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ABSTRACT
A critical feature in today’s quantum circuit is that they have per-
mutable two-qubit operators. The �exibility in ordering the per-
mutable two-qubit gates leads to more compiler optimization op-
portunities. However, it also imposes signi�cant challenges due to
the additional degree of freedom. Our Contributions are two-fold.
We �rst propose a general methodology that can �nd structured so-
lutions for scalable quantum hardware. It breaks down the complex
compilation problem into two sub-problems that can be solved at
small scale. Second, we show how such a structured method can be
adapted to practical cases that handle sparsity of the input problem
graphs and the noise variability in real hardware. Our evaluation
evaluates our method on IBM and Google architecture coupling
graphs for up to 1,024 qubits and demonstrate better result in both
depth and gate count – by up to 72% reduction in depth, and 66%
reduction in gate count. Our real experiments on IBM Mumbai
show that we can �nd better expected minimal energy than the
state-of-the-art baseline.

CCS CONCEPTS
• Computer Systems Organization ! Quantum Computing.
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1 INTRODUCTION
Quantum computing is gaining traction due to signi�cant progress
made in quantum hardware. The coherence time of a qubit, ana-
logue to a qubit’s lifetime, has increased exponentially in the past
two decades [23], much like Moore’s law for classical computers.
Notably, IBM is projected to launch quantum computers with over
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4,000 qubits in the near future [7], for gate-based universal quan-
tum computing. The rapid advancement in quantum hardware has
made it possible for quantum computers to soon solve problems
that are currently beyond reach of the best classical computers.

Regular patterns start to emerge in large-scale quantum com-
puters. In the past, the industry has explored various small-scale
architectures with di�erent connectivity structures [12, 26]. During
this time, it was necessary to design compilers for arbitrary archi-
tectures. However, to build large scalable architectures, it needs
well-structured building blocks. For instance, IBM has adopted the
heavy-hex [2] structure for its large-scale architecture, as shown in
Fig. 1 (b). Google adopted a rotated square lattice for its Sycamore ar-
chitecture, as shown in Fig. 1 (a). Either Google or IBM has chosen
their building blocks for speci�c reasons. Since IBM uses �xed-
frequency qubits and cross-resonance gates, it is necessary to have
heavy-hex architecture as its building block, in order to mitigate
crosstalk. Since Google uses tunable transmon qubits, the crosstalk
is less severe. Hence, it can create a square lattice, thereby facilitat-
ing the deployment of surface code QEC, one of the most powerful
QECs. But in either case, the scalable architecture chosen by the
hardware vendors start to show recurring patterns (building blocks).
Implications for Compiler Builders Previous compilation meth-
ods [18, 21, 25, 27–30, 35, 37] are designed for quantum architecture
with arbitrary connectivity. In this paper, we �nd that it is time to
exploit the regularity in quantum architecture. Through extensive
experimentation, we discover that leveraging the regularity can
signi�cantly improve circuit performance and �delity.

In particular, we focus on exploring the advantage of hardware
regularity in a speci�c class of applications – QAOA and 2-Local
Hamiltonian Simulation. This class of applications are unique in
that their main circuit consists of permutable two-qubit operators.

We focus on the QAOA and 2-Local Hamiltonian Simulation also
because they have broad applications. QAOA represents quantum
approximate optimization algorithms (QAOA) [9]. QAOA are used
to solve combinatorial optimization problems [8]. 2-local Hamilton-
ian simulations are useful for many physical systems [16] [10]. Both
QAOA and 2-local Hamiltonian simulation allow one to �exibly
permutate two-qubit operators in the circuit without changing the
execution result. An example is in Fig. 2, where permuting the gates
reduces the original logical circuit depth by 25%.
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The importance of the QAOA and 2-local Hamiltonian simula-
tion applications has led to the development of domain-speci�c
compilers [3, 4, 16, 19]. But none of the studies leverages the regu-
larity in the hardware. Tan et al. [30] provides a constrained SAT
solver and combine it with heuristics to optimize QAOA programs.
Alam et al. [3] use connectivity strength to improve compilation
e�ciency. The Paulihedral framework [19] includes new intermedi-
ate representation and optimizations for arbitrary Pauli-strings in
Hamiltonian simulation, where 2-local simulation is a special case.
2QAN [16] tackles the problem with a quadratic-time solver and
uses unitary unifying to reduce the �nal gate count.

(a) (b)

Figure 1: (a) Google Sycamore (b) IBM Heavy-hex

Our Main Contributions Our work is the �rst architecture-
regularity-aware design for compiling quantum circuits with per-
mutable 2-qubit operators. Our main contributions are two-fold:
(1) We use the depth-optimal solution derived from small-cases
to generalize solutions for large-cases; (2) We adapt the large-case
method for practical scenarios while considering realistic factors:
noise, sparsity, and circuit depth.

