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As gravitational wave detectors improve in sensitivity, signal-to-noise ratios of compact binary
coalescences will dramatically increase, reaching values in the hundreds and potentially thousands.
Such strong signals offer both exciting scientific opportunities and pose formidable challenges to the
template waveforms used for interpretation. Current waveform models are informed by calibrating or
fitting to numerical relativity waveforms and such strong signals may unveil computational errors in
generating these waveforms. In this paper, we isolate a single source of computational error, that of
the finite grid resolution, and investigate its impact on parameter estimation for alLIGO and Cosmic
Explorer. We show that injecting a lower resolution simulation tends to cause a downward shift in
the recovered chirp mass and mass ratio posteriors. We demonstrate that increasing the inclination
angle or decreasing the mass ratio raises the resolution required for unbiased parameter estimation.
We quantify the error associated with the highest-resolution waveform utilized using an extrapolation
procedure on the median of recovered posteriors and confirm the accuracy of current waveforms for
the synthetic sources. We introduce a measure to predict the necessary numerical resolution for
unbiased parameter estimation and use it to predict that current waveforms are suitable for equal
and moderately unequal mass binaries for both detectors. However, current waveforms fail to meet
accuracy requirements for high signal-to-noise ratio signals from highly unequal mass ratio binaries
(¢ £ 1/6), for all inclinations in Cosmic Explorer, and for high inclinations in future updates to
LIGO. Given that the resolution requirement becomes more stringent with more unequal mass ratios,
current waveforms may lack the necessary accuracy, even at median signal-to-noise ratios for future
detectors.

I. INTRODUCTION ringdown. Despite being the most accurate way of ob-
taining a gravitational waveform of merger, NR wave-
forms are typically not used directly for GW data anal-
ysis as they are computationally expensive to gener-
ate, are short in length, and have sparse and uneven
parameter space coverage. While some studies have
used NR waveforms directly for PE [20, 21] including a
LIGO-Virgo-KAGRA analysis of GW150914 [22], these
analyses are limited by the number of available simula-
tions. As such, to create comprehensive inspiral-merger-
ringdown waveform models that cover a continuous pa-
rameter space, various modeling strategies have been de-
veloped. These include: effective-one-body formalism
[23-26], phenomenological modeling [27-29], and NR sur-
rogates [30]. Each of these modeling strategies relies on
NR waveforms. Effective-one-body models use NR wave-
forms to calibrate the free parameters, phenomenologi-
cal models use hybridized NR and post-Newtonian wave-
forms [31] for a multi-parameter fit and NR surrogates
generate interpolants based on NR, waveforms. These
waveform models play a critical role in the search and
interpretation of GW events, and given that their accu-
racy is bounded by the accuracy of NR waveforms, it
is imperative that the NR waveforms used in their con-
struction meet the required level of accuracy.

The detection of gravitational waves (GW) [1-4] by
the Advanced Laser Interferometer Gravitational-wave
Observatory (LIGO) [5] and Advanced Virgo [6] has re-
sulted in an explosive growth in the field of GW as-
tronomy and this growth is expected to continue due to
plans for substantial upgrades to current detectors [7, §]
and the development of next-generation ground-based [9—
13] and space-based [14-16] detectors over the next two
decades. These advancements will enable the detection
of GW events at significantly higher signal-to-noise ra-
tios (SNRs) than observed to date. Detection of such
strong signals not only promises unprecedented science
but also raises a question: Are current waveforms ac-
curate enough to yield unbiased parameter estimation
(PE) of GW sources? Increased sensitivities necessitate
a stricter accuracy requirement on model waveforms and
the numerical relativity (NR) waveforms used in their
construction. The increase in the accuracy requirement
stems from the fact that as the SNR of observed signals
increases, the statistical uncertainty in the recovered pa-
rameters decreases, amplifying the impact of underlying
systematic uncertainties. As such, to fully extract the
wealth of information contained in such strong signals,
it is imperative that the waveforms meet these enhanced
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Both NR and model waveforms have inherent uncer-

accuracy requirements.

A coalescing compact binary system is described by
FEinstein’s field equations, which can be solved using NR
[17-19], particularly for the late inspiral, merger, and

tainties that can affect the interpretation of GW signals.
One of the sources of systematic uncertainty in NR wave-
forms is inaccuracy from finite grid resolution. The un-
certainties in model waveforms arise from the approxima-



tions made during their construction, omission of certain
physics and their reliance on finite-resolution NR wave-
forms. However, it is worth noting that it has been shown
that currently available NR, waveforms demonstrate an
adequate level of accuracy for the signals detected to date
[32].

While multiple studies [33-37] have been done to in-
vestigate the impact of model waveform systematics on
PE, an area that remains relatively unexplored is the ef-
fect of bias introduced by finite-resolution NR waveforms
on full PE. In a previous study [20], one-dimensional PE
of an NR injection was conducted to study the impact
of numerical resolutions on the final posterior distribu-
tion, with the recovery being done using NR waveforms.
Apart from being restricted to a single dimension, the
study was carried out at an SNR of 25, limiting the ap-
plicability of such a study to future, more sensitive detec-
tors. In another study [32], a criterion was proposed that
relates the minimum resolution required for producing an
NR waveform that is indistinguishable from a true signal
to the SNR. This criterion is conservative, as indistin-
guishability itself is an unnecessarily strict requirement
[34, 38] and significant parameter bias may not arise even
for technically distinguishable waveforms. Consequently,
its application can become impractical, especially in sce-
narios where higher modes play a crucial role as the cri-
terion sets a considerably higher resolution requirement
than actually needed, placing a burden on computational
resources.

In this work, we study the impact of using finite-
resolution NR waveforms on PE by performing PE on
synthetic signals (injections) produced by NR simula-
tions run at multiple resolutions. We start by compar-
ing the PE outputs of equal mass ratio binary injections
differing only in resolution, and investigate the impact
of NR truncation errors on the recovered binary param-
eters. We demonstrate that using a resolution higher
than what is required for unbiased PE does not yield ad-
ditional information for PE. We confirm that the resolu-
tion requirement based on waveform indistinguishability
[32] is stricter than required for unbiased PE. We show
the accuracy requirement for NR waveforms is dependent
on the detector, as the impact of truncation errors varies
according to the sensitivity curve of the detector. We
show that for systems with a greater higher mode con-
tent in their GWs, higher resolution is needed to achieve
unbiased PE than for those without. Moreover, we intro-
duce and employ an extrapolation procedure to estimate
errors associated with the highest resolution waveforms
used in our work. Finally, we utilize our results, com-
bined with a waveform criterion, to make predictions for
future NR codes, predicting the minimum resolution nec-
essary for unbiased PE of signals expected to be observed
by upcoming detectors.

The rest of the paper is organized as follows: in Sec. 11
we review the NR waveforms used in the study, the in-
distinguishability criterion for NR waveforms generated
using finite-differencing codes, and the PE code RIFT. In

Sec. III we study the impact of numerical biases on PE
across a variety of systems and for two detectors, LIGO
Hanford (H1) and the proposed third generation detec-
tor Cosmic Explorer (CE) [12]. In Sec. IV, we employ
an extrapolation procedure to determine bias in PE due
to the highest resolution waveforms used in this study.
In Sec. V, we predict the SNR at which we will see sig-
nificant biases and compare them with what we obtained
from full PE. We also assess the accuracy of current wave-
forms and determine if they are sufficiently accurate for
current and future detectors. In Sec. VI we summarize
our results.

