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Abstract
BACKGROUND In intensive care units (ICUs), critically ill patients are monitored with

electroencephalography (EEG) to prevent serious brain injury. EEG monitoring is con-

strained by clinician availability, and EEG interpretation can be subjective and prone to

interobserver variability. Automated deep-learning systems for EEG could reduce human

bias and accelerate the diagnostic process. However, existing uninterpretable (black-box)

deep-learning models are untrustworthy, difficult to troubleshoot, and lack accountability

in real-world applications, leading to a lack of both trust and adoption by clinicians.

METHODS We developed an interpretable deep-learning system that accurately classifies

six patterns of potentially harmful EEG activity — seizure, lateralized periodic discharges

(LPDs), generalized periodic discharges (GPDs), lateralized rhythmic delta activity (LRDA),

generalized rhythmic delta activity (GRDA), and other patterns — while providing faithful

case-based explanations of its predictions. The model was trained on 50,697 total

50-second continuous EEG samples collected from 2711 patients in the ICU between July

2006 and March 2020 at Massachusetts General Hospital. EEG samples were labeled as

one of the six EEG patterns by 124 domain experts and trained annotators. To evaluate the

model, we asked eight medical professionals with relevant backgrounds to classify 100 EEG

samples into the six pattern categories — once with and once without artificial intelligence

(AI) assistance — and we assessed the assistive power of this interpretable system by com-

paring the diagnostic accuracy of the two methods. The model’s discriminatory performance

was evaluated with area under the receiver-operating characteristic curve (AUROC) and

area under the precision–recall curve. The model’s interpretability was measured with task-

specific neighborhood agreement statistics that interrogated the similarities of samples and

features. In a separate analysis, the latent space of the neural network was visualized by
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using dimension reduction techniques to examine whether

the ictal–interictal injury continuum hypothesis, which

asserts that seizures and seizure-like patterns of brain activ-

ity lie along a spectrum, is supported by data.

RESULTS The performance of all users significantly

improved when provided with AI assistance. Mean user

diagnostic accuracy improved from 47 to 71% (P<0.04).
The model achieved AUROCs of 0.87, 0.93, 0.96, 0.92,

0.93, and 0.80 for the classes seizure, LPD, GPD, LRDA,

GRDA, and other patterns, respectively. This performance

was significantly higher than that of a corresponding unin-

terpretable black-box model (with P<0.0001). Videos tra-

versing the ictal–interictal injury manifold from dimension

reduction (a two-dimensional representation of the origi-

nal high-dimensional feature space) give insight into the

layout of EEG patterns within the network’s latent space

and illuminate relationships between EEG patterns that

were previously hypothesized but had not yet been shown

explicitly. These results indicate that the ictal–interictal

injury continuum hypothesis is supported by data.

CONCLUSIONS Users showed significant pattern classifi-

cation accuracy improvement with the assistance of this

interpretable deep-learning model. The interpretable design

facilitates effective human–AI collaboration; this system

may improve diagnosis and patient care in clinical settings.

The model may also provide a better understanding of how

EEG patterns relate to each other along the ictal–interictal

injury continuum. (Funded by the National Science Founda-

tion, National Institutes of Health, and others.)

Introduction

S eizure or status epilepticus is found in 20% of
patients with severe medical and neurologic illness
who undergo brain monitoring with electroenceph-

alography (EEG) because of altered mental status,1,2 and
every hour of seizures detected on EEG further increases
the risk of permanent disability or death.3,4 Even more
common, intermediate seizure-like patterns of brain activ-
ity, consisting of periodic discharges or rhythmic activity,
occur in nearly 40% of patients undergoing EEG monitor-
ing.5 Two recent studies found evidence that, similar to
seizures, this type of activity also increases the risk of dis-
ability and death if it persists for a prolonged period.6,7

The ictal–interictal injury continuum (IIIC) hypothesis,8

which posits that these ambiguous brain-wave activities and
seizures lie along a spectrum, provides a conceptual frame-
work for understanding these potentially harmful EEG pat-
terns, but categorization in clinical settings remains a
challenge. Until recently, manual review of the EEG has
been the only method to quantify IIIC EEG activities and
patterns, an approach that suffers from subjectivity due to
the ambiguous nature of these patterns.8,9 (In this article,
the terms “seizures and seizure-like events” and “IIIC
EEG patterns” are used interchangeably.)

