
VESTA: Power Modeling with Language Runtime Events

JOSEPH RASKIND, SUNY Binghamton, USA

TIMUR BABAKOL, SUNY Binghamton, USA

KHALED MAHMOUD, SUNY Binghamton, USA

YU DAVID LIU, SUNY Binghamton, USA

Power modeling is an essential building block for computer systems in support of energy optimization, energy
pro!ling, and energy-aware application development. We introduce Vesta, a novel approach to modeling the
power consumption of applications with one key insight: language runtime events are often correlated with a
sustained level of power consumption. When compared with the established approach of power modeling
based on hardware performance counters (HPCs), Vesta has the bene!t of solely requiring application-scoped
information and enabling a higher level of explainability, while achieving comparable or even higher precision.
Through experiments performed on 37 real-world applications on the Java Virtual Machine (JVM), we !nd the
power model built byVesta is capable of predicting energy consumption with amean absolute percentage error
of 1.56%, while the monitoring of language runtime events incurs small performance and energy overhead.

CCSConcepts: • Software and its engineering→Virtualmachines;Runtime environments; •Hardware
→ Power estimation and optimization.

Additional Key Words and Phrases: power modeling, language runtimes, Java virtual machines, BPF

ACM Reference Format:
Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu. 2024. VESTA: Power Modeling with
Language Runtime Events. Proc. ACM Program. Lang. 8, PLDI, Article 172 (June 2024), 26 pages. https:
//doi.org/10.1145/3656402

1 INTRODUCTION

As of 2023, data centers constitute approximately 2% of total electricity consumption in both the
US [39] and the EU [38]. Tools for tracking the energy and power consumption of the computing
stack allow developers to build more energy-conscious systems [4, 15, 37, 53] and contribute in
sustainable computing [17, 21, 23, 35]. Broadly speaking, power consumption can be tracked in two
ways:measure it ormodel it. Measurement-based approaches require meter deployment and physical
access to the computing platform. In contrast, modeling-based approaches are easy to deploy and
have gained popularity over the years. The most established approach for power modeling relies
on monitoring architectural events—e.g., Hardware Performance Counters (HPCs)—and predicting
power consumption based on their occurrences [6, 7, 9, 26–29, 36, 51, 52].

A key insight of this paper is that language runtime events may impact the power behavior of the
application, and the correlation of the two may open up a new avenue for building power models.
Take Java applications for example. Intuitively, the diverse behavior of their runtime—e.g., heap
management, thread management, just-in-time compilation (JIT), and garbage collection (GC)—may
impact how the underlying systems and hardware are used. Compared with HPC-based power

Authors’ addresses: Joseph Raskind, jraskin3@binghamton.edu; Timur Babakol, tbabako1@binghamton.edu; Khaled Mah-
mous, kmahmou1@binghamton.edu; Yu David Liu, davidl@binghamton.edu.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART172
https://doi.org/10.1145/3656402

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0003-3694-8207
HTTPS://ORCID.ORG/0009-0003-5476-1518
HTTPS://ORCID.ORG/0009-0003-0122-7944
HTTPS://ORCID.ORG/0000-0002-2768-3898
https://doi.org/10.1145/3656402
https://doi.org/10.1145/3656402
https://doi.org/10.1145/3656402
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656402&domain=pdf&date_stamp=2024-06-20

172:2 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

Table 1. Power-Tracking Approaches

Approach Type Deployment Explainability Security Implications

meter-based measurement peripherals
needed

no physical access

RAPL-based measurement speci!c to
CPU design

physical access whole-system info

HPC-based modeling friendly physical access whole-system info
VESTA modeling friendly (more) logical access per-application info

modeling, a language runtime-level model has two main advantages: reduced security concerns and
a higher level of explainability. Runtime-level events are produced in the scope of the application,
as opposed to system-wide information such as HPCs. Requiring access to system-wide information
(for power modeling) has its own security implications [14, 25, 31]. Furthermore, language runtime
events—coming from a higher level of the computing stack—provide a more logical cause-e"ect
understanding of how an application’s design and execution impact power consumption.
Concretely, we introduce Vesta 1, a novel power modeling system that bases its predictive

abilities on language runtime events in the Java Virtual Machine (JVM). Vesta must address
several design challenges. Unique to language runtime events is that they are routinely split-
phase: when a long !eld of an object is accessed, the JVM does not produce one event but
two: an event GetLongField__entry that indicates the access has begun, and another event
GetLongField__return that indicates the access has completed. In contrast, HPC events are
generally ephemeral: a cache miss event is produced when it is happening now. For Vesta, address-
ing split-phase events for power modeling is the rule not the exception. In addition, the design of
Vesta must address the diversity of JVM-traceable events—in the hundreds—and rein in on the
classic challenges of reducing overhead and improving precision.
We use Vesta to model the power consumption of 37 real-world applications running on

the OpenJDK. Results show that the power model built by Vesta is capable of predicting their
energy consumption with a mean absolute percentage error (MAPE) of 1.56% while incurring small
overhead. This is consistent with state-of-the-art HPC-based power modeling where the reported
error is generally 3-10% [5, 7, 26, 36, 52]. For experimental comparison, we also (re-)implemented
the HPC-based power modeling approach and ran it over the same applications, with a MAPE
consistent with their reports.
To the best of our knowledge, Vesta is the !rst system to use language runtime events—JVM

events in our case—for predicting power consumption. The contributions of this paper are:

• a methodology that uses language runtime events to build power models;
• a design that systematically and automatically selects JVM events for power modeling from
the complete set of User Statically De!ned Tracepoint (USDT) probes [40], and addresses the
split-phasedness of JVM events;

• a system that predicts energy consumption with high accuracy and low overhead, and a
decision tree-based model for explaining the impact of JVM events on energy prediction.

2 MOTIVATIONS

In this section, we motivate the design of Vesta by answering two questions: how Vesta di"ers
from existing approaches, and what challenges an approach such as Vesta must address. From
now on, we will use term runtimes (as in “runtime systems”) to refer to language runtimes.