II. METHODS

In this section, we introduce the methods we use to
investigate the effect of NR truncation errors on PE and
assess the accuracy limitations of existing NR waveforms
in the context PE. We start by discussing the NR wave-
forms used as injections in our PE studies in Sec. IT A.
We then discuss the indistinguishability criterion for NR
waveforms, as proposed in [32], in Sec. II B. We then re-
view the PE algorithm RIFT in section II C.

A. Numerical Relativity waveforms

For our PE investigations, we use NR waveforms gen-
erated using the MAYA code [39-42] as injections. MAYA is
a branch of the Einstein Toolkit, and is built upon
the Cactus framework, incorporating Carpet [43] for
mesh refinement. It employs the BSSN [44] formulation
to derive the initial constraints and evolution equations
from Einstein’s field equations. In its calculations, MAYA
utilizes sixth-order spatial finite-differencing and fourth-
order Runge-Kutta for time evolution.

Our NR waveform injections were extracted from two
sets of quasi-circular MAYA NR simulations. Each had
identical initial conditions and parameters, differing only
in grid resolution. These simulations are parametrized,
up to an arbitrary total mass M (in code units), by the
intrinsic parameters A of the binary. These intrinsic pa-
rameters include primary mass my, secondary mass ms,
and spin vectors S and S5. Since the simulations are
scale-invariant with respect to total mass, it is conven-
tional to parametrize them in terms of their mass ratio
g = mgo/my < 1. Further, we define the dimensionless
spin parameters x1 = S1/m? and x2 = Sa/m3.

The first set of simulations had ¢ = 1 and spins aligned
with the orbital angular momentum, with y1, = x2. =
0.6. The other set was non-spinning, with ¢ = 1/3. These
parameters were computed at the beginning of the sim-
ulation, but there is evidence that non-physical junk ra-
diation does not significantly affect their values [45].

The initial separations and grid spacing or resolution
of our simulations are expressed in terms of M. For the
q = 1 systems, the initial separation was 12M while for



qg mi/Me me/Mg M./Ms X1 X2 ¢ (radians) A

1 50 50 335 (0.0,00,006) (0.0,0.0,00) 0 M/30, M/120, M/140, M/200

1 50 50 435 (0.0, 0.0,0.6) (0.0, 0.0, 0.6) /6 M/80, M/120, M/140, M /200
/3 1125 37.5 549 (0.0,0.0,0.0) (0.0, 0.0, 0.0) 0 M/100, M/120, M/140, M /180

TABLE I: Synthetic sources: Parameters of the three sets of synthetic sources used in our study. For these sources, we have
chosen right ascension ra = 0.57, polarization angle ¥ = 0, declination dec = 1, and coalescence phase ¢. = 0 (all in radians).
The GPS time at the geocenter was set to 10%s. Each set of injections was recovered at multiple SNRs, achieved by changing

the luminosity distance Dr,.

the ¢ = 1/3 systems, the initial separation was 9M. Both
sets comnsist of four differently resolved simulations. The
simulations were performed on a grid with 10 refinement
levels with the largest grid radii being 409.6M and the
smallest being 0.2M . The resolutions are specified by the
grid spacing A; of the finest grid in each simulation and
varied from A; = M /200 (M/180) for our highest resolu-
tion ¢ =1 (¢ = 1/3) simulation to A; = M/80 (M/100)
for our lowest. The lowest resolution in each set is lower
than typically used for GW data analysis and was chosen
to illustrate the impact of resolution at moderate SNRs.
The typical resolution of ¢ = 1 and ¢ = 1/3 simulations in
the MAYA catalog [46] is M /200 and M /370 respectively.

The waveforms were computed from the Weyl scalar
U, extracted at a finite radius of 75M from the binary
system. We avoided extrapolating the waveforms to in-
finity in order to isolate the impact of finite resolution.
W, is related to the gravitational polarizations as follows:

() = g (6) — i (1) 1)

Further decomposition of GW polarizations involves ex-
pressing them as a sum of spherical harmonics _5Y},, and
GW modes hyyy,, given by

h®) = b () = S bt Vi (2)
Im

In our injections, we only used ¢ < 4 modes.

In order to compute the GW strain h(t) as measured
at a detector, we must specify the detector frame total
mass Mot so that the component masses and dimen-
sionful scales are determined. Additionally, the extrin-
sic parameters of the binary must be defined. These
extrinsic parameters determine the space-time location
and orientation relative to the detector and include lu-
minosity distance Dy, right ascension ra, declination dec,
polarization v, inclination ¢, orbital phase ¢., and coa-
lescence time t.. The intrinsic and extrinsic parameters
chosen for our NR waveforms, along with the grid spac-
ing used in the finest grid, are provided in Table I. There
and throughout this study we quote the detector-frame
masses for the system. Two sets of these waveforms are
assumed to be observed face-on, with + = 0, while the
third has a modest inclination ¢« = 7/6. Regardless of
the detector sensitivity used in this study, we assume the
detector is located at the site of the Hanford GW detec-
tor and aligned with it. Figure 1 depicts the time-domain

strains imprinted on the detector for the face-on cases.
These waveforms are aligned at their peaks, and we can
see a clear dephasing with differing grid resolutions.

B. Criterion for assessing waveform accuracy

A gravitational waveform h; extracted from an NR
simulation can be expressed in terms of the exact so-
lution h as h; = h+ dh;, where dh; is the error in the ex-
tracted waveform. If the code used to generate the wave-
form uses finite-differencing to solve partial differential
equations, then the truncation error can be expressed as
dh; = c(A;)®, where « is the convergence rate of the code
and ¢ depends on the derivatives of h. Recall that since
Carpet uses adaptive mesh refinement, different sections
of the grid have different spacings, and A; refers to the
spacing of the finest grid.

Before discussing the indistinguishability criterion, we
will first define the overlap between two waveforms.
Given two waveforms h; and hs, the overlap between
them is defined as

(h1lhz)
(hh) (halha)

where the noise-weighted inner product is defined as

Tmex B3 (f)ha(f)
ST

with S, (f) being the one-sided power spectral density of
the detector, fmin a low-frequency cutoff, fi.x a high-
frequency cutoff, and % denoting the complex conju-
gate. Here, we have used the fact that h;(¢) is a real-
time series, and as such its Fourier transform satisfies
hi(f) = hi(—f), allowing us to define the inner product
as an integral over positive frequencies.

Using the overlap, we can define mismatch e[hy, hs],
which several previous investigations have argued relates
to systematic biases in PE [34, 47-52], as

Olhy, ho] = (3)

(halh) = 4Re / i@

E[hl, hg] =1- %IIEZ)XOUM, hg] . (5)
Subsequently, we use the mismatch between two NR
waveforms, both having identical parameters but differ-
ing in the numerical resolution of simulation grid, to com-
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FIG. 1: Comparison between the different resolutions of ¢ = 1 and ¢ = 1/3 waveforms: Top panel: Strain evaluated
from the four distinct resolution ¢ = 1 waveforms for a source with Mo« = 100Mg,t¢ = 0. Bottom panel: Strain evaluated
from the four different resolution ¢ = 1/3 waveforms for a source with Miot = 150M,¢ = 0. In both panels, the waveforms
are aligned at the peak, evaluated at Dy, = 1000 Mpc and the colors represent different resolutions.

pute 8. It depends on the parameters of the binary sys-
tem and can be computed as

clinha] = (a3 — A2, (6)

Using f, and the convergence rate o of the finite-
differencing code, we can then estimate the minimum
resolution necessary for producing NR waveforms indis-
tinguishable from true signal using the criterion [32]

A< (pB)~, (7)

where p is the SNR. Ideally, o and 8 would be indepen-
dent of the resolution of the simulations used for their
calculation and this would be true if the waveforms were
extracted from simulations that consisted of a single grid,
used the same order for all finite-differencing, and the
strain was a grid variable. However, given the compli-
cated mesh refinements and boundary conditions as well
as the interpolation necessary to extract i, and com-
pute strain, we have a less well-defined convergence or-
der. This means the values of a and g differ slightly
between different pairs of resolutions. This introduces
an uncertainty of up to 10M ! in our estimates of the
minimum resolution necessary for indistinguishability.