Recently, progress in deep learning and the availability of
large EEG datasets have made possible the development
of automated algorithms to detect and classify seizures10-13

and other EEG patterns,14 with one recent model achiev-
ing a level of accuracy comparable to that of physician
experts.15 However, a lack of interpretability in many of
the previous models’ decision-making processes renders
them unsuitable for assisting human practitioners with
medical decision-making at the point of care. (In this arti-
cle, “interpretability” means that the model can explain
predictions in a way that humans can understand.) Unin-
terpretable or black-box models, which cannot provide an
explanation of their decision-making, are prone to silent
failures during clinical operations due to either poor gener-
alization or overreliance on trivial medically irrelevant
features.16,17

These failures can lead to misdiagnoses and increased risks
for patients. As a result, the U.S. Food and Drug Administra-
tion and the European Union (through the General Data Pro-
tection Regulation) have published new requirements and
guidelines calling for interpretability and explainability in
artificial intelligence (AI) used for medical applications.18-20

Although explainability techniques such as Gradient-
Weighted Class Activation Mapping and Shapley Additive
Explanations,21-25 try to elucidate model decisions post
hoc — meaning that the model architecture, development,
and training are completed before applying methods to
explain the model26 — these methods only approximate
model reasoning. Consequently, different methods often
give conflicting explanations, even when used on the same
model and sample. This approach contrasts with a model
that has built-in interpretability, whereby the prediction is a
direct result of the reasoning; that is, the explanation exactly
matches the predictor network’s underlying calculations.

Our objective was to build an AI assistive tool for IIIC EEG
pattern classification to reduce human subjectivity and
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improve user accuracy in practice with an interpretability-
focused approach. We aimed to better assist clinicians in
classifying EEG patterns accurately and reliably, which are
the crucial first steps in the EEG reading process.27 We also
hoped to gain insight into the relationships among EEG pat-
terns and develop evidence related to the IIIC hypothesis.

We introduce a novel interpretable deep-learning algo-
rithm to classify seizures and rhythmic and periodic EEG
patterns. We propose an explanation method named “This
EEG Looks Like That EEG,” abbreviated as TEEGLL-
TEEG. Our proposed interpretable algorithm outperforms
the current state-of-the art black-box IIIC EEG pattern
classification algorithm in both classification performance
and interpretability metrics. To the best of our knowledge,
this is the first body of work to develop an inherently inter-
pretable model for EEG signals. We show the clinical util-
ity of our model in a retrospective analysis, wherein all
eight users significantly improved in pattern categorization
when provided with AI assistance relative to without AI. In
addition, we mapped the network’s latent space into two
dimensions using a dimension-reduction algorithm, reveal-
ing that EEG patterns within the IIIC — despite being given
distinct class names — do not exist in isolated islands.
Rather, each class is connected to every other class through
a sequence of transitional intermediate patterns, which we
show in a series of videos. These results lend support to the
IIIC hypothesis, which asserts that seizures and seizure-like
patterns of brain activity lie along a spectrum.

Methods

EEG DATA AND EXPERT LABELS

Our network, called ProtoPMed-EEG, was trained and
tested on a large-scale EEG study28 consisting of 50,697
events from 2711 patients hospitalized between July 2006
and March 2020 who underwent continuous EEG as part
of clinical care at Massachusetts General Hospital. The
large group was intended to ensure broad coverage of all
variations of IIIC events encountered in practice. A total
of 124 EEG raters from 18 centers labeled the middle
10 seconds of 50-second EEG segments. Raters produced
one of six labels: seizure, lateralized periodic discharges
(LPDs), generalized periodic discharges (GPDs), latera-
lized rhythmic delta activity (LRDA), generalized rhythmic
delta activity (GRDA), and other patterns. Other included
all patterns (including normal) except seizures and the
four rhythmic and periodic patterns (LPD, GPD, LRDA,

and GRDA). Patterns obscured by artifacts were scored by
experts in the same way that it is done in clinical practice
so that when artifacts were present but experts were still
able to discern that one of the five target patterns was pre-
sent, they were instructed to assign the target pattern as
the label. The data-labeling procedure is described further
in the Supplementary Appendix (Section H).