1Vesta is a goddess in Roman mythology. According to Ovid, Vesta derives from Latin vi stando, or “standing by power.” In
our context, Vesta stands for Virtual Energy System for Tracking and Analysis.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

VESTA: Power Modeling with Language Runtime Events 172:3

Table 2. JVM Event Examples (A full list of OpenJDK-traceable events can be found here [40]).

Event Name Description
GetLongField__entry, GetLongField__return return the long !eld value of an object
GetMethodID__entry, GetMethodID__return return method ID
gc__begin, gc__end start system-wide garbage collection
GetObjectClass__entry,
GetObjectClass__return

return the class of an object

compiled__method__load JIT-compile a method
Throw__entry, Throw__return throw an exception

NewStringUTF__entry, NewStringUTF__return
construct a String object from an char-
acter array in modi!ed UTF-8 encoding

safepoint__begin, safepoint__end
reach a "safepoint" for state examina-
tion, e.g., garbage collection

thread__sleep__begin, thread__sleep__end invoke a thread Thread.sleep()

vmops__begin, vmops__end call a JVM bookkeeping operation

2.1 Tracking Power across the Systems Stack

From an end-user perspective, power can be tracked either through measurement or modeling. A
summary of these approaches can be found in Table 1.

Power can be measured either through a physical meter, or through consulting power-reporting
architecture features [13]. Measurement-based approaches are straightforward to use for the end
user, but they come with some limitations. First, they are subject to deployment availability: the
deployment site of the application must be either equipped with a meter, or built with architectures
that support energy readings, such as Intel’s RAPL [13] (see §6). Second, measurement approaches
o"er little explainability: the readings do not explain how or why energy is consumed.
Modeling-based approaches are more friendly for deployment. HPC-based power modeling

approaches share one common insight: power consumption is the e"ect of hardware use, and hence,
power can be modeled by tracking how intensely each architecture component is used, as indicated
by HPCs such as cache miss rates. These approaches provide insights on physical explainability:
the weights associated with each HPC in the model can identify hardware components that play
more critical roles in power consumption. The most successful use of HPC-based power models is
perhaps power simulation [5, 7, 26, 36, 52] in cycle-accurate simulators.
When HPC-based approaches are used for workload power prediction, one drawback is that

HPCs are system-wide information whose access has security implications [14]. Under the threat
model that the underlying OS may not fully trust the application running on top, giving away
system-wide HPC information to applications is a violation of Principle of Least Privilege, and as a
result, HPC-based power modeling is best suited for kernel-space whole-system power modeling.
This requirement may limit their applicable use scenarios (see § 3.5). In addition, HPC-based power
modeling assumes a hardware-centric view for power modeling: its power prediction is based on
the hardware states (e.g., cache or TLB)—blind to the software eco-system running on top of the
hardware—hence o"ering little insight on application-level explainability.

2.2 Challenges with Runtime-Level Power Modeling

In contrast, Vesta is a runtime-level approach to power modeling. While power modeling at this
layer comes with unique bene!ts (see Table 1), constructing a power model on top of runtime

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/dtrace.html

172:6 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

consumption of the system. The output of training is a power model, i.e., a function P(INT) ⇀
REAL that takes in the occurrence of runtime events and computes a power consumption value.
During inference, Vesta only monitors the occurrence of runtime events, applied to the power
model for the predicted power consumption.

Event Domain. Given the complex runtime behavior to capture, the domain of runtime events
is important for power modeling. Our domain of choice is USDT probes, motivated by several
considerations. First, the 520 USDT probes available for JVM monitoring cover a broad spectrum of
behavior in managed language runtimes, from object-oriented (OO) semantic features (e.g., heap
management, method calls, class loading), non-OO features (e.g., primitive data access, exception
handling, JNI), to VM services (e.g., JIT, GC, thread management), to VMmetadata management (e.g.,
VM operations, safepoint management). Given that a higher dimensionality is innate with the
runtime-based approach (Challenge I), USDT probes provide a comprehensive base set of candidate
events for Vesta to sift through. Second, the interface of USDT probe tracing is (largely) language-
agnostic. While we currently focus on JVM, the support of USDT probes for other language runtimes
is helpful for porting the idea of Vesta in the future. Third, USDT probe tracing has native support
on most Linux distributions, facilitating the adoption of Vesta.

VestaWork!ow. During training, Vesta !rst takes all available USDT probes amenable to the
JVM and pairs them into split-phase events when possible. This is a simple process where a
pair of USDT probes with __entry and __return su$xes are grouped together; for subsequent
steps of the work#ow, whenever a split-phase event is selected to be monitored, its pair of USDT
probes are both monitored. Vesta selects runtime events so that those whose monitoring incurs a
large overhead are removed from the consideration of power modeling. The remaining events are
monitored through instrumentation to the monitored application. For each monitored application,
its execution produces a trace of energy data and a trace of event data, both time-stamped. To build
a power model, we bucket them into !xed-size time intervals, i.e., grouping all events that happen
within the same time interval together. In other words, our model building is based on a data set
where each time interval is a unit: we correlate the events that happen in the time interval and the
power consumption of the time interval. For now, let us focus on two aspects of Vesta’s design:
how to reduce overhead and how to handle split-phase events, in the next two subsections.

3.2 Event Selection

Due to Challenge II, it is impossible to track all USDT probes available to the JVM for power
modeling without invoking an unacceptable overhead. Additionally, the tools available ready-at-
hand to track USDT probes have a distinct upper limit of probes one can track during a given
application run. In Vesta, we de!ne a percentage threshold T, and classify all post-pairing events
into three categories: under-threshold, over-threshold, and rare. Under-threshold events incur an
execution time overhead of less than T for all benchmarks we build our model with. An event
is considered over-threshold if any benchmark incurs an execution time overhead greater than
T. Rare events are infrequently encountered, de!ned as not occurring in any benchmark. Only
under-threshold events participate in the building of a power model.

