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Abstract

Centrosymmetric skyrmions attract much attention from the research community because of

their small sizes and high concentrations. These features can be useful for applications. Such

skyrmions are originated due to the RKKY and Kondo interactions rather than the DMI. We

study a topological Hall effect in such systems using the Boltzmann equation for a nonequilibrium

distribution function. For the relaxation, we choose the electron-acoustic phonon and electron-

skyrmion interactions. We find that the topological Hall resistivity exhibits the nonlinear behavior

depending on chemical potential. Because of noncubic lattice symmetry, we investigate the de-

pendence of the resistivity tensor components along with the x-direction (parallel to an applied

electric field), ρxx, ρzz (the component along with the z-axis), and ρxy (a topological Hall compo-

nent) with respect to the effective mass ratio, mz/mx. We assume that the skyrmions are spaced

on the (xy)-plane and stretched out along with the z-direction. The temperature dependence of

the resistivity tensor reveals the monotonic growth for all components. There is some concern in

the interpretation of experiments. Sometimes it can be very difficult to measure the topological

Hall resistivity. Indeed, we find that ρxy is one-two orders of magnitude less than ρxx and ρzz.

Additionally, there is another important factor, which complicates the problem. The z-axis and an

applied electric field are not exactly perpendicular because of experimental conditions. Thus, the

perpendicular to the electric field resistivity contains a linear combination of ρxy and |ρxx − ρzz|.

To determine ρxy from an experiment, we propose the experimental setup how to measure the

topological Hall effect and provide the equations that allow us to determine ρxy.

1



I. INTRODUCTION

Magnetic skyrmion crystals have been of interest of the reach community for more than

three decades.1,2 Such magnetic spin-textures are usually stabilized by the Dzyaloshinski-

Moria interaction (DMI) and take place in chiral magnets such as MnSi, Fe1−xCoxSi, FeGe,

Cu2OSO2.
3–7 They are characterized by a topological charge, which is a nonzero inte-

ger. There have been recently discovered magnetic material with a nonzero topological

charge in centrosymmetric 3D crystals where we do not expect any DMI at all. These

materials are BaFe1−x−0.05ScxMg0.05O19, La2−2xSc1+2xMn2O7, Gd2PdSi3,
8,9 Gd3Ru4Al12,

10

GdRu2Si2,
11,12 Mn4Ga2Sn,13 and EuAl4,

14,15 Centrosymmetric skyrmion textures are stabi-

lized by exchange coupling and spin dipolar interactions.14 There are two mechanisms, which

can generate skyrmions: (a) the Ruderman-Kittel-Kasuya-Yosida (RKKY) and(b) Kondo

interactions.16–19 It is also important to note that such skyrmions are usually small, with the

diameter about 5 nm, which is about ten times smaller than conventional skyrmions that

are originated from DMI. Such small skyrmions are packed closely together in 3D EuAl4

crystals with the separation distance of 3.5 nm.14 Small size skyrmion materials can be very

useful for applications in modern computers because their large memory density. Another

very important property that should be mentioned is that such small size skyrmions can be

very efficient as electron (or hole) scattering centers.

In this research we theoretically and numerically investigate charge transport properties

in centrosymmetric 3D crystals and study how direct and topological Hall resistivities de-

pend on chemical potential, µ, and temperature. The methodology for the calculation of

different components in electric current is based on the Boltzmann equation for a noneqiuilib-

rium distribution function.20,21 To find it, we consider the two scattering mechanisms: (a)

the electron-acoustic phonon and (b) electron-skyrmion interactions.22–24 We include the

electron-phonon interaction for the following reasons: (a) the interaction between electrons

and phonons always takes place, (b) if the electron-phonon interaction is excluded, the σzz

component goes to infinity, and (c) it provides the additional temperature dependence in

electric current. The temperature dependence of electric current comes from two sources:

(a) the Fermi distribution function and (b) the Bose-Einstein phonon distribution function.