Mean rater-to-rater interrater reliability (IRR) was moder-
ate (agreement, 52%; kappa, 42%), and mean rater-to-
majority IRR was substantial (agreement, 65%; kappa,
61%). Because expert annotators do not always agree, we
evaluated our model against the majority vote, whereby
the class selected by the majority of raters is the ground
truth for each sample. The dataset was split into approxi-
mately equally sized training and test sets by patient iden-
tification to avoid leakage. Rather than allowing any
training set sample to become a prototype, we limited our
prototype candidates to 10,641 samples that were thor-
oughly examined in the data-labeling process (�20 expert
votes).

INTERPRETABILITY THROUGH MODEL DESIGN

An overview of our model architecture design is shown in
the upper panel of Figure 1. The model learned the feature
extractor (initialized with weights from Jing et al.14), the
prototype layer, and the final linear layer. In this work, the
prototypes were divided into two categories: single-class
prototypes and dual-class prototypes. Single-class proto-
types represent EEG patterns that can be clearly attributed
to one of the six classes described earlier. However, as
described in the IIIC hypothesis, some EEG signals may
exist in an intermediate state (e.g., between LPD and sei-
zure or between GRDA and GPD). Therefore, dual-class
prototypes represent signals in such intermediate states.
Dual-class prototypes are novel to this work. Each learned
prototype corresponds to an actual EEG sample from the
prototype subset. At test time, the latent feature of each
input signal was compared against that of the learned pro-
totypes by calculating their angular distances. The dis-
tances were passed through the last linear layer to produce
prediction scores (logits), which indicated the model’s con-
fidence in its predictions for the EEG class. A more
detailed version of the training process and the model
architecture is provided in the Supplementary Appendix
(Section A).

We show three modes of explanation provided by the model
design in the lower panel of Figure 1: latent space explana-
tions (Fig. 1A), decision space explanations (Fig. 1B), and
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Figure 1. Model Architecture and Decision Explanations.
The input sample x is passed through a feature extractor f () and a prototype layer g() (upper panel; as in Chen et al.29). The prototype layer
calculates angular distances (as in Donnelly et al.30) between the sample feature and the prototypes. The angular distances are multiplied with
class affinity to generate the logits (class scores). The softmax calculation converts the logits into prediction probabilities. In the lower panels,
three different ways an end user can see how the model reasons about the test sample are shown: latent space explanations (Panel A),
decision space explanations (Panel B), and scoring system explanations (Panel C). Freq denotes frequency; GPD, generalized periodic
discharge; GRDA, generalized rhythmic delta activity; LL, left lateral; LP, left parasagittal; LPD, lateralized periodic discharge; LRDA, lateralized
rhythmic delta activity; RL, right lateral; and RP, right parasagittal.
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scoring system explanations (Fig. 1C). (We define interpret-
able models as models that “explain their predictions in a
way that humans can understand.”26) Every prediction
made by our model follows the same logic as the explanation
provided by the model. This means that the model explana-
tions have perfect fidelity to the underlying decision-making
process by design.

Figure 1A shows how the model perceives the test sample
relative to previous cases by projecting the 1275-dimensional
latent features to a human-comprehensible two-dimensional
space. Figure 1B shows the model’s final classification of the
test sample relative to the classifications of previous cases.
Figure 1C shows how the model uses case-based reasoning
to make its prediction (i.e., using previous examples to rea-
son about a new case). This result is achieved by learning a
set of prototype samples that are representative of each
single-class or dual-class category. Specifically, the model
measures the similarity between a new case and the learned
prototypical samples. Each explanation is of the form “this

sample is class X because it is similar to these prototypes of
class X and not similar to prototypes of other classes.” The
three modes of explanation are integrated into the final
graphical user interface (GUI). A snapshot of the dedicated
GUI is shown in Figure 2. More details about the GUI are
provided in the Supplementary Appendix (Section C).

