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Background:  Mirai, a state-of-the-art deep learning—based algorithm for predicting short-term breast cancer risk, outperforms standard
clinical risk models. However, Mirai is a black box, risking overreliance on the algorithm and incorrect diagnoses.

Purpose:  To identify whether bilateral dissimilarity underpins Mirai’s reasoning process; create a simplified, intelligible model,
AsymMirai, using bilateral dissimilarity; and determine if AsymMirai may approximate Mirai’s performance in 1-5-year breast cancer

risk prediction.

Materials and Methods: ~ This retrospective study involved mammograms obtained from patients in the EMory BrEast imaging Dataset,
known as EMBED, from January 2013 to December 2020. To approximate 1—5-year breast cancer risk predictions from Mirai,
another deep learning—based model, AsymMirai, was built with an interpretable module: local bilateral dissimilarity (localized
differences between left and right breast tissue). Pearson correlation coefficients were computed between the risk scores of Mirai and

those of AsymMirai. Subgroup analysis was performed in patients for whom AsymMirai’s year-over-year reasoning was consistent.
AsymMirai and Mirai risk scores were compared using the area under the receiver operating characteristic curve (AUC), and 95% Cls

were calculated using the DeLong method.

Results:  Screening mammograms (7 = 210067) from 81824 patients (mean age, 59.4 years + 11.4 [SD]) were included in the study.
Deep learning—extracted bilateral dissimilarity produced similar risk scores to those of Mirai (1-year risk prediction, = 0.6832; 4-5-
year prediction, 7= 0.6988) and achieved similar performance as Mirai. For AsymMirai, the 1-year breast cancer risk AUC was 0.79
(95% CI: 0.73, 0.85) (Mirai, 0.84; 95% CI: 0.79, 0.89; P = .002), and the 5-year risk AUC was 0.66 (95% CI: 0.63, 0.69) (Mirai,
0.71; 95% CI: 0.68, 0.74; P < .001). In a subgroup of 183 patients for whom AsymMirai repeatedly highlighted the same tissue over
time, AsymMirai achieved a 3-year AUC of 0.92 (95% CI: 0.86, 0.97).

Conclusion: Localized bilateral dissimilarity, an imaging marker for breast cancer risk, approximated the predictive power of Mirai and

was a key to Mirai’s reasoning.

© RSNA, 2024
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Interpretabiiity is essential for the ethical applica-
tion of artificial intelligence (Al) to radiology (1), a
requirement likely to be enshrined via regulation in
the United States (2) and Europe (3). This conflicts
with the design of many top-performing radiology Al
algorithms, which are black boxes to developers and
radiologists alike. This can cause an overreliance on
algorithms (4) and incorrect diagnoses (5). Clinical
risk prediction models for breast cancer do not con-
sider mammography image data (6-8), despite recent
Al studies reporting significantly improved perfor-
mance when mammography data are used (9). Bet-
ter risk prediction is an active research goal because
it is instrumental for the development of personalized
screening strategies aimed at simultancously reducing
the financial and psychologic burdens of screening

mammography and justifying the use of targeted ad-
vanced imaging (10-12).

The case of recent interest is Mirai, a deep learn-
ing neural network trained on screening mammograms
from 56786 patients to predict short-term (up to 5
years) breast cancer risk (13). Mirai results were ex-
ternally validated on data from seven hospitals across
three continents (14). The robust performance sug-
gests that Mirai has captured critical information that
may complement existing clinical risk models. How-
ever, Mirai’s predictions are difficult to interpret be-
cause Mirai consists of a convolutional neural network
(CNN) and a transformer (15), two distinct, complex
architectures. Post hoc explanations of neural networks
such as GradCAM and GradCAM++ are not reliable
(16-18), and because of the unique architecture of
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Abbreviations

Al = artificial intelligence, AUC = area under the ROC curve, CNN =
convolutional neural network, EMBED = EMory BrEast imaging

Dataset, ROC = receiver operating characteristic

Summary

Using bilateral dissimilarity as a mammography marker of near-term
breast cancer risk, AsyrnMirai, a simpliﬁed deep learning bilateral
dissimilarity—based model, performed similarly to the state-of-the-art
black box model, Mirai, for 1-5-year breast cancer risk prediction.

Key Points

B In a retrospective study of 210 067 screening mammograms
(81824 patients), bilateral dissimilarity as measured with
AsymMirai, a simplified alternative to Mirai, performed similarly

to Mirai (1-year risk, 7= 0.6832; 2-year risk, » = 0.6988).

m For predicting cancer, AsymMirai achieved areas under the receiver
operating characteristic curve (AUCs) of 0.79, 0.69, 0.68, 0.67,
and 0.66 for 1-5-year horizons.