Insight 1: From Small Architectures to Large Architectures. Our
�rst main contribution is the idea of using a depth-optimal solver
to �nd solutions for small-scale architectures, and if the obtained
solution is generalizable, we generalize it to larger cases. In partic-
ular, we solve for the special case where all pairs of qubits need
to interact with each other, which is a challenging problem even
for small instances, as the SWAP insertion problem is NP-hard in
general [28, 30].

To overcome this challenge, we propose a divide-and-conquer
method to convert a quadratic problem to a near-linear problem.
Using this method, we successfully derived generalizable linear-
depth solutions for various architectures includingGoogle Sycamore,
2D grid, and hexagon.

Insight 2: Taking the Best of Both Worlds. After solving the spe-
cial all-to-all interaction case, it is necessary to handle practical
scenarios. The two-qubit gate interaction graph typically does not
form a clique. However, it is a subgraph of a clique. We can simply
adopt the compiled circuit for that of a clique interaction graph,
and skip the gates that are not in the practical circuit. This method
guarantees linear depth, since the clique-circuit has linear depth.
But it may lead to idle cycles and unnecessary SWAPs.

Our second main contribution is the idea of combining greedy
heuristics with the structured solution from the clique-circuit. It
does not rigidly follow the compilation pattern for the clique circuit.
Instead, it performs greedy SWAP insertion when necessary for the
sparse (sub-)problem.

But just using greedy heuristic method do not guarantee the
worst-case bound of linear depth. Ourmethod combines the bene�ts
of both in our compilation framework such that it always produces
a compiled circuit that is better or at least the same good as the
one that would otherwise be produced by following the patterns
in the clique-circuit. Hence, it guarantees linear depth and in the
meantime can reduce idle cycles.

Last but not least, we can take noise and qubit variability into
consideration in our heuristic framework, which is not possible in
the approach that rigidly sticks to the compiled clique circuit.

With all of this above, we are able to obtain much improved cir-
cuit duration and gate-count on large-scale circuits. We are also able
to demonstrate end-to-end application improvement for small-scale
circuits on real hardware. Our detailed contributions are summa-
rized as follows:

• Hardware regularity exploitation: We exploit the hard-
ware regularity for achieving the all-to-all interaction in
a multi-dimensional architectures. We show how to come
up with structured solutions for IBM Heavy-hex, Google
Sycamore, 2D grid, and an imaginary hexagon architecture.

• Worst case linear-depth bound: Since our all-to-all archi-
tecture solution has linear-depth bound and any circuit’s
2-qubit gate interaction graph is a subgraph of clique, we
ensure linear-depth bound for worst case scenario.

• A depth-optimal solver for small sized circuit: We �nd
the all-to-all solution using an A* admissible-cost function
developed in this paper. We open-source our solver here [1].

• Scalability: We build a compiler that takes advantage of
both the all-to-all structured solution and the greedy method.
Our compilation is scalable. We can compile circuits of 1,024
qubits. The compilation time almost scales linearly with the
number of qubits in quantum hardware.

• Extensive Evaluation: Overall, we did experiments with
QAOA circuits and 2-local Hamiltonian circuits. Compared
with three state-of-the-art baselines [3, 16, 19], our method
has up to 72% of depth reduction, 66% of CNOT gate count
reduction over baseline. For large circuits, our method per-
forms better in both gate count and depth, indicating better
overall �delity of the circuit.

• Real Machine Experiments: We further perform the ex-
periments on a real quantum architecture Mumbai for end-
to-end experiment results. Using our compiled circuit, we
obtain better expected minimal energy within the same num-
ber of rounds with the default classical optimizer COBYLA.

Section 2 is background. We describe how to go from small cases to
large cases in Section 3. In Section 4, we describe our depth-optimal
solver. We provide the full-�edged compiler design in Section 5 and
6, and experiment results in Section 7.

2 BACKGROUND
2.1 Input-dependent Circuit
Unlike other quantum applications, the structure of a QAOA or
2-Local Hamiltonian circuit is not known until an input prob-
lem graph is speci�ed. For instance, in a QAOA-Maxcut circuit,
a qubit corresponds to one vertex in the input problem graph. Each
CPHASE gate corresponds to an edge in the problem graph, as
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Figure 2: A �ve-qubit QAOA-maxcut circuit example: (a) the input problem graph where MAX-CUT is applied to. (b) and (c) are
two valid circuits corresponding to the input problem graph. Note that each edge in the problem graph correspond to a gate in
the logical circuit; Each node corresponds to a qubit; The gates can �exibly commute without a�ecting the circuit outcome
[3, 17]. (d) One CPHASE gate decomposition.
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Figure 3: An example of inserting swaps for the quantum
circuit. (a) Hardware coupling; (b) A circuit that does not need
any swap operation; (c) A circuit needs one swap insertion;
(d) SWAP and CNOT gates.

shown in Fig. 2, the edges in (a) correspond to the two-qubit gates
in (b) and (c).