USER STUDY

The potential clinical value of the proposed model was
assessed with a multiuser study. The study cohort com-
prised clinical practitioners, including a nurse; an EEG tech-
nician; and medical doctors pursuing or having completed
residency or fellowship training in neurology, stroke, derma-
tology, and neurophysiology. None of the participants had
expertise in machine learning, and none were EEG experts
(i.e., none were physicians who had completed clinical neu-
rophysiology fellowship training). As such, they were an
ideal cohort to represent a real-world user population as the
interpretable system aims to assist clinical practitioners
without prerequisites for AI knowledge.
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Figure 2. Snapshot of the GUI of the Interpretable System.
The GUI integrates the three explanation modes detailed in Figure 1. This snapshot has minor simplifications for ease of reading. Full details
and further information on the GUI layout are provided in the Supplementary Appendix (Section C). AFF denotes affinity; GPD, generalized
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Each participant was provided with basic training materials
for identifying the five IIIC EEG patterns. (A special user
interface designed for this user study is shown in Figure 3.)
The study comprised two stages set 2weeks apart; in each,
users were asked to classify the same 100 samples as one
of five IIIC patterns or as other or no idea. The 100 sam-
ples were selected from the test set to ensure that all the
classes were equally represented, that the expert annota-
tors had a high level of agreement with each other, and
that patients did not appear twice within the same class.
Users were randomly split into two groups. One group was
given AI assistance in only the first stage, and the other
group was given AI assistance in only the second stage.
After the users completed both stages, they were asked to
complete a survey with questions regarding the study.

EXTERNAL VALIDATION

To validate model performance across institutions, we col-
lected a new dataset of 1500 events from 327 patients in the
intensive care unit (ICU) who underwent continuous EEG
as part of clinical care at Brigham and Women’s Hospital.
Following the same instructions as for labelling the original
dataset, 10 EEG experts labeled the middle 10 seconds of
50-second EEG segments, and raters produced one of the
six labels.

Results

MODEL CLASSIFICATION PERFORMANCE

Model performance was evaluated by using area under
the receiver-operating characteristic curve (AUROC) and
area under the precision–recall curve (AUPRC) scores.
Both AUROC and AUPRC were calculated by using the
predicted class probability output from the softmax layer
of the model. The classification performance of our inter-
pretable model ProtoPMed-EEG significantly exceeds that
of the uninterpretable state-of-the-art baseline for this
task, SPaRCNet,14 in distinguishing seizures, LPDs, GPDs,
LRDAs, and GRDAs as measured both by AUROC and
AUPRC scores (P<0.001).

Results for receiver-operating characteristic and precision–
recall curve analyses are shown in Figure 4. Seizure versus
no-seizure classification performance can be found in
Figure 4A under the heading seizure. For comparing
AUROC scores, the DeLong test31 was used for statistical sig-
nificance. For AUPRC comparisons, we tested for statistical
significance using the bootstrapping method with 1000
bootstrap samples. These findings held when bootstrapping
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Figure 3. The User Study Interface When AI Assistance Is Provided.
Buttons to select the electroencephalography (EEG) pattern category, the EEG sample to be categorized, a comparable EEG prototype
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according to patient or sample. More details on these signifi-
cance tests are provided in the Supplementary Appendix
(Section E).

USER STUDY

Of the 13 invited users, 8 completed both stages of the
study, 2 completed only the first stage and did not

complete the second stage 2weeks later, and 7 filled out
the poststudy survey. Participant dropout rates were simi-
lar in both stages.

