-time molecular dynamics simulations. This is achieved by presenting users with a wide selection of state-of-
the-art dynamics methods that utilize the isomorphism between a classical ring polymer and Feynman’s path integral
formalism of quantum mechanics. The flexible and user-friendly input/output handling system allows the control of
methodology, integration schemes, and thermostatting. DL_POLY Quantum is equipped with a module specifically as-
signed to calculating correlation functions and printing out the values for sought-after quantities such as dipole moments
and center-of-mass velocities, with packaged tools for calculating infrared absorption spectra and diffusion coefficients.

I. INTRODUCTION

Classical molecular dynamics (MD)1–4 has been a power-
ful tool in calculating macroscopic, i.e., experimentally ob-
servable, thermodynamic and dynamic properties of a wide
variety of physical, chemical, and biological systems.5–8 In-
voking the Born-Oppenheimer approximation9 on the sep-
aration of electronic and nuclear motion and utilizing the
laws of classical mechanics, MD presents an unparalleled
time-efficiency for long-time/large-scale simulations. On the
downside, it neglects nuclear quantum effects (NQEs)10 asso-
ciated with atomic motions. This can lead to incorrect sce-
narios when NQEs such as tunneling and zero-point energy
are deterministic factors in mechanism, rate, and efficiency
of condensed-phase dynamics. In response, the well-known
isomorphism11–14 between Feynman’s path integral formula-
tion of quantum mechanics15 and a classical ring polymer
of n beads have been exploited extensively for calculating
condensed-phase statistical and dynamical properties subject
to NQEs.16–18 Rahman and Parrinello studied the properties of
an electron solvated in molten KCl by imparting fictitious ki-
netic energy in the discretized version of the path integral (PI)
Hamiltonian, essentially formulating path integral molecular
dynamics (PIMD) for investigating equilibrium properties.19

This was followed by the introduction of centroid molecular
dynamics (CMD)20–22 and ring polymer molecular dynamics
(RPMD)23–25 to make use of the PI formulation in modeling
the real-time dynamics in condensed phases.

Despite the exciting potentials and extensive successes of
PI approaches, even in the case of non-adiabatic quantum
dynamics,26–32 their approximate nature can lead to deviation
from correct physical behavior in the study of specific reac-
tion regimes or calculating certain properties. A very well-
known example is the intrinsic problems of CMD and RPMD
in quantitative simulation of infrared absorption spectra.33,34

Nevertheless, inclusion of NQEs into MD simulations via

classical trajectories with an extended phase-space provides
a computational efficiency that is not achievable with fully
quantum mechanical approaches. As such, a number of dis-
tinct codes have been developed over the years for perform-
ing PI simulations. While many of these codes are exclusive
to individual research groups and only offer limited applica-
tions, there were also considerable efforts in bringing PI simu-
lations to the mainstream by developing open-source and pub-
licly available software packages. The most renown example
i-PI35, a universal force engine interface written in Python,
is a modular software that allows a range of PI simulations
with a variety of user-controlled features. Contingent upon an
interface with external software packages for the calculation
of forces, i-PI also offers ways of reducing computation time
using state-of-the-art ring polymer contraction36,37 and mul-
tiple time stepping.37,38 Recently, the MD simulation pack-
age LAMMPS39 has also been equipped with PI simulations,
though only offering two options of PIMD or CMD methods.

Here, adding to and expanding upon the existing repertoire,
we introduce DL_POLY Quantum 2.0 as a highly modular and
user-friendly computational platform for advanced PI simu-
lations. It is the newest version of our DL_POLY Quantum
1.0,40 which was a modified version of DL_POLY Classic
1.10,41 a highly parallelized software for classical MD sim-
ulations. DL_POLY Quantum 2.0 is a stand-alone software
that offers a diverse range of PI simulations in a computation-
ally efficient manner so that the users can test different flavors
of path integrals for their systems of interest by invoking sim-
ple keywords in the input file and make a proper choice of the
appropriate methodology. Written in FORTRAN, DL_POLY
Quantum 2.0 is most suitable for high-performance comput-
ing and provides significant time efficiency. Furthermore, the
modular architecture makes it accessible for future method-
ological implementations or interfacing with other existing
packages. One of the notable features of DL_POLY Quan-
tum 2.0 is the correlation module, which offers the capabil-

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:
10
.10
63
/5.
01
97
82
2



DL_POLY Quantum 2

ity to calculate velocity and dipole correlation functions. The
module operates outside of any integration method, allowing
its use for any implemented real-time dynamics simulation.
In the next sections, we will give an overview of the PI for-
malism and the methods implemented in DL_POLY Quantum
2.0. We then discuss the features of our DL_POLY Quantum
2.0 code and its performance. We will complement these dis-
cussions with representative simulated test cases and relevant
results and will wrap up with a discussion of future develop-
ment plans for the software.

II. PATH INTEGRAL FORMALISM

As mentioned above, the main goal of DL_POLY Quantum
is to offer a suite of many path integral based dynamics
methods in a modular and extrapolatable suite that is easy to
use. In this section, we outline and differentiate, wherever
necessary, the theory of different path integral approaches
implemented in DL_POLY Quantum 2.0.

A. Path Integral Molecular Dynamics

The general Hamiltonian for a 1-dimensional system of N
particles is written as:

Ĥ =
N

∑
i=1

p̂2
i

2mi
+V̂ (x), (1)

where x = {x1, . . . ,xN} and p = {p1, . . . , pN} are position and
momentum vectors, mi is the mass of the i-th particle, and
V̂ (x) is the potential of the system. The canonical partition
function for this system is

Z = Tr
[
e−β Ĥ

]
, (2)

where β = (kBT )−1 is the reciprocal temperature. When sub-
ject to the Feynman path integral formulation42 and Trotter
approximation,43 the trace in Eq. 2 becomes a classical phase
space integral,

Zn ∝

∫
d f x

∫
d f p e−βHn(x,p), (3)

where f = Nn and n is the number of imaginary time slices,
or “beads”, of the path integral. Zn becomes equal to Z in the
infinite bead limit. The PIMD Hamiltonian in Eq. 3 is defined
as

Hn(x,p) =
N

∑
i=1

n

∑
α=1

[
p2

i,α

2m′
i
+

1
2

miω
2
n (xi,α − xi,α−1)

2

]

+
1
n

n

∑
α=1

V (x1,α , . . . ,xN,α),

(4)

where xi,α and pi,α are the position and momentum of the
α-th bead of the i-th particle, m

′
i is the fictitious Parrinello-

Rahman mass19, and ωn =
√

n
β h̄ . The cyclic nature of the trace

in Eq. 2 requires that xi,0 = xi,n, creating a closed chain of ring
polymer beads.