Our universally quanti!ed requirement of thresholding re#ects our performance-biased philos-
ophy that “no workload should be left behind”: we should not choose events that can improve
the (average) precision of power modeling at the sacri"ce of drastic performance degradation of
some workloads. We believe that each application in a benchmark suite re#ects a unique type of
workload, so all must concur that the overhead is acceptable before an event is chosen. Our design
decision of removing rare events is driven by the fact that monitoring such events is analogous to
mitigating the long-tail at the sacri"ce of overall performance.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

172:8 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

3.5 Applicability and Use Scenarios

Language Runtimes. Vesta is implemented over the JVM, with direct bene!ciaries being applica-
tions written in Java or other JVM-based languages such as Scala. Our benchmarks are Java and
Scala applications. The domain of runtime events covers a wide range of behavior of managed
runtimes, so we speculate that the high-level wisdom—e.g., what runtime events are important for
power modeling—may transcend to other managed language runtimes, such as Javascript, Python,
C#, and Go, although the model itself must be rebuilt with the language-speci!c benchmarks.
Thanks to the support of USDT probes for C and C++, interfacing Vesta with unmanaged language
runtimes does not alter the high-level design and the work#ow we described in Fig. 2.

Power Modeling and Workloads. Research on power modeling is motivated to con!rm feature
predictability, implicitly parameterized by the workloads/applications over which the model is built.
In the presence of new workloads, the model in principle needs to be rebuilt. In other words, the
real news is not the speci!c values of model parameters produced by Vesta, but the con"rmation
that a subset of language runtime events can predict power. In practice, power models are most
successful [7, 26, 36] for predicting the power consumption of known workloads but over unknown
traces (or “known unknowns”). Generally speaking, it is a non-goal to build a power model over
sunflow, and use it to predict the power consumption of xalan.
This latter goal is faced with a largely orthogonal challenge: the coverage and quality of the

training data set. In other words, while the trace data from sunflow alone cannot build a model to
accurately predict xalan—which is con!rmed by our experiments—one may curate a large set of
applications that hopefully capture (empirically) every form of workload, and the model training
over their traces can predict the power behavior of xalan. Intuitively this form of “unknown
unknowns” prediction—predicting the power consumption of unknown workloads over unknown
traces—can be viewed as a special form of our “known unknowns” prediction when the number of
diverse training applications reaches in!nity. We revisit this potential in § 7. The role of Vesta in
this potential future direction is a con!rmation of predictability: without Vesta, this latter pursuit
would be a blind e"ort solely by increasing the number of training data.

Intended Use Scenarios. As an end-user tool, Vesta is intended for server-type environments
(e.g., cloud providers), useful at least in two scenarios:

• Servers with large power footprints and long longevity. Energy accounting for these systems is
critical both because of their signi!cant instantaneous power, and of their large (accumulative)
energy consumption. To applyVesta, the model is initially trained on the server, and retrained
when system con!guration changes or when a new workload emerges. In this latter scenario,
only the data for that new workload needs to be collected. Vesta training after data collection
is e$cient: the time of building a model is under a minute for all experiments described
in this paper (§ 5). This work #ow is also in sync with our discussion earlier on unknown
workloads. As time goes on, when the applications used for training reaches a diverse large
set, it de facto becomes an “unknown unknowns” power model.

• Service providers and clients in need of explainable and auditable energy consumption. For a
cloud provider that o"ers energy-based pricing models, individual clients are charged based
on the energy consumption of their payload applications. Without Vesta, the only possible
approach would be to have the server provider measure the energy consumption (via RAPL
or meters) and communicate such information to the individual cloud client. Vesta however
o"ers a form of audit between the cloud provider and the client: the client can verify that—
through the ebbs and #ows of language runtime events—the energy consumption claimed by
the cloud provider indeed matches her own estimate (or not). Furthermore, explainability

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

VESTA: Power Modeling with Language Runtime Events 172:9

entails a better understanding on what exactly she pays for, in the similar vein as why one
prefers itemized utility bills.

Beyond tool building, Vesta plays a fundamental role in revealing the deep connection between
JVM events and power consumption. Not only con!rming this connection, Vesta shows that the
connection is so strong that the latter can be quantitatively derived from the former.

4 VESTA IMPLEMENTATION

USDT Probe Tracing. USDT tracing through instrumentation is supported by BPF Compiler
Collection (BCC), a toolkit on Linux.When provided with a list of probes to trace, BCC automatically
instruments the application with trace points. The resulting event trace, where the occurrence of
each event is timestamped, is kept in a perf bu"er, which is in turn read by Vesta. We found the
default BCC perf (ring) bu"er size of 8 pages to be insu$cient (see § 5.7), resulting in many losses
in the event logging. We set the size to 2048 pages.

Power/Energy Tracing. During training, Vesta periodically samples the RAPL interface of our
Intel-based platform for obtaining the energy consumption of the time interval through a tool called
jRAPL [32], which provides a convenient interface for Java-RAPL interaction. Power consumption
is calculated by dividing it with the length of the interval. The energy readings consist of energy
consumption of (i) all cores of all sockets; (ii) all uncore components (caches, etc); (iii) memory
controllers. To generate the power trace, each power sample is also timestamped.
We rely on C’s clock_gettime() function for retrieving timestamps, with CLOCK_MONOTONIC

as the argument. This function allows us to retrieve a monotonically increasing timestamp with
nanosecond resolution. We decided not to use Java’s nanoTime() function as its documenta-
tion states “no guarantees are made except that the resolution is at least as good as that of
currentTimeMillis().”2 For event traces, BCC already reports with nanosecond precision.

Benchmark Selection. All experiments for Vesta were performed using 37 state-of-the-art ap-
plications from two benchmark suites: DaCapo [8] and Renaissance [44]. All benchmarks are
multi-threaded. Both benchmark suites provide their user the ability to create Java callback plugins
which we used to collect runtime energy data and information about each run. We created two sets
of callback plugins: one for event selection (where one single event is instrumented) and the other
for post-selection data collection (where multiple events are instrumented).

Table 3. Examples of # × 2 Cross-Validation. (Let $, %,
and & be benchmarks and $# , % $, and &" be distinct
time intervals where ' ∈ [1..3], (∈ [1..4], and# ∈ [1..5].
Three experiment examples on data splits are shown.)