® In a patient subgroup in which AsymMirai repeatedly highlighted

the same tissue over time; its 3-year AUC was 0.92.

Mirai, those methods are not appiicabie. As a result, to our
knowledge, no explanation of Mirai’s reasoning process has
been provided prior to this work.

Prior work (19,20) has shown that explicit bilateral rea-
soning can support Al breast imaging models. To evaluate
bilateral dissimilarity (differences between corresponding
left- and right-laterality views from a patient’s mammo-
grams), we propose AsymMirai. AsymMirai is a simplified
alternative to Mirai that computes risk by using only local-
ized bilateral dissimilarities. Thus, the aim of our study was
to (a) identify whether bilateral dissimilarity as a mammog-
raphy marker underpins the deep learning model Mirai’s
reasoning process for high—quaiity predictions; (b) use bilat-
eral dissimilarity as an imaging marker to create a simplified
model, AsymMirai, with an intelligible reasoning process;
and (¢) evaluate both models to determine if AsymMirai
may approximate performance of Mirai in 1-5-year breast
cancer risk prediction.

Materials and Methods

Study Design
This retrospective study was compliant with the Health
Insurance Portability and Accountability Act and was ap-
proved by the institutional review board. The requirement
for informed consent was waived by the institutional review
board. Mirai was initially applied to public data sets contain-
ing unilateral images. Since Mirai required bilateral views,
all unilateral views were mirrored, resulting in uniformly
low-risk predictions. All images in the bilateral examina-
tions were then mirrored, and it was confirmed that Mirai
consistently predicted low risk for mirrored examinations,
even those with actionable lesions (Appendix S1). This dem-
onstrated that Mirai relies on bilateral dissimilarities.

Using this insight, a neural architecture was developed

around bilateral dissimilarity. This study used the EMory

BrEast imaging Dataset (EMBED) (21), a retrospective data
set containing full-field screening and diagnostic mammo-
grams from 116890 patients obtained from January 2013 to
December 2020 by using Hologic (92%), General Electric
(6%), and Fujifilm (2%) machines. EMBED contains self-
reported race descriptors for the entire cohort and cohorts for
training (70 136 patients), validation (23382 patients), and
testing (23333 patients). The patient cohort in this study is
the same as that in the study by Jeong et al (21), which in-
troduced this public data set. EMBED was chosen because
it was included in a 2022 external validation of Mirai (14).
We excluded examinations with data abnormalities, examina-
tions without two-dimensional images, examinations with-
out all four screening views, and diagnostic examinations
from our study (Fig 1). The code is available at hrzps://github.
com/jdonnelly36/AsymMirailreleases/tag/radiology-1.0.

Model Architecture

Mirai and AsymMirai both accept as inputs the four stan-
dard screening mammography views—Ileft and right me-
diolateral oblique and left and right craniocaudal—passing
them through identical ResNet-18 CNN backbones, ex-
tracting features for each view. Mirai passes these extracted
features to a transformer, which predicts clinical risk fac-
tors and n-year breast cancer risk. In contrast, AsymMirai
simply computes a localized bilateral dissimilarity between
the left and right breast at multiple locations using these
features for each view. The maximum dissimilarity across
locations—called the prediction window—produces one
dissimiiarity score for each view; the scores are averaged to
produce one bilateral dissimilarity score. By excluding Mi-
rai’s transformer, AsymMirai maintains spatial correspon-
dence between the extracted features and the input images.
AsymMirai omits nonimaging features, which did not ben-
efit Mirai (13). AsymMirai’s architecture allows its outputs
to be directly overlayed on the mammogram, highlighting
dissimilarities. Figure 2 summarizes the model architecture.

AsymM irai is described in detail in Appendix S2.

Model Evaluation: Predictive Power
AsymMirai was evaluated on two fronts. In addition to
the mirroring analysis in Appendix S1, the Pearson cor-
relation between the predictions by AsymMirai and Mirai
was computed. Second, AsymMirai was evaluated by us-
ing dissimilarity to predict risk, enabling comparison with
Mirai using Mirai’s metrics. How well these scores predict
breast cancer was assessed by plotting the 1-5-year risk
receiver operating characteristic (ROC) curves and deter-
mining the corresponding area under ROC (AUC) (13).
A screening examination was included in the #-year ROC
calculation if (#) an n-year positive examination had posi-
tive pathologic findings within 7 years or (4) an n-year nega-
tive examination had a negative screening follow-up at least
n years later.