C. RIFT

A GW from a quasicircular binary black hole system
undergoing merger can be completely determined by 15
parameters. These parameters are classified into the two
groups, intrinsic (X) and extrinsic (0), described previ-
ously. In discussing the PE results, we also use chirp mass
M. = (m1m2)>/®/(mq +mg)/®, which is paired with the
mass ratio ¢ to represent the mass parameters. We also
define another parameter called effective spin, which is
a mass-weighted combination of individual spins and is
defined as

mi1X1z + M2X2z ®)

Xeff =
mi + meo

After a GW is detected, the data d is analyzed to infer
the parameters of the radiating system using a PE algo-
rithm, and RIFT [53] is one such algorithm. It is a highly
parallelizable, grid-based, iterative algorithm consisting
of two core iterative stages. In the first stage, a “grid” of
intrinsic parameters is put forth, and for each point A,
from the proposed grid, RIFT integrates over the extrinsic
variables to compute the marginal likelihood

Lonarg(dIA) = / Lean(dIX, 0)p(6)d0 ()

from the likelihood Len(d|A, @) of the GW signal, ac-
counting for detector response. Here, p(0) are the priors



on the extrinsic parameters. The integration is made
possible by factorizing the dependence of L) on the ex-
trinsic parameters, which is partially made possible by
expressing the GW polarizations in terms of GW ¢, m
modes; see [54] for a more detailed specification.

Once the marginalized likelihood is evaluated for
points on the grid (An, L,), RIFT interpolates this dis-
crete grid of marginalized likelihood points to generate
the continuous likelihood distribution L are(d|X). With
the knowledge of the continuous marginalized likelihood
distribution Lmarg(d|A) and intrinsic prior p(X), RIFT
constructs the marginalized posterior via Bayes’ Theo-
rem:

. Emarg (d| A)p(k)
Prost ) = T Lrara ANPO) "

The integral in the denominator is calculated by per-
forming a Monte Carlo integral: the evaluation points
and weights in that integral are weighted posterior sam-
ples, which are fairly resampled to generate conventional
independent, identically distributed posterior samples.

The grid for the following iteration is generated us-
ing a subset of posterior samples from the previous it-
eration, with an additional expansion of the grid to en-
sure that regions of high likelihood that might have been
missed can be explored. The iterations continue until two
successive iterations converge, as determined by examin-
ing the Jensen-Shannon (JS) divergence [55] between the
one-dimensional marginal posteriors for each intrinsic pa-
rameter. In our study, we have taken measures to guar-
antee convergence by ensuring that the JS divergence be-
tween the last two iterations is less than or equal to 1073
for all parameters. Further details and a justification of
this choice is given in Appendix A. For further details
on RIFT’s technical underpinnings and performance, see
[53, 54, 56-58].

III. PARAMETER ESTIMATION RESULTS

In this section, we present the results of our PE study.
Our goal is to investigate the impact of finite-resolution
errors in NR waveforms on PE recovery. Ideally, to
achieve this goal, we would inject an infinite-resolution
NR waveform followed by recovery using identically re-
solved NR waveforms as template waveforms. This pro-
cess would be iterated multiple times, with each iteration
utilizing template waveforms obtained from NR simula-
tions of differing numerical resolution. Ultimately, we
would compare the results of each iteration and assess
the impact of truncation errors on the posterior distri-
butions across a range of SNRs. While the grid-based
structure of RIFT allows it to perform PE using NR wave-
forms [20], the available catalog of NR waveforms are all
of varying resolution, preventing us from isolating the
effect of finite-resolution. As such we must take a differ-
ent approach, which we describe in Sec. III A. We then
describe the setup of our PE study in Sec. III B, and

FIG. 2: Illustration of our data analysis strategy, where we
perform PE on a sequence of NR waveforms h; at fixed bi-
nary parameters p. and recover with a waveform model hgy,.
As we increase the resolution, the waveforms converge to an
extrapolated signal ho, and the sequence of posteriors also
converges; the manner in which these posteriors converge as
a function of injected SNRs allows us to determine resolution
requirements for unbiased PE. Meanwhile, hgur(pt+) is a sep-
arate signal which lies off this sequence in general.

present results for our three sets of NR injections (Tab. I)
in Secs. III C, IT1ID, and 1T E.

A. Justification for PE approach

Given the impracticality of utilizing NR waveforms as
our model waveform for PE, we approach the problem
differently. We consider a sequence h; of NR simulations
with varying resolution but fixed binary parameters g,
which we inject into a zero-noise realization for use as our
synthetic data d;. Next we use a high-accuracy waveform
model, NRHybSur3dq8 (hgu(p)) for parameter recovery,
one which can be evaluated at arbitrary parameters pu.
The result is a sequence of posteriors p(u|d;, hsyy) under
our model hypothesis. We repeat this procedure with
a variety of SNR values for our injected waveform, and
compare the resulting posteriors across resolution values
in order to understand the effect of finite resolution on
PE results.

Figure 2 illustrates how we can use these results to ex-
plore this question when we recover our posteriors with
the model hgy,,. The figure illustrates the space of possi-
ble signals. All signals that can be realized by the model
heur when evaluated over the relevant range of parame-
ter values p forms a submanifold ¥ of the overall signal
space. The numerical simulations h; do not lie on 3, but
using the match as a distance measure allows us to iden-
tify points p; such that hgu(pe;) is the best match to h;.
The distance of each h; away from hgy, (1) is a measure
of the SNR loss due to mismodeling the NR waveform
with hgy,. The difference between the best fit p; value
and p, is the parameter bias that we are interested in.
The sequence of NR waveforms converges to some ex-
trapolated waveform h.,, which differs from hgy, (pe4).

From the perspective of PE, the best fit points u; pro-



107

10723

Characteristic Strain

10727 : | -
10! 107 10°
Frequency [Hz]

FIG. 3: Characteristic strains and noise amplitudes:
Characteristic strain evaluated from the highest resolution
g = 1 (black) and ¢ = 1/3 waveform (red). Black curve
is from a source with parameters Mio; = 100Mg,t = 0,
SNR = 12, and red curve is from a source with parameters
Mot = 150Mg, ¢ = 0, SNR = 37. Also plotted are the noise
amplitudes for design aLIGO and CE. The extrinsic parame-
ters for both waveforms are as given in Table I.

vide the maximum likelihood values for a zero-noise re-
covery with the waveform model hgyy. hsur(pti) provides
the relevant maximum likelihood waveform. Meanwhile,
the shape of the posteriors is determined primarily as
if hgur(pe;) were the injected data, modulo the effects of
SNR loss due to the projection of h; onto 3. Thus we
can study the sequence of recovered posteriors as we ap-
proach h., and the corresponding recovered posteriors,
and ask at what SNR and for which pairs of resolutions
the PE results are indistinguishable. This allows us to
state what approximate resolution is required at a given
SNR for unbiased parameter recovery. Potentially the
most important complicating factor relative to an ide-
alized study is the variable SNR loss as we move along
the sequence h;; if this SNR loss is not too severe, this
approach provides the desired information about the PE
bias from finite resolution.