Train Test
$1, %4, %2, &3, &1, &2 $2, $3, %1, %3, %5, &4,
&2, $3, $2, $1, &4, &1 &3, %4, %1, %2, %5, %3

%2, %5, &1, &3, $2, %1 &4, $3, &2, $1, %3, %4

Model Building and Prediction. The align-
ment of the event trace and the power trace is
conducted after the execution is completed. We
!rst bucket event/power data into buckets, i.e.,
!xed-sized time intervals. When an event does
not occur, we use -1 as its depth. The readings
during the benchmark harness execution are ex-
cluded. The bucket size is 1 second, identical to
existing HPC-based approaches [7, 26, 36]. This
is also in sync with our use scenarios (§ 3.5): the
long-running applications which do not com-
plete in seconds or sub-seconds. We run each benchmark for 256 iterations in one hot JVM run,
and discard the !rst 5 iterations to mitigate the e"ect of warmup. The rest of the data are used for
training and inference, as we describe next.

2From the Java System API.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--

172:10 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

Table 4. Post-Selection Events (Events with * mean they are empheral events, the rest are split-phase events.)

Event Category Events

Method
CallObjectMethod, CallVoidMethod,

GetMethodID

JIT
compiled__method__load*,
compiled__method__unload*,

method__compile

Type & Metadata Management
IsInstanceOf, GetObjectClass, GetEnv,

vmops, safepoint
Memory Management (GC) gc

Memory Management (Primitive)
NewString, NewStringUTF,

GetStringLength

Memory Management (Array)

GetByteArrayElements,
GetObjectArrayElement,

ReleaseIntArrayElements,
SetByteArrayRegion

Memory Management (Object) GetLongField, SetIntField
Exception Handling Throw

Concurrency thread__park, thread__sleep

To perform training and inference, we adopt the approach taken by McCullough et al. [36] in
their HPC-based power prediction: we utilize a # × 2 cross-validation. The ordering of the data
items (i.e., the per-interval occurrences of runtime events and energy consumption values), taken
from all benchmarks, is randomized and then split in half—one half (which may come from intervals
of various benchmarks) is used for training, and the other half for testing. Table 3 visualizes this
process. Our cross validation is repeated 10 times and the mean, and standard deviation for each
benchmark, can be found in Fig 5. Note that a methodology that would split over benchmarks for
training and testing is unsound (unless one has thousands of benchmarks), as we described in § 3.5.

Implementation Languages. The runtime monitoring core of Vesta is written in Java, with C
(JNI) code for low-level operations such as timestamping and energy sampling. The code base also
consists of Python and bash scripts for model building and setting up experiments.

5 VESTA EVALUATION

5.1 Experimental Se!ings

We evaluate Vesta on a dual socket Intel Xeon E5-3630 v4 2.20GHz CPU server with 20 cores per
socket (40 cores in total) and 64GB DDR4 RAM. The machine runs Debian 5.17.11-1, Linux kernel
5.17.0-3-amd64. All experiments were run with OpenJDK 19 with the ExtendedDTraceProbes #ag
set. We used the latest builds of both DaCapo and Renaissance, versions evaluation-git+309e1fa
and 0.14.1 respectively. The default power governor in Linux is used, where Dynamic Voltage and
Frequency Scaling (DVFS) [10, 22] is enabled.

5.2 Event Selection

Vesta pairs all available USDT probes and then selects the events based on the methodology
described in §3.2, where the (relative) threshold is set as) = 20%. Fig. 4 shows the results of this
selection.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

172:14 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

the benchmark, not wall-clock time. Relative to the latter, the reference cycle overhead indicates
“extra work” due to Vesta event monitoring, regardless of whether such work is on the critical path
of a multi-threaded application (all our benchmarks are). As a result, the end-to-end wall-clock
overhead of Vesta is generally less (* = 0.90%). Second, a small number of benchmarks report
negative performance overheads. We believe this results from the interaction between Vesta

monitoring and DVFS. The monitoring activities (of 24 probes) by Vesta may have intensi!ed
the CPU activities, driving their host cores to a higher power state, i.e., operating at a higher
CPU frequency. As a result, a program may run faster. This phenomenon was reported in energy
pro!ler design before (e.g., [2]). Note that reference cycles—as opposed to CPU cycles—already
take clock speed into account. Third, the trend for reference cycle overhead and energy overhead
do not always correspond. According to physics, energy is the multiplication of power and time.
The metric of reference cycle count—despite the fact that it may not always directly translate
to end-to-end wall-clock time—is a time-based metric after all. For example, if we imagine two
programs with an identical execution time but one consumes twice the power of the other, then
the aforementioned program will also consume twice the energy.

5.5 Event Importance and Explainability

To gain more insight on the behavior of events, we examine the feature importance of our model.
Our metric of choice is SHAP (SHapley Additive exPlanations) values [33, 34], a high-level metric
that has rapidly gained popularity in the !eld of ML explanability. SHAP is based on cooperative
game theory by Shapley [46]. A positive/negative SHAP value for a feature means that the presence
of the feature in#uenced an increase/decrease in the outcome. The higher the absolute SHAP value
is, the more in#uence the given feature has over the outcome of a prediction. In the supplementary
material, we also include results based on lower-level metrics such as gain and frequency for
decision trees, with similar overall trends as SHAP.
Fig. 10a shows the (ranked) average absolute SHAP values for each feature. Fig. 10b provides

a deeper look at the top eight most important features by showing how the SHAP values are
distributed. Before we delve into the details, observe that individual SHAP values per time interval
may vary greatly, so the violin graph has a long tail. As a result, the mean (the middle vertical line)
often does not coincide at where the most data points are. This should be expected, because during
any time interval, many events may co-occur, and even the most important event may only have
limited and varying in#uence on power consumption. The large variance here indeed demonstrates
the challenge that Vesta has overcome: despite the highly dynamic nature of the executions where
even the most important events have varying in#uence across time intervals, Vesta is able to make
accurate power consumption. Speci!cally, we make several observations.
First, thread management plays an important role in power consumption. thread_park is

clearly the most important feature, re#ected by the high average absolute SHAP value. Similarly,
thread_sleep is also a highly ranked event. This outcome is not surprising: thread management
has a large impact on system utilization. The impact of thread scheduling on energy consumption
is well known in energy-e$cient computing [50], including prior empirical studies at the JVM
runtime level [43].
Second, memory access is in#uential on power, with SetIntField and SetByteArrayRegion

being the second and third important events for power modeling respectively. This is aligned
with the !nding in HPC-based power modeling where cache misses are among the most indica-
tive HPCs for power consumption. To gain a more in-depth understanding, we zero in on the
behavior of SetByteArrayRegion. Fig. 11a shows the scatter plot on how individual feature obser-
vations and their correposnding SHAP values. Fig 11b further correlates the feature observations
with cache misses, as tracked by the underlying HPCs. Interestingly, Fig. 11a shows there is a