AsymMirai issues one prediction per examination, while
Mirai issues five predictions, one for each year into the fu-
ture (Appendix S3 explains this difference). The same score
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was used when evaluating the n-year risk
for AsymMirai, while the distinct 7-year Patients (N=23,382; 76,373 exams)
risk prediction from Mirai was used. Both 2013 - 2020
models were also assessed on subgroups by [
age and race to determine whether either e
model was biased along these features. Exclude exams containing data entry errors
Model Evaluation: Applications of I 42 patients
Bilateral Dissimilarity ! 1,344 exams
The outputs of AsymMirai were visualized Exclude exams for which only non-2D imaging modalities
by overlaying a heat map of AsymMirai’s (e.g., tomosynthesis) are available
computed bilateral dissimilarity scores ~ I 88 patients
and highlighting the prediction window - I 2,271 exams
with a red box. Unlike P ost hoc S,ahen_cy Exclude exams without all four standard views
maps, these overlays faithfully visualize
AsymMirai’s computed bilateral dissimi- 0 5,710 patients
larity. Using these overlays, two post hoc I 28,175 exams
analyses of AsymMirai’s reasoning were . .

formed. Exclude diagnostic exams
per

First, these visualizations were used as 0 1,228 patients
diagnostic criteria to identify confounders. [ 2,595 exams
Figure 3 presents examples. For these illus- ) Validation Set:
trations, prediction outputs were binned as Patients 16,314
low (risk score, <0.25), moderate (risk score, Exams 41,988
0.25-0.50), or high (risk score, >0.50) risk. [ i ]
Second, using 10001 patients (26930 ex- 1-year Valid: 2-year Valid: 3-year Valid:
aminations) with multiple screenings, pa-  |Patients 16,314| | | Patients 10,523 | | [Patients 8,408
tients’ dissimilarity distributions over time Exams 41,988| | |Exams 28,895 || |Exams 21,274
were analyzed, quantifying whether the *voor Vaid o voor Vahd

. . o 1Q: a 1a:

same tissuc produced the maximum asym- Pationts 6807 |Patients 5,419
metry across examinations. AsymMirai’s Exams 15414| |Exams 10,598
predictions were analyzed as a function of
“location consistency,” the Change in predic- Figure 1: Exclusion flowchart for the validation cohort. The EMory BrEast imaging Dataset (EMBED)

tion window location between current and
previous examinations (Fig 4; formal defini-
tion in Appendix S4). A similar analysis was
performed for Mirai, using the change in

Mirai’s risk scores (Appendix S5).

validation split included 23 382 patients and 76 373 examinations from 2013 to 2020. Examinations with
data abnormalities (42 patients, 1344 examinations), examinations without two-dimensional (2D) images
(88 patients, 2271 examinations), examinations without all four screening views (5810 patients, 28 175
examinations), and diagnostic examinations {1228 patients, 2595 examinations) were excluded. The resul-
ing cohort included 16314 patients with 41988 examinations. The number of patients and examinations
with sufficient follow-up data to evaluate 1-year (16314 patients, 41988 examinations), 2-year (10523

patients, 28895 examinations), 3-year (8408 patients, 21274 examinations), 4-year (6807 patients,

Statistical Analysis

The 95% ClIs and P values for the AUC
were calculated by using the Delong
method (22). P value < .05 was consid-
ered to indicate a significant difference, and all statistical
analyses were computed with SciPy (version 1.7.3, hrps://
scipy.orgl), ROC (version 0.1, hetps://github.com/alistairew;/
pyroc), and Python (version 3.7.3, hrtps://www.python.org/)
packages. Correlations greater than 0.7 are considered high,
as prescribed by Mukaka in 2012 (23). Statistical analysis
was performed by two authors (J.D. and L.M.). All data

available were used for each analysis.

Results
Patient Demographics

'This study considered EMBED, a retrospective breast imag-

ing data set containing images from 116 890 patients (mean

Radiology: Volume 310: Number 3—March 2024 = radiology.rsna.org

15414 examinations), and 5-year (5419 patients, 10 598 examinations) areas under the receiver operating
characteristic curve are at the bottom of the figure.

age, 58.5 years = 12.1 [SD]) obtained between 2013 and
2020. AsymMirai was trained on EMBED’s training co-
hort. Patients self-reported their race as African American,
American Indian or Alaskan Native, Asian, multiple, Native
Hawaiian or Pacific Islander, unknown, or White.