Mean user accuracy in identifying the correct class was sig-
nificantly better for all users with AI assistance than without
(71 vs. 47%; one-sided Student’s t-test, P<0.05), as shown
in Table S3. Individual results are shown in Figure 5C.
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Figure 4. Performance Evaluation.
We compare the area under the receiver-operating characteristic curve (AUROC) scores and area under the precision–recall (PR) curve
scores (Panel A), the neighborhood analysis by maximum vote (higher value indicates better clustering by class; uses only majority vote
of each sample; Panel B), and the neighborhood analysis by annotator vote distributions (lower value indicates better clustering by class)
between the uninterpretable SPaRCNet14 and our interpretable ProtoPMed-EEG (Panel C). In Panel A, the receiver-operating
characteristic (ROC) curves and PR curves for ProtoPMed-EEG (solid lines) are compared with SPaRCNet (dashed lines). ProtoPMed-
EEG has statistically significantly higher AUROC and AUPRC. In Panel B, we shown the neighborhood analysis by maximum. In Panel C,
we show the neighborhood analysis by annotator vote distribution (lower values mean a more consistent neighborhood). FPR denotes
false positive rate; GPD, generalized periodic discharge; GRDA, generalized rhythmic delta activity; Interp., interpretable; LPD, lateralized
periodic discharge; LRDA, lateralized rhythmic delta activity; PRAUC, area under the precision–recall curve; and TPR, true positive rate.
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The average time taken to make a decision was longer with AI
assistance than without (32–33seconds vs. 25–39seconds).
An increase in mean IRR was observed. Rater-to-majority
IRR percent agreement was 90% with AI assistance and
86% without; Cohen’s kappa scores were 66% with AI
assistance and 48% without. Mean rater-to-rater IRR per-
cent agreement was 62% with AI assistance and 47% with-
out; Cohen’s kappa scores were 54% with AI assistance
and 35% without.

In the poststudy survey, seven of seven users believed
their ability to identify EEG patterns improved after com-
pleting the stage with AI, while three users felt they
improved after the stage without AI. All seven users would

recommend this system to medical professionals learning
to identify these patterns. Further analysis of the user
study results is provided in the Supplementary Appendix.

EXTERNAL VALIDATION

The model–rater agreement was calculated by using AUROC
and AUPRC. On the external dataset, we found an average
AUROC of 0.85 and an average AUPRC of 0.61. On the
internal dataset, we found an average AUROC of 0.91 and
an average AUPRC of 0.74. Our model maintained high pre-
dictive performance, despite shifts in class distribution and
annotator population. A large shift in class distribution
existed between the two datasets, with the other class
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Figure 5. Results of the User Study.
Average error matrix across all users without artificial intelligence (AI; Panel A). Average error matrix across all users with AI (Panel B).
Electroencephalography pattern classification performance of the users with and without AI. All users performed significantly better
(P<0.05) while provided with AI assistance (Panel C). GPD denotes generalized periodic discharge; GRDA, generalized rhythmic delta
activity; LPD, lateralized periodic discharge; and LRDA, lateralized rhythmic delta activity.
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comprising 60% of the external dataset but only 22% of the
internal dataset. A shift in the population of annotators
existed between the internal and external datasets, with 10
annotators for the external dataset and 124 for the internal
dataset. Further details are provided in the Supplementary
Appendix.

MODEL INTERPRETABILITY PERFORMANCE

A key part of our explanation is to provide prototypical
EEG samples that are comparable with the sample being
analyzed. The interpretable model judges two samples’
similarity from their distance in the latent space based on
key features (Fig. 1A). Because the explanation depends
on the meaningful placement of samples in the latent
space, we expect the feature extractor to place samples
with high resemblance close together. In an ideally struc-
tured latent space, we would have neighborhoods of con-
sistent samples. In particular, they would share the same
class label and other medically relevant characteristics.