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

VESTA: Power Modeling with Language Runtime Events 172:21

5.10 A Comparison with HPC-based Models

Existing HPC-based power modeling systems [5, 7, 26, 36, 52] report accuracy (in MAPE) ranging
2-10%. These results provide us an empirical understanding on what the “ballpark” expectations
of an e"ective power model should be. The prediction error of Vesta (1.56%) is on the smaller
end of this ballpark. To further gain con!dence, we conduct a reproduction study for HPC-based
power modeling in our experimental setting. The thorny issue is that none of the prior work
contains an exhaustive list of the HPCs used, and due to architectural di"erences between theirs
and ours, a one-on-one mapping is also di$cult to establish for those they discuss. Our best e"ort
for approximating known HPC-based power models is to combine the modeling methodology
of McCullough et al. [36] with the HPC correlation data of Zamani and Afsahi [52]. In the same
methodology as the former, we greedily selected HPCs with the highest power correlation, except
that we used the HPC correlation provided by the latter. Following their methodology, we used
LR and built a power model that consists of 12 perf HPCs, whose names can be found in the
supplementary material.

The energy prediction results of this power model are in Fig. 19. The precision of 4.81% con!rms
the MAPE range speci!ed in the HPC-based systems. The execution time overhead and energy
overhead are both <1%, with details reported in the supplementary material.

For readers interested in alternative choices of HPCs, we have included this script in our repository
with a brief explanation on customization.

6 RELATEDWORK

HPC-based power modeling has a long history. Isci and Martonosi [26] is an early work that shows
the feasibility of estimating power at execution time through piece-wise linear combinations of HPC
counts. Zamani and Afsahi [52] uses an ARMA (Autoregressive–moving-average) model to estimate
power consumption and develop a methodology for ranking the usefulness of HPCs. Bircher and
John [7] focuses on how HPCs could be used to predict power consumption of hardware subsystems
outside of the microprocessor, such as DRAM and I/O devices. McCullough et al. [36] recreates a
number of linear models and demonstrates their relative e"ectiveness for online modeling. They
also studied non-linear models such as Support Vector Regression and Polynomial with Lasso
Regression, where results do not show signi!cant improvement. Bertran et al. [5] extends power
prediction models with the ability to detect power phases. The relationship between Vesta and
HPC-based approaches has been discussed in §3; a performance comparison can be seen in §5.10.

HPC-based power modeling is widely used in cycle-accurate power simulation. For CPU power
simulation, examples include Wattch [9], gem5 [6], and McPat [29]. There are also cycle-accurate
power models built for GPUs [11, 27, 28]. Power modeling for power simulation does not need to
be concerned with overhead: the simulator runs substantially longer than the program it simulates.

There is a small body of prior work that rely on OS events for power modeling. Li and John [30]
shows how OS routine invocations can be used to predict overall OS power consumption. Their
focus is on modeling the power/energy consumption of the OS principals—e.g., interrupts, inter-
process communications, and !le system operations—not applications. Pathak et al. [42] developed
a power model for Android-based smartphones. Their system models the components of a smart-
phone, such as WiFi, NIC, SDCard, LCD, camera, GPS, as well as the CPU. For smartphones, their
approach is appropriate because the non-CPU components dominate the power consumption,
where system calls may be strongly correlated to the use of these non-CPU components. It is
however unclear whether their approach can generalize to our setting, a CPU/memory-centric
server-class environment.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

172:22 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

The discussion of Pathak et al. brings up a fair critique of Vesta: server-class environments also
have their additional power-hungry components—such as GPU and NIC—not modeled by Vesta in
its current form. As our benchmarks do not signi!cantly interact with these hardware components,
they likely incur (near-constant) idle power. In other words, even if we were to attach meters to
GPUs and NICs and add their power consumption to our data for model building, the resulting
model would be identical modulo a constant.
RAPL [13] allows end users to obtain energy readings through its dedicated registers on some

CPUs, such as recent models by Intel and AMD. For some architectures, the energy consumption
stored in RAPL registers is also modeled through hardware performance counters. By categorizing
RAPL as a measurement approach in § 2, we emphasize the end-user view. RAPL reports energy
data separately for core, uncore and DRAM components, o"ering a modicum of explainability
about these 3 physical components. Accessing RAPL registers requires root access. Recent studies
also show [25, 31] that side channels may be formed through the shared RAPL registers, posing
security vulnerabilities. We used RAPL during training only, but this is not essential to our design:
it can be replaced by any measurement approach.

The goal of energy/power accounting systems is to distribute a global energy/power consumption
into software/hardware components, both at the OS level [20, 53] and the application level [1–3].
The latter is also related to energy pro!ling [16, 18, 41, 48], producing a pro!le that consists of
energy consumption at the granularity of architecture, thread, or software logical components.
Power modeling and power accounting are di"erent but complementary approaches.

We borrow the phrase “split-phase” from nesC [19], a sensor network language. The phrase was
used in their language to refer to how a traditional synchronous event is split into two asynchronous
events: its start and its completion.

