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Abstract 20 

Twitching motility is a form of bacterial surface translocation powered by the type IV pilus 21 

(T4P). It is frequently analyzed by interstitial colony expansion between agar and the polystyrene 22 

surfaces of Petri dishes. In such assays, the twitching motility of Acinetobacter nosocomialis was 23 

observed with MacConkey but not Luria-Bertani (LB) agar media. One difference between these 24 

two media is the presence of bile salts as a selective agent in MacConkey but not in LB. Here, 25 

we demonstrate that the addition of bile salts to LB allowed A. nosocomialis to display twitching. 26 

Similarly, bile salts enhanced the twitching of Acinetobacter baumannii and Pseudomonas 27 

aeruginosa in LB. These observations suggest that there is a common mechanism whereby bile 28 

salts enhance bacterial twitching and promote interstitial colony expansion. Bile salts disrupt 29 

lipid membranes and apply envelope stress as detergents. Surprisingly, their stimulatory effect on 30 

twitching appears not to be related to a bacterial physiological response to stressors. Rather it is 31 

due to their ability to alter the physicochemical properties of a twitching surface. We observed 32 

that while other detergents promoted twitching like bile salts, stresses applied by antibiotics, 33 

including membrane-targeting polymyxin B, did not enhanced twitching motility. More 34 

importantly, bacteria displayed increased twitching on hydrophilic surfaces such as those of glass 35 

and plasma-treated polystyrene plastics without the addition of bile salts, and bile salts no longer 36 

stimulated twitching on these surfaces. Together, our results show that altering the hydrophilicity 37 

of a twitching surface significantly impacts T4P functionality. 38 

  39 
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Importance 40 

The bacterial type IV pilus (T4P) is a critical virulence factor for many medically important 41 

pathogens, some of which are prioritized by the World Health Organization for their high levels 42 

of antibiotic resistance. The T4P is known to propel bacterial twitching motility, providing a 43 

convenient assay for T4P functionality. Here, we show that bile salts and other detergents 44 

augment the twitching of multiple bacterial pathogens. We identified the underlying mechanism 45 

as the alteration of surface hydrophilicity by detergents. Consequently, hydrophilic surfaces such 46 

as those of glass or plasma-treated polystyrene promote bacterial twitching, bypassing the 47 

requirement for detergents. The implication is that surface properties, such as those of tissues and 48 

medical implants, significantly impact the functionality of bacterial T4P as a virulence 49 

determinant. This offers valuable insights for developing countermeasures against the 50 

colonization and infection by bacterial pathogens of critical importance to human health on a 51 

global scale.   52 
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Introduction 53 

Twitching motility is a form of non-flagellated bacterial locomotion that allows bacteria 54 

to move on or between solid surfaces (1-4). It is powered by the bacterial type IV pilus (T4P) 55 

which can be assembled and disassembled by the supramolecular T4P machinery (T4PM) (1, 5-56 

7). The current model proposes that it is the recurrent cycles of T4P assembly and disassembly, 57 

or extension and retraction, that powers this form of bacterial surface motility (8, 9). The T4PM 58 

assembles the long T4P filament that protrudes from a cell into its surroundings. When the tip of 59 

an extended T4P attaches to a solid substratum, the retraction of the T4P by the T4PM moves a 60 

bacterium toward the point of attachment. This translocation of bacterial cells on or between 61 

solid surfaces, results in bacterial twitching motility. 62 

Of relevance to human health, the T4P plays a crucial role in the pathogenesis of many 63 

important bacterial pathogens (10-15). These include Pseudomonas aeruginosa and 64 

Acinetobacter baumannii, both on the list of priority pathogens per the World Health 65 

Organization (WHO) (16). One of the primary functions of the T4P as a virulence factor is for 66 

adherence to human cells or tissues to initiate colonization and invasion (4, 17, 18). 67 

Acinetobacter nosocomialis, a close relative of A. baumannii, is an opportunistic pathogen 68 

primarily causing nosocomial or hospital-acquired infections (19). The A. nosocomialis M2 69 

strain has been used as a model for studies of Acinetobacter pathogenesis and T4P functionality 70 

(18, 20-22). The lack of flagellated motility led to the acineto- or non-motile designation for this 71 

genus, however many Acinetobacter species, in fact, possess T4P and exhibit T4P-dependent 72 

twitching motility (23-26). As such, twitching motility provides a convenient assay for 73 

investigating the functionality of the bacterial T4P in these medically important pathogens. 74 
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Twitching motility is routinely analyzed by observing interstitial colony expansion 75 

between the lower surface of solidified nutrient agar and that of plastic Petri dishes made of 76 

polystyrene (25, 27). Such stab assays involve the inoculation of the interstitial space by stabbing 77 

through the agar, and this method has been used for the identification of T4P or pil genes by the 78 

isolation of P. aeruginosa mutants that were defective in twitching motility (3). T4P genes 79 

encode the core components of the T4PM and their functions in twitching motility are conserved 80 

among P. aeruginosa and many Gram-negative and Gram-positive bacteria (2, 10, 28-31). These 81 

include PilA, the major pilin, as well as PilB, the T4P extension ATPase, and PilT, the T4P 82 

retraction ATPase. Along with other T4P proteins, the PilB and PilT ATPases polymerize and 83 

depolymerize pilins into or from the T4P filament, respectively. Bacterial translocation by 84 

twitching motility over distances longer than the length of an extended pilus depends on the 85 

dynamic nature of T4P assembly and disassembly coordinated by the T4PM (8, 9).  86 