The PIMD method can be used to calculate quantum me-
chanical equilibrium properties from classical trajectories.
Within the PI framework, the expectation value of an oper-
ator, Â, is

⟨A⟩= 1
Z

Tr
[
e−β Ĥ Â

]
≃ 1

(2π h̄) f Zn

∫
d f x

∫
d f p e−βHn(x,p)An(x),

(5)

where

An(x) =
1
n

n

∑
α=1

A(xα) (6)

is the bead-averaged value of the operator. These expecta-
tion values can be computed by time averaging the value of
the operator over PIMD trajectories, as is commonly done in
classical MD simulations. The equations of motion (EOMs)
derived from the PIMD Hamiltonian are

ṗi,α =−miω
2
n (2xi,α − xi,α−1 − xi,α+1)+

1
n

∇xi,αV (x)

ẋi,α =
pi,α

m′
i
.

(7)

To ensure that the configurations sampled during the tra-
jectories are part of the correct Boltzmann distribution, PIMD
simulations are performed in the canonical ensemble by cou-
pling the dynamics to a thermostat. A number of different
thermostats are implemented in DL_POLY Quantum 2.0, in-
cluding conventional MD thermostats as well as PI specific
thermostats which will be thoroughly explained in the Sec-
tion III.

Straightforward implementation of the PIMD Hamiltonian
and its EOMs in Cartesian coordinates is complicated by the
harmonic coupling between neighboring beads. Most imple-
mentations of the method transform the Hamiltonian into a
different coordinate system which diagonalizes the couplings.
DL_POLY Quantum offers two different implementations of
PIMD using staging variables and normal mode coordinates.
Detailed explanations of these two transformations can be
found in Appendix A. Here, it suffice to mention that the
PIMD Hamiltonian in normal modes is

HNM =
N

∑
i=1

n−1

∑
k=0

[
π2

i,k

2mi
+

1
2

miω
2
k q2

i,k

]

+
1
n

n

∑
α=1

V (x1,α(q), . . . ,xN,α(q))
(8)

where ωk = 2ωn sin(kπ/n) are normal mode frequencies and
qi,k and πi,k are the positions and momenta for the k-th normal
mode of the i-th atom.

B. Ring polymer molecular dynamics

Introduced by Craig and Manolopoulos,23–25 RPMD is
an approximate quantum dynamics method that utilizes the
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DL_POLY Quantum 3

PIMD Hamiltonian to perform real-time dynamics. While
there is no rigorous derivation of RPMD from real-time quan-
tum dynamics, numerical simulations have demonstrated the
effectiveness of the method.24,44–46

The RPMD Hamiltonian differs slightly from the PIMD
Hamiltonian of Eq. 4 as it is taken to be

Hn(x,p) =
N

∑
i=1

n

∑
α=1

[
p2

i,α

2m(i)
n

+
1
2

m(i)
n ω

2
n (xi,α − xi,α−1)

2

]

+
1
n

n

∑
α=1

V (x1,α , . . . ,xN,α),

(9)

with m(i)
n = mi

n and ωn =
n

β h̄ . Note that the fictitious mass in
the kinetic energy term must be equal to the physical mass,
with the additional factor of 1

n multiplying the physical mass
coming from sampling the initial momenta at the physical
temperature, β , instead of a higher temperature, βn = β

n , as
is often done in RPMD simulations.

RPMD simulations can be performed utilizing the same
normal mode integration scheme as with PIMD (see Ap-
pendix A 2) but without coupling the dynamics to any ther-
mostatting method.

C. Partially adiabatic centroid molecular dynamics

In CMD, the particle is evolved in real time under the ef-
fective mean-field potential of an imaginary time ring poly-
mer with its centroid constrained at the position of the
particle.20–22 Adiabatic implementations of CMD were cre-
ated to allow for the mean-field potential to be calculated “on-
the-fly” during the dynamics.20 This is achieved by using the
physical mass of the particle as the centroid mass, scaling
down the mass of the non-centroid internal modes of the RP,
and attaching the internal modes to a thermostat so that they
sample the equilibrium distribution while being constrained
to the position of the slower moving centroid.20 Full adiabatic
separation requires a very small mass for the internal modes,
and thus a very small integration time step. This led to the
development of the partially adiabatic centroid molecular dy-
namics (PA-CMD) method, where the mass scaling is not as
extreme, allowing for a larger time step while still providing
accurate dynamics.47

The PA-CMD effective Hamiltonian in terms of the free
ring polymer normal modes is47

H0
PA−CMD =

N

∑
i=1

n−1

∑
k=0

[
π2

i,k

2σ2
k m(i)

n

+
1
2

m(i)
n ω

2
k q2

i,k

]
, (10)

where σk is a scaling factor defined as

σk =

{
1, k = 0
ωk/Ω, k ̸= 0

, (11)

and the normal mode masses and frequencies are the same
as for RPMD. The choice of Ω, which is related to the adia-
baticity parameter of the original PA-CMD, determines how

FIG. 1. Flowchart of major modules used for a PI simulation with
correlation calculation in DL_POLY Quantum 2.0. The gray boxes
indicate input and output files. The red boxes indicate modules from
DL_POLY Classic 1.10 with minor or no changes to them. The blue
boxes indicate modules that have either been added or heavily modi-
fied.

adiabatically separated the centroid is from the other internal
modes. One such choice is33

Ω =
nn/(n−1)

β h̄
. (12)

This specific choice pushes the frequencies of the internal
modes to be outside of the spectral range of interest to avoid
the spurious frequencies of RPMD spectra while allowing for
the largest integration time step.

To ensure the necessary canonical sampling of the internal
modes to generate the centroid potential of the mean force
needed to evolve the centroid, the internal modes are coupled
to a thermostat. In DL_POLY Quantum 2.0, PA-CMD is im-
plemented with the massive NHC thermostat. When calculat-
ing correlation functions, only the centroid contributes to the
operators, resulting in

An(x) = An(x̄), (13)

where x̄ = 1
n ∑

n
α=1 xα is the RP centroid.