7 CONCLUSION

Vesta is a novel power prediction approach where JVM events are used for power modeling.
This approach has the bene!t of not requiring access to low-level whole-system information,
o"ering logical explainability of application energy behavior, and providing high precision. Vesta
is implemented as a lightweight monitor, and the power model it builds is highly precise with small
performance and energy overhead.
Now that Vesta has established the power predictability of JVM events, there are a number of

opportunities. First, it is interesting to investigate the feasibility of curating a set of Java applications
that are su$ciently large and representative, so that the prediction of “unknown unknown” work-
loads (§ 3.5) becomes empirically e"ective. The answer to this question may also have implications
on (power-representative) benchmark suite design. With predictability established, improving
prediction through larger training data is a recurring motif in machine learning. Fortunately, there
are a large number of Java applications available. Second, our preliminary studies on alternative
con!gurations (§ 5.8) may be signi!cantly expanded, deserving to be an empirical study of its
own. As both GC and JIT are active research topics, their possible variations, together with those
of the underlying OS/architecture, far exceed what we have experimented. Last but not least, we
wish to apply the idea behind Vesta to non-JVM runtimes. Our decision of tracking USDT probes
makes porting our implementation to other USDT-supporting languages relatively simple: BPF/BCC
already supports USDT tracing for other languages, including unmanaged runtimes such as C and
C++. Except for the data collection stage, the rest of Vesta remains the same. Implementability
however does not equate e"ectiveness. Due to the fundamental di"erence between language run-
times, especially that between managed languages and unmanaged languages, it remains to be
seen whether an accurate power model can be built with events from other runtimes.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

VESTA: Power Modeling with Language Runtime Events 172:23

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insightful suggestions and comments.
We are also grateful for the help from Aleksandar Prokopec during early stages of our development,
especially on Renaissance and OpenJDK. This project is sponsored by the US NSF under CNS-
1910532 and CNS-2215016.

DATA AVAILABILITY STATEMENT

Vesta is an open-source project. The source code of our system, the comparative system with
HPC-based power modeling, together with all raw data can be found at an anonymous website:
https://github.com/vesta-power-model/vesta. The supplementarymaterial can be found online [45].

REFERENCES

[1] Timur Babakol, Anthony Canino, and Yu David Liu. 2022. E#ect: Porting Energy-Aware Applications to Shared
Environments. In International Conference on Software Engineering (ICSE’22) (Pittsburgh, Pennsylvania). Association
for Computing Machinery, New York, NY, USA, 823–834. https://doi.org/10.1145/3510003.3510145

[2] Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu. 2020. Calm energy accounting
for multithreaded Java applications. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B.
Cohen, and Thomas Zimmermann (Eds.). ACM, 976–988. https://doi.org/10.1145/3368089.3409703

[3] Timur Babakol and Yu David Liu. 2024. Tensor-Aware Energy Accounting. In International Conference on Software
Engineering (ICSE’24). ACM. https://doi.org/10.1145/3597503.3639156

[4] Woongki Baek and Trishul M. Chilimbi. 2010. Green: a framework for supporting energy-conscious programming using
controlled approximation. In PLDI’10 (Toronto, Ontario, Canada). 198–209. https://doi.org/10.1145/1809028.1806620

[5] R. Bertran, M. Gonzelez, X. Martorell, N. Navarro, and E. Ayguade. 2013. A systematic methodology to generate
decomposable and responsive power models for cmps. IEEE Trans. Comput. 62, 7 (2013), 1289–1302. https://doi.org/10.
1109/tc.2012.97

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (aug 2011), 1–7.
https://doi.org/10.1145/2024716.2024718

[7] William Lloyd Bircher and Lizy K. John. 2012. Complete System Power Estimation using processor performance events.
IEEE Trans. Comput. 61, 4 (2012), 563–577. https://doi.org/10.1109/tc.2011.47

[8] Stephen M. Blackburn, Robin Garner, Chris Ho"mann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(Portland, Oregon, USA) (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA, 169–190. https:
//doi.org/10.1145/1167473.1167488

[9] D. Brooks, V. Tiwari, and M. Martonosi. 2000. Wattch: a framework for architectural-level power analysis and
optimizations. In Proceedings of 27th International Symposium on Computer Architecture (ISCA’00). 83–94. https:
//doi.org/10.1145/342001.339657

[10] Thomas D. Burd and Robert W. Brodersen. 2000. Design issues for dynamic voltage scaling. In ISLPED’00. 9–14.
https://doi.org/10.1145/344166.344181

[11] Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih-kwon Peir. 2011. Statistical GPU power analysis using tree-based
methods. In 2011 International Green Computing Conference and Workshops. 1–6. https://doi.org/10.1109/IGCC.2011.
6008582

[12] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).
Association for Computing Machinery, New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[13] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. 2010. RAPL. In Proceedings of the
16th ACM/IEEE international symposium on Low power electronics and design. https://doi.org/10.1145/1840845.1840883

[14] Perf Events and Tool Security. [n. d.]. online document at https://www.kernel.org/doc/html/latest/admin-guide/perf-
security.html. ([n. d.]).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://github.com/vesta-power-model/vesta
https://doi.org/10.1145/3510003.3510145
https://doi.org/10.1145/3368089.3409703
https://doi.org/10.1145/3597503.3639156
https://doi.org/10.1145/1809028.1806620
https://doi.org/10.1109/tc.2012.97
https://doi.org/10.1109/tc.2012.97
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/tc.2011.47
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/342001.339657
https://doi.org/10.1145/342001.339657
https://doi.org/10.1145/344166.344181
https://doi.org/10.1109/IGCC.2011.6008582
https://doi.org/10.1109/IGCC.2011.6008582
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/1840845.1840883
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html

172:24 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

[15] Jason Flinn and M. Satyanarayanan. 1999. Energy-Aware Adaptation for Mobile Applications. In Proceedings of the
Seventeenth ACM Symposium on Operating Systems Principles (Charleston, South Carolina, USA) (SOSP ’99). Association
for Computing Machinery, New York, NY, USA, 48–63. https://doi.org/10.1145/319151.319155

[16] J. Flinn and M. Satyanarayanan. 1999. PowerScope: a tool for pro!ling the energy usage of mobile applications.
In Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications. 2–10. https:
//doi.org/10.1109/MCSA.1999.749272

[17] Anshul Gandhi, Kanad Ghose, Kartik Gopalan, S Hussain, Dongyoon Lee, Y Liu, Zhenhua Liu, Patrick McDaniel, Shuai
Mu, and Erez Zadok. 2022. Metrics for sustainability in data centers. In Proceedings of the 1st Workshop on Sustainable
Computer Systems Design and Implementation (HotCarbon’22). https://doi.org/10.1145/3630614.3630622

[18] X. Gao, D. Liu, D. Liu, H. Wang, and A. Stavrou. 2017. E-Android: A New Energy Pro!ling Tool for Smartphones. In
2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). 492–502. https://doi.org/10.1109/
ICDCS.2017.218