The regulation of bacterial motility by environmental cues has been studied most 87 

extensively in flagellated bacteria (32-35). Besides chemotactic responses (36), the biogenesis of 88 

bacterial flagella is modulated through gene expression and flagellar assembly by signals such as 89 

nutrient and surface availability (32-35). In addition, an alternative sigma factor, which is 90 

responsive to envelope and other environmental stressors, transcriptionally regulates the 91 

expression of flagellar genes in many bacteria (37-39). Although the T4P has been investigated 92 

to a lesser extent, there is clear evidence that its biogenesis and function are influenced by 93 

regulatory mechanisms and environmental factors. In many T4P or pil gene clusters, there are 94 

conserved two-component systems including PilS and PilR (2, 31). In selected organisms, these 95 

regulators have been demonstrated to affect the expression of T4P genes (40-43). Signals of both 96 

chemical and physical nature are known to influence T4P-mediated motility (44-46). For 97 
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example, lactate can induce PilT-dependent T4P retraction in Neisseria meningitidis whereas 98 

both temperature and blue light were shown to influence bacterial twitching motility (47, 48). 99 

It was observed previously that A. nosocomialis exhibited twitching motility only with 100 

MacConkey but not with Luria-Bertani (LB) agar media on polystyrene Petri dishes (22, 49). In 101 

our current study, we investigated the underlying reasons for the observed differences in 102 

bacterial twitching between these two media. We determined that bile salts are the key 103 

component that allows A. nosocomialis to twitch in MacConkey media. This is because the 104 

addition of bile salts to LB allowed A. nosocomialis to twitch to a similar extent as with 105 

MacConkey. We also observed similar stimulatory effects of bile salts on the twitching of P. 106 

aeruginosa and A. baumannii. Bile salts are anionic detergents, that can apply membrane stress 107 

to bacteria (50-53). Our results further demonstrate that other detergents likewise can enhance 108 

bacterial twitching on polystyrene surfaces. Antibiotics, including the outer membrane-targeting 109 

polymyxin B, do not increase P. aeruginosa twitching motility. This suggests that the 110 

mechanism for the stimulatory effect of bile salts is unlikely related to a bacterial response to the 111 

presence of a general or envelope stressor. Instead, we hypothesized that bile salts and other 112 

detergents increased the hydrophilicity of polystyrene surfaces, and it is this increase in 113 

hydrophilicity that promotes bacterial twitching. Indeed, we observed that glass surfaces, which 114 

are more hydrophilic than polystyrene, significantly promoted twitching motility. In contrast, 115 

increasing the hydrophobicity of glass surfaces by coating it in a hydrophobic solution, 116 

attenuated twitching. Like glass, plasma-treatment of polystyrene surfaces has been known to 117 

increase their hydrophilicity for culturing tissues or cells. We observed that tissue culture-treated 118 

polystyrene surfaces significantly increased bacterial twitching. Moreover, the addition of bile 119 

salts no longer stimulated twitching on glass or plasma-treated polystyrene surfaces. Our results 120 
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here suggest that bacterial pathogens may have evolved mechanisms to differentially interact 121 

with surfaces that have varying physicochemical properties to optimize host recognition, 122 

colonization, and infections. 123 

  124 
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Results 125 

Bile salts enable A. nosocomialis twitching motility in stab assays. It has been reported in the 126 

literature that A. nosocomialis displays twitching motility with MacConkey, but not LB agar, in stab 127 

assays (22, 49). In these assays, bacterial cells are stab-inoculated through the agar to form an interstitial 128 

colony between the Petri dish and the agar media (27). After a period of incubation, the size of an 129 

interstitial colony can be measured to quantify twitching motility. As shown in Figure 1A, the A. 130 

nosocomialis M2 strain shows clear twitching with MacConkey, but not with LB agar. These results 131 

confirmed that MacConkey but not LB media allows A. nosocomialis to display twitching motility as 132 

observed previously (22, 49). 133 

We compared the composition of these two commonly used bacterial growth media (Table 134 

S1). Notwithstanding their commonalities, LB lacks peptone, lactose, and bile salts that are 135 

present in MacConkey. Peptone is a proteinous nutrient source and lactose is a carbon and 136 

energy source. Bile salts are cholesterol derivatives with aliphatic side chains (51, 54) that 137 

regulate various biological processes in vertebrates and their microbiomes (50, 54-57). The 138 

amphipathic nature of bile salts allows them to interact with hydrophilic as well as hydrophobic 139 

molecules and this enables them to disrupt membranes and result in envelope stress in bacteria as 140 

detergents (51, 52). Both Gram-positive and Gram-negative bacteria can respond to the presence 141 

of bile salts, leading to changes in gene expression and cellular physiology (52, 58, 59). 142 