To evaluate performance on the same cohort as Mirai, re-
sults are reported on the EMBED validation cohort, which
was used in Mirai’s external validation; 2.9% (z = 679) of
patients in this cohort were diagnosed with breast cancer.
Appendix S6 reports AsymMirai’s performance on the EM-
BED test cohort. The validation cohort is included in the
publicly available EMBED Open Data data set (hreps://
github.com/Emory-HITI/EMBED_Open_Data). In the EM-

BED validation cohort, we excluded examinations with
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Figure 2: Architecture comparison of AsymMirai (leff) and Mirai (right). Both models feed the four screening views info the same convolutional neural network (CNN)

layers, but reasoning diverges thereafter. AsymMirai has fewer computational layers and instead calculates differences in the latent features, as shown by heat maps in the

craniocaudal (CC) asymmetry and mediolateral oblique (MLO) asymmetry steps. AsymMirai then finds the prediction window containing the highest differences for each

view, represented by red boxes in the Get Prediction Window sfep. The maximum feature differences within these windows are averaged fo create a risk score. The Mirai

architecture was described by Yala et al (13). AHL = additive hazard layer.

data abnormalities (42 patients and 1344 examinations),
examinations without two-dimensional images (88 patients
and 2271 examinations), examinations without all four
screening views (5810 patients and 28 175 examinations),
and diagnostic examinations (1228 patients and 2595 ex-
aminations) (Fig 1). Table 1 summarizes the distributions of
patient age and race.

Model Evaluation: Predictive Power

AsymMirai achieved an AUC of 0.79 (95% CI: 0.73, 0.85)
for 1-year risk prediction task (Mirai AUC: 0.84; 95% ClI:
0.79, 0.89; 16314 patients; = .002), an AUC of 0.68 (95%
CI: 0.65, 0.71) for 3-year risk prediction (Mirai AUC: 0.72;
95% CI: 0.69; 0.76; 8408 patients; P < .001), and an AUC
0f0.66 (95% CI: 0.63, 0.69) for 5-year risk prediction (Mirai
AUC: 0.71; 95% CI: 0.68, 0.74; 5419 patients; P < .001).
The difference between the AUCs for the two models was
at most 0.05 for all tasks, although the 95% Cls overlapped
in all the cases. Figure 5A and B shows the performance of
AsymMirai and Mirai on the EMBED validation set.

Note that Mirai’s inclusion criteria on EMBED admitted
diagnostic mammograms (14), which may bias a risk model
intended for screening. After excluding these data, Mirai’s
AUC for 5-year risk prediction on the screening-only im-
ages decreased by 0.05, from 0.76 to the 0.71 reported here

(Fig 5).

Figure 5C shows the correlation between the predictions of
the two models for 1-, 3-, and 5-year risk scores. The Pearson cor-
relation coefficients (r values) for the 7-year predictions between
AsymMirai and Mirai starting at 1 year were 0.6832, 0.7011,
0.7011, 0.6987, and 0.6987 (95% Cls are shown in Fig 5).

A subgroup performance analysis was performed, and
the results are reported in Table 2. There are two main re-
sults from this analysis. First, both AsymMirai and Mirai
demonstrated lower performance (3-year AUC: AsymMirai,
0.63; Mirai, 0.69) in the African American race subgroup
(n = 6812) than in the White race subgroup (7 = 6689; 3-year
AUC: AsymMirai, 0.73; Mirai, 0.77). Second, AsymMirai and
Mirai showed similar performance for risk prediction in the
younger than 50 years age group (7 = 9967; 3-year AUC: Asym-
Mirai, 0.69; Mirai, 0.71).

For completeness, AsymMirai was also evaluated on the
EMBED test set (cohorts 9 and 10; recall that the aforemen-
tioned results were based on the validation set). The performance
of AsymMirai on the EMBED test set was similar to that on the
validation set, and the 95% Cls overlapped with the validation
set results (Appendix S6). This test set was not used for the evalu-
ation of Mirai and thus was not the focus of this study.

Model Evaluation: Applications of Bilateral Dissimilarity
Examples of patients with moderate- to high-risk scores
from AsymMirai are shown in Figure 3, including patients