III. PROGRAM OVERVIEW AND FEATURES

DL_POLY Quantum 2.0 is designed as a generalized, path
integral extension to the DL_POLY Classic 1.10 program,
utilizing both the original code and its overall architecture.
The additions to the program keep its modular nature in-
tact, allowing for a straightforward path for future additional
functionality. DL_POLY Quantum 2.0 offers a variety of
PI dynamics methods, expanding on the PIMD module from
DL_POLY Classic 1.10. The required input files (i.e., CON-
TROL, FIELD, and CONFIG files) and the basic output files
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DL_POLY Quantum 4

(i.e., OUTPUT, STATIS, and HISTORY files) are unchanged.
Furthermore, the program still allows utilizing the originally
implemented features in DL_POLY Quantum 1.0. To high-
light to structure of the code and the changes made in the
current version, Fig. 1 gives a flowchart for a PI simulation
including a correlation function calculation. In particular, it
displays the interactions between our new, or heavily modi-
fied modules, and the existing modules in DL_POLY Classic.
More details on the implemented features in DL_POLY Quan-
tum suite are listed in the following.

A. DL_POLY Quantum suite: Features of version 1.0

• The flexible four-site q-TIP4P/F quantum water
potential48 is implemented for both classical and path
integral simulations. This is a fixed-point charge model
for liquid water in which the O-H stretches are de-
scribed by Morse-type functions. A new module called
water_module.f is added to the suite, which includes
several subroutines needed to simulate water dynam-
ics. The input files should be changed accordingly; the
CONTROL file should contain the keyword QTIP4PF.
In the CONFIG file, each water molecule should in-
clude the M-site as the 4th atom with zero mass.

• Nosé-Hoover Chain (NHC) thermostat is implemented
for classical MD simulations in the canonical NVT
ensemble based on the Suzuki-Yoshida scheme.49,50

The NH thermostat was already available in DL_POLY
Classic for creating an NVT ensemble. However,
NH equations fail when the system obeys more than
one conservation law.4 To counterbalance this, more
phase space dimensions must be introduced, which can
be accomplished by introducing a chain of intercon-
nected NH thermostats, resulting in the gold-standard
NHC thermostat. In DL_POLY Quantum suite, this is
achieved by adding a subroutine called NVTVV_NHC
in vv_motion_module.f, which calls for the subroutine
NHC_part in integrator_module.f. The classical MD
simulation is activated by the keywords NVT and NHC
in the CONTROL file.

• The NHC thermostat/barostat for isothermal-isobaric
NPT ensemble through Martyna-Tobias-Klein (MTK)
algorithm51,52 is implemented for classical MD simu-
lations. Experiments are more commonly performed
at conditions of constant pressure rather than constant
volume, requiring simulations to be performed in the
NPT ensemble. The canonical ensemble from our NVT
NHC implementation forms the basis for the NPT sim-
ulations. To maintain a fixed internal pressure, the sys-
tem’s volume is allowed to fluctuate isotropically. This
implementation is achieved through adding the subrou-
tine NPTVV_NHC in vv_motion_module.f, which calls
for two subroutines NHC_part and NHC_baro in inte-
grator_module.f. The classical MD simulation is acti-
vated by keywords NPT and NHC in the CONTROL
file.

FIG. 2. Summary of path integral methods available in DL_POLY
Quantum 2.0.

B. DL_POLY Quantum suite: Features of version 2.0

A summary of the different PI methods available in
DL_POLY Quantum 2.0 is given in Fig. 2. In particular, it
emphasizes which ensembles and thermostats can be used for
PIMD simulations. More details of different features imple-
mented in DL_POLY Quantum 2.0 are summarized below.

• PIMD simulations in normal mode coordinates are im-
plemented in DL_POLY Quantum 2.0. This comple-
ments PIMD in staging coordinates53, which was al-
ready available in DL_POLY Classic 1.10. PIMD in
staging coordinates can be performed with a single
NH thermostat53, a ‘gentle’ thermostat54, or the mas-
sive NHC (m-NHC) thermostat53,55. These options can
be selected with the keywords PIMD NVT, PIMD
GTH, and PIMD NHC in the CONTROL file, respec-
tively. The normal mode implementation is done within
the already existing vv_pimd_module.f with the addi-
tional subroutine PIMD_NVT_NHC_NM. PIMD sim-
ulations using normal modes with a m-NHC thermostat
are called using the keywords PIMD NM in the CON-
TROL file. Note that PIMD simulations with the addi-
tional PI specific thermostats as well as real-time meth-
ods outlined below, are all performed in normal modes.

• Path integral Langevin equation (PILE) thermostat:56

In PIMD simulations, quantum nuclei are represented
as a collection of fictitious particles, and the system’s
behavior is explored by sampling over all possible con-
figurations of these particles. Traditional thermostats
used in classical simulations may not suffice in the con-
text of PIMD, where quantum fluctuations are promi-
nent. PILE is a specialized stochastic thermostat for
controlling the temperature of PI simulations, which ex-
ploits an analytic knowledge of the free PI normal mode
frequencies. The subroutine PIMD_NVT_PILE_NM
was added in vv_pimd_module.f. The PILE thermostat
can be selected using the keywords PIMD PILE in the
CONTROL file.
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DL_POLY Quantum 5

• Path integral generalized Langevin equation thermo-
stat (PIGLET) is implemented in the canonical NVT
ensemble.57 PIGLET is a stochastic thermostat for ac-
curately modeling the thermal fluctuations within quan-
tum systems in PI simulations. A practical implica-
tion of PI simulations with PIGLET thermostat is that
convergence can be reached using ring polymers with
fewer number of beads compared to the reference PIMD
simulations with m-NHC or PILE thermostats. A new
module, pimd_piglet_module.f, has been introduced to
incorporate the PIGLET thermostat into PIMD simu-
lations, and the subroutine PIMD_NVT_PIGLET was
added in vv_pimd_module.f. The PIGLET thermostat
can be selected using the keywords PIMD PIGLET in
the CONTROL file.

• Simulations at fixed pressure and temperature, i.e., NPT
ensemble, are also available for PI simulations with
m-NHC thermostat/barostat and PILE with isotropic
cell fluctuations. Subroutine PIMD_NPT_NHC_NM
and PIMD_NPT_PILE_NM were added in module
vv_pimd_module.f, which can be invoked by including
PIMD NPT NHC and PIMD NPT PILE in the CON-
TROL file, respectively.