B. Setup of PE study

To investigate the impact of finite-resolution on PE,
we first injected four different resolutions of ¢ = 1 grav-
itational waveforms (refer to Table I for all injected pa-
rameters) at a range of SNRs. Instead of directly se-
lecting SNR values, we first selected eight different res-
olutions and then found the corresponding critical SNR
using Eq. (7). Going forward, when referring to critical
SNR and resolution, we mean the SNR and resolution
values at which the inequality transitions to equality.
The choice for resolution levels was made strategically
such that for the first four SNR values, two would cor-
respond to cases where M /80 waveform is predicted to

be indistinguishable from true signal and two to cases
where it is predicted to be distinguishable from true sig-
nal. We applied the same approach for M /120 to select
the remaining four SNR values. The selected resolutions
and corresponding critical SNRs are given in the first
two columns of Table II. Subsequently, we analyzed and
compared the resulting posterior distributions after re-
covery with the hybridized NR surrogate waveform model
NRHybSur3dq8 [59] using all available ¢ < 4 modes, and
the RIFT PE code, quantifying the impact of truncation
errors as a function of SNR.

It has been shown that waveforms involving significant
contributions from higher modes [32], require a higher
resolution to satisfy accuracy requirements in compari-
son to waveforms that lack significant contributions from
higher modes. As such we also injected the same ¢ = 1
NR waveforms but at ¢« = /6. At this inclination, the
detected GW is shaped not just by the modes observed
at ¢ = 0 but also by (2,—2) and (4,4). To quantify the
impact of truncation erros as a function of SNR, the SNR
selection was done the same way as for the face-on case.
For both of these cases, we use My = 100M to ensure
the majority of the injected waveform falls in band.

We also extended our study to include ¢ = 1/3 wave-
form injections which were generated at My, = 150Mg
and ¢+ = 0. We adjusted our SNR selection approach
slightly, opting for six SNRs instead of eight. This selec-
tion involved choosing six resolution levels in such a way
that, for the first three levels, two corresponded to scenar-
ios where M /100 is predicted to be indistinguishable, and
one where it is predicted to be distinguishable. We ap-
plied the same methodology to determine the next three
SNRs, this time focusing on M/120. Since the ¢ = 1/3
injections were generated at a different total mass, to
ensure the injected waveform starts in band, a direct
comparison between the results of ¢ = 1 and ¢ = 1/3
injections is unfeasible. To enable a direct comparison,
the same total mass must be injected for both ¢ = 1 and
g = 1/3 cases. In such a comparison, we would expect
that in the ¢ = 1/3 case, the same resolution introduces a
significantly higher parameter bias at the same SNR than
in the ¢ = 1 case. To emphasize this point, we injected
a set of ¢ = 1 waveforms at Mo = 150M o, detailed in
Sec. T E.

Furthermore, it is important to note that parame-
ter biases are also influenced by the shape of the noise
power spectral density (PSD) of the detector. There-
fore, our study encompassed two detectors, namely de-
sign aLIGO [60, 61] and CE. Figure 3 depicts the charac-
teristic strain [62] in the frequency domain for the face-on
g = 1 and ¢ = 1/3 waveforms, as compared to the noise
amplitude spectral densities used.

For each set of NR injections, differing only in resolu-
tion and recovered at a sequence of SNRs, we kept our
settings the same so any differences in the posterior can
be attributed to the difference in NR resolution. How-
ever, despite our best efforts, there are other errors that
can potentially impact the final posterior distribution,



SNR Acritical M/80 M]120 M/140
9 M]70 -0.28 -0.04 -0.02
12 M/75 -0.39 -0.07 -0.03
20 M/85 -0.66 -0.12 -0.06
31 M /95 -1.09 -0.17 -0.09
47 M /105 -1.70 -0.27 -0.14
67 M/115 -3.10 -0.49 -0.22
94 M/125 -7.89 -0.92 -0.25

128 M/135 -9.59 -1.22 -0.78

SNR Acritical M/80 M/120 M/140
5 M/70 -0.10 -0.02 -0.01
7 M/75 -0.28 -0.05 -0.03
11 M/85 -0.55 -0.11 -0.05
16 M/95 -0.89 -0.17 -0.08
22 M/105 -1.21 -0.24 -0.09
31 M/115 -1.74 -0.32 -0.11
44 M/125 -2.53 -0.52 -0.22
60 M/135 -3.58 -0.69 -0.28

TABLE II: Normalized bias in the marginalized M. posterior distributions of ¢ = 1,¢ = 0 injections: Bias observed
in the lower resolution posteriors, calculated with respect to M /200, for H1 (top) and CE (bottom). Normalized bias were

calculated using Eq. (11).

with some of them being Monte Carlo integration errors
when evaluating marginalized likelihood, the fit to the
finite grid of intrinsic parameters, and NR waveform ex-
traction. However, it has been shown that these errors
do not significantly impact the final posterior distribu-
tion [20].

For our PE runs, in the first iterative step of RIFT,
where the marginalized likelihood is evaluated, we
marginalized over all the extrinsic parameters, except for
ra and dec which remained fixed for all runs. Thus we
marginalized over t., ¢., ¥, Dp, and ¢ with the likeli-
hood integration starting from 20 Hz and ending at 2048
Hz, for both H1 and CE. We chose to maintain the same
frequency range, for both H1 and CE, to ensure a direct
comparison of PE results. In the second iterative step, we
approximated the likelihood using random forests, and
the Monte Carlo sampling was carried out using Gaus-
sian mixture models (refer to [58] for details).

To quantify the impact of truncation errors on PE, we
calculate normalized bias for all parameters. The nor-
malized bias for a parameter A is calculated as:

Normalized bias = A)/o (11)

where ) is the median of the marginalized A\ posterior
distribution, A\ is the shift in the median of marginalized
A posterior distribution relative to the highest resolution
posterior and o is the standard deviation of the highest
resolution posterior. In Fig. 4, we plot normalized bias
in multiple parameters when the ¢ = 1,. =0, A = M/80
waveform is used as injection. We observe that M. is the
first parameter to display an absolute normalized bias of
unity, which we will consider as a significant parameter
bias in our work. Therefore, moving forward, we place
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FIG. 4: Absolute normalized bias in multiple parame-
ters: Plot showing absolute normalized bias in 1D marginal
posteriors for selected source parameters when ¢ = 1, A =
M/80 is used as an injection. The dashed horizontal line
marks an absolute normalized bias of unity.

primary emphasis on M..

C. g=1

For the ¢ = 1 system, we generated injections from
each of the four differently resolved waveforms at eight
different SNRs. We started from SNR 9, where M/70
is predicted to be the critical grid spacing, and went all
the way up to SNR 128, where M /135 is predicted to be
the critical grid spacing. All eight sets of injections had



identical parameters except Dy .

The top panel of Fig. 5 shows selected 1-D and 2-D
marginals of our recovered posteriors for SNR 12 and
SNR 128, where M /75 and M /135 are the predicted crit-
ical grid spacings respectively. At SNR 12, the 1-D and
2-D posterior distributions for all four resolutions lie on
top of each other, whereas at SNR 128 the M /80 poste-
riors peel away from the rest, introducing notable biases
in all three parameters displayed. Consequently, at SNR
12, all four resolutions yield equivalent results for PE,
rendering the use of higher-resolution waveforms unnec-
essary. However, at SNR 128, the use of M/80 leads
to biased PE. Additionally, we observe truncation errors
cause a downward shift in the marginalized posteriors of
the three parameters relative to the highest resolution
posterior.