The two-qubit operators commute in these two types of applica-
tions. For instance, in Fig. 2, both (b) and (c) are valid instances of the
QAOA circuit for the input problem graph in (a). Such �exibility can
be exploited to optimize compilation, for instance, reduce the gate
count and depth during the hardware mapping phase, described
below in Section 2.2.

2.2 Compilation objective
SWAP Insertion Near-term quantum computers have a native
gate set comprising single-qubit and two-qubit gates. A two-qubit
gate can only be performed between two connected hardware qubits.
The connectivity between qubits on a quantum chip is often limited.
To overcome this limitation, the locations of two logical qubits in
a two-qubit gate need to be remapped via SWAP gates until they
reside on two connected physical qubits. The SWAP gates move
logical qubits around to overcome the connectivity constraints.

Here is an example. Consider the hardware coupling graph
shown in Fig. 3 (a). To run the circuit in Fig. 3 (b), it does not
need any SWAP. But to run the circuit in Fig. 3 (c), a SWAP gate
must be inserted, because q0 and q2 are not physically connected.
Commutativity To minimize the number of swap insertions, we
can utilize the commutativity property in quantum computing.
Commutativity arises frequently in quantum applications. Commu-
tativity means that two quantum gates can be applied in any order
without a�ecting the �nal outcome of the circuit.

To better illustrate the advantage of commutativity, an example
is shown in Fig. 4. One valid circuit corresponding to the input
program graph is shown in Fig. 4 (b). This circuit requires eight

gates and seven layers to compile, as illustrated in Fig. 4 (c). How-
ever, permuting gates allows us to construct circuits in more ways
without a�ecting the �nal measurement results. This adds more
degree of freedom and makes it easier to �nd the best circuit with
the minimum number of swap insertions. Instead of the circuit
in Fig. 4 (b), we can construct another circuit in Fig. 4 (d), which
only requires six gates and �ve layers, as shown in Fig. 4 (e). In
summary, exploiting commutativity helps us �nd a compiled circuit
with fewer layers and gate counts, which can improve e�ciency
and reduce errors in quantum computing.

3 FROM SMALL CASES TO LARGE CASES
Our design for the depth-optimal solver in the small cases relies
on the following implications.

• IMPLICATION 1: Every QAOA program can be described
using a graph, where a vertex is a qubit, and an edge is a
gate, since all the 2-qubit gates are the same. Every n-vertex
graph is a subgraph of a n-clique. If we can solve a n-clique
QAOA circuit, we can solve any sub-circuit of the n-clique
circuit. Hence we focus on the clique graph as the special
case for which we solve for optimal solutions.

• IMPLICATION 2: In the literature of classical computing
literature, there exist well-structured solutions, when the in-
put to a problem is a clique graph, and when the underlying
architecture is regular. For instance, the famous permutation
network problem by Abraham Waksman [32]. The setting
of the permutation network problem is di�erent from that
of our problem. We aim to work on multi-dimensional ar-
chitectures, rather than linear architectures. Nevertheless,
such �ndings in classical computing literature, inspire us to
develop well-structured solutions for our QAOA mapping
problems de�ned in this paper.

• IMPLICATION 3: It is challenging to �nd optimal solutions
for a large-sized problem, for instance, a large clique on a
large regular architecture. But it is possible to �nd that for a
small-sized problem. If the solution for the small-sized prob-
lem is generalizable, we can generalize it for the large prob-
lems. This motivates our study for algorithmic engineering,
where we design optimal solver that can handle small cases
in special scenarios, and we generalize the well-structured
solutions, if any, to large cases.
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Figure 4: Di�erent circuits result in di�erent compilation results. (a) Hardware coupling; (b) One possible valid qaoa circuit; (c)
One possible compiled circuit of (b) with four SWAP gates; (d) Another valid circuit corresponding to the same circuit in (b); (e)
Depth-optimal compiled circuit of (d); (f) Control-Z gate abstracted.

With all of the implications above, we now de�ne our special prob-
lem of compiling clique-circuit.

D��������� 1. A clique-circuit and its compilation: A clique-
circuit is a circuit with exactly one 2-qubit between any two qubits.
Compiling a clique-circuit is the problem of moving qubits around in
the given architecture, such that each qubit is neighbor to every other
qubit at least once for completing a 2-qubit gate.

We next describe how to compile a clique-circuit on 2D grid
architecture and other architectures.

3.1 A Case Study – The 2D Grid Architecture
For an NxN grid, we do not have to solve directly for a small instance
of such an architecture, i.e., a 4x4 for NxN grid. Rather we take
a di�erent approach. It turns out we only need to solve the 1x4
grid and 2x4 problem in order to get the solution for 4x4, and then
generalize it to NxN.

First, we divide an NxN grid into multiple rows. We call each
row a unit. It can be seen that each unit is a line. Across the units
they are connected, as shown in Fig. 5.

We now claim that if the following two-sub problems can be
solved e�ciently, then the NxN grid problem can be solved ef-
�ciently. The two sub-problems are the following: (1) Solve the
all-to-all interaction for the line architecture, that is, for all the
nodes within a unit, and (2) Solve the bipartite all-to-all interaction
between 2 connected units, denoted as 2xUnit problem.