Radiology: Volume 310: Number 3—March 2024
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Figure 3: AsymMirai model outputs. Input images are full-field screening mammograms. The two bilateral screening images are overlayed within the heat map, and
the prediction window (red box) indicates the area with the highest dissimilarity. The heat map and prediction window are visualizations of AsymMirai’s model outputs, nof
post hoc saliency maps such as GradCAM. Analyzing these outputs provides a deeper understanding of the scores, in these cases distinguishing confounded reasoning
from nonconfounded reasoning for patients with macro asymmetries. (A=C) Images in patients who developed cancer within 1-5 years. (A) In a 49-year-old White
woman with unilateral breast augmentation who underwent annual screening, AsymMirai predicted high risk for developing cancer. Biopsy confirmed invasive ductal
carcinoma in the right breast 5 years later. The prediction window was not affected by the unilateral implant. (B) In a 43-year-old African American woman with initial
screening at 42 years old, AsymMirai predicted high risk of developing cancer. The prediction window corresponds to refroareolar asymmeiry. Biopsy performed 4
years later confirmed invasive ductal carcinoma in the right breast. Inframammary lymph nodes were correctly ignored. (€) In a 50-year-old African American woman
with regular screening and coarse heferogenous calcifications at the 12-o'clock position, AsymMirai predicted high risk for developing cancer. Biopsy confirmed bi-
lateral invasive ductal carcinoma 20 months later, with the cancer in the left breast occurring in the 12-0'clock position. (D=F) Images in patients who did not develop
cancer but had identifiably confounded risk predictions. (D) In a é0-year-old White woman with bilateral breast augmentation and regular screening mammograms,
AsymMirai predicted moderate risk for developing cancer, confounded by artificial asymmetry caused by the exclusion of the implant from the right craniocaudal view.
(E) In a 73-year-old White woman with regular screening mammograms and known dystrophic calcifications in the left breast, AsymMirai predicted high risk for devel-
oping cancer, confounded by poor positioning in the left mediolateral oblique view and possible distorfion in the right mediolateral oblique view. (F) In a 65-year-old
Alfrican American woman with bilateral benign microcalcifications, AsymMirai predicted moderate risk for developing cancer, confounded by the calcifications. Among
the patients with no cancer, Mirai correcily identified the patient in D as having a low risk for developing cancer (20th percentile risk) but also misclassified patients in E
and F (84th and 95th percentiles, respectively). These examples were chosen without knowledge of Mirai's risk scores. Unlike when reviewing the tissue in AsymMirai
prediction window, there is no way fo ex ante identify the cases where Mirai was confounded because it produces only a score. CC = craniocaudal, IDC = invasive
ductal carcinoma, MLO = mediolateral oblique.

with true-positive results who developed cancer within 5
years, as well as patients with false-positive results who did
not develop cancer within 1-5 years. In the examples, which
have macro asymmetries, false-positive results were caused
by confounding factors such as misalignment or implants.

AsymMirai demonstrated superior predictive power for
patients for whom the same tissue was highlighted over
multiple years (as measured by location consistency) (Fig
4). Location consistency is expressed as a shift relative to
the prediction window size. This is a strict criterion because
the prediction windows cover only — of cach view. For ex-
ample, a 40% prediction window location shift is 20 x 24
mm or less in window distance. This 40% threshold appears
to be operative for increasing predictive power (Fig 4).

Radiology: Volume 310: Number 3—March 2024 = radiology.rsna.org

There were 549 patients who underwent subsequent ex-
aminations with a window shift of 40% or less, covering
1154 examinations. Of these, 383 patients had sufficient
follow-up data (were n-year positive or z-year negative) for
calculating the 1-year AUC (0.92; 95% CI: 0.88, 0.97); 256
patients, for calculating the 2-year AUC (0.91; 95% Cl:
0.85, 0.96); 183 patients, for calculating the 3-year AUC
(0.92; 95% CI: 0.86, 0.97); 119 patients, for calculating the
4-year AUC (0.90; 95% CI: 0.82, 0.98); and 59 patients,
for calculating the 5-year AUC (0.88; 95% CI: 0.79, 0.98).
Sufficient follow-up for location consistency was measured
from the second screening examination. Figure 4 shows the
ROC curves for the 3-year AUC subgroup at different lo-
cation consistency thresholds (range, 30%-100%). Figure
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Figure 4: Prediction power of AsymMirai location consistency. (A) Full-field screening mammograms obtained af three time points in a White woman. AsymMirai predicted
moderate risk for developing cancer, with high location consistency across three screenings. The patient was diagnosed with ductal carcinoma in situ in 2020. The location con-
sistency is defined in Appendix S5. Consistency is expressed as the percentage of the window shift, with a shift of 100% representing no overlap from one year fo the next. The
red boxes are AsymMirai's predicfion windows for each examination. (B) Graph of AsymMirai 3-year risk area under the receiver operating characteristic (ROC) curve (AUC)
for patient subgroups with increasing location inconsistency. The x-axis is the number of patients included in the subgroup. Model performance is highest for patients with the high-
est location consisfency (left part of the p\ot), as measured by the shift from the preceding examination’s prechcﬂon window location. The shaded areas represent the 95% Cls at
each threshold. (€) Graph of AsymMirai 3-year risk AUC for patient subgroups with increasing location inconsistency. Same as in B, except for the x-axis, location consistency
is expressed as the window shift percentage. The dotted vertical line indicates a window shift of 50%. (D) AsymMirai ROC curves for selected location consistency thresholds as
measured by the shiff from the previous prediction window location. Model performance improved for patients with high location consistency between examinations, as indicated
by lower window shifts. The legend contains the number of patients with an examination safisfying each threshold followed by the number of patients with ot least one 3-year valid
examination from each subgroup. A 3-year valid examination can include either 3 years of negative screening follow-up or a cancer diagnosis within 3 years. CC = craniocaudal,

FPR = false-positive rate, MAX = maximum, MLO = mediclateral oblique, TPR = true-posifive rate.