The bottom panel of Fig. 5 shows the detector-frame
M. posterior distribution for all eight SNRs. The pos-
teriors beyond SNR 12, where the influence of prior be-
comes negligible, peak at the same point indicating that
the shift in the lower resolution M. posteriors relative to
the highest resolution posterior remains consistent; only
its significance increases with rising SNR. From Table I,
we can see that M /80 produces an absolute normalized
bias greater than one at SNR 29, suggesting that M /80
might be accurate for SNRs lower than 29 but beyond
this SNR, it is no longer sufficiently accurate for unbiased
PE. Also, even though M/80 becomes distinguishable at
SNR 15.7, according to the estimate of Eq. (7), it does
not produce a normalized bias of one, underscoring the
fact that the criterion of indistinguishability arising from
matches does not imply significant parameter biases in
PE.

We then repeated our analysis for CE, which has a dif-
ferent PSD shape than that of Hl. Examining Fig. 3, we
notice that H1 and CE exhibit a similar shape at higher
frequencies. However, at lower frequencies, CE surpasses
H1 in terms of sensitivity, which leads to greater mis-
matches and subsequently reduces the critical SNR for a
given resolution. Similar to our H1 analysis, we selected
eight SNRs, ranging from 5 to 60, where the predicted
critical grid spacings are M /70 and M /135 respectively.
The results of PE are shown in Fig. 6; the upper part dis-
plays the 1-D and 2-D marginalized posteriors for SNR
7 and SNR 60, corresponding to critical grid spacings of
M/75 and M/135. At SNR 7, the 1-D and 2-D poste-
rior distributions for all four resolutions closely overlap.
However, at SNR 60 the M /80 posteriors deviate notably
from the others, introducing significant biases in all three
parameters under consideration. The lower part of Fig. 6
presents the M, posterior distribution for all eight SNRs.
We observe that M /80 introduces significant biases at an
SNR of 18.3, which is considerably lower than what we
observed for H1. This discrepancy arises from the dif-
ferences in the shape of the noise PSD of H1 and CE at
frequencies lower than 30 Hz. Therefore, it is necessary
to re-evaluate the accuracy of NR waveforms when the
shape of the PSD undergoes alterations.

We summarize these results in Fig. 7, which shows the
absolute normalized bias in M, as a function of SNR
across injection resolutions and detector PSDs. It is
evident that only in the case of the lowest grid spac-
ing, M /80, the median of M, exhibits a bias surpassing
the statistical uncertainty in parameter recovery for both
PSDs, and this occurs only at SNRs above approximately
18. Additionally, at the highest explored SNR, M /120
exhibits a significant bias in H1.

D. g=1,.=7n/6

Higher GW modes require more resolution to be fully
resolved than the dominant (2,2) mode and as such the
same resolution will produce more parameter bias at non
zero inclination, due to greater contribution from higher
modes, than it will for zero inclination. To illustrate this,
we injected the same ¢ = 1 waveforms but at a modest
inclination of 7/6. Even at such a small inclination, two
additional GW modes, (2,—2) and (4,4), significantly
contribute to the detected GW, thereby increasing the
mismatch and consequently decreasing the critical SNR
for the same resolution. To estimate the impact of bias
as a function of SNR, we repeat the analysis the same
way we did for the face-on case. We started from SNR
6 (4), where M /70 is the predicted critical grid spacing,
and went all the way up to SNR 79 (55), where M /135 is
the predicted critical grid spacing for H1 (CE). The re-
sults for this case are broadly the same as for the ¢ = 1,
¢ = 0 case. Only the lowest resolution (M/80)~! injec-
tion displays significant bias in its recovered parameters,
and truncation errors continue to cause a downward shift
in the marginalized posteriors of the three parameters
relative to the highest resolution posterior. We provide
our posteriors and absolute normalized bias values in Ap-
pendix B 1.

We observe an absolute normalized bias of unity due
to M/80 at an SNR of 28.5 (18.1) for H1 (CE), lower
than ¢« = 0 case, showing that the accuracy requirements
change as the observed inclination changes. For a more
direct comparison, we also recovered inclined injections
at SNR 128 (60) for H1 (CE). At these SNRs, we found
that M /80 produces an absolute normalized bias of 10.72
(3.63), surpassing the bias observed at the same SNR for
the face-on case which was 9.59(3.58) for H1 (CE).

E. ¢g=1/3,:=0

A resolution that is considered adequate for unbiased
PE for ¢ = 1 systems may prove insufficient for systems
with unequal mass ratios. This is due to the fact that as
the mass ratio decreases, a higher resolution is needed to
accurately resolve the smaller black hole. Additionally,
the inherent asymmetry in the system induces the exci-
tation of higher modes, which require more resolution to
be sufficiently resolved. The combination of these factors
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FIG. 5: PE results for ¢ = 1,¢ = 0 injections (H1): Top left: One- and two-dimensional marginal posterior distributions
for Mc,q, and xes. Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the off-
diagonal panels show the 90% credible intervals for the two-dimensional marginal posterior distribution. Different colored
curves correspond to different resolutions. Injections had an SNR of 12 and the minimum resolution for indistinguishability at
that SNR is predicted to be (M/75)~'. Top right: Corner plot produced after performing PE at an SNR. of 128, where the
minimum resolution for indistinguishability is predicted to be (M/135)'. Bottom: One-dimensional marginalized posterior
distributions for M. are presented here. PE was conducted at a sequence of SNRs, with all parameters held constant except
for Dy,. Each panel illustrates the outcomes for a specific SNR, and distinct colored curves represent different resolutions. With
increasing SNR, both M /80 and M /120 posteriors gradually separate from the others.



10

— M/80 — M/80
— M/120 — M/120
— M/140 — M/140
—— M/200 —— M/200

2% cP\/'O

¥

N @Q ]
@Q: ] S Ao
N &
QC}) ] @ ]
o i SNR 7 N N SNR 60
] : | : i . J ;é

Xeff
2, %, 2, 9

7/
ch T T T T T T T T T T T T T T
7 N } ?
DS NN xi\cp /Q‘>‘ NN & Q’@ S & g.? O @
M. q Xeff q Xeff
SNR 5 SNR 7 SNR 16
— M/80
—— M/120
— M/140
—— M/200
3
=)
o
27.0 47.5 68.0 27 47 67 32 41.5 47.0
SNR 22 SNR 31 SNR 60
[, |
A i
o
37 42 47 39.0 425 46.0 40.0 425 45.0 40 42 44
M, M, M. M.,

FIG. 6: PE results for ¢ = 1,¢ = 0 injections (CE): Top left: One- and two-dimensional marginal posterior distributions
for Mc,q, and xes. Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the off-
diagonal panels show the 90% credible intervals for the two-dimensional marginal posterior distribution. Different colored
curves correspond to different resolutions. Injections had an SNR of 7 and the minimum resolution for indistinguishability at
that SNR is predicted to be (M/75)"'. Top right: Corner plot produced after performing PE at an SNR of 60, where the
minimum resolution for indistinguishability is predicted to be (M/135)!. Bottom: One-dimensional marginalized posterior
distributions for M. are presented here. PE was conducted at a sequence of SNRs, with all parameters held constant except
for Dy,. Each panel illustrates the outcomes for a specific SNR, and distinct colored curves represent different resolutions. With
increasing SNR, the M /80 posterior gradually separates from the others.
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M. posterior distributions of ¢ = 1,¢: = 0 injections
as a function of SNR: The dashed horizontal line marks
an absolute normalized bias of unity. We have omitted nor-
malized bias values exceeding five to concentrate on the region
where the bias is around one. The bias values were calculated
with respect to M /200.

leads to an increase in the parameter bias introduced by
a resolution as the mass ratio decreases. To illustrate
this, we extended our analysis to include ¢ = 1/3 wave-
forms. The waveforms were extracted from simulations
that had an initial separation of 9M, compared to the
initial separation of 12M for ¢ = 1 simulations, resulting
in shorter waveforms. To ensure that the waveforms do
not begin in the frequency band of interest, we increased
Mot from 100M to 150M. As such, we cannot directly
compare the normalized bias values for these injections
and for ¢ = 1 injections.