There can be another approach where the magnetic and electric emergent fields can sub-

stitute the interaction between electrons and skyrmions.21,25–28 Using this approach, MnSi
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skyrmion phase was studied in Refs.25,26,29. The emergent electric field decreases the topo-

logical Hall current. Such a current drop is associated with skyrmion motion. The general

theory and experimental observation of skyrmion motion without disorder was reported in

Refs.30,31, and with disordered magnetic skyrmions in Refs.32,33 . It was also found that there

is a threshold (pinning) current, jpin, below which skyrmions do not move. In this work we

assume that the currents are low and the skyrmions are static. The topological Hall effect in

a skyrmion lattice in the Kubo approach was investigated in Refs.34,35. In this research we

do not include the interaction between the skyrmions, i. e., we consider an ideal skyrmion

gas rather than skyrmion crystal or liquid. In Ref.36 the authors used the nonequilibrium

Keldysh function technique to find the chiral Hall effect. The results may differ for lattice

and for an ideal gas, but we expect the similar dependencies.There is an additional problem,

which experimentalist can encounter in the detection of ρxy topological Hall resistivity. As

we will show below, the topological Hall resistivity, ρxy, is less by one-two orders of mag-

nitude than the difference between ρxx and ρzz. In this case, it can be very hard to detect

ρxy because the values of ρxx and ρzz can dominate, especially if the current direction is not

collinear with crystal x- or y- axes. Furthermore, we also investigate temperature and mass

ratio dependences of a topological Hall and direct resistivities.

II. CHARGE TRANSPORT

In this section we present the methodology for the charge transport calculations. In

particular, we study a 3 × 3 resistivity tensor, ρ̂. The tensor component ρxy describes a

topological Hall effect. The charge carriers, electrons or holes, scatter by both acoustic

phonons and skyrmions.

A. Boltzmann equation

For the transport calculations we use the Boltzmann equation with the relaxation rate

due to both electron-phonon and electron-skyrmion interactions in an ideal skyrmion gas:

∂f0
∂ε

eE · vν =
∑
ν′

∑
k′

(
W νν′

kk′f ν
′

1 (k′)−W ν′ν
k′kf

ν
1 (k)

)
, (1)
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where f0 is the equilibrium Fermi distribution function, f1 is the nonequilibrium part of

the total distribution function, E is an applied electric field, and v is an electron velocity.

There are two contributions in the total transition rates: W νν′

kk′ = W νν′

(ph)kk′ + W νν′

(sk)kk′ . The

transition rates due to phonons, W νν′

(ph)kk′ , are calculated in the first Born approximation:

W νν′

(ph)kk′ = (2π/~)
∣∣〈k′, ν ′, N ′qj∣∣∆Vph ∣∣k, ν, Nqj

〉∣∣2 δ(εν(k)− εν′(k′)). (2)

Here ∆Vph is perturbation energy due to the el − ph interaction. Then, the electron-acoustic

phonon transition rates can be presented as follows:20

W νν′

(ph)kk′ =
2π

~
1

NM

~Nqj

2ωq

∣∣K+
νν′

∣∣2 δ(εν(k)− εν′(k′))δ(k′ − k − q)

+
2π

~
1

NM

~ (N−qj + 1)

2ω−q

∣∣K−νν′∣∣2 δ(εν(k)− εν′(k′))δ(k′ − k + q),

(3)

where

K±νν′ = ±i ~2

2ma2
2

3
(q · eqj) δνν′ . (4)

Here M is the single atom mass, N is the number of atoms in the crystal, ω±q is the frequency

of the phonon with the wavevector q, m is the free electron mass, a is a lattice constant, eqj

is the polarization vector of the phonon on the branch j, and Nqj is the population number

of phonons determined from the Bose distribution function:

Nqj =
1

e
εph
kBT − 1

. (5)

Index ν denotes an energy band number (ν = 1, 2).