S1 provides the same results for the 1-5-year AUCs, which
show that (z) an approximately 40% shift threshold is oper-
ative for this location consistency metric to yield strong pre-
dictions (AUC > 0.88 across risk terms) and (4) improved
performance persists on all five risk horizons.

For the subgroup of 59 patients with 40% or lower loca-
tion consistency and 5 years of follow-up from the second

examination, one classification threshold yielded 100%
sensitivity (five of five examinations) and negative predic-
tive value (45 of 45 examinations) with a specificity of 76%
(45 of 59 examinations). This is because only five patients
(0.9%) in this group developed cancer, whereas 2.6% of
those in the entire EMBED developed cancer. Of those five

patients, four had prediction windows on or adjacent to the

radiology.rsna.org = Radiology: Volume 310: Number 3—March 2024



Table 1: Descriptive Statistics of Patients Included in the Validation Data Set

Patient Group

All Patients

Patients in Validation Data Set

No. of patients
No. of examinations
Age at examination (y)*
Age group (y)"

<40

40-49

50-59

60-69

70-79

>80

Unknown
Race

African American

81824 [116890] (1301)
210067 [383379]
59.5 +11.4 [58.9 + 11.9]

2352 [11478] (18)
48027 [89667] (208)
59329 [104405] (372)
58515 [101458] (475)
33140 [59359] (345)
8054 [15400] (55)
470 [1612] (0)

343069 [48452] (591)

16314 [23382] (236)
41988 [76373]
59.6 + 11.4 [58.9 + 12.0]

508 [2355] (4)

9459 [17 660] (65)
11732 [20710] (118)
11737 [20180] (142)
6844 [12135] (133)
1591[2992] (9)

117 [341] (0)

6812 [9653] (104)

Donnelly et al

dissimilarity, which is visually intuitive.
This score approximates that of Mirai (»
> 0.6832 for 1-5-year risk prediction),
with only a slight reduction in 1-5-year
risk prediction performance. The rela-
tive results are consistent across differ-
ent prediction horizons (approximately
0.05 decrease in area under the receiver
[AUC]
with overlapping 95% Cls for each of
the 1-5-year intervals), although the va-
lidity of the 1-year risk prediction AUC
(inherited from Mirai) is debatable given
that the cancer may already exist and nei-

operating characteristic curve

ther Mirai nor AsymMirai is intended for
diagnosis.

American Indian
or Alaskan Native
Asian

Native Hawaiian

195 [310] (2) 41 [67] (0)
5279 [7615] (45)
736 [1138] (10)

or Pacific Islander

1060 [1566] (7)
150 [218] (2)

Multiple 310 [516] (2) 68 [103] (1)
White 33352 [45328] (626) 6689 [9089] (119)
Unknown 7583 [13531] (24) 1494 [2686] (3)

We demonstrated two possible uses of
localized bilateral dissimilarity not avail-
able to black box models. We identified
confounded model predictions from er-
roneously placed prediction windows. We
further showed that, when the prediction
window was in the same location over

included if they had at least one valid examination.

Note.—The full and validation patient data sets were constructed from the EMory
BrEast imaging Dataset (EMBED). The validation data set was the EMBED validation
set, which was used for Mirai external validation. Except where indicated, the number
of patients satisfying the selection criteria described in Figure 1 in cach subgroup is
reported, with the number of patients prior to exclusion criteria in brackets and the
number of patients who eventually developed cancer in parentheses. Age and race data
were collected from the electronic health records used to construct EMBED.

* Data are means = SDs. Data in brackets are for patients before exclusion.

 Data are numbers of examinations for which the patient was within the given
subgroup. One patient may appear in multiple age groups over time. Patients were

multiple years, AsymMirai exhibited su-
perior predictive power. We originally ex-
pected that this would be the case because
AsymMirai would find abnormalities in
the tissue before the development of the
actual lesion. While this does occur, most
patients with location consistency of 40%
or less showed little change from prior
examinations and thus corresponded to
a very low-risk group; they had a cancer

rate of only 0.9%, compared with the

area where biopsy-confirmed cancer would later be identi-
fied in the examinations preceding diagnosis. The consistent
examinations for the remaining patient occurred 6 and 4
years before biopsy confirmed cancer.