We reason about it as follows. If sub-problem (1) is solved, that
means we can move around nodes by SWAPs on a line such that
each node can be neighbor to every other node once. Then if we
treat each unit as if it is a “node", and the unit exchange (exchange
two nodes in the same column in the 2xUnit case) shown in Fig. 5
(b) as if it is a "SWAP", then we can move the units by exchanges
such that each unit is neighbor to every other node once. Once
two units are next to each other, it forms a 2xUnit architecture as
shown in Fig. 5 (b). Now since we have the second sub-problem
solution of bipartite all-to-all interaction between two units, this
solves the bipartite all-to-all between all units. Lastly, for all-to-all
interaction within each unit, we have the solution to the �rst sub-
problem, we can conclude that all-to-all interaction for all nodes in
the architecture is possible.

Now the problem of solving NxN all-to-all interaction through
SWAP has been reduced to the sub-problems of 2xN and 1xN. Us-
ing our depth-optimal solver (the implementation is described

(a) 2D grid

(b) 2xUnit representation 
and 2xUnit exchange

(c) Within 1xUnit  
(analogue to a line) 

Figure 5: 2D Grid Motivation 2D grid Breakdown. (a) a 4x5
grid; (b) 2xUnits representation; (c) 1xUnit representation.
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Figure 6: The solution for the 6-qubit line architecture.

in Section 4), we successfully found optimal solutions for these
sub-problems. We describe each solution below.

Our discovery for the 1xUnit case. We denote the nodes with
respect to the parity of its index, i.e., odd-index and even-index. We
discovered that if we repeat odd-even and then even-odd SWAP
pairs as shown in Fig. 6, we will be able to let all qubits be neighbor
to every other qubit once. The corresponding loop description is
shown in Fig. 7. After each SWAP layer, we let 2-qubit gates take
place immediately on the same pair of qubits that just perform
SWAP. After = � 2 (n is the number of qubits) rounds of SWAP
layers and n CPHASE gate layers in total, we can �nish all-to-all
interaction between all qubits. It is interesting to see that by adding
two additional SWAP layers, the qubit locations are as if reversed,
as shown in the dotted SWAPs in Fig. 6 (b).

We found such a pattern using the problem instance of 1x6
1xUnit case (raw data also in our GitHub link [1]).

Our discovery for the 2xUnit Case. For the 2xUnit bipartite all-
to-all interaction, the discovery is quite interesting. It shows the
pattern that, for two rows, if one row performs odd-even swaps
within itself, and the other row performs even-odd swaps within
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For cycle  = 0;  cycle += 4; cycle <= 2N-2: 
CPHASE( Qi, Qi+1 ); parallel for i = [0, N), step = 2 
SWAP( Qi, Qi+1 );     parallel for i = [1, N), step = 2 
CPHASE( Qi, Qi+1 ); parallel for i = [1, N), step = 2 
SWAP( Qi, Qi+1 );     parallel for i = [0, N), step = 2

Figure 7: Loop description for the linear pattern in Fig. 6. N
is the number of physical qubits in the line architecture.

itself, or vice versa. In total  = steps, we can let each node on
the top row be neighbor to each node in the bottom row once and
only once. Hence following each SWAP layer, we can immediately
perform a computation layer. An example is shown in Fig. 8, and
the corresponding loop is shown in Fig. 9. We found such solution
by running our depth-optimal solver on the 2x4 problem instance.

A loop description of the generalized solution the 2-unit solu-
tion is in Fig. 9. From the loop, it can be seen easily, this solution
guarantees linear depth.

A0 A1 A2

B0 B1 B2

A0A1 A2

B0 B1B2
(a) (b)

A0 A1 A2

B0 B1 B2

A0A1 A2

B0 B1B2

A0A1 A2

B0 B1B2
(c) (d) (e)

Figure 8: (a),(c), and (e) are three computation cycles. (b) and
(d) are two swap cycles

For cycle  = 0;  cycle += 2; cycle <= 2N-1: 
start = (cycle/2) % 2; 
CPHASE( Ai, Bi );   parallel for i = [0, N), step = 1 
SWAP( Ai, Ai+1 );     parallel for i = [start, N), step = 2 
SWAP( Bi, Bi+1 );     parallel for i = [1-start, N), step = 2 

Parallel

Figure 9: A loop description for bipartite all-to-all interac-
tions in Fig. 8 . N is the size of one unit. A & B represent two
adjacent units. The two parallel SWAP layers run concur-
rently too.

Note that our solution for 1xUnit happens to be the same as
the one that is manually found in the physics literature [13, 22].
Our solution for 2xUnit happens to be the same as that found by
an arXiv paper in 2022 February [33]. However, even though our
paper is not formally published. The discovery of 2xUnit is in our
manuscript in December 2021 (time can be veri�ed), which is before
the 2022 February arXiv paper.