[19] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. 2003. The NesC Language:
A Holistic Approach to Networked Embedded Systems. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (San Diego, California, USA) (PLDI ’03). Association for Computing
Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/781131.781133

[20] Liwei Guo, Tiantu Xu, Mengwei Xu, Xuanzhe Liu, and Felix Xiaozhu Lin. 2018. Power Sandbox: Power Awareness
Rede!ned. In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for Computing
Machinery, New York, NY, USA, Article 37, 15 pages. https://doi.org/10.1145/3190508.3190533

[21] Lorenz Hilty and Bernard Aebischer. 2015. ICT for Sustainability: An Emerging Research Field. Vol. 310. 3–36. https:
//doi.org/10.1007/978-3-319-09228-7_1

[22] M. Horowitz, T. Indermaur, and R. Gonzalez. 1994. Low-power digital design. In Low Power Electronics, 1994. Digest of
Technical Papers., IEEE Symposium. 8–11. https://doi.org/10.1109/LPE.1994.573184

[23] S. Hussain, P. McDaniel, A. Gandhi, K. Ghose, K. Gopalan, D. Lee, Y. Liu, Z. Liu, S. Mu, and E. Zadok. 2024. Veri!able
Sustainability in Data Centers. IEEE Security amp; Privacy 01 (mar 2024), 2–15. https://doi.org/10.1109/MSEC.2024.
3372488

[24] Ahmed Hussein, Mathias Payer, Antony Hosking, and Christopher A. Vick. 2015. Impact of GC Design on Power and
Performance for Android. In Proceedings of the 8th ACM International Systems and Storage Conference (Haifa, Israel)
(SYSTOR ’15). Association for Computing Machinery, New York, NY, USA, Article 13, 12 pages. https://doi.org/10.
1145/2757667.2757674

[25] Intel. [n. d.]. Intel RAPL Interface Advisory, online at https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00389.html.

[26] C. Isci and M. Martonosi. 2003. Runtime power monitoring in high-end processors: methodology and empirical
data. In Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36. 93–104.
https://doi.org/10.1109/MICRO.2003.1253186

[27] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa
Reddi. 2013. GPUWattch: Enabling Energy Optimizations in GPGPUs. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (Tel-Aviv, Israel) (ISCA ’13). Association for Computing Machinery, New York,
NY, USA, 487–498. https://doi.org/10.1145/2485922.2485964

[28] Jonathan Lew, Deval A Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang, Amruth Sandhupatla, Christopher Ng,
Negar Goli, Matthew D Sinclair, Timothy G Rogers, et al. 2019. Analyzing machine learning workloads using a detailed
GPU simulator. In 2019 IEEE international symposium on performance analysis of systems and software (ISPASS). IEEE,
151–152. https://doi.org/10.1109/ISPASS.2019.00028

[29] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT: An
integrated power, area, and timing modeling framework for multicore and manycore architectures. In 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 469–480. https://doi.org/10.1145/1669112.1669172

[30] Tao Li and Lizy Kurian John. 2003. Run-Time Modeling and Estimation of Operating System Power Consumption.
In Proceedings of the 2003 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems (San Diego, CA, USA) (SIGMETRICS ’03). Association for Computing Machinery, New York, NY, USA, 160–171.
https://doi.org/10.1145/781027.781048

[31] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio Canella, and Daniel Gruss.
2021. PLATYPUS: Software-based Power Side-Channel Attacks on x86. In 2021 IEEE Symposium on Security and Privacy
(SP). 355–371. https://doi.org/10.1109/SP40001.2021.00063

[32] Kenan Liu, Gustavo Pinto, and Yu David Liu. 2015. Data-Oriented Characterization of Application-Level Energy
Optimization. In Fundamental Approaches to Software Engineering, Alexander Egyed and Ina Schaefer (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 316–331. https://doi.org/10.1007/978-3-662-46675-9_21

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://doi.org/10.1145/319151.319155
https://doi.org/10.1109/MCSA.1999.749272
https://doi.org/10.1109/MCSA.1999.749272
https://doi.org/10.1145/3630614.3630622
https://doi.org/10.1109/ICDCS.2017.218
https://doi.org/10.1109/ICDCS.2017.218
https://doi.org/10.1145/781131.781133
https://doi.org/10.1145/3190508.3190533
https://doi.org/10.1007/978-3-319-09228-7_1
https://doi.org/10.1007/978-3-319-09228-7_1
https://doi.org/10.1109/LPE.1994.573184
https://doi.org/10.1109/MSEC.2024.3372488
https://doi.org/10.1109/MSEC.2024.3372488
https://doi.org/10.1145/2757667.2757674
https://doi.org/10.1145/2757667.2757674
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://doi.org/10.1109/MICRO.2003.1253186
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1109/ISPASS.2019.00028
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/781027.781048
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1007/978-3-662-46675-9_21

VESTA: Power Modeling with Language Runtime Events 172:25

[33] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan
Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. From local explanations to global understanding with explainable AI
for trees. Nature Machine Intelligence 2, 1 (2020), 56–67. https://doi.org/10.1038/s42256-019-0138-9

[34] Scott M. Lundberg and Su-In Lee. 2017. A Uni!ed Approach to Interpreting Model Predictions. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (Eds.). 4765–4774. https://proceedings.neurips.cc/paper/2017/hash/
8a20a8621978632d76c43dfd28b67767-Abstract.html

[35] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. 2020. Recalibrating global data center
energy-use estimates. Science 367, 6481 (2020), 984–986. https://doi.org/10.1126/science.aba3758

[36] John C. McCullough and Yuvraj Agarwal. 2011. Evaluating the E"ectiveness of Model-Based Power Characterization.
In 2011 USENIX Annual Technical Conference (USENIX ATC 11). USENIX Association, Portland, OR. https://www.
usenix.org/conference/usenixatc11/evaluating-e"ectiveness-model-based-power-characterization-0

[37] Andreas Merkel, Jan Stoess, and Frank Bellosa. 2010. Resource-Conscious Scheduling for Energy E$ciency onMulticore
Processors. In Proceedings of the 5th European Conference on Computer Systems (Paris, France) (EuroSys ’10). Association
for Computing Machinery, New York, NY, USA, 153–166. https://doi.org/10.1145/1755913.1755930

[38] F. Montevecchi, T. Stickler, R. Hintemann, and S. Hinterholzer. 2020. Energy-e#cient cloud computing technologies
and policies for an eco-friendly cloud market, https://digital-strategy.ec.europa.eu/en/ library/energy-e#cient-cloud-
computing-technologies-and-policies-eco-friendly-cloud-market.