The transition rates due to the skyrmions, W νν′

(sk)kk′ , are calculated using the following

equation:37–39

W νν′

(sk)kk′ =
2π

~
nsk

∣∣∣T νν′kk′

∣∣∣2 δ(εν(k)− εν′(k′)), (6)

where nsk is the density of the skyrmions and the transition matrix T νν
′

kk′ is found from the

Lippmann-Schwinger integral equation:39

T̂ = V̂sk + V̂skĜ0T̂ , (7)

where Ĝ0 is the free electron retarded Green’s function, and V̂sk is the perturbation due to

the presence of skyrmions given by the following matrix:40

V̂sk(r) = −J

 δnz(r) δnx(r)− iδny(r)

δnx(r) + iδny(r) −δnz(r)

 . (8)
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For the skyrmion magnetic moment distribution, we choose the following analytic form:41

δnz(r) =


4
(
r
a

)2 − 2, r ≤ a/2,

−4
(
1− r

a

)2
, a/2 < r ≤ a,

0, r > a,

δnx(r) =

√
1− (δnz(r) + 1)2 cosα,

δny(r) =

√
1− (δnz(r) + 1)2 sinα,

(9)

where a is a skyrmion radius, r and α are polar coordinates in a frame with the center of the

skyrmion located at r = 0. The magnetic moment is constant with z. In three dimensions

the skyrmion resembles a 2D skyrmion on each layer that replicates in z direction as shown

in Fig. 1.

FIG. 1. 3D skyrmion.

As soon as the transition rates are found and the Boltzmann equation is solved for the

first order correction the the equilibrium distribution function, we can determine the electric
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current density:

jνi =
e

(2π)3

∫
f ν1 v

ν
i d

3k, (10)

where vνi is a velocity projection (i = x, y, z) determined as vνi = ∂εν(k)/~∂ki.

To solve the Boltzmann equation (1), we have written the original codes where the re-

laxation rates due to phonons are considered in the first Born approximation and relaxation

rates due to skyrmions are found numerically from the Lippmann-Schwinger equation in all

orders. For each (ν,k) and (ν ′,k′) at the energy surface, the transition rates have been de-

termined and substituted into the integral Boltzmann equation, which has been numerically

solved for f1 in the piecewise constant approximation and then inserted into the expression

for the current (see Eq. (10)). Once the relation between electric field and the current is

found, we can find resistivity tensor defined as follows:

Ei =
∑
k

ρikjk, (11)

where i, k = x, y, z.

III. RESULTS AND DISCUSSIONS

In this research we study a resistivity tensor represented by the following matrix:

ρ̂ =


ρxx ρxy 0

−ρxy ρxx 0

0 0 ρzz

 . (12)

In this matrix, ρxx = ρyy and ρyx = −ρxy because of the cylindrical symmetry of the material

in xy-plane. Indeed, if an electric field is directed along with the x-axis, the Hall component

is, for example, towards the positive y-direction. If we direct the electric field is along with

the y axis in the same material, the electron will turn towards the negative x-direction.

That is why ρyx = −ρxy. We note that the skyrmion potential is constant along with the

z-axis and, therefore, does not scatter electrons in this direction. It means that there is

only one scattering mechanism along with the z axis, the interaction with acoustic phonons,

however, in the xy-plane, there are two electron scattering mechanisms, due to the el − ph
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and electron-skyrmion interactions. Furthermore, using the same arguments we conclude

that there are no ρxz and ρyz Hall components.

In centrosymmetric materials, as mentioned above, the crystal symmetry is noncubic. In

this case, we have to study the transport properties of the electrons with non-symmetric

energy band. In our model it means different effective masses:

Ĥ0 =
~2k2x
2mx

+
~2k2y
2my

+
~2k2z
2mz

. (13)

In this work we consider the crystal symmetry where mx = my.

A. Chemical potential dependence

For calculations we consider mx = my = 0.5 me, where me is the free electron mass.

JS0 = 0.05 eV, the skyrmion diameter is 3.5 nm, and the density of the skyrmions is

1/62 nm−2 corresponding to the 6 nm distance between the centers of the skyrmions. Thus,

it is clear that the resistivity tensor components depend on the mass ratio, mz/mx. The

results of the calculations for mz/mx = 0.4, 1, 2 are presented in Figs. 2, 3, and 4.