There is no way to measure location consistency for Mi-
rai since its reasoning process is opaque. In lieu of a rea-
soning consistency metric, consistency in Mirai’s final risk
predictions for identifying useful subgroups was evaluated,
but that analysis failed to reliably enhance the confidence in
its risk scores (Appendix S5).

Discussion

Although artificial intelligence algorithms, particularly Mi-
rai, show promise in near-term breast cancer risk prediction,
most methods are black boxes. We reduced the opacity of
this black box by introducing AsymMirai. We determined
a key factor on which Mirai depends—bilateral dissimilar-
ity. Using the existing Mirai front-end convolutional neural
network for feature extraction, our approach calculates dif-
ferences in the latent space, providing the location of the
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2.6% rate for the overall EMBED.

Our study focused on breast cancer
risk prediction based on bilateral dissimi-
larity, which is related but not equivalent to the concept of
breast asymmetry used in the Breast Imaging Reporting and
Data System, or BI-RADS. Conventional studies in image-
based risk prediction relied on a handcrafted approach that
used unilateral or bilateral computer vision features to train
machine learning models such as a support vector machine
(24), a method successfully deployed with bilateral dissimi-
larity features in 2013 (25). In contrast, AsymMirai uses the
CNN front end of Mirai, which leverages the learned latent
features of that powerful model.

External validation of Mirai on 62 185 patients at seven
sites, including the EMBED, was completed in 2022 and
found that Mirai generalized well (14). However, Mirai’s
reported EMBED external validation did not exclude diag-
nostic mammograms (14). This led to a small difference be-
tween our results for Mirai and those from the study by Yala
et al (14). A recent study used a large, enriched screening
cohort to evaluate several Al risk prediction models (9). The
performance of Mirai was lower on the private data set used

in that study (AUC range, 0.67-0.69) than on EMBED
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Figure 5: Comparison of the performance of Mirai and AsymMirai on EMory BrEast imaging Dataset (EMBED) validation screening mammograms. (A) AsymMirai 1-5-

year breast cancer risk predicfion receiver operating characteristic (ROC| curves and area under the curve (AUC) values, with 95% Cls in parentheses. (B) Mirai 1-5-year
breast cancer risk prediction ROC curves and AUC values, with 95% Cls in parentheses. The AUC Cls for AsymMirai and Mirai overlap for each year. (€) Density plots show
prediction correlation for AsymMirai and Mirai with 1-, 3-, and 5-year risk. The Pearson correlation coefficients were 0.6832 (95% ClI: 0.6780, 0.6882), 0.7011 (95% Cl:
0.6962,0.7059), and 0.6987 (95% Cl: 0.6938, 0.7036) for 1-, 3-, and 5-yearrisk, respectively. The 2- and 4-year risks are omitted because the predicfions are the same

as those for the 3- and 5-year risks, respeclive\y.

(AUC range, 0.71-0.84), although Mirai maintained state-
of-the-art performance.

In addition to the limitations inherent to any retrospec-
tive study, our study had four important limitations. First,
despite the importance of bilateral dissimilarity, Mirai does
not exclusively reason using this feature. Mirai’s transformer
is capable of arbitrary function approximation. When model
predictions differ, we cannot explain Mirai’s decision, ex-
cept that these are the cases in which AsymMirai’s localized
bilateral dissimilarity is not the entire explanation. Figure 3
provides illustrative, confounded cases. Second, AsymMirai
does not perform equally well across race subgroups. This
limitation is inherited from Mirai because of the reuse of
Mirai’s backbone, which was trained on a data set for which
only 3.75% of the data were from African American patients
(n = 1204), while 42.0% of the data within EMBED were
from African American patients (2 = 34 369). This could be

improved by retraining Mirai and/or AsymMirai on a more

diverse data set. Third, our study did not consider observed
examples of confounding errors caused by major misalign-
ment, such as from poor patient positioning. While further
study of this marker will require registration, no registration
was performed during preprocessing for Mirai, and doing
so in our study would have confounded the comparison.
AsymMirai’s interpretable results clarified the importance of
alignment as a confounder. Finally, when analyzing location
consistency, patients needed two consecutive examinations
followed by 7 years of follow-up, which reduced the size of
our patient sets with known outcomes. For instance, only
10.7% of patients with a 40% or lower window shift had 5
years of subsequent follow-up. Future work could address
this issue while also evaluating the generalizability of Asym-
Mirai by using other institutional data sets.