To evaluate the explanatory power of the learned prototypes
and the meaningfulness of the latent space, we designed
two metrics to measure neighborhood consistency. In Figure
4B, for each sample in the test set, we calculated the frac-
tion of the 10 nearest test set neighbors where the class with
the most votes was the same as for the sample (by maxi-
mum). In Figure 4C, we considered the neighborhood anal-
yses by vote such that for each sample, we calculated the
mean cross-entropy of the vote distribution of the sample
with the vote distribution of each of the 10 nearest neigh-
bors (Fig. 4C). Here, we considered cross-entropy as a dis-
crete distribution across classes and checked whether the
cross-entropy of the test point matched the distribution of
classes from the nearest neighbors. The interpretable model
performed significantly better than the black-box model
across all metrics and classes (with P<0.05 for each compar-
ison). Qualitative assessments of the neighborhoods are pro-
vided in the Supplementary Appendix (Section G).

MAPPING THE IIIC

Our model provides evidence for the concept of a contin-
uum between ictal and interictal EEG patterns; a set of
well-separated classes would instead be represented by dis-
connected islands. This morphology is consistent across
models initiated with different random seeds. This perspec-
tive is supported by the correlation between our model’s
predictions and the labeling experts’ opinions. Our model
successfully identified samples that were categorized as
between classes, in which the class probabilities assigned by

the model closely matched the distribution of expert votes
(i.e., split across two or more classes). In Figure 1C, the col-
oring and distance between samples (points) were based on
the model class scores for each sample. This resulted in a
structure with outer points (arms) corresponding to single
classes and revealed dense, thread-like paths mapping a
gradual change between IIIC classes.

We further sampled along paths between each pair of IIIC
patterns and produced videos demonstrating the smooth
continuum from one pattern to the other. Videos are pro-
vided at https://warpwire.duke.edu/w/8zoHAA/.

Discussion
In this study, we developed the first inherently interpret-
able deep-learning model to classify IIIC activity. A user
study with first-of-its-kind AI assistance using case-based
explanations was included. We showed that when users
are provided with interpretable AI assistance, their accu-
racy in predicting IIIC EEG patterns significantly improves,
demonstrating the efficacy of this system for human–AI
collaboration. We also showed that the model could gener-
alize to a dataset from another hospital. Compared with
the current state-of-the-art black-box models for this task,
the interpretable model achieved better neighborhood anal-
ysis scores, indicating that it learned purer neighborhoods in
the latent space; that is, the geometry of our latent space,
which groups samples from the same class, forms neighbor-
hoods without many samples from outside the class. This
method is useful for providing related EEG samples as part
of its explanations. Our work thus yields advances in terms
of the model’s predictive performance and interpretability.

Machine learning, and specifically deep learning, has been
used for EEG classification tasks, including seizure detection,
with satisfactory predictive performance. Previous studies
have produced fully automated black-box models14,32,33 and
black-box models with post hoc explanations21-25 to address
interpretability challenges. However, at best, post hoc
methods only approximate model reasoning, and differ-
ent methods will generate conflicting explanations. In
many cases, it is guaranteed that the explanation will not
match true reasoning. In contrast, our explanation fol-
lows the exact path within the model as the prediction
generation, thus offering perfect explanation faithfulness.

Our interpretable model goes beyond the automated
detection in black-box models, providing clinicians with
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the means to validate diagnoses. The explanations pro-
duced by our model include a graphical representation of
the sample’s relative position to all learned prototypical
samples along the underlying IIIC, visual comparisons
with relevant samples, and an easy-to-understand scoring
system based on the learned similarity to the prototypical
samples. These explanation components help users gauge
the appropriate level of trust for a specific prediction based
on the model’s explicit reasoning.

Our model is not only novel in its applications to neurol-
ogy, but it also provides substantial improvements to the
existing interpretable prototype-based neural network lit-
erature. Although interpretable deep-learning models are
available for medical applications, most are limited to the
computer vision domain. Barnett et al.34 provide an inher-
ently interpretable system for a breast mass classification
task, but it is limited to computer vision applications using
prototypes that represent one part of an image. In past
work on leveraging prototypes to provide explanations for
model predictions,35-37 each prototype was limited to rep-
resent a single class; that setting is insufficient for map-
ping IIIC EEG signals because some present defining
features of two classes.