Moreover, these studies did not describe how they �nd the solu-
tions (we assume it is manually), but we found them by running our
automatic solver, which is open-sourced and can be used by other
researchers in the community. Moreover, our high level idea of
reducing the full-sized problem to 1xUnit and 2xUnit sub-problems
have not been proposed by any prior study. We not only give the
solutions but also the methodology.

Another di�erence is that we �nd solutions for Google Sycamore
(2 solutions – one automatically and the other one manually) for
the �rst time. We also �nd the solution to hexagon architecture

automatically for the �rst time. We describe our discoveries in the
next section.

3.2 Other Architectures
3.2.1 Google Sycamore. Now we apply the same high level ap-
proach for Google Sycamore.

First, an unit is de�ned for the nodes in the same horizontal line,
as shown in Fig. 10 (a).

Next we reduce the full-sized problem to the following two-sub
problems. The 2xUnit structure is shown in Fig. 10 (b), where two
units are connected using a zig-zag shaped linked line. The edges
between two units make it possible to implement the unit exchange
operation in one step.

Our discovery for the 2xUnit sub-problem of Sycamore. We �nd
structured solutions using our depth-optimal solver. Just to get an
idea of how it works, we show that in Fig. 11. We �rst highlight
the triangle areas, where each triangle is formed by three qubits.
There are three possible ways to decompose the architecture into
consecutive triangles, as shown in Fig. 11 (a)-(c). For each triangle
organized architecture graph, we repeat three sets of operations:
(1) perform operations from the �rst inter-unit link and its parallel
other links, (2) perform operations from the second inter-unit link
and its parallel ones, and (3) repeat one. For each such operation, if
an inter-unit link is on a triangle, we perform a SWAP, otherwise,
we perform a computational gate. This is shown in Fig. 11 (d) to
(f). This is the solution we obtained by automatically solving the
2xUnit problem.We do not have a formal proof for this, but we have
veri�ed its correctness by programming this pattern, and running it
with a very large number of qubits. By programming it, we �nd that
it takes 2= � 2 steps to complete the bipartite all-to-all interaction.
We �nd this pattern by solving the 2xUnit problem of 7 qubits (3 in
one unit and 4 in the other unit).

1xUnit for Sycamore. For the 1xUnit sub-problem, we can indi-
rectly solve that. Note that for every two neighboring units, we can
connect a line that cover all nodes in these two units, as shown in
Fig. 10 (c). Hence, we can apply the 1xUnit solution for 2D grid to
solve the 1xUnit problem of Sycamore.

One may have noticed that by this point, why not just using the
line-architecture solution to indirectly solve the 2xUnit solution
in Sycamore. It is true. One caveat is that by directly applying
the line-architecture solution, the nodes may or may not end up
being in their original unit. But our automatically found solution
somehow ensures this. Moreover, the line solution has un-necessary
interaction for intra-unit in this case. Last but not least, we use this
to show the usefulness of our optimal solver tool.

In addition to this automatic 2xUnit solution, we also have a
manual 2xUnit solution with similar latency, which has not been
found before. We show details in Appendix B. The full solution for
N by N sycamore is also shown in Appendix.

3.2.2 Hexagon. Moreover, we apply our tool to the hypothetical
hexagon architecture in Fig. 12.

We de�ne one unit as the nodes in the same vertical line, as
shown in Fig. 12 (a) and (b). Exchanges can be done using the direct
(horizontal) links between two units.
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(a) Original Sycamore 
(c) 1xUnit operations  

solved by the linear pattern

(b) 2xUnit Exchange 
analogue to a SWAP

Figure 10: Breakdown of the Sycamore Architecture

Repeat 

(a) (b) (c)

(d) (e) (f)

A2 A1 A3 A5 A4

B5B1 B3 B2 B4

A1 A2 A3 A4 A5

B5B1 B2 B3 B4

A2 A1 A5 A3 A4

B4B3 B1 B2 B5

A2 A1 A3 A5 A4

B5B1 B3 B2 B4

A2 B3 B2 A5 B5

A4B1 A1 A3 B4

A2 B1 B2 A3 B4

A4B3 A1 A5 B5

Figure 11: Sycamore pattern discovered by the optimal solver

Our discovery for the 2xUnit. The solution we have discovered
for 2xUnit by our optimal solver also surprisingly follows a regular
pattern. Each computation layer is followed by two SWAP layers,
where the �rst SWAP layer is between two units, and the second
SWAP layer is within each unit, as shown in Fig. 12 (c).

For 1xUnit solution, similarly, we can connect a line for all nodes
in every two adjacent units. We can then apply the line architecture
solution as 1xUnit case of 2D grid to indirectly solve the 1xUnit
case of Hexagon architecture.

3.2.3 IBM Heavy-hex. For this architecture, we manually adapt
it from the 1xUnit solution of 2D grid, instead of partitioning it
into more coarser grained units. We �nd it is better this way. It is
discussed in Section 5.1.