• RPMD simulations can be performed utilizing the same
normal mode integration scheme as with our newly im-
plemented normal mode PIMD but without coupling the
dynamics to a thermostat. This is accomplished us-
ing the subroutine PIMD_NVE in vv_pimd_module.f.
RPMD simulations are invoked with the keywords
PIMD NVE in the CONTROL file.

• Thermostatted (T)-RPMD58 couples the internal modes
of the ring polymer to a thermostat without altering
their masses. This removes the spurious oscillations
of the internal modes of the ring polymer from stan-
dard RPMD. During the dynamics, the internal modes
are coupled to the PILE thermostat while the centroid
is not thermostatted. T-RPMD is implemented using
the TRPMD subroutine in vv_pimd_module.f. It is in-
voked by including the keywords PIMD TRPMD in
the CONTROL file.

• PA-CMD simulations are done using the PACMD sub-
routine in vv_pimd_module.f, and can be chosen with
the keywords PIMD PACMD in the CONTROL file.

• The final notable feature is a new module, correla-
tion_module.f, which offers the capability to calcu-
late velocity and dipole correlation functions from both
classical and PI dynamics simulations. The module op-
erates outside of any integration method, allowing its
use for any implemented real-time dynamics simula-
tions. Real-time correlation functions are directly cal-
culated by specifying the keywords CORRELATION
DIPOLE and CORRELATION VELOCITY in the
CONTROL file for dipole moment and velocity, respec-
tively. Correlation functions calculated in DL_POLY
Quantum 2.0 are all autocorrelation functions of the

specified operator for a single type of molecule. For het-
erogeneous systems, the desired molecule is chosen by
adding the molecule type number after the keywords to
invoke the correlation function calculation in the CON-
TROL file (e.g. CORRELATION DIPOLE mol=2 for
the second molecule type). The molecule type number
is specified by the order of the molecules defined in the
FIELD file.

• It should be noted that a correction has been introduced
to rectify inconsistent volume fluctuations in multi-
core NPT simulations in the original DL_POLY Clas-
sic 1.10. The observed variations in volume fluctu-
ations across different cores were attributed to incon-
sistent electrostatic virial values resulting from 1-4 in-
teractions in the subroutine DIHFRC of module dihe-
dral_module.f. This inconsistency arose due to the ab-
sence of initialization for certain parameters. The cor-
rection aims to ensure proper initialization of these pa-
rameters, thereby resolving the issue and ensuring con-
sistent total virial across all cores in parallel simula-
tions.

IV. CODE PERFORMANCE AND EFFICIENCY

PI simulations have an inherent increased computational
cost compared to classical MD simulations as the system is
essentially n times larger than the equivalent classical system.
Thus, it is important for any PI-based dynamics program to be
sufficiently efficient to reduce overall computational cost and
properly parallelized to reduce the wall-time of simulations.

Parallelization in DL_POLY Quantum 2.0 is adopted from
DL_POLY Classic 1.10, and takes the form of the data repli-
cation strategy59,60. In this scheme, important quantities, such
as position, velocity, and force arrays, are replicated across all
cores. This method ensures that at the start of a given parallel
calculation, all cores have the current system information and
the calculation can be evenly distributed across the cores, re-
gardless of the configuration of the simulation cell. After the
calculation, the new values are then updated across all cores.
While this scheme can lead to higher memory usage and com-
munication overhead compared to other MD parallelization
strategies, its ability to distribute work more evenly among
cores has proven it to be useful for a range of applications.60

The division of calculations across cores does not change with
the number of beads for PI simulations, as the parallelization
is based on a single replica of the system. For calculations
such as updating the positions and velocities, a loop over the
beads for a given atom is performed. Force calculations are
done as a loop over system replicas where all beads have the
same index. This accounts for the fact that only beads of dif-
ferent ring polymers with the same index interact, and restricts
all force calculations to only include the N atoms of the sys-
tem.

To demonstrate the performance of DL_POLY Quantum
2.0, a series of PIMD NVT simulations of bulk water, de-
scribed using the q-TIP4P/F water model, are performed for
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FIG. 3. (a) Calculated wall-times for 1000 time steps of PIMD sim-
ulations for 1728 q-TIP4P/F water molecules using the PILE ther-
mostat with various number of beads and cores averaged over three
independent runs. (b) Calculated relative speedup of simulations for
n = 32 beads with the dashed line representing a linear speedup.

a varied number of beads utilizing a varied number of cores.
The unit cell is comprised of 1728 water molecules with a den-
sity of 0.997 g/cm−3. The temperature is kept constant at 300
K using the PILE thermostat. All performance benchmarking
simulations presented here were performed on the SSE Ma-
chine Learning Cluster at the University of Missouri - Kansas
City using AMD EPYC 7H12 processors. Simulations are all
evolved for 1000 steps with a time step of 0.2 fs and with a
thermostat time constant of 0.05 ps.

The wall-time of these simulations are presented in Fig. 3a.
For all bead numbers, there is a significant reduction in com-
putation time for a small increase in the number of cores used.
Diminishing time reduction is seen for larger number of cores
as the communication overhead increases from the data repli-
cation parallelization. The relative speedup when using mul-
tiple cores is found by comparing the wall-time of that sim-
ulation compared to that of the single-core simulation. The
speedup for simulations with 32 beads is shown in Fig. 3b. As
expected from the calculated wall-times, the relative speedup
for a small number of cores is near linear, but drops off for

increased number of cores. Overall, DL_POLY Quantum 2.0
displays successful parallelization for large systems.

V. EXAMPLES OF NEW FEATURES

In order to demonstrate the broad applicability range of the
DL_POLY Quantum suite, a few example cases are discussed
in this section.

A. Incorporating NQEs into large-scale simulations:
HKUST-1 metal-organic framework

Metal-organic frameworks (MOFs) are a promising class
of nanoporous hybrid organic/inorganic materials with a
wide spectrum of applications in energy storage,61–63

catalysis,64–67 electronics,68–72 as well as water harvesting and
purification.73–75 Considering the prohibitively expensive cost
of “on-the-fly” ab initio molecular dynamics (AIMD), clas-
sical MD simulations using analytical force fields (FF) have
been a leading approach in simulating both dry and guest ad-
sorbed MOFs. Nevertheless, both AIMD and MD simulations
suffer from neglecting NQEs. Here, we illustrate how inclu-
sion of NQEs changes the structural properties of extended
materials by comparing the MD and PIMD simulations of the
archetypal HKUST-1 as a representative of the MOF family
(Fig. 4a). Since conventional FFs lack the parameters related
to transition metals, several classes of FFs have been intro-
duced for MOFs, including but not limited to universal force
field for MOFs (UFF4MOFs),76 MOF-FF,77 Bristow-Tiana-
Walsh (BTW) FF,78 and ab initio parameterized FFs.79,80 For
the simulations presented here, we make use of a modified
BTW FF where, for numerical stability, we replaced the orig-
inal Buckingham potential for non-bonded interactions with a
Lennard-Jones (LJ) potential. The details of the derivation of
this BTW-LJ FF are provided in Appendix C.