The analysis was carried out the same way as we did
for ¢ = 1 injections. We started at SNR 37 (21) and
went all the way to SNR 203 (122) for H1 (CE), to study
the impact of bias as a function of SNR. We observe
that M /100 produces a normalized bias of unity at 185.4
(117.1) for H1 (CE). The PE results for this system are
summarized in Fig. 8, reflecting similar qualitative trends
observed for the previous two synthetic sources. The pos-
teriors and absolute normalized bias values are provided
in Appendix B 2.

To emphasize the crucial point that the parameter bias
introduced by a resolution increases as the mass ratio de-
creases, we injected ¢ = 1 waveforms at Moy = 150M¢
at SNR 203 (122) for H1 (CE). We find that (M /120)~!
resolution introduces an absolute normalized bias of 0.31
(0.16) for ¢ = 1 and 0.65 (0.46) for ¢ = 1/3 for H1 (CE),
showing that lower mass ratio NR waveforms introduce
more bias for the same resolution at the same SNR, ne-
cessitating a more stringent accuracy requirement.
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IV. EXTRAPOLATION

In Sec. III, we assessed the errors introduced in PE
when finite resolution NR waveforms are used. We
accomplished this by comparing the PE recovery of
low-resolution NR injections with those of the highest-
resolution NR injection, for each of the three synthetic
sources. However, it is important to acknowledge that
any finite-resolution waveform can introduce bias into
PE, and this bias persists even when we use the highest-
resolution waveform. As such, in this section, we employ
an extrapolation procedure to predict the median of a
marginalized posterior distribution for parameter A, re-
covered for a hypothetical M /oo injection. We then use
this extrapolated value to calculate the bias in PE at-
tributable to the use of the highest-resolution waveforms.

We utilize the understanding that the bias in NR wave-
forms is proportional to A%. Thus, if all aspects of PE
remain consistent across the recovery of each differently
resolved injection, the bias in the final posterior due to
finite resolution should also be proportional to A®. Keep-
ing this in mind, we fit the following function to the pos-
teriors recovered for all four injections:

A=aA%+b. (12)

Here a and b are fitting constants, while o takes a value
of 4 [32] for the NR waveforms used in this study. We
then fit this function to the M, posteriors, for all three
systems and for both detectors at the SNRs mentioned in
Table ITI. Analyzing the posteriors at the SNRs in Table
II1, we find the standard deviation tends to remain ap-
proximately the same for all the different resolution M,
posteriors. Using this observation, alongside the median
of M., posterior for M /oo injection, we can determine the
normalized bias in the highest resolution M, posterior,



System A H1 CE
=1 M/200 0.59 (128) _ 0.082 (60)
q=1,0==/6 M/200 0.87 (128) 0.092 (60)
q=1/3 M/180  0.15 (203)  0.005 (122)

TABLE III: Absolute normalized bias in the highest
resolution posteriors: Numbers in parenthesis are the
SNRs at which these biases are evaluated.
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FIG. 9: Extrapolation procedure: This figure shows our
extrapolation procedure applied to the recovered marginal-
ized M. posterior for all four H1 ¢ = 1,: = 0 injections at
SNR 128. We employ the fitted curve to determine the re-
covered M. for a hypothetical M /oo injection and use it to
calculate the bias in our highest resolution injection posterior.
The data points represent the median values of recovered M.
distributions, the error bars represent one standard deviation
and the indigo curve illustrates the fitted curve. The horizon-
tal dashed line represents the injected value.

which are listed in Table III. Our findings show that the
highest-resolution waveform utilized for each synthetic
source meets the accuracy requirements for the injected
SNRs, validating the comparison of low-resolution poste-
riors with the highest-resolution posterior.

Figure 9 demonstrates the application of the extrapo-
lation procedure. It is clear from the figure that the M,
median at M /oo does not align with the injected value.
This discrepancy is expected, due to the discrepancy be-
tween the extrapolated NR waveforms h., and the recov-
ery model NRHybSur3dg8 hgy:, as discussed in Sec. [T A.
The difference can be due to a number of factors, includ-
ing differences in how waveforms are extracted and pos-
sibly the finite spectral resolution of the NR waveforms
the surrogate is based on [63].

V. PREDICTION

In this section, we aim to determine the SNR at which
a finite-resolution NR waveform will produce an absolute
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normalized bias of unity in at least one of the parame-
ters, without having to do full Bayesian inference. While
current PE codes have undergone significant speedups
[64, 65], full Bayesian inference can still be computation-
ally intensive, especially for signals with higher SNRs.
Furthermore, when determining the minimum resolution
required for an NR waveform to avoid significant bias in
GW interpretation for a particular detector, full PE may
be excessive. Therefore we employ the following crite-
rion to give an approximate estimation of critical SNR
[34, 38]:

elh1, ha] < D/2p*. (13)

Here, the pre-factor D is the number of intrinsic param-
eters affected by waveform inaccuracy. Our study was
conducted on aligned systems, and as such we have set
D equal to 4. To get a more accurate assessment of crit-
ical SNR, one would need to tune D by finding the exact
SNR at which statistical error becomes equal to system-
atic error. However, such a refinement typically requires
the application of PE and as such we rely on an approx-
imate value of 4 for D. Examining Table IV, we observe
a reasonably good agreement between the critical SNR
values obtained through full PE and those determined
by the criterion of Eq. (13) for both ¢ = 1 and ¢ = 1/3
systems. The critical SNR from PE, for each system and
detector, was obtained by using the best-fit line that cor-
relates normalized bias with SNR. Subsequently, we iden-
tified the SNR at which we would anticipate observing a
bias of unity. The disparity between the two SNR values
is approximately 11% for ¢ = 1 systems and roughly 16%
for ¢ = 1/3 systems. It is worth noting that, with the
exception of ¢ = 1 systems as observed by H1, Eq. (13)
tends to provide conservative estimates for the critical
SNR.

While Eq. (13) is relatively straightforward to apply, it
has a few notable limitations when it comes to its appli-
cation to finite-resolution NR waveforms. To determine
the minimum resolution needed for unbiased PE for a
detector, one would generate NR waveforms at various
resolutions and then identify the resolution with a criti-
cal SNR exceeding the SNR of interest for that detector.
Furthermore, mismatches would need to be calculated
using an infinite-resolution waveform, which is not feasi-
ble. To address these limitations, we adjust Eq. (7) by
introducing the pre-factor D. This modification renders
the equation more realistic in its estimation of the re-
quired SNR as it takes into account the dimensionality
of the search parameter space. By utilizing this adjusted
criterion, one can determine the minimum resolution nec-
essary to ensure that PE remains largely unaffected by
finite resolution waveforms, all without the need to gener-
ate waveforms for a sequence of resolutions or an infinite
resolution waveform. One would just need to generate
waveforms at two resolutions, compute 3, and then find
the resolution needed using the modified criterion. The
modified criterion is:

(BA) < D/p?. (14)



System A Detector  Critical SNR  Critical SNR  Critical SNR,  Critical SNR
from PE [Eq. (7)] [Eq. (13)] [Eq. (14)]

g=1 M/80 H1 29.0 15.7 32.3 31.5
CE 18.3 8.3 17.0 16.6
g=1,=7/6 M/80 H1 28.5 15.5 31.9 31.0
CE 18.1 8.2 17.0 16.5
qg=1/3 M/100 H1 185.4 71.2 157.4 142.3
CE 117.1 39.9 88.0 79.7
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TABLE 1V: Comparing the critical SNR from full PE, Eq. (7), Eq. (13), and Eq. (14): The critical SNRs predicted

using the modified criterion (Eq. (14)) tend to be on the conservative side.