Discussion. Note that our high level idea applies to a multi-
dimensional architecture beyond two-dimensional. As Fig. 13 shows
for a three-dimensional lattice. It is �rst divided into planes. Each
plane is derived into rows, and each row is divided into nodes.
If we can handle all-to-all interaction between the planes as well
as all-to-all interaction within each plane, we can then solve the
mapping problem for a clique graph on the three-dimensional lat-
tice. And we can reduce the two-dimensional problem to the one-
dimensional problem. By doing this, we only need to solve multiple
sub-problems, each smaller than the original.

4 DEPTH-OPTIMAL SOLVER
Solver: We design and implement a solver for minimizing the depth
of a SWAP-inserted circuit.

D��������� 2. Given a input logical circuit⇠ , a hardware coupling
architecture � , and an initial mapping" , our optimal solver returns
a transformed circuit ⇠0 which has the minimal depth among all
transformed circuits from ⇠ that are satisfy the coupling constraints
of � , with the initial mapping" .

In this section, we describe how we design and implement our
optimal solver. Note that the solver onlyminimizes the depth.When
considering gate count and/or estimated success probability (ESP),
it is not optimal.We leave that as our future work. Interested readers
for how to handle the practical cases (non-clique large problem
graphs) by adapting the small case optimal solutions (clique problem
graph) can skip this section and directly go to Section 5. We �rst
describe the A* framework we use in Section 4.1. Then we provide
the proof for the optimality of our A* approach in Section 4.2.

4.1 A* Framework
Search space. We use the A* framework to e�ciently explore the

search space. Each node in the A* search tree represents a state
of the circuit during one cycle of scheduling. Each edge presents
a state transition for advancing one cycle in the scheduling and
SWAP insertion process. We de�ne the following terms.

• A state node describes (1) the logical-to-physical qubit map-
ping at the beginning of a cycle, and (2) the set of gates being
scheduled at the current cycle.

• Root node is the starting point of the search process. It has
no gate executed at current cycle. But it already has an initial
mapping from logical qubits to hardware qubits.

• Terminal node corresponds to the last cycle of a trans-
formed circuit. At this node, the last gate(s) of the original
circuit are being completed at the terminal node’s cycle.

Our A* solver �rst initializes the priority queuewith only the root
node. It then repeats the following steps: Extracting a node from
the priority queue, generating child node(s) based on valid state
transitions, and pushing child node(s) into the queue. It terminates
when a node retrieved from the priority queue is a terminal node.

A valid state transition from a parent node to a child node corre-
sponds to the valid actions that can happen during one cycle. In this
cycle, (a set of) original gate(s) can be scheduled, and/or (a set of)
SWAP gate(s) can be scheduled. A node can obtain its entire set of
child node(s) by exhaustively generating all potential combinations
of remaining executable computation gates and SWAP gate(s) in
the upcoming cycle. The executable gates and SWAPs are de�ned
as gates with two qubits on connected hardware qubits.

At the beginning of every cycle, if one ormultiple SWAP occurred
in the last cycle, the logical-to-qubit mapping needs to be updated,
and correspondingly, the mapping is incorporated into the circuit
state of the current cycle.

The priority function of a node is the key to the A* algorithm
paradigm. Each time the algorithm removes a node from the queue,
it must be the node with highest priority. If we set the priority
function to be admissible, the A* paradigm guarantees optimality
[37]. We discuss our priority function in details next at Section 4.2.

4.2 Priority Function
Our priority function 5 (E) is de�ned over a circuit-state node E . It
estimates the lower-bound number of cycles needed for all paths
that start from the root node and to a terminal node, via the node E .
The priority 5 (E) consists of two components 2 (E),⌘(E) such that

5 (E) = 2 (E) + ⌘(E), (1)
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Figure 12: Hexagon coupling graph and partial compilation. (a) the hexagon graph in honey-comb structure; (b) the dragged
hexagon graph in a square layout; (c) a layer of CPHASE gates followed by two layers of SWAP gates for 2xUnit.
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Figure 13: From 1D to 3D.
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Figure 14: (a) shows a part of the A* search tree. (b) show
the circuit execution cycle by cycle. A cycle’s information
include the set of gates (shown here), the qubit mapping (not
directly shown here). Cycles A, B, C, D, and E, correspond to
the tree nodes in (a). E is a terminal node as marked in (a).

where 2 (E) represents the number of cycles it takes from the
root node to the node E , which is the length of the path from the
root node to E . This part is trivial. ⌘(E) represents a lower bound of
the estimated cycles from the node E to some terminal node. The
construction of ⌘(E) is not trivial.

Our priority function ⌘(E) considers two factors:
• The degree of a qubit @ in the QAOA-graph 346(@).
• The minimal number of SWAP gates that need to be inserted
for a un-executable gate on two qubits @8 and @ 9 .

We �rst de�ne the minimal number of cycles for scheduling all
gates on a pair of qubits @8 and @ 9 .