Fig. 4b shows the change of the unit cell vector of a 1×1×1
unit cell of HKUST-1, comprised of 624 atoms, after 1 ns MD
and PIMD simulations over a range of temperatures from 200
to 500 K. The temperature is kept constant using an NHC ther-
mostat in MD and a PILE thermostat in PIMD simulations, as
implemented in DL_POLY Quantum 2.0. In PIMD simula-
tions, all atoms are represented by ring polymers composed
of 32 beads. This information is used to calculate the linear
expansion coefficient, α =

(
1
a0

)(
∂a
∂T

)
P

, where a is the unit
cell vector length and a0 is the reference unit cell vector of
26.303 Å length. Simulated values of α = −7.4× 10−6 and
−3.2× 10−6 K−1 were obtained for MD and PIMD simula-
tions, respectively, compared to the experimental value81 of
α =−4.1×10−6 K−1. While both results are consistent with
the observed negative thermal expansion in MOFs, PIMD
simulations provide a more accurate quantity due to the inclu-
sion of NQEs in simulations. Fig. 4c shows the linear increase
of the density of HKUST-1 with temperature, attributed to the
negative thermal expansion, where MD simulations overesti-
mate this behavior. Fig. 4d illustrates the convergence of the
PIMD simulations for calculating the density of HKUST-1 at
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DL_POLY Quantum 7

FIG. 4. (a) The cubic periodic unit cell of HKUST-1 containing 624 atoms and a cell length of 26.303 Å. (b) The calculated cell vector
changes and (c) density as a function of temperature (T) using 1 ns MD (1 bead) and PIMD (32 beads) simulations. (d) The convergence of
the calculated density of HKUST-1 at 200K with respect to the number of beads in PIMD simulations.

the lowest considered temperature of 200K. Notably, the re-
sults indicate that employing 16 beads is adequate for achiev-
ing a sufficiently converged outcome. All presented results
are based on averaging the final 800 ps of the simulation after
the first 200 ps equilibration in a single 1 ns run. The average
and the standard deviation are computed from these final 800
ps run data, and error bars are shown based on the calculated
standard deviation.

B. Utilization of path integral generalized Langevin equation
thermostat

The Path integral generalized Langevin equation thermo-
stat (PIGLET) is a powerful approach for improving compu-
tational efficiency in large scale simulations. This thermo-
stat achieves efficiency gains by reducing the required num-
ber of beads for convergence of the results.82 Its effectiveness
lies in exploiting the equivalence between non-Markovian dy-

namics in the Generalized Langevin Equation (GLE) frame-
work and Markovian dynamics in a higher-dimensional space
(p,s), where ns auxiliary momenta s={si} are introduced.
These auxiliary momenta exhibit linear couplings with both
the physical momentum and one another, resulting in a suc-
cinct representation of the stochastic differential equation.
This approach significantly contributes to the streamlined op-
timization of simulations. More details about PIMD simu-
lations using the PIGLET thermostat can be found in Ap-
pendix B. In Fig. 5, we show our PIMD calculated radial
distribution functions (RDFs) for 216 q-TIP4P/F bulk water
equilibrated at 298 K using the PIGLET thermostat with a
different number of beads compared to the reference PIMD
simulations with m-NHC thermostat and 32 beads. Similar
to the original report by Ceriotti et al.57 performed using the
same water potential model, our results show that PIGLET
simulations with 8 beads have already reached convergence
compared to the reference PIMD simulations with the m-NHC
thermostat.
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DL_POLY Quantum 8

FIG. 5. Panels a-c demonstrate calculated RDFs for 216 q-TIP4P/F bulk water at 298 K and in a cubic box with a side length of 18.64 Å
utilizing periodic boundary conditions. Here, different RDFs obtained using the PIGLET thermostat with a different number of beads are
compared to the reference PIMD simulations using the m-NHC thermostat and 32 beads. Panels d-f demonstrate the corresponding errors.

VI. REAL-TIME DYNAMICS

The standard quantum mechanical correlation function be-
tween operators Â and B̂ is

CAB(t) =
1
Z

Tr
[
e−β Ĥ ÂeiĤt/h̄B̂e−iĤt/h̄

]
, (14)

This form of the correlation function does not have the same
features as classical correlation functions. When looking to
compare the two directly, it is preferable to use the Kubo-
transformed correlation function instead, which has the form

C̃AB(t) =
1

βZ

∫
β

0
dλ Tr

[
e−(β−λ )Ĥ Âe−λ ĤeiĤt/h̄B̂e−iĤt/h̄

]
.

(15)
The Kubo-transformed correlation function can be approx-

imated in the path integral framework as23

C̃AB(t)≈
1

(2π h̄)nZn

∫
dp

∫
dx e−βnHn(p,x)An(x)Bn(xt), (16)

where xt is the configuration of the system at time t along
a trajectory whose initial conditions are determined by the
phase space integral. The zero-time value of Eq. 16, is just an
integral in an extended phase space and would give the same
value as Eq. 15 in the limit of infinite number of beads.

DL_POLY Quantum is able to produce the necessary quan-
tities to produce two different correlation functions, veloc-
ity, and molecular dipole autocorrelation functions, through
a newly added correlation module. The program outputs the
value of the operator for all molecules of a single type as a
function of time that can be post-processed to calculate the
correlation function and related quantities. The velocity auto-
correlation function is used to obtain the diffusion coefficient

defined as

D =
1
3

∫
∞

0
dt C̃vv(t). (17)

For a molecule containing L atoms, the bead-averaged, center-
of-mass velocity output is

vi(t) =
1

nmmol

L

∑
j∈i

n

∑
α=1

p j,α(t), (18)

where mmol is the total mass of the molecule. The dipole auto-
correlation function is used to calculate the IR spectrum. The
IR signal is given by,

n(ω)α(ω) =
πβω2

3cV ε0
Ĩ(ω), (19)

where Ĩ(ω) is the Fourier transform of the dipole autocorrela-
tion function,

Ĩ(ω) =
1

2π

∫
∞

−∞

dt e−iωtC̃µµ(t). (20)

The molecular dipole for a molecule with L atoms is calcu-
lated as

µi(t) =
1
n

L

∑
j∈i

n

∑
α=1

e j(q j,α)(t)−q(i)COM(t), (21)

where e j is the charge of the j-th atom, and q(i)COM is the center-
of-mass position of the molecule.