In conclusion, localized bilateral dissimilarity, an imag-
ing marker for breast cancer risk, approximated the pre-
dictive power of Mirai and was a key to Mirai’s reasoning.

radiology.rsna.org = Radiology: Volume 310: Number 3—March 2024



Donnelly et al

Table 2: AsymMirai and Mirai Subgroup Performance Analysis

Parameter and Model

1-year AUC

2-year AUC

3-year AUC

4-year AUC

S-year AUC

All patients, AM
All patients, Mirai

P value*

Age at examination (y)

0.79 (0.73, 0.85)
0.84 (0.79, 0.89)
.002

0.69 (0.65, 0.73)
0.74 (0.70, 0.78)
<.001

<50 AM 0.81 (0.68, 0.94) 0.68 (0.57, 0.79)

< 50 Mirai 0.85(0.73, 0.96) 0.73 (0.63, 0.83)
P value* .16 .10

50-70 AM 0.76 (0.67, 0.84) 0.68 (0.63, 0.74)

50-70 Mirai 0.84 (0.76, 0.91) 0.75 (0.70, 0.80)
Pvalue* .002 <.001

> 70 AM 0.83 (0.77,0.90)  0.66 (0.59, 0.73)

> 70 Mirai 0.83 (0.75, 0.92) 0.68 (0.60, 0.75)
Pvalue* 95 43

Race
African American, AM  0.73 (0.64, 0.83) 0.64 (0.58, 0.70)

African American, Mirai

0.82 (0.74, 0.89)

0.70 (0.64, 0.76)

P value* <.001 .004
White, AM 0.84 (0.77,0.92) 0.73 (0.68, 0.78)
White, Mirai 0.89 (0.83, 0.95) 0.78 (0.73, 0.83)
Pvalue* .07 .004
Orther, AM 0.75(0.48,1.02)  0.64 (0.46, 0.82)

Other, Mirai

0.60 (0.22, 0.97)

0.64 (0.44, 0.83)

0.68 (0.65, 0.71)
0.72 (0.69, 0.76)
<001

0.69 (0.60, 0.78)
0.71 (0.61, 0.80)
67

0.67 (0.62, 0.71)
0.73 (0.69, 0.77)
<.001

0.64 (0.59, 0.70)
0.67 (0.62, 0.73)
11

0.63 (0.58, 0.68)
0.69 (0.64, 0.74)
.007

0.73 (0.69, 0.77)
0.77 (0.73, 0.81)
.007

0.59 (0.45, 0.73)
0.60 (0.45, 0.76)

0.67 (0.64, 0.70)
0.72 (0.69, 0.75)
<001

0.67 (0.59, 0.76)
0.68 (0.59, 0.77)
88

0.66 (0.62, 0.70)
0.73 (0.69, 0.76)
<001

0.61 (0.56, 0.66)
0.67 (0.62, 0.72)
.002

0.63 (0.58, 0.67)
0.69 (0.64, 0.73)
<001

0.71 (0.68, 0.75)
0.76 (0.72, 0.80)
<001

0.59 (0.45, 0.73)
0.61 (0.46, 0.76)

0.66 (0.63, 0.69)
0.71 (0.68, 0.74)
<.001

0.65 (0.58, 0.73)
0.66 (0.58, 0.73)
96

0.65 (0.61, 0.69)
0.72 (0.68, 0.75)
<.001

0.62 (0.57, 0.66)
0.67 (0.62, 0.72)
.002

0.61 (0.57, 0.66)
0.68 (0.64, 0.72)
.002

0.70 (0.67, 0.74)
0.74 (0.71, 0.78)
.002

0.57 (0.44, 0.70)
0.62 (0.49, 0.76)

P value* .09 .94

.79 .61 25

Hawaiian or Pacific Islander, or unknown.

* P values for each pairwise comparison.

Note.—Data in parentheses are 95% Cls. AM = AsymMirai, AUC = area under the receiver operating characteristic curve. AUCs were
calculated against the validation data set. Subgroups were chosen to match Mirai’s reported subgroup performance in Yala et al (14). Age
and race data were collected from the electronic health records used to construct the EMory BrEast imaging Dataset (EMBED). The
“other” subgroup of “race” included 2763 patients who had a reported race of American Indian or Alaskan Native, Asian, multiple, Native

AsymMirai, a simplified deep learning bilateral dissimilar-
ity-based model, performed similarly to the state-of-the-
art black box model, Mirai, for 1-5-year breast cancer risk
prediction. This observation agrees with the clinical impor-
tance of asymmetry and, as a result, highlights the poten-
tial of bilateral dissimilarity as a future imaging marker for
breast cancer risk.
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