Generally, bile salts are more inhibitory of Gram-positive bacteria because of the lack of an outer 143 

membrane. Thus, they are included in MacConkey as a selective agent against Gram-positive 144 

bacteria in favor of enteric bacteria.  145 

We supplemented LB agar with peptone, lactose, or bile salts at the same concentration 146 

present in MacConkey agar to determine if one of these could enable A. nosocomialis to twitch 147 
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in LB. As shown in Figure 1A, the addition of neither lactose nor peptone led to any discernible 148 

twitching motility in A. nosocomialis. In contrast, the supplementation of bile salts resulted in A. 149 

nosocomialis twitching motility in LB comparable to what was observed with MacConkey agar. 150 

These results indicated that bile salts are the component that specifically stimulates twitching 151 

motility of A. nosocomialis as analyzed by stab assays with polystyrene Petri dishes.  152 

Twitching motility has been observed in A. baumannii (24, 60), a closely related 153 

Acinetobacter species and a WHO priority pathogen (16). The twitching motility of this 154 

bacterium is similarly noted in MacConkey agar as analyzed by a similar assay (22, 49). 155 

However, variable motility phenotypes were observed with LB media for different clinical 156 

isolates (60), suggesting an effect of media composition on A. baumannii twitching. We tested 157 

two A. baumannii strains, AYE and AB0057 (61, 62), in LB supplemented with bile salts in 158 

comparison with A. nosocomialis M2. As shown in Figure 1B, while none of these strains 159 

displayed twitching motility with the LB agar, supplementation of bile salts elicited twitching 160 

motility of both A. baumannii strains similarly to A. nosocomialis. These results suggest that the 161 

stimulatory effects of bile salts on twitching motility is a more general phenomenon in the 162 

Acinetobacter genus.  163 

Bile salts stimulated P. aeruginosa twitching motility. The above observations prompted us to 164 

investigate if bile salts enhanced bacterial twitching in other bacteria. P. aeruginosa, another WHO 165 

priority pathogen (16), has been used as a model for studies of bacterial twitching (8, 63, 64). Its 166 

twitching motility has been routinely analyzed using stab assays with LB instead of MacConkey agar 167 

plates (65-68).  P. aeruginosa PAO1, a frequently used laboratory strain, exhibits twitching motility in 168 

LB agar (69, 70). However, the addition of bile salts to LB significantly increased its twitching motility 169 

(Figure 2A). Further, we examined the dose response of PAO1 twitching to bile salts. As shown in 170 
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Figure 2B, the stimulation of twitching motility shows concentration dependence, with a plateau 171 

between 0.1% and 0.4% bile salts. At higher concentrations, bile salts start to inhibit P. aeruginosa 172 

growth and reduce its twitching motility in this assay (data not shown). We additionally examined the 173 

twitching motility of PA14, another commonly used P. aeruginosa strain in the literature (71-73). It was 174 

observed that the twitching motility of PA14 was stimulated by bile salts in LB media like that of PAO1 175 

(Figure S1). These results demonstrate that the stimulatory effect of bile salts on twitching is applicable 176 

to both Acinetobacter species and P. aeruginosa isolates. For the remainder of this study, we mostly 177 

used P. aeruginosa PAO1 as the model organism to investigate the mechanisms by which bile salts 178 

stimulate bacterial twitching motility.  179 

Detergents stimulate bacterial twitching. Bile salts, produced from cholesterol metabolism, are 180 

anionic detergents (50-52, 55). They are known to apply membrane or envelope stress in bacteria (51, 181 

52, 74). It is possible that bile salts function as a detergent to apply envelope or general stress to cells 182 

and thus it was the cellular stress response that underlies the stimulatory effects of bile salts on bacterial 183 

twitching motility. To examine this possibility, we investigated the effect of other detergents on the 184 

twitching motility of P. aeruginosa. To avoid the complications between growth inhibition and 185 

twitching motility, we determined the maximum non-inhibitory concentrations of detergents 186 

experimentally (Table S2) to guide their use in the twitching motility assays. For this experiment, we 187 

supplemented the LB media with the anionic detergent, sodium dodecyl sulfate (SDS), or the non-ionic 188 

detergents, Triton X-100 and Triton X-114 (Table S2). As shown in Figure 3A, all the detergents 189 

examined, whether anionic or non-ionic, significantly stimulated the twitching motility of P. aeruginosa 190 

much like bile salts. These results support the notion that the promotional effects of bile salts on 191 

twitching are related to their amphipathic properties as detergents.  192 
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The stimulatory effects of bile salts and other detergents on twitching motility could be explained by 193 

a physiological response of a bacterium to envelope stress applied by these amphipathic molecules (51, 194 

52, 74, 75) or a general stress response to various environmental stressors (76). To investigate this, we 195 

tested antibiotics with different modes of action at their maximum non-inhibitory concentrations as 196 

stressors. These included ampicillin, gentamicin, and ciprofloxacin, which target cell wall biosynthesis, 197 

ribosome function and DNA topology, respectively. We first determined the maximum non-inhibitory 198 

concentrations of these antibiotics by testing their effect at different concentrations on P. aeruginosa 199 

growth (Table S3). Antibiotics at their respective maximum non-inhibitory concentrations were tested 200 

for their effect on P. aeruginosa twitching. As shown in Figure 3B, none of these antibiotics affected P. 201 

aeruginosa twitching motility significantly. This suggested that the stimulation of twitching by 202 

detergents was unlikely the result of a physiological response to general stressors. In addition, we tested 203 