Following the approaches outlined above, Fig. 6 illustrates
the IR spectra of liquid bulk water at 300 K using different PI
methods, each with 32 beads. The spectra are obtained from
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DL_POLY Quantum 9

FIG. 6. (a) Example CONTROL file for RPMD simulation q-TIP4P/F water with dipole moment calculation. (b) Calculated IR spectra of
liquid bulk water at 298 K using different PI flavors with 32 beads compared to the experimental spectrum from Ref. 83. See the text for more
details.

simulations of 216 q-TIP4P/F water molecules in a cubic box
with side lengths of 18.64 Å to achieve a density of 0.997
g/cm3. For all PI methods, the boxes are equilibrated for 20
ps using PIMD simulations evolved with a time step of 0.2
fs and thermostatted with a m-NHC thermostat with a chain
length of 3 and a time constant of 0.05 ps. After equilibration,
an additional 25 ps of PIMD simulations are run to generate
the initial configurations for the real-time dynamics, which are
taken every 1 ps.

The real-time dynamics for all PI methods are evolved with
a time step of 0.2 fs. For PA-CMD, the internal modes are
thermostatted at 300 K using a m-NHC thermostat with a
chain length of 3 and a time constant of 0.05 ps. All trajec-
tories are run for 110 ps, with the final 100 ps being used to
calculate the spectra, which are averaged over 25 trajectories.
The dipole moment operators are calculated every 5 time-
steps to ensure a sufficiently fine frequency grid when taking
the Fourier transform to produce the spectra. The spectrum
for classical dynamics is calculated using the same method as
just described but with a single-bead ring polymer.

Apart from the methods explained before, Fig. 6 also de-
picts the results of thermostatted RPMD58 (T-RPMD). It can
be considered as an intermediate method between RPMD and
CMD which couples the internal modes of the RP to a ther-
mostat without altering their masses. This helps to remove the
spurious frequencies from standard RPMD without the cur-
vature problem of CMD. The T-RPMD Hamiltonian is the
same as that for standard RPMD where the internal modes
are coupled to the PILE thermostat while the centroid is not

thermostatted.

In comparison between the experimental spectrum from
Ref. 83 and the one obtained from classical MD simulations,
one can see that, due to neglecting NQEs, the latter is blue-
shifted in the intramolecular O–H stretching and, to a lesser
extent, bending regions. As such, the hydrogen bonding (HB)
strength of liquid bulk water is underestimated by classical
simulations. On the other hand, the RMPD spectrum is not
reliable due to the contamination of the O–H stretches by
the internal vibrational modes of the ring polymer,33 while
T-RPMD does remedy these artifacts by thermostating them.
Finally, for the PA-CMD method, these modes are shifted be-
yond the spectral range of interest, providing the best estimate
for IR spectrum of liquid bulk water at 300 K compared to the
experiment. Also, in agreement with the literature,33 our cal-
culated spectra for liquid water at 300 K show that NQEs are
less critical for the low-frequency librational bands. Over-
all, our calculated classical and path integral IR spectra of
the q-TIP4P/F liquid bulk water at 300 K agree with that of
Manolopoulos and coworkers.33 We have greatly simplified
the process of generating these spectra using both classical
and quantum PI simulations in DL_POLY Quantum 2.0. The
source code is modified to calculate and write out the needed
dipole operator values and user-friendly post-analysis scripts
are provided as part of the source code for performing the nec-
essary analyses and creation of the final spectra.
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DL_POLY Quantum 10

VII. FUTURE DEVELOPMENTS

DL_POLY Quantum 2.0 improves upon version 1.0
through the introduction of several PI methods, as well as the
ability to easily calculate operators for correlation functions,
but there are many desirable features that are not included.
To promote our plan to continue support and development for
DL_POLY Quantum, we discuss here several features that we
consider important to be implemented.

While we have demonstrated the performance of
DL_POLY Quantum 2.0 in terms of its parallelization,
besides PIGLET, we have not yet implemented any methods
focused on specifically reducing the cost of PI simulations.
A first step towards this effort is to ensure that the multiple
time stepping algorithm, that was present in the original
DL_POLY Classic, works for PI simulations as well. Addi-
tionally, implementing a ring polymer contraction scheme,
which functions like multiple time stepping, but for the
imaginary time slices of the ring polymer, would also reduce
the cost of PI simulations.

To additionally increase the performance of our software,
we will create a version of the software with graphical pro-
cessing unit (GPU) support. GPU computing has proven to be
successful in quantum chemistry calculations.84–86 A GPU-
accelerated DL_POLY Quantum would look to push the ex-
pensive force calculations to the GPU, taking advantage of
the extreme parallelization and minimal communication over-
head of the GPU. The main control of the program and less de-
manding tasks such as atom propagation will remain with the
CPUs. Adding GPU-acceleration would allow for DL_POLY
Quantum to become an even more efficient software for per-
forming large-scale PI simulations.

Finally, beyond increasing the efficiency of the code, we
would like to expand its functionality. Of particular note is to
introduce a new module to allow users to perform simulations
utilizing machine learned potentials (MLPs). This would al-
low users to study complex systems for which there are no
accurate analytical force fields and “on-the-fly” AIMD simu-
lations are prohibitively expensive.

VIII. CONCLUSIONS

Here we have introduced the software package DL_POLY
Quantum 2.0, an updated version of DL_POLY Quantum 1.0,
as a modular and user-friendly computational program for per-
forming a wide variety of PI-based simulations. We have in-
troduced the new features and methods included in this new
version of the software, including additional thermostats for
PIMD simulations and several real-time dynamics methods.
We also demonstrated its performance on different test sys-
tems, including bulk liquid water and the HKUST-1 MOF
system. Future versions of the software look to increase its
efficiency and functionality.
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Appendix A: PIMD formalism in different coordinates

Both staging and normal mode transformations of PIMD
are implemented in DL_POLY Quantum and are outlined be-
low in detail.