D��������� 3. We de�ne a lower bound of the minimal number
of cycles for scheduling all gates on @8 and @ 9 , where there also exist
a gate on @8 and @ 9 , and 3 is the distance between @8 and @ 9 .

2>BC (@8 ,@ 9 ) = min
G=0..3�1

<0G (346(@8 ) + G,346(@ 9 ) + 3 � G) . (2)

L���� 4.1. For one pair of qubits @8 and @ 9 , where there is 2-qubit
computation gate on them, our cost function 2>BC (@8 ,@ 9 ) indeed gives
a lower bound on scheduling all the gates involving @8 and @ 9 .

P����. Since the distance between @8 and @ 9 is 3 , to move them
next to each other, at least 3 � 1 swaps are needed in total. We then
split these 3�1 swaps into two components: (1) the minimal SWAPs
that @8 needs to take, and (2) the minimal SWAPs that @ 9 needs
to take. In Equation 2, we consider 3 scenarios by splitting these
3 � 1 moves among @8 and @ 9 . If @8 moves G steps, then @ 9 needs
to move at least max(0, (d-1-x)) steps. There are a �nite number of
ways to set G , which is G = 0..3 � 1. Then we consider the original
degree of @8 and @ 9 , @8 needs to execute G SWAPs, and 346(@8 )
computation gates, and @ 9 needs to execute 3 � 1 � G SWAPs, and
346(@ 9 ) computation gates. Since the slower qubit dominates the
overall execution time, we take the maximal of the two. Among
all possible values of G , we take the minimal value since one can
always choose the best way to split the 3 � 1 moves.

⇤

Having de�ned 2>BC (@8 ,@ 9 )) for a pair of qubits (@8 ,@ 9 ), we de�ne
the heuristic priority function ⌘(E).

D��������� 4. Heuristic cost function ⌘(E) gives the minimal
number of cycles from E to a terminal node.

⌘(E) = max
(@8 ,@ 9 )2⇢A4< (E)

2>BC (@8 ,@ 9 ) (3)

⇢A4< (E) is the set of un-executed gates implied by E and E ’s predeces-
sors, from the QAOA-graph with edge set ⇢.

T������ 1. Our cost function ⌘(E) is lower bound of all paths
from E to a terminal node in our A* search tree.

P����. A compiled circuit⇠ has larger or at least the same depth
(the number of cycles assuming all gates take 1 cycle), as that of a
compiled subcircuit of⇠ . All gates on @8 and @ 9 are a subcircuit of C
described by the edge set ⇢A4< . Since ⇢A4< describes the remaining
circuit implied by E and E ’s predecessors, the path from E to a
terminal node is bounded by the maximum cost of gates on all
possible pairs of @8 and @ 9 with a gate on them.

⇤

T������ 2. The priority function de�ned in Equation (1) is a
lower bound of all paths from the root node to a terminal node via E .
Hence it is admissible.
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P����. Since the path from the root node to E is �xed, given by
2 (E), and ⌘(E) is a lower bound for all paths from E to a terminal
node, 2 (E) + ⌘(E) is a lower bound for all paths to a terminal node
that must pass through E . Since it is proved to be a lower bound,
the priority function is admissible. ⇤

Example: We use an example to describe how we calculate the
cost function 2>BC (@8 ,@ 9 ) in Fig. 15 for the input problem graph in
Fig. 15(a). The initial mapping is shown on the left side of Fig. 15
(b). We let @8 and @ 9 be @1 and @4, where there is a gate g3 on them.
Firstly, we do not know when should we schedule gate g3, so we set
a gray box before and after it to represent the unknown scheduling.
We set

2>BC (@8 ,@ 9 ) =<8=8=0..2<0G (346(@1) + 8,346(@4) + 3 � 1 � 8).
Since 346(@1) = 3, 346(@4) = 2, and 3 = 3, we enumerate all possible
values of 8 . Among those, we �nd the minimal cost(q1, q4) is when
i = 1. Then, we set 2>BC (@1,@4) = 4.
Discussion: Our optimal solver is for a given initial mapping. For
our particular problem, since the input problem is a clique graph
or a bi-clique graph, all initial mappings have the same behavior. It
does not matter how we place the qubits.
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Figure 15: Cost function: (a) is the inputQAOAproblemgraph.
(b). The circuit of depth estimation using qubit pair q1 and
q4.

5 HANDLING THE PRACTICAL CASES
5.1 Factor I: Flexibly Adapting the All-to-All

Solution
IBMHeavy-hex. An architecture that stands out is the IBM heavy-

hex, which looks like a honeycomb structure. It is possible to break
it down into units. But based on our evaluation of di�erent choices,
it takes non-trivial amount of depth if we use the 1xUnit and 2xUnit
approach. We decided to use a much simpler approach that have
proven to be useful in practice.

Since the heavy-hex is quite sparse, we adapt the 1xUnit (line)
solution of 2D grid to handle it.

Now we describe two main components in the heavy-hex archi-
tecture: (1) a longest path that can connect many nodes, and (2) the
nodes that are o� this path. It is shown in Fig. 16.