In Fig. 2a, 3a and 4a, ρxx- and ρzz-components are depicted depending on chemical

potential, µ, for the mass ratios mz/mx = 0.4, 1, and 2, respectively. As expected, the

resistivity drops because of the two factors: faster electrons participate in the current and

the phase volume increases with µ. There is a very interesting interplay between the red

(ρxx) and the blue (ρzz) curves. Indeed, as shown in Fig. 2a, ρxx is always greater than

ρzz because the skyrmions do not scatter in the z-direction and, therefore, the resistivity is

lower. Additionally, the effective mass mz is lower than mx and therefore, the electrons move

faster in the z-directionn decreasing the resistivity. In the case of equal masses (Fig. 3a,)

ρxx is still greater than ρzz because of the scattering due to the skyrmions. If mz/mx = 2

(see Fig. 4a) ρzz is greater than ρxx at low µ because of the slower electron motion in

the z-direction. However, at larger µ, the phase space increases and we observe the curve

crossing where ρxx becomes greater than ρzz. A peculiar feature can be found near the

bottom of the upper energy band. In this case, ρxx exhibits a kink while the ρzz does not

have it. Thus, we conclude that electron-skyrmion scattering is in charge of such a behavior.

Indeed, if µ is slightly above the bottom of the upper band, the electrons from the lower one

can be scattered by the skyrmions to the upper band where the velocities are small. Thus,
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FIG. 2. Chemical potential dependence of the resistivity tensor components for mz/mx = 0.4 and

T = 5 K. In (a) the red line stands for ρxx, the blue line stands for ρzz, and the black line in (b)

represents ρxy.

the resistivity increases for the current along with the x-axis. Then, the resistivity drops

because velocities become higher at larger µ.

The topological Hall component in resistivity only depends on the skyrmion scattering

being independent of the z-direction. Even though, the shape of ρxy(µ) is almost independent
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FIG. 3. Chemical potential dependence of the resistivity tensor components for mz/mx = 1 and

T = 5 K. In (a) the red line stands for ρxx, the blue line stands for ρzz, and the black line in (b)

stands for ρxy.

of the mass ratio, and the absolute values drop by twice from mz/mx = 0.4 to mz/mx = 2. In

our calculations we keep mx constant and change mz. Such an mz-dependence we explain by

the increase of the phase volume with mz, stretching out the k-space in the z-direction. The

higher mz, the higher the current in the xy-plane, and, therefore, the lower the resistivity.
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FIG. 4. Chemical potential dependence of the resistivity tensor components on for mz/mx = 2

and T = 5 K. In (a) the red line stands for ρxx, the blue line stands for ρzz, and the black line in

(b) represents ρxy.

Such a picture is presented in Figs. 2b - 4b. The peak-dependence in ρxy in all three figures

can be explained in a similar way as for the peak in ρxx shown in Figs. 2a - 4a. Indeed, if µ

is close to the bottom of the upper energy band, the strong interband transitions take place

where the fast electrons from the lower band become the slower electrons on the upper band
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and, therefore, the resistivity increases. Then, the resistivity drops because of the higher

velocities at the upper bands and also the larger phase volume.

B. Temperature dependence

The dependencies of ρxx, ρzz and ρxy on temperature for mz/mx = 0.4, 1, and 2 are

presented in Figs. 5, 6, and 7. As expected, the resistivities ρxx and ρzz increase with

temperature because of increase of the scattering due to the interaction between electrons

and acoustic phonons. The most nontrivial behavior is for mz/mx = 2. In this case, we

see the intersection of the red and blue curves in Fig. 7a. At lower temperatures the

skyrmion scattering dominates and, therefore, ρxx > ρzz. With the increase of temperature,

the electron-phonon interaction is more and more pronounced prevailing over the electron-

skyrmion scattering. The curves are parallel if the effective masses are equal (mz = mx,

see Fig. 6a). If mz is greater than mx, the resistivity ρzz becomes higher than ρxx in the

temperature dependence. Thus, we observe the curve crossing.