[39] O$ce of Energy E$ciency & Renewable Energy. 2023. Data Centers and Servers. https://www.energy.gov/eere/
buildings/data-centers-and-servers.

[40] Oracle. 2023. DTrace Probes in HotSpot VM. https://docs.oracle.com/javase/8/docs/technotes/guides/vm/dtrace.html.
[41] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. 2012. Where is the Energy Spent Inside My App?: Fine Grained

Energy Accounting on Smartphones with Eprof. In Proceedings of the 7th ACM European Conference on Computer
Systems (Bern, Switzerland) (EuroSys ’12). 29–42.

[42] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. 2011. Fine-Grained Power Modeling
for Smartphones Using System Call Tracing. In Proceedings of the Sixth Conference on Computer Systems (Salzburg,
Austria) (EuroSys ’11). Association for Computing Machinery, New York, NY, USA, 153–168. https://doi.org/10.1145/
1966445.1966460

[43] Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Understanding Energy Behaviors of Thread Management
Constructs. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
Applications (Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA,
345–360. https://doi.org/10.1145/2660193.2660235

[44] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej,
Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking
Suite for Parallel Applications on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 31–47. https://doi.org/10.1145/3314221.3314637

[45] Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu. [n. d.]. Vesta Supplementary Material (https:
//www.cs.binghamton.edu/~davidl/papers/PLDI24Sup.pdf). Technical Report.

[46] L. S. Shapley. 1953. A value for n-person games. Contributions to the Theory of Games (AM-28), Volume II (1953),
307–318. https://doi.org/10.1515/9781400881970-018

[47] Marina Shimchenko, Mihail Popov, and Tobias Wrigstad. 2022. Analysing and Predicting Energy Consumption of
Garbage Collectors in OpenJDK. In Proceedings of the 19th International Conference on Managed Programming Languages
and Runtimes. 3–15. https://doi.org/10.1145/3546918.3546925

[48] A. Sinha and A. P. Chandrakasan. 2001. JouleTrack-a Web based tool for software energy pro!ling. In Proceedings of
the 38th Design Automation Conference (DAC’01). 220–225. https://doi.org/10.1145/378239.378467

[49] P. Sweazey and A. J. Smith. 1986. A Class of Compatible Cache Consistency Protocols and Their Support by the IEEE
Futurebus. In Proceedings of the 13th Annual International Symposium on Computer Architecture (Tokyo, Japan) (ISCA
’86). IEEE Computer Society Press, Washington, DC, USA, 414–423. https://doi.org/10.1145/17356.17404

[50] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. 1994. Scheduling for Reduced CPU Energy. In OSDI’94.
USENIX Association, Monterey, CA. https://doi.org/10.5555/1267638.1267640

[51] Xingfu Wu and Valerie Taylor. 2016. Utilizing Hardware Performance Counters to Model and Optimize the Energy and
Performance of Large Scale Scienti!c Applications on Power-Aware Supercomputers. In 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 1180–1189. https://doi.org/10.1109/IPDPSW.2016.78

[52] Reza Zamani and Ahmad Afsahi. 2012. A study of hardware performance monitoring counter selection in power
modeling of computing systems. In 2012 International Green Computing Conference (IGCC). 1–10. https://doi.org/10.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://doi.org/10.1038/s42256-019-0138-9
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1126/science.aba3758
https://www.usenix.org/conference/usenixatc11/evaluating-effectiveness-model-based-power-characterization-0
https://www.usenix.org/conference/usenixatc11/evaluating-effectiveness-model-based-power-characterization-0
https://doi.org/10.1145/1755913.1755930
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://www.energy.gov/eere/buildings/data-centers-and-servers
https://www.energy.gov/eere/buildings/data-centers-and-servers
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/dtrace.html
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1145/2660193.2660235
https://doi.org/10.1145/3314221.3314637
https://www.cs.binghamton.edu/~davidl/papers/PLDI24Sup.pdf
https://www.cs.binghamton.edu/~davidl/papers/PLDI24Sup.pdf
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1145/3546918.3546925
https://doi.org/10.1145/378239.378467
https://doi.org/10.1145/17356.17404
https://doi.org/10.5555/1267638.1267640
https://doi.org/10.1109/IPDPSW.2016.78
https://doi.org/10.1109/IGCC.2012.6322289
https://doi.org/10.1109/IGCC.2012.6322289

172:26 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

1109/IGCC.2012.6322289
[53] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. 2003. Currentcy: A Unifying Abstraction for Ex-

pressing Energy. In 2003 USENIX Annual Technical Conference (USENIX ATC 03). USENIX Association, San Antonio,
TX. https://www.usenix.org/conference/2003-usenix-annual-technical-conference/currentcy-unifying-abstraction-
expressing-energy

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://doi.org/10.1109/IGCC.2012.6322289
https://doi.org/10.1109/IGCC.2012.6322289
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/currentcy-unifying-abstraction-expressing-energy
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/currentcy-unifying-abstraction-expressing-energy

	Abstract
	1 Introduction
	2 Motivations
	2.1 Tracking Power across the Systems Stack
	2.2 Challenges with Runtime-Level Power Modeling

	3 Vesta Design
	3.1 Overview
	3.2 Event Selection
	3.3 Split-Phase Event Synthesis
	3.4 Model Building
	3.5 Applicability and Use Scenarios

	4 Vesta Implementation
	5 Vesta Evaluation
	5.1 Experimental Settings
	5.2 Event Selection
	5.3 Prediction
	5.4 Overhead
	5.5 Event Importance and Explainability
	5.6 Alternative ML Models
	5.7 Alternative Numbers of Events
	5.8 Alternative Configurations across the Computing Stack
	5.9 Other Efforts in Design Space Exploration
	5.10 A Comparison with HPC-based Models

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