Here § is calculated using Eq. (6) and it depends only on
the intrinsic parameters of the system, « is the conver-
gence rate and A~! is the resolution. From Table IV, we
can see that the predictions obtained through the modi-
fied criterion closely align with those from Eq. (13). The
difference in the critical SNR values by full PE and pre-
dictions by modified criterion is approximately 9% for
g = 1 systems and roughly 25% for ¢ = 1/3 systems.
With the exception of ¢ = 1 systems as observed by H1,
Eq. (14) tends to provide conservative estimates for SNR.

We now apply this modified criterion to ¢ = 1 and
g = 1/3 waveforms observed at three different inclina-
tions, 0, 7/6 and /3. We also apply this criterion to
aligned ¢ = 1/6 MAYA waveforms, which have xi, = 0.2
and x2, = 0.0. We have set Mo, = 100M for these
waveforms. Figure 10 provides a visual representation
of the results when this modified criterion is applied to
these three different mass ratio systems observed at three
distinct inclinations and for both H1 and CE. The figure
illustrates that our current waveforms suffice in terms
of accuracy for systems with ¢ = 1 and ¢ = 1/3, re-
gardless of whether we are dealing with H1 or CE. For
systems with ¢ = 1/6, we find that our current resolu-
tions in the MAYA catalog will be accurate for the median
SNRs around ~ 10 for aLIGO [4] and ~ 20 for CE [12].
But considering that LIGO Voyager will be at least four
times more sensitive than aLIGO [66] and CE will ob-
serve signals with SNRs above 600, we find that current
resolutions are not sufficient for such high SNR signals for
inclinations greater than 7/3 for H1 and for all possible
inclinations for CE.

It is important to note that the accuracy prediction is
contingent on the total mass since reducing M. places
more of the waveform within the detectors’ sensitive
bands, causing more truncation error to accumulate and
consequently lowering the SNR at which a given resolu-
tion introduces significant parameter bias. Additionally,
the prediction is bound by the frequency range consid-
ered for CE, where the lower bound of the range can
go down to 5 Hz. Nevertheless, the application of this
criterion remains viable for all these scenarios.

VI. CONCLUSIONS

In this work, we have assessed the impact of NR trun-
cation errors on PE. We accomplished this by performing
PE, across a range of SNRs, on simulated GW signals
generated at different NR resolutions. We found that
for SNRs where a specific resolution ensures unbiased
PE, employing a higher resolution does not yield addi-
tional scientific insights. Additionally, we have shown
that the resolution required for unbiased PE increases as
the mass ratio decreases and/or the observed inclination
angle increases. The accuracy requirements are also in-
fluenced by the total mass of the system; as the total
mass decreases, more accurate waveforms are necessary
to achieve an equivalent level of PE accuracy at a given
SNR.

Furthermore, the shape of the noise curve of a detector
is a key factor in defining accuracy requirements. The
accuracy demands differ between detectors such as CE
and aLIGO, particularly due to the heightened sensi-
tivity of CE at lower frequencies. Consequently, under
identical SNR conditions, aLIGO needs higher resolution
waveforms than CE when dealing with signals containing
substantial higher mode content. This is due to higher
modes starting at a much higher frequency than the dom-
inant (2,2) mode, making alLIGO more sensitive to them
under identical SNR conditions. As illustrated in Fig 10,
for ¢ = 1/6 at « > 7/6, aLIGO requires greater resolu-
tion than CE for the same SNR, assuming the frequency
integration range remains the same.

We have modified [32] a measure for determining the
SNR at which a resolution will produce significant pa-
rameter bias. By comparing the critical SNR predictions
from this measure with those from full PE for aLIGO
and CE, we have shown that the measure provides rea-
sonably accurate estimates of the critical SNR, with most
predictions being conservative. To make predictions for
the resolution requirements for future NR codes, we ap-
plied this measure to three different mass ratio NR wave-
forms observed at various inclinations and for both de-
tectors. From this application we predict, for equal and
moderately unequal mass ratio, our current NR wave-
forms will be sufficiently accurate, even when observed
at high inclinations. For mass ratios around 1/6, our
current resolutions will be accurate for the median SNRs
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FIG. 10: Applying Eq. (14) to predict accuracy requirements: The predictions for H1 are presented in the left column,
while the right column displays predictions for CE. Each row corresponds to predictions for one of the three mass ratios. The
dashed horizontal line denotes our current highest achievable resolution in the MAYA catalog.

for both detectors. However, they will introduce signifi-
cant parameter bias in the PE for high SNR signals, at
all inclinations for CE, and at high inclinations for LIGO
Voyager. Considering that, at a given SNR, the resolu-
tion required for unbiased PE increases as the mass ratio
decreases, current resolutions will produce significant pa-
rameter bias in the PE of much lower mass ratio signals
even at median SNRs.

In order to attain unbiased PE of signals from binary
systems with low mass ratios, we need to develop more
precise numerical NR waveforms. However, the genera-
tion of accurate waveforms is a time-consuming process
requiring finite-differencing codes to efficiently scale with
an increased number of computational nodes. Conse-
quently, significant efforts are underway to improve the
parallelization and scalability of NR codes [67, 68]. It is
imperative to achieve these improvements to maximize
the scientific outcomes of GW observations.

In the future, we plan to study the impact of other
sources of NR errors, such as extraction radius and
finite-differencing order, on PE. We also plan to extend
this analysis to the Laser Interferometer Space Antenna

(LISA). Given LISA’s capability to detect signals with
high SNRs and across a wider range of parameters than
those examined in this study, our emphasis will be di-
rected towards studying such systems.
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Appendix A: JS divergence

The JS divergence [55], is a statistical tool employed
to quantify the dissimilarity between two posterior dis-
tributions. It is convenient to use when assessing the
agreement between these distributions as it is symmetric
in nature, meaning Djs(alb) = Djs(bla) and its output
is bounded between 0 and 1 bit, where 0 bit means the
two distributions are identical and 1 bit means maximal
divergence [69].

Given two discrete probability distributions a(x) and
b(x), the JS divergence between them is defined as:

Djs(alb) = % / {a(x) 1og2<§1((xx))>

+ b(z) logQ(m)]dx (A1)

where m(x) = [a(x) 4+ b(x)]/2. To evaluate the conver-
gence of the RIFT algorithm, we generate kernel density
estimators (KDEs) for the marginal probability density
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functions (PDFs) for each intrinsic parameter. These es-
timators are constructed using the samples obtained from
two consecutive iterations and are subsequently utilized
as a and b in Eq. Al to calculate the JS divergence be-
tween them. Our chosen convergence criterion entails
achieving a JS divergence of less than 10~3 between two
successive iterations. This threshold is determined while
taking into account the anticipated JS divergence result-
ing solely from sampling errors. Consider the following
experiment: we draw two sets of independent samples
from standard normal distributions. We then carry out
our JS procedure with these samples, forming KDEs for
a and b from the two sets and computing Djg(alb). In
Fig. 11 we illustrate the median and standard deviation
of Djg from 1000 iterations of this test as we vary the
number of samples. JS divergence values of ~ 10~% are
thus expected due to sampling errors, even for identical
distributions. In our study, we typically use 85,000 sam-
ples from RIFT to test convergence, to ensure that there
is no impact from sampling variance.