the effect of polymyxin B, which applies envelope stress by targeting the outer membrane of Gram-204 

negative bacteria (53). Somewhat unexpectedly, this antibiotic showed no stimulatory effect on P. 205 

aeruginosa twitching (Figure 3B).  These results suggested that the observed stimulation of twitching 206 

motility by bile salts and other detergents (Figures 2 and 3A) might not be related to a response to 207 

general or envelope stress. 208 

Glass enhances P. aeruginosa twitching in comparison to polystyrene. Detergents such as bile 209 

salts are amphipathic molecules with both polar and non-polar moieties (50, 54, 56, 57, 77). As such, 210 

they can change the physiochemical properties of a surface (50, 78-80). In stab assays for twitching 211 

motility, bacteria cells translocate in the interstitial space between the solidified agar media and the 212 

hydrophobic surface of a polystyrene Petri dish. We considered the possibility that bile salts in a growth 213 

media may interact with the hydrophobic surface of the polystyrene Petri dishes to alter its 214 

physiochemical properties. Such interactions may allow bile salts to make the polystyrene surface more 215 
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hydrophilic to possibly facilitate twitching motility. In comparison with polystyrene, glass Petri dishes 216 

present a more hydrophilic surface. We therefore examined P. aeruginosa twitching with LB media 217 

using glass in comparison with polystyrene Petri plates. As shown in Figure S2, P. aeruginosa was 218 

observed to twitch significantly more on glass than on polystyrene surfaces in LB without the addition 219 

of bile salts. These results are consistent with the proposition that surface hydrophobicity or 220 

hydrophilicity plays crucial roles in bacterial twitching. 221 

Bile salts do not enhance P. aeruginosa twitching on glass surfaces. We reproduced the above 222 

observation on glass (Figure S2) with a modified twitching assay where a glass or a polystyrene 223 

microscope slide was used as the twitching surface (see Materials and Methods). In this assay, the slides 224 

were cleaned and sterilized before they were placed in a polystyrene Petri dish. Molten LB agar media 225 

was then poured into the Petri dish. Twitching motility was analyzed as before, except that the 226 

incubation time was shortened to limit the twitching zone to be within the boundaries of the width of the 227 

microscope slide. As shown in Figure 4A, PAO1 twitched significantly more on glass slides than on 228 

polystyrene ones as was observed with Petri dishes (Figure S2). As expected, the addition of bile salts 229 

significantly stimulated twitching on the polystyrene slide (Figure 4A). In contrast, the supplementation 230 

of bile salts showed no promotional effect on twitching with the glass slide (Figure 4A). A pilA mutant, 231 

which is non-piliated, was used as the non-twitching control, and it showed no twitching motility on all 232 

surfaces with or without bile salts (Figure 4). It is also noteworthy that the twitching motility on the 233 

polystyrene slide in the presence of bile salts showed no statistical difference from that on the glass 234 

slides with or without bile salts. These results indicate that surface hydrophilicity likely enhances 235 

twitching motility, and the effects of bile salts on twitching could be attributed to their ability to change 236 

a hydrophobic surface to a more hydrophilic one. This is consistent with the observation that the 237 
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stimulatory effect of bile salts is no longer observed on the more hydrophilic glass surface in contrast 238 

with polystyrene ones.  239 

Increase in hydrophobicity of glass surfaces reduces P. aeruginosa twitching. Next, we modified 240 

the surface of the glass slides to be more hydrophobic using a chemical treatment. For this, we 241 

pretreated the glass slides with a polydimethylsiloxane (PDMS) solution before the analysis of twitching 242 

motility. PDMS is known to coat glass surfaces to make them more hydrophobic (81). As shown in 243 

Figure 4B, the treatment of the glass surface with PDMS significantly reduced P. aeruginosa twitching 244 

to a level that is not significantly different from that on a polystyrene slide. In comparison, PDMS 245 

treatment did not impact twitching motility of P. aeruginosa on polystyrene slides (Figure 4B), ruling 246 

out any inhibitory effects by PDMS. The P. aeruginosa pilA mutant showed no twitching under all 247 

experimental conditions as expected (Figure 4). These results are consistent with the idea that 248 

hydrophilicity of surfaces enhance P. aeruginosa twitching, and that bile salts and other detergents 249 

stimulate twitching motility on hydrophobic polystyrene surfaces by making them more hydrophilic. 250 

Increase in hydrophilicity of polystyrene surfaces drastically enhances bacterial twitching 251 

motility. While natural polystyrene surfaces are hydrophobic, they can be treated with plasma gas to 252 

increase their hydrophilicity for tissue culture (TC) purposes (82). The surfaces of plasma- or TC-treated 253 

plates are therefore more hydrophilic than non-treated ones. We compared P. aeruginosa twitching 254 

motility with 6-well polystyrene plates either TC-treated or non-treated. The P. aeruginosa PAO1 strain 255 

exhibited significantly increased twitching motility on plasma-treated surfaces over the non-treated ones 256 

in LB media (Figure 5A). The magnitude of increase in this case is about 2- to 3-fold. This increase is 257 

more pronounced than on glass surfaces which led to an increase of 1-fold or less (Figures 4A). While 258 

the addition of bile salts significantly enhanced P. aeruginosa twitching on untreated plates, it had no 259 