1. Staging variables

Tuckerman’s “staging variables” method53,88 removes the
harmonic coupling by introducing a set of staging modes, q =
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DL_POLY Quantum 11

{q1, . . . ,qn}, that are transformed from Cartesian coordinates
as

qi,1 = xi,1

qi,k = xi,k −
(k−1)xi,k+1 + xi,1

k
, k = 2, . . . ,n.

(22)

A staged set of momenta, π = {p1, . . . , pn}, are also intro-
duced using the same form of transformation. The PIMD
Hamiltonian in the staging variables is

Hstage =
N

∑
i=1

n

∑
k=1

[
π2

i,k

2m′
i,k

+
1
2

mi,kω
2
n q2

i,k

]

+
1
n

n

∑
k=1

V (x1,k(q), . . . ,xN,k(q)),
(23)

where xi,k(q) come from the inverse of the transformation in
Eq. 22, and the masses for each variable are

mi,1 = 0

mi,k =
k

k−1
mi, k = 2, . . . ,n.

(24)

To increase the efficiency of the method, the fictitious masses
are set such that m

′
i,1 = mi and m

′
i,k = mi,k for all other values

of k.88 This ensures that all modes are evolving on the same
time scale, removing the problem of the MD time step being
limited by the fast modes of the RP oscillations. The trans-
formation to the staging modes is not canonical, resulting in
different dynamics than those produced by Eq. 4, but this does
not impact equilibrium statistical quantities.88

The EOMs of the staged modes are

π̇i,k =−mi,kω
2
n qi,k −

1
n

n

∑
j=1

T −1⊤
k j ∇xi, jV (x(Q))

q̇i,k =
πi,k

m′
i,k
,

(25)

where T is the matrix form of the transformation in Eq. 22.
The integration of the EOMs is done in a straightforward man-
ner using the velocity Verlet algorithm89 modified to include
the coordinate transformations. For compatibility with exist-
ing force calculating algorithms, the positions must be un-
staged back into their Cartesian form. The resulting forces
are then staged before the momenta are updated, as indicated
in the second term in the first momenta derivative in Eq. 25.

PIMD using staging modes can be performed using three
different thermostats: a single NH thermostat,53 a massive
NHC thermostat,53,55 or the gentle thermostat of Leimkuhler
et al.54. All thermostats are applied to each degree of freedom
in the system.

2. Normal modes

The normal modes approach divides the PIMD Hamiltonian
into two parts, with their integration treated separately. The

first part is the free ring polymer, the first two terms of Eq. 4,
and the second is the external potential energy. Transforming
the free ring polymer into its normal modes gives a set of n
uncoupled harmonic oscillators, which can be evolved exactly.

The transformation into the ring polymer normal modes is
done with the matrix56

Cαk =


√

1/n k = 0√
2/ncos(2παk/n) 1 ≤ k ≤ n/2−1√
1/n(−1)α k = n/2√
2/nsin(2παk/n) n/2+1 ≤ k ≤ n−1

, (26)

and the normal mode frequencies are ωk = 2ωn sin(kπ/n).
The PIMD Hamiltonian in normal modes is

HNM =
N

∑
i=1

n−1

∑
k=0

[
π2

i,k

2mi
+

1
2

miω
2
k q2

i,k

]

+
1
n

n

∑
α=1

V (x1,α(q), . . . ,xN,α(q)).
(27)

A different integration scheme is needed in order to accom-
modate the separation of the external forces and free ring poly-
mer motion. Similar to the scheme used for the staging modes
in Appendix A 1, it is based on the standard velocity Verlet al-
gorithm. In DL_POLY Quantum, it is taken that at the start of
each time step, the positions and momenta are in the normal
mode coordinates.

First, the forces from the external potential are calculated
based on the Cartesian positions. To reduce the overall num-
ber of transformations needed to be performed, the forces are
then converted into the normal mode basis using

∂U
∂qi,k

=
n

∑
α=1

Cαk
∂U

∂xi,α
. (28)

The normal mode momenta are evolved for half a time step
from these forces,

πi,k(t +
∆t
2
) = πi,k(t)−

∆t
2

∂U
∂qi,k

(29)

The free ring polymer evolution of the normal mode posi-
tions and momenta is then performed using(

πi,k(t +∆t)
qi,k(t +∆t)

)
=(

cos(ωk∆t) −miωk sin(ωk∆t)
(miωk)

−1 sin(ωk∆t) cos(ωk∆t)

)(
πi,k(t)
qi,k(t)

)
.

(30)

The centroid (k = 0) mode is evolved as πi,0(t +∆t) = πi,0(t)
and qi,0(t +∆t) = ∆t

mi
πi,0(t)+qi,0(t).

The positions are then transformed back into Cartesian co-
ordinates using

xi,α =
n−1

∑
k=0

Ckα qi,k. (31)
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DL_POLY Quantum 12

From there, the forces can be calculated using these new po-
sitions, and the normal mode momenta evolved by a second
half-a-time step as in Eq. 28 and 29 to complete the propaga-
tion of the system a full-time step.

The implementation of the integration scheme in
DL_POLY Quantum takes advantage of the efficiencies
that arise from connecting multiple time steps together and
from transforming the forces from the external potential into
the normal mode coordinates. As both the positions and
momenta are only evolved in the normal mode coordinates,
the only transformation of them from Cartesian coordinates to
normal mode coordinates occurs for the initial conditions of
the simulation. Similarly, after the initial forces are calculated
and transformed, the force transformation only needs to
occur once per time step as they carry over to the next time
step. The momenta do not need to be transformed back into
Cartesian coordinates as part of the propagation. They are
thus transformed when the Cartesian momenta, or velocities,
are needed (e.g., writing trajectory information).

PIMD with normal modes can be performed using several
different thermostats. Like with staging modes, a massive
NHC thermostat can be attached to each degree of freedom
and is chosen using the keywords PIMD NM. In comparison
to the staging variables discussed previously, the time step of
PIMD in normal modes is by the high-frequency modes, but
the canonical nature of the normal mode transformation leads
to its use in the real-time PI dynamics methods included in
DL_POLY Quantum. Additionally, the PI specific thermostats
like PILE and PIGLET are designed for use with PIMD in
normal modes.