The temperature dependence of topological Hall resistivity is less dramatic. It increases

with temperature because of the more efficient electron-phonon scattering and the increase

of the phase volume.

IV. PROPOSED EXPERIMENTAL SETUP TO OBSERVE TOPOLOGICAL HALL

EFFECT

It is not easy to measure topological Hall resistivity ρxy because its value is one-two

orders of magnitude lower than ρxx and ρzz. In addition, there is another important factor

that cause problems in the experiment interpretation if the z-axis and an applied electric

field are not perpendicular because of experimental conditions. To find electric resistivity

components perpendicular to the electric field assuming the current is aligned with the new

x′′-axis, we should rotate the frame.

First, we rotate our system about the x-axis by the angle θ. The second rotation is about
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FIG. 5. Temperature dependence of the resistivity tensor components for mz/mx = 0.4 and

µ = 0.07 eV. In (a) the red line stands for ρxx, the blue line stands for ρzz, and the black line in

(b) represents ρxy.
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FIG. 6. Temperature dependence of the resistivity tensor components for mz/mx = 1 and µ = 0.07

eV. In (a) the red line stands for ρxx, the blue line stands for ρzz, and the black line in (b) represents

ρxy.
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FIG. 7. Temperature dependence of the resistivity tensor components for mz/mx = 2 and µ = 0.07

eV. In (a) the red line stands for ρxx, the blue line stands for ρzz, and the black line in (b) represents

ρxy.
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the new axis z′ by the angle ϕ. The rotation matrix can be written as follows:

M =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1




1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 =


cosϕ − sinϕ cos θ sinϕ sin θ

sinϕ cosϕ cos θ − cosϕ sin θ

0 sin θ cos θ

 (14)

Because of the cumbersome expressions, we only write the first column of the new resis-

tivity matrix ρ′′:

ρ′′xx = ρxx + sin2 ϕ sin2 θ (ρzz − ρxx) ,

ρ′′yx = − cos θρxy − sinϕ cosϕ sin2 θ (ρzz − ρxx) ,

ρ′′zx = − sin θ cosϕρxy + sinϕ sin θ cos θ (ρzz − ρxx)

(15)

If, for example, the current is directed along with the new x′′-axis, the y′′-component of

the electric field would have two terms, the latter can be much larger by one-two orders of

magnitude than the former. However, if an experimentalist knows the exact values of θ and

ϕ, they will be able to determine ρxy from the system of linear algebraic equations (15). To

find the true value of the Hall resistivity, we have to know the voltage in all three directions.

To perform such measurements, we propose the following experimental setup shown in Fig.

8 allowing for the measurements of Vx′′ , Vy′′ , Vz′′ .

V. CONCLUSIONS

In this work we have considered the transport and topological Hall effect in materials with

3D centrosymmetric skyrmions. We have studied the direct and topological Hall resistivities

depending on chemical potential (an electron concentration) and temperature. We have

found that the topological Hall resistivity exhibits the nonlinear behavior and depends on

the mass ratio mz/mx. The peaks in ρxy have been explained by the interband transitions

due to the skyrmion scattering. The mass ratio dependence also affects the absolute value

of the resistivity and does not substantially change the shape of the ρxy-curves. The direct

and the topological Hall resistivities monotonically grow with temperature. There is still the

mass ratio dependence for ρxx, ρzz and ρxy. Because the absolute value of |ρxy| � |ρzz − ρxx|,

it could be difficult to identify ρxy that arises from the electron-skyrmion scattering. In real
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FIG. 8. Experimental setup, which allows for the measurements .of all three current components.

experiments, there can be a nonzero angle between the electric current and the crystal x-axis.

In this case, the voltage is given by expression (15) where there is the term proportional to

|ρzz − ρxx|, which dominates over the topological Hall contribution. Thus, we propose the

experimental setup where the voltage has to be measured in all three directions. Knowing

Vx′′ , Vy′′ , and Vz′′ and the angles between the crystal axes and the electric current, ρxy can

be identified using Eqs. (15).
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