We categorize the operations into three types: (1) path-2-path in-
teraction, (2) o�-path-2-o�-path interaction, and (3) path-2-o�-path
interaction. With these three, we can cover all-to-all interactions.
We need two passes to cover the three.

In the �rst pass, all path-2-path interactions could be �nished by
applying the linear pattern for the longest path. In the meantime,

(a) ibm_ithaca

12345678910

21201918171615141312
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2425262728293031323334

4645444342414039383736

48495051525354555657
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E F

G H

Figure 16: Heavy-hex: the numbered nodes are on the longest
path, the lettered nodes are o�-path.

we also handle path-2-o�-path interactions, that is, we let each
node interact with its o�-path neighbor if there is any, before the
node is moved to the next location. For each node on the path, it
ensures that the node will interact with at least a part of the nodes
in the o�-path.

In the second pass, we swap o�-path nodes with on-path nodes
in one cycle, and perform another line solution together with on-
path/o�-path interaction like in the �rst pass. The course of nodes
movement will be as if it is continuing that from the end of the �rst
pass. The remaining path-2-o�-path interactions would also be cov-
ered by the second pass. This guarantees that all-to-all interaction
is achieved, and the detailed explanation/proof is in Appendix C.

5.2 Factor II: Non-clique problem graphs
To handle non-clique problem graphs, we can use a simple approach
by exploiting the fact that every non-clique problem graph is a
subgraph of the clique graph. The idea is to skip the 2-qubit gates
that are not in the non-clique problem graph in the compiled circuit
for the clique graph.

However, we are not satis�ed with that. At certain points of the
circuit, the remaining problem graph (by taking out the edges that
correspond to scheduled gates) is very sparse, resulting in under
utilization of the QPU. For very sparse problem graph, there is no
need to rigidly follow the pattern of all-to-all interaction. We can
just insert SWAPs greedily similar to prior studies [3, 4, 17, 19].

But the problem of purely using greedy solutions is that they
cannot guarantee the compiled circuit has linear depth. Because it
might over optimize for local optimums.

We want to take the best of both worlds. So we use a method to
combine the bene�ts of both. We still perform the greedy compi-
lation approach that handles the gates in the frontier and process
them layer by layer. But at every layer where the qubit mapping
is changed compared with last layer, we make a prediction by fol-
lowing the exact all-to-all solutions (with certain edges skipped)
for the rest of circuit. By combining prediction for the rest of the
circuit and the already processed partial circuit, we can get the gate
count/�delity/depth for the whole circuit. At the end, we look at all
predictions, and check if any of them yields best whole compiled
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circuit than following the entire greedy compilation method. If so,
we output the best compiled circuit.

5.3 Factor III: Qubit error variability
Besides the decoherence error determined by the circuit duration,
the �nal �delity is a�ected by error variability in hardware. For
example, di�erent coupling edges in the IBMmachine have di�erent
CNOT error rates. The crosstalk triggered by two close and parallel
CNOT gates also exists.

In the greedy component of our approach, we take those factors
into the consideration. We use minimal weight perfect matching al-
gorithms to place gates at low error coupling links. For the crosstalk
issue, we integrate the graph coloring model.

5.4 Solver Guided Solution Analysis
To quantitively analyze the strength and limitations of solver guided
solution, we compare it with a pure greedy solution. As the result
show in Fig. 17, we conducted comparisons on two types of archi-
tectures, Heavy-hex and Google Sycamore with a set of random
graphs. We use random graphs with densities of 0.1, and 0.3. The
number of vertices is 64, 256, and 1024. The “greedy” bar presents
the data from the pure greedy solution. The “solver” bar represents
data from the solver-guided solution. Bar “ours” presents our solu-
tion, combining both greedy and solver-guided solutions (detailed
described in Section 6). All are normalized to the greedy version.

From Fig. 17, we can see that the greedy solution only has bet-
ter performance than the solver-based solution, when the input
problems are sparse, such as in graph 64-0.1. But the solver-based so-
lution is better when the graphs are larger and denser. Interestingly,
the mixed (our) solution beats both pure-greedy and solve-based
ones for all benchmarks. That is, it is not just picking the best of
the two, it is better than the best of the two.

6 OUR COMPILERWORKFLOW
6.1 Our framework
Our framework iteratively processes candidate computation gates
in the circuit. At the beginning, the candidate computation gate
list includes all gates, since they all commute. Then at every cycle,
it selects candidate gates to schedule and determines SWAP gates
to insert. Whenever the qubit mapping is changed at the end of
any cycle, it will predict for following the all-to-all solution (ATA
solution) on the rest of the circuit, for instance, what the gate-
count/depth/�delity would be, and keep track of these predictions
at di�erent layers (cycles) along the compilation process. Once it
reaches the end where there is no candidate gate left, it will choose
a compiled circuit based on the prior recorded compilations. The
overall compilation framework is shown in