stimulatory effect on twitching with the TC-treated surfaces.  260 
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We examined whether the drastic increase in twitching motility with TC-treated polystyrene surfaces 261 

with P. aeruginosa could be extended to A. nosocomialis. As shown in Figure 5B, A. nosocomialis M2 262 

displayed no twitching motility in LB media with the non-treated plates. This is expected because these 263 

plates are made of polystyrene like the Petri dishes routinely used for twitching motility assays. TC-264 

treated plates drastically increased M2 twitching with LB media without the addition of bile salts or 265 

detergents. This increase is over 48-fold. An isogenic pilA mutant was used as a control, and it displayed 266 

no twitching under all experimental treatments (Figure 5B). The results here indicate the enhancement 267 

of twitching motility by hydrophilic surfaces is not confined to P. aeruginosa. Similar enhancement in 268 

A. nosocomialis suggests a more general phenomenon where hydrophilic surfaces promote interactions 269 

that are more favorable for bacterial twitching as mediated by the T4P as a motility apparatus.   270 

 271 
Discussion  272 

The interaction with surfaces is essential for the survival and proliferation of bacteria in 273 

their natural environment as well as in health and disease. In their natural habitats, most bacteria 274 

exist in multicellular ensembles known as biofilms, the establishment of which depends on 275 

bacterial attachment to surfaces (83-86). During bacterial infection of a host, one of the earliest 276 

steps in the process is the adhesion of a pathogen to the surfaces of host cells, tissues, and 277 

medical implants. From a bacterial perspective, such interactions rely on the timely biogenesis 278 

and proper functioning of adhesins on their surfaces. One of the structures critical for bacterial 279 

adhesion to both biotic and abiotic surfaces is the bacterial T4P which is prevalent in both Gram-280 

positive and Gram-negative bacteria (2, 13, 28, 29, 31). It is an important virulence factor in 281 

many pathogens including P. aeruginosa and A. baumannii which are both on the WHO priority 282 

pathogens list (16). In these bacteria, as well as A. nosocomialis and others, the T4P is known to 283 
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power bacterial twitching motility, which provides a convenient assay for the investigation of 284 

T4P biogenesis and function.  285 

Here we described an unexpected mechanism by which bile salts and other detergents can 286 

stimulate bacterial twitching motility. It was previously observed that A. nosocomialis exhibits 287 

twitching motility with MacConkey but not Luria-Bertani (LB) agar media (16). This 288 

phenomenon was observed using stab assays to visualize interstitial colony expansion with 289 

polystyrene Petri dishes. After confirming this observation, we identified bile salts as the 290 

component in MacConkey responsible for eliciting A. nosocomialis twitching motility (Figure 291 

1A). The stimulatory effects of bile salts on twitching are not limited to A. nosocomialis as we 292 

made similar observations with multiple strains of A. baumannii (Figure 1B) and P. aeruginosa 293 

(Figures 2A and S1). Additionally, our results indicated that other detergents, whether anionic or 294 

non-ionic, likewise promoted P. aeruginosa twitching motility (Figure 3A). Surprisingly, this 295 

stimulation of twitching is likely not due to a physiological change in response to the presence of 296 

bile salts and other detergents in the growth medium. Instead, it is the ability of detergents to 297 

alter the physicochemical properties of a surface that enhances twitching motility in multiple 298 

bacterial species. 299 

The above conclusion is based on a few lines of experimental evidence from this study. 300 

First, antibiotics with various modes of actions failed to enhance P. aeruginosa twitching 301 

motility (Figure 3B). These included polymyxin B, which mimics the effects of bile salts and 302 

other detergents in applying envelope stress. These results suggested that the enhancement of 303 

twitching motility by detergents is likely not a bacterial response to a general or envelope 304 

stressor in a growth media. Second, we observed that surfaces of glass, which are more 305 

hydrophilic than that of polystyrene, significantly enhanced twitching motility (Figures S2 and 306 
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4A). We further demonstrated that the use of glass surfaces abrogated the stimulatory effect of 307 

bile salts such that the addition of bile salts no longer promoted P. aeruginosa twitching motility 308 

on these surfaces (Figure 4A). When the surface properties of glass were changed by the 309 

application of a hydrophobic coating, the enhancement of bacterial twitching by glass was 310 

reversed (Figure 4B). These results show that hydrophilic surfaces promote twitching, whereas 311 

hydrophobic ones suppress it. Because bile salts in the growth media only enhance twitching 312 

motility on polystyrene but not on glass surfaces, we conclude that bile salts likely function to 313 

modify natural polystyrene surfaces to be more hydrophilic, which promote bacterial motility. 314 

Lastly, we performed experiments with polystyrene surfaces untreated and treated by plasma gas 315 

(Figure 5). The TC-treated surfaces, which are more hydrophilic, significantly enhanced bacterial 316 

twitching motility. As similarly observed on glass surfaces, the addition of bile salts no longer 317 

displayed a stimulatory effect on P. aeruginosa twitching on TC-treated plates. These results 318 

support our conclusion that the physicochemical properties of a surface significantly impact the 319 

effectiveness of T4P-powered twitching motility in bacteria. On hydrophilic surfaces, bacteria 320 

twitch more, and on hydrophobic surfaces, they twitch less. We further conclude that the 321 

promotional effects of bile salts and other detergents on bacterial twitching are largely due to 322 

their ability to change the properties of a surface over which bacteria translocate by twitching 323 

motility.  324 

Categorically, there are two possible mechanistic explanations for the observed effects of 325 

the physiochemical properties of a surface on bacterial twitching. There have been reports that 326 

bacteria attach better to hydrophobic surfaces in the context of biofilm formation or otherwise 327 

(87-90). It follows that reducing hydrophobicity may lead to alteration of the interactions of a 328 

bacterial cell or its pilus with a subsurface over which a bacterium translocates by twitching 329 
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motility. Sustained twitching movement relies on the recurrence of a multi-step process. These 330 

steps include the unobstructed extension of a T4P, the subsequent attachment of the pilus 331 

through its distal end for anchoring, followed by a successful T4P retraction event. It is 332 

conceivable that tampering with any of these steps through physiochemical interactions with a 333 

surface can lead to changes in bacterial twitching behaviors. Alternatively, surface sensing has 334 

been demonstrated to mediate changes in cell physiology and behavior (6, 91-96). It is possible 335 

that the physicochemical properties of a surface may be detected by a bacterium through surface 336 

sensing to modulate T4P biogenesis and its functions, leading to alterations in twitching motility. 337 

Further investigation is necessary to determine if the above scenarios or others, either alone or in 338 

combination, are the underlying reasons for the observed enhancement of T4P-powered bacterial 339 

twitching by surface hydrophilicity. 340 

 341 

Materials and Methods  342 

Strains and culture conditions. The bacterial strains used in this study are listed in Table 1. These 343 

include A. nosocomialis M2, A. baumannii strains Ab0057 and AYE, and P. aeruginosa PAO1 and 344 

PA14. When appropriate, isogenic pilA mutants were used as controls. P. aeruginosa strains were grown 345 

at 37℃ on 1.5% Luria-Bertani agar (LBA) while A. nosocomialis and A. baumannii strains were grown 346 

at 37℃ on 1.5% MacConkey agar (Oxoid). Oxoid bile acids were used in this study when indicated. 347 

 348 

Twitching motility assays. Twitching motility was analyzed by three different protocols using the agar 349 

stab methods (27) (97) with 1.2% agar media. For all stab assays, the inoculum was prepared by 350 

spreading a loopful of bacteria from the outside edge of an overnight plate culture onto a fresh 1.5% 351 
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LBA plate to create a thin layer of cells. Using a toothpick, an inoculum was picked up to inoculate a 352 

plate by stabbing through the agar to touch either the polystyrene or glass surface below.  353 

The first protocol uses a standard 100 mm ´ 15 mm polystyrene or glass Petri dish (Fisher 354 

Scientific) as previously described (27, 97). In brief, plates with 25 ml agar media were prepared a day 355 

before the assays. These plates were then dried in a biosafety cabinet for 20 minutes before stab 356 

inoculation. After 48 hours of incubation at 37℃ in a humidity chamber, the agar media was removed, 357 

and the twitching zone was visualized by staining with 1% crystal violet. Twitching areas were 358 

determined using the NIH ImageJ software (98).  359 

The second protocol uses either a glass (Opto-Edu) or a polystyrene (VWR International) 360 

microscope slide (1² ´ 3²) inside a standard polystyrene Petri dish for analyzing twitching motility. The 361 

microscope slides were first submerged in a filter-sterilized polydimethylsiloxane (PDMS) solution 362 

(RainX) (99) or in 70% ethanol as a control. These slides were air dried on a rack at 40℃ before being 363 

placed at the bottom of a polystyrene Petri dish. 25 ml of molten agar media was poured over the 364 

microscope slides into the Petri dish a day before. A twitching assay is initiated by stab-inoculation as 365 

described above except that the incubation is shortened to 18 hours to limit the twitching zone within the 366 

boundaries of the microscope slide. One additional modification is that the twitching zone in this case 367 

was visualized by incident light and traced with a permanent marker without removing the agar from the 368 

Petri dish. Twitching area was determined using ImageJ as above. 369 

The third protocol uses 6-well polystyrene plates with or without TC-treatment (Falcon). Each 370 

well of a plate contains 2 ml agar media and twitching motility assays were initiated by stab inoculation 371 

as described above. The twitching area was analyzed as described for the microscope slide-based assay 372 

except that the incubation time was extended to 24 hours.  373 

 374 
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Table 1. Bacterial strains used in this study. 660 

Strain Description Reference 

Acinetobacter  
nosocomialis 

M2 Clinical isolate (100) 

M2 ΔpilA pilA deletion and insertion of kanamycin 
resistant cassette (ΔpilA::kan) 

(23) 

Acinetobacter 
baumannii 

Ab0057 Clinical isolate (61) 

AYE Clinical isolate (62) 

Pseudomonas 
aeruginosa 

PAO1 Wildtype (101) 

PW8622  PAO1 pilA-H02::ISphoA/hah (102) 

  661 
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Figure Legends 662 

 663 

Figure 1. Bile salts enable Acinetobacter to twitch. A. Bile salts allow A. nosocomialis M2 to 664 

twitch in LB media. The twitching motility of A. nosocomialis M2 was analyzed with 665 

MacConkey (MC) or Luria-Bertani (LB) media without or with (+BSs) 0.5% bile salts,  1% 666 

lactose (+Lac), or 2% peptone (+Pep) with standard polystyrene Petri dishes as described in 667 

Materials and Methods. Data shown are the averages from three biological experiments each 668 

performed in triplicate. B. Bile salts provoke A. baumannii twitching in LB media. A. baumannii 669 

strains AB0057 and AYE were analyzed for twitching motility in LB agar without (-) or with (+) 670 

0.5% bile salts on standard polystyrene Petri dishes with A. nosocomialis (M2) as a control. Data 671 

shown are from three biological experiments, represented by different symbols, each performed 672 

in triplicate. Single (*), double (**), and quadruple (****) asterisks indicate two values are 673 

statistically different with P<0.05, P<0.01, and P<0.0001 by the Student’s T-test, respectively.  674 

 675 

Figure 2. Bile salts enhance P. aeruginosa twitching motility. A. Bile salts increase P. 676 

aeruginosa twitching. Twitching motility of PAO1 was analyzed without (-) or with (+) 0.5% 677 

bile salts as in Figure 1B with data similarly presented. Quadruple asterisks (****) indicates 678 

values that are statistically different with P<0.0001 by the Student’s T-test. B. Dose effect of bile 679 

salts on PAO1 twitching. PAO1 twitching was analyzed with the standard polystyrene Petri dish 680 

protocol as in (A) with varying concentrations (w/v %) of bile salts as indicated. Data presented 681 

in both panels are from three biological experiments each performed in triplicate. Data points 682 

from the same experiment are represented by the same symbols in color and shape.  683 

 684 
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Figure 3. Detergents, but not antibiotics, promote P. aeruginosa twitching. A. Effects of 685 

detergents. PAO1 twitching was analyzed with the standard Petri dish protocol as in Figure 2A 686 

with LB agar without modification (-) or with bile salts (BSs) (5 mg/ml), Triton X-100 (TX100) 687 

(75 μg/ml), Triton X-114 (TX114) (75 μg/ml), or sodium dodecyl sulfate (SDS) (850 μg/ml). B. 688 

Effects of antibiotics. PAO1 twitching was analyzed as in (A) with ampicillin (Amp) (313 689 

ng/ml), ciprofloxacin (Cipro) (31 ng/ml), gentamicin (Gent) (31 ng/ml), or polymyxin B (PB) 690 

(313 ng/ml).  Data presented in both panels are from three biological experiments each 691 

performed in triplicate. Data points from the same experiment are represented by the same 692 

symbols in color and shape. Triple (***) and quadruple (****) asterisks indicate two values are 693 

statistically different with P<0.001 and P<0.0001 by the Student’s T-test, respectively. 694 

Antibiotics resulted in values that are not significantly (ns) different with P>0.05. 695 

 696 
Figure 4. Glass surfaces increase P. aeruginosa twitching motility. A. Glass surfaces 697 

stimulate PAO1 twitching motility and eliminate the stimulatory effect of bile salts. The 698 

twitching motility of PAO1 and its isogenic pilA mutant were analyzed with polystyrene (PS) or 699 

glass microscope slides in LB without or with 0.5% bile salts (BSs) after 18 hours of incubation 700 
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and its isogenic pilA mutant strain was analyzed with 6-well polystyrene plates (see Materials 709 
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Figure 1. Bile salts enable Acinetobacter to twitch. A. Bile salts allow A. nosocomialis 
M2 to twitch in LB media. The twitching motility of A. nosocomialis M2 was analyzed 
with MacConkey (MC) or Luria-Bertani (LB) media without or with (+BSs) 0.5% bile 
salts,  1% lactose (+Lac), or 2% peptone (+Pep) with standard polystyrene Petri dishes as 
described in Materials and Methods. Data shown are the averages from three biological 
experiments each performed in triplicate. B. Bile salts provoke A. baumannii twitching in 
LB media. A. baumannii strains AB0057 and AYE were analyzed for twitching motility in 
LB agar without (-) or with (+) 0.5% bile salts on standard polystyrene Petri dishes with A. 
nosocomialis (M2) as a control. Data shown are from three biological experiments, 
represented by different symbols, each performed in triplicate. Single (*), double (**), and 
quadruple (****) asterisks indicate two values are statistically different with P<0.05, 
P<0.01, and P<0.0001 by the Student’s T-test, respectively. 
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Figure 2. Bile salts enhance P. aeruginosa twitching motility. A. Bile salts increase P. 
aeruginosa twitching. Twitching motility of PAO1 was analyzed without (-) or with (+) 
0.5% bile salts as in Figure 1B with data similarly presented. Quadruple asterisks (****) 
indicates values that are statistically different with P<0.0001 by the Student’s T-test. B. 
Dose effect of bile salts on PAO1 twitching. PAO1 twitching was analyzed with the 
standard polystyrene Petri dish protocol as in (A) with varying concentrations (w/v %) of 
bile salts as indicated. Data presented in both panels are from three biological 
experiments each performed in triplicate. Data points from the same experiment are 
represented by the same symbols in color and shape. 
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Figure 3. Detergents, but not antibiotics, promote P. aeruginosa twitching. A. Effects 
of detergents. PAO1 twitching was analyzed with the standard Petri dish protocol as in 
Figure 2A with LB agar without modification (-) or with bile salts (BSs) (5 mg/ml), Triton 
X-100 (TX100) (75 μg/ml), Triton X-114 (TX114) (75 μg/ml), or sodium dodecyl sulfate 
(SDS) (850 μg/ml). B. Effects of antibiotics. PAO1 twitching was analyzed as in (A) with 
ampicillin (Amp) (313 ng/ml), ciprofloxacin (Cipro) (31 ng/ml), gentamicin (Gent) (31 
ng/ml), or polymyxin B (PB) (313 ng/ml).  Data presented in both panels are from three 
biological experiments each performed in triplicate. Data points from the same experiment 
are represented by the same symbols in color and shape. Triple (***) and quadruple (****) 
asterisks indicate two values are statistically different with P<0.001 and P<0.0001 by the 
Student’s T-test, respectively. Antibiotics resulted in values that are not significantly (ns) 
different with P>0.05.
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Figure 4. Glass surfaces increase P. aeruginosa twitching motility. A. Glass surfaces 
stimulate PAO1 twitching motility and eliminate the stimulatory effect of bile salts. The 
twitching motility of PAO1 and its isogenic pilA mutant were analyzed with polystyrene 
(PS) or glass microscope slides in LB without or with 0.5% bile salts (BSs) after 18 hours 
of incubation (see Materials and Methods). B. Hydrophobic coating of glass reduces 
twitching motility. Experiments were performed as in A, except that the microscope slides 
were coated without or with polydimethylsiloxane (PDMS) (see Materials and Methods). 
Data presented in both panels are from three biological experiments each performed in 
triplicate. Double asterisks (**) indicate two values are statistically different with P<0.01 
by the Student’s T-test. 
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A. Pseudomonas