Appendix B: PIMD simulations using PIGLET thermostat

The PIGLET thermostat can provide a great tool for in-
creasing computational efficiency in large-scale simulations
by lowering the number of beads needed to converge results.
This thermostat is rooted in the concept of exploiting the
equivalence between non-Markovian dynamics in the Gener-
alized Langevin Equation (GLE) framework and Markovian
dynamics in a higher-dimensional space (p,s), where ns aux-
iliary momenta s={si} play a crucial role. These degrees of
freedom are subject to linear couplings with both the physical
momentum and among themselves. The resulting stochastic
differential equation (SDE) can be represented in a concise
form:57,90

q̇ = p (32)

(
ṗ
ṡ

)
=

(
−∇V (q)

0

)
−
(

app aT

āp A

)(
p
s

)
+

(
bpp bT

b̄p B

)(
ξ
)

(33)
Here, ξ is a vector of n + 1 uncorrelated Gaussian random
numbers with ⟨ξi(t)ξ j(0)⟩ = δi jδ (t). This innovative ap-
proach modifies the sampling properties and plays a crucial
role in accurately simulating complex quantum systems. By
carefully adjusting the parameters associated with the GLE for

different normal modes, it is possible to enforce quantum me-
chanical expectation values, such as ⟨q2⟩, even when working
with a small number of beads.82 Additionally, this approach
allows us to establish bead-bead correlations that can expe-
dite the convergence of estimators for various other properties
of interest.

A simplifying assumption is made in the PIGLET method,
assuming T̃ (1)(ω) = T , where T is the target temperature, ad-
hering to the classical fluctuation-dissipation theorem. An-
other assumption T̃ (1)(ω) = T̃ (ω) indicates that the same
GLE governs all other ring polymer modes.82 This tuned
GLE enforces a critical relation, ensuring an accurate rep-
resentation of quantum expectation values, such as ⟨q2⟩ =
h̄/2mω coth(h̄ω/2kBT ). In essence, this approach ensures
that quantum expectation values are accurately represented,
even when working with a lower number of beads, and that
bead-bead correlations are consistent with the desired quan-
tum behavior of the system.91

The successful implementation of PIGLET within the
PIMD framework hinges on obtaining and utilizing special-
ized matrices known as the A-Matrix (drift matrix) and C-
Matrix (diffusion matrix). These matrices are pivotal in con-
figuring the PIGLET thermostat and ensuring its effective op-
eration. The A-Matrix represents the drift term in the equa-
tions of motion that govern the system’s dynamics under the
influence of the PIGLET thermostat. It encapsulates the de-
terministic forces acting on the particles and is essential for
accurately modeling the system’s behavior. The A-Matrix
helps dictate the trajectories and positions of the particles as
they evolve over time. The C-Matrix, on the other hand, ac-
counts for the stochastic forces introduced by the thermostat.
These stochastic forces are a key element of the Langevin-
like dynamics that the PIGLET thermostat imparts to the sys-
tem. The C-Matrix captures the fluctuating components of the
forces, representing the thermal noise that influences the sys-
tem’s motion. To be implemented in DL_POLY Quantum 2.0,
these parametric matrices are obtained from the GLE4MD
website (https://gle4md.org).92

Appendix C: Derivation of BTW-LJ FF

The BTW-FF has the parametrization of the functional form
of the MM393 force field.

Etotal = Ebonded +Enonbonded

Ebonded = ∑Ebond +∑Eangle +∑Etorsion

Enonbonded = ∑(EvdW +ECoul)

(34)

The bond and angle terms of bonded interactions are mod-
eled as higher-order polynomial functions, while dihedral and
improper terms are modeled as usual Fourier series terms. The
non-bonded energy term includes van der Waals (vdW) in-
teractions in the form of Buckingham potential and Coulomb
forces. The Buckingham potential is defined as:

EBuck = ε0

[
Aexp

(
−B

r
r0

)
−C

( r0

r

)6
]

(35)
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FIG. 7. Comparison of vdW interaction potentials in Buckingham
and Lennard-Jones forms. The inset compares the depth of normal
LJ, modified LJ in BTW-LJ FF, and Buckingham potential in BTW
FF.

where r0 is the distance at minimum potential and ε0 is the
depth of the potential well, with default values for A, B, and C
constants used are 184000, 12, and 2.25, respectively. Unlike
Lennard-Jones (LJ) potential,

ELJ = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]

(36)

Buckingham (Buck) potential has an exponential repulsive
part that can reach a maximum at very short distances and
falls off negative infinity (see. Fig. 7). This artifact causes
problems for soft vdW potentials and high temperature, and
numerical instabilities can arise.77 To avoid this numerical in-
stability of simulation, we have converted Buckingham pa-
rameters into LJ-type parameters following:

σ =
r0

21/6 , ε = 21/6
ε0 (37)

This modification reproduces strong repulsive force at a short
distance with correct potential depth as of Buckingham poten-
tial, as seen in the inset of Figure 7.

We derived parameters in Eq. 37 by rewriting Buckingham
potential as Exponential-6 function at a loose form94 of,

EBuck = ε

[
β

α −β
exp

{
α

(
1− r

ro

)}
− α

α −β

( ro

r

)β
]
(38)

with α = 12, and β = 6 gives

EBuck = ε

[
exp(12) exp(−12

r
ro
)−2

( ro

r

)6
]

(39)

Eq. 39 and LJ-potential of Eq. 36 are equivalent with equal
potential well depth ε at ro(

6√2σ) minimum distance.
By comparing Eq. 35 and 39, we obtain

ε =
A

exp(12)
ε0 ≈

6√2ε0, OR,

ε =
C
2

ε0 ≈
6√2ε0

(40)

Alternatively, we obtain the Buckingham to LJ type param-
eters by the imposition of an equal energy integral from the
potential well depth’s minimum to infinite interatomic dis-
tance94, ∫

∞

ro

EBuck dr =
∫

∞

ro

ELJ dr (41)

and this gives,

ε0

[
−A

exp(−B r
ro
)

B
ro

+C
r6

0
5r5

]∞

ro

= 4ε

[
− σ12

11r11 +
σ6

5r5

]∞

ro

−ε0

[
C

r6
0

5r5
0
−A

exp(−B r0
ro

)
B
ro

]
=−4ε

[
σ6

5r5
0
− σ12

11r11
0

] (42)

replacing with ro =
6√2σ , we get,

ε =
55ε0

17

(
C
5
−A

exp(−B)
B

)
(43)

For given A, B, and C values of 184000, 12, and 2.25,
respectively, we obtain ε = 1.151ε0 ≈ 6√2ε0. The BTW-LJ
force field for HKUST-1 is implemented in DL_POLY
Quantum 2.0 introduced here.
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