Appendix B: Additional results
1. g=1,.=7/6

Fig. 12 provides a comprehensive summary of our find-
ings for this system, mirroring the observations made in
the face-on case. Additionally, the PE results are pro-
vided in Fig. 13 (Fig. 14) for H1 (CE). The top panel
shows the 1-D and 2-D histogram plots for SNR 7 (6)
and SNR 79 (55), where M /75 and M /135 are the pre-
dicted critical grid spacings respectively. The bottom
panel shows the detector-frame M. posterior distribution
for all eight SNRs and Table V provides the normalized
bias values as a function of SNR.

2. ¢q=1/3,.=0

PE results are shown in Fig. 15 for H1 and Fig. 16 for
CE. In both figures, the top panels display the 1-D and 2-
D histogram plots at SNR 37 (21) and SNR 203 (122) for
H1 (CE), where M /85 and M /135 are the predicted criti-
cal grid spacings respectively. While the M /100 posterior
shows deviation from the M /180 posterior, the deviation
is not as pronounced as was for ¢ = 1 injections. This
is due to the resolutions being close to each other, min-
imizing the disparity. The bottom panel in both figures
shows the marginalized M, posteriors for the sequence
of SNRs. In this panel, a similar observation is made,
indicating that the posterior distribution for M /100 de-
viates, although not as prominently as observed for ¢ = 1
injections. Table VI provides the normalized bias values
as a function of SNR for both detectors.
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SNR Acritical M/80 M/120 M]140
6 MJ70 -0.10 -0.02 -0.02
7 M/75 -0.21 -0.04 -0.02
12 M/85 -0.38 -0.06 -0.03
19 M/95 -0.62 -0.08 -0.05
29 M/105 -1.01 -0.13 -0.04
41 M/115 -1.51 -0.20 -0.10
58 M/125 -2.49 -0.32 -0.16
79 M/135 -4.57 -0.49 -0.21

SNR Acritical M/80 M/120 M/140
4 MJ70 -0.06 -0.01 -0.00
6 M/75 -0.16 -0.03 -0.02
9 M/85 -0.47 -0.11 -0.04
15 M/95 -0.77 -0.15 -0.07
20 M/105 -1.13 -0.24 -0.10
28 M/115 -1.65 -0.35 -0.15
40 M/125 -2.22 -0.41 -0.17
55 M/135 -3.24 -0.59 -0.25

TABLE V: Normalized bias in the marginalized M. posterior distributions of ¢ = 1,. = 7w/6 injections: Bias
observed in the lower resolution posteriors, calculated with respect to M /200, for H1 (top) and CE (bottom).

SNR A critical M/100 M]120 M/140
37 M /85 -0.28 -0.12 -0.03
58 M/95 -0.39 -0.16 -0.06
87 M/105 -0.41 -0.15 -0.01
107 M/115 -0.49 -0.35 -0.08
149 M/125 -0.78 -0.38 -0.05
203 M/135 -1.11 -0.65 -0.06

SNR Acritical M/loo M/120 M/140
21 M/85 -0.31 -0.12 -0.01
32 M/95 -0.34 -0.15 -0.06
48 M/105 -0.42 -0.17 -0.05
64 M/115 -0.58 -0.26 -0.09
90 M/125 -0.69 -0.31 -0.09
122 M/135 -0.76 -0.46 -0.24

TABLE VI: Normalized bias in the marginalized M. posterior distributions of ¢ = 1/3,¢ = 0 injections: Bias
observed in the lower resolution posteriors, calculated with respect to M /180, for H1 (top) and CE (bottom).
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FIG. 13: PE results for ¢ = 1,. = /6 injections (H1): Top left: One- and two-dimensional marginal posterior distri-
butions for M,, q, and xeg. Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the
off-diagonal panels show the 90% credible intervals for the two-dimensional marginal posterior distribution. Different colored
curves correspond to different resolutions. Injections had an SNR of 7 and the minimum resolution for indistinguishability at

that SNR is predicted to be (M/75)~".

Top right: Corner plot produced after performing PE at an SNR of 79, where the

minimum resolution for indistinguishability is predicted to be (M/135)71. Bottom: One-dimensional marginalized posterior
distributions for M. are presented here. PE was conducted at a sequence of SNRs, with all parameters held constant except
for Dy. Each panel illustrates the outcomes for a specific SNR, and distinct colored curves represent different resolutions. With
increasing SNR, the M /80 posterior gradually separates from the others.
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FIG. 14: PE results for ¢ = 1,¢ = 7 /6 injections (CE): Top left: One- and two-dimensional marginal posterior distri-
butions for M., q, and xeg. Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the
off-diagonal panels show the 90% credible intervals for the two-dimensional marginal posterior distribution. Different colored
curves correspond to different resolutions. Injections had an SNR of 6 and the minimum resolution for indistinguishability at

that SNR is predicted to be (M/75)™".

Top right: Corner plot produced after performing PE at an SNR of 55, where the

minimum resolution for indistinguishability is predicted to be M(/135)"". Bottom: One-dimensional marginalized posterior
distributions for M. are presented here. PE was conducted at a sequence of SNRs, with all parameters held constant except
for Dy,. Each panel illustrates the outcomes for a specific SNR, and distinct colored curves represent different resolutions. With
increasing SNR, the M /80 posterior gradually separates from the others.
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FIG. 15: PE results for ¢ = 1/3,¢ = 0 injections (H1): Top left: One- and two-dimensional marginal posterior distri-
butions for M., q, and xers. Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the
off-diagonal panels show the 90% credible intervals for the two-dimensional marginal posterior distribution. Different colored
curves correspond to different resolutions. Injections had an SNR of 37 and the minimum resolution for indistinguishability at
that SNR is predicted to be (M/85)~'. Top right: Corner plot produced after performing PE at an SNR. of 203, where the
minimum resolution for indistinguishability is predicted to be (M/135)'. Bottom: One-dimensional marginalized posterior
distributions for M. are presented here. PE was conducted at a sequence of SNRs, with all parameters held constant except
for Dr. Each panel illustrates the outcomes for a specific SNR, and distinct colored curves represent different resolutions
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FIG. 16: PE results for ¢ = 1/3,. = 0 injections (CE): Top left: One- and two-dimensional marginal posterior distri-
butions for M., q, and xers. Diagonal panels show the one-dimensional marginal posterior distribution, while contours in the
off-diagonal panels show the 90% credible intervals for the two-dimensional marginal posterior distribution. Different colored
curves correspond to different resolutions. Injections had an SNR of 21 and the minimum resolution for indistinguishability at
that SNR is predicted to be (M/85)~'. Top right: Corner plot produced after performing PE at an SNR. of 122, where the
Bottom: One-dimensional marginalized posterior
distributions for M. are presented here. PE was conducted at a sequence of SNRs, with all parameters held constant except
for Dr. Each panel illustrates the outcomes for a specific SNR, and distinct colored curves represent different resolutions.

minimum resolution for indistinguishability is predicted to be (A/135)7!.
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