Figure 5. TC-treated plates ameliorate twitching and abolish the effects of bile salts. 
A. P. aeruginosa twitching on TC-treated polystyrene. The twitching motility of P. 
aeruginosa PAO1 and its isogenic pilA mutant strain was analyzed with 6-well 
polystyrene plates (see Materials and Methods) either TC-treated or non-treated in LB 
agar without or with 0.5% bile salts (BSs). B. A. nosocomialis twitching on TC-treated 
polystyrene. The twitching motility of A. nosocomialis M2 and its isogenic pilA deletion 
mutant was analyzed as in A. Data presented in both panels are from three biological 
experiments each performed in triplicate. Double (**) and quadruple (****) asterisks 
indicate that two values are statistically different with P<0.01 and P<0.0001 by the 
Student’s T-test, respectively.

B. Acinetobacter



Supplemental Materials:

Table S1. Ingredients of LB and MacConkey agar media for twitching.

MacConkey (MC) agar* Luria-Bertani (LB) agar*

1.2% Agar 1.2% Agar

0.5% Sodium Chloride 0.5% Sodium Chloride

0.075% Neutral Red 0.5% Yeast Extract

2% Peptone# 1% Tryptone

1% Lactose#

0.5% Bile Salts#

*Ingredient concentrations are in % (w/v).
# Ingredients highlighted in blue signify key differences in media 
composition.



Detergent MaxNIC (μg/mL)* CMC (mM)** Type**

SDS 750 7-10 Anionic

Triton-X100 75 0.23 Non-ionic

Triton-X114 75 0.2 Non-ionic

Table S2. Properties of detergents. 

* The maximum non-inhibitory concentration (MaxNIC) of each detergent 
against P. aeruginosa PAO1 was determined experimentally in liquid growth 
media in the presence of detergent at different concentrations (data not shown). 
** CMC (critical micelle concentration) and types of detergent were from the 
reference data from Sigma-Aldrich (Bhairi et al., 2017).



Antibiotic MaxNIC (ng/ml)* Target

Ampicillin 313 Cell wall synthesis

Ciprofloxacin 31 DNA gyrase

Gentamicin 31 30S ribosomal rRNA

Polymyxin B 313 Outer membrane

Table S3. Antimicrobial susceptibility testing of P. aeruginosa strain PAO1. 

* The maximum non-inhibitory concentration (MaxNIC) of each antibiotic against 
P. aeruginosa PAO1 was determined experimentally by liquid growth media in 
the presence of antibiotic at different concentrations (data not shown). 



Figure S1. Twitching motility of Pseudomonas aeruginosa PA14 in the presence 
of bile salts. Twitching motility was analyzed and presented as in Figure 1B. Data 
presented is from two biological experiments each performed in triplicate. An 
asterisk (*) specifies that the twitching area values with bile salts for the indicated 
strains are statistically different (P<0.05) from those without bile salts.
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Figure S2. Glass surfaces enhance the twitching motility of 
Pseudomonas aeruginosa. Twitching motility of P. aeruginosa PAO1 
were analyzed on polystyrene or borosilicate glass Petri dishes in Luria-
Bertani (LB) agar, as in Figure 1B. Data presented is from two biological 
experiments each performed in quadruplicate. 

PAO1
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Bhairi, S.M., Mohan, C., Ibryamova, S., LaFavor, T. A guide to the properties and uses of 
detergents in biological systems. 2017; Available from: 
https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/docu
ments/186/820/detergents-guide-ms.pdf.
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