Before our study, seizure and seizure-like patterns were
treated as isolated classes; however, in reality, they form a
continuous space as proposed in the IIIC hypothesis. Our
introduction of dual-class prototypes enables our model to
place prototypes between two classes in the latent space,
providing insights into EEG patterns in transitional states.
In addition, the inherent interpretability of our model
would facilitate adoption of this deep-learning model in
real-world practice as it provides humans with adequate
visibility into the model’s reasoning process to reduce
potential misdiagnoses.

The ProtoPMed-EEG model’s expert-level predictive per-
formance and its interpretable nature make it a promising
candidate for application in clinical ICU settings. The
enhancements showcased by participants in the user
study, in which a purpose-built GUI incorporates the mod-
el’s explanations, highlight the model’s potential to miti-
gate human subjectivity and enhance user classification
accuracy, particularly for challenging IIIC EEG patterns.
Specifically, this technology can be used to enhance a neu-
rologist’s consultation, to act as a neurologist consultation
when a neurologist is not available, or to help determine
whether consultation with a neurologist is needed for a
patient. Particularly for hard-to-diagnose seizure-like EEG

patterns, the explanations given by the model can provide
relevant examples for a neurologist during the diagnostic
step. In scenarios in which a neurologist is not readily avail-
able (e.g., settings that lack 24/7 neurologist coverage), the
system can serve as an interim consultant; nonspecialist
clinicians (e.g., ICU nurses, ICU residents, non-neurology
ICU physicians) could compare the EEG readings at hand
with expert-annotated prototypes provided by the model
to reach an informed decision. Such a system could also
assist ICU non-neurologists in triaging which episodes
need further consultation with a neurologist. In addition,
with little to no modifications, this system presents a
low-cost and interactive training tool for physicians and
clinical practitioners for IIIC EEG pattern recognition
and classification.

Our TEEGLLTEEG approach of allowing the best-matching
prototype to be in-between classes (dual-class prototype)
can inform disease phenotyping for neurologic conditions.
This information is valuable because the potential for harm
to the brain depends not only on the class of IIIC activity
but also on additional characteristics such as the frequency
of discharges (e.g., LPDs at 2Hz are worse than LPDs at
1Hz). Also, LPD patterns at lower frequencies typically
match single-class prototypes, whereas LPDs that match
dual-class seizure–LPD prototypes tend to be LPDs at higher
frequencies or to have other features that make them more
like seizures. Matching to dual-class prototypes as opposed
to simply declaring the class label provides an opportunity
for clinicians to take account of these additional features.
This feature-level interpretability, in turn, may inform clini-
cal decision-making by allowing treating clinicians to better
match treatment intensity and risk to the potential for harm
posed by a given IIIC pattern: for example, to select oral or
nonanesthetic antiseizure medications for less harmful IIIC
patterns while reserving more aggressive intravenous anes-
thetic drips for more harmful IIIC patterns.

There are limitations to the current study. First, we used
the majority vote of the 124 raters as ground truth. Even
though the rater population was large, it is still possible
that a different group of raters might yield different
ground truth labels. Second, the interpretability is limited
to the final steps of the model, and thus a clinician must
still infer how the relevant qualities (i.e., peak-to-peak dis-
tance, amplitude, burst suppression ratio) are weighed in
the model’s assessment of similarity. In cases in which
this not clear, qualitative neighborhood analyses are avail-
able for examination. Future work could account for known
qualities of interest explicitly. Despite this limitation, the
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interpretability provided by this model greatly surpasses
that of the state of the art for this task.

Conclusions
We developed an interpretable deep-learning algorithm
that accurately classifies six clinically relevant EEG pat-
terns and offers faithful explanations for its classifications
by leveraging prototype learning. We show that users have
superior classification performance when provided with
this AI assistance. The comprehensive explanations and
the GUI enable follow-up user studies of clinical applica-
tions, including diagnostic assistance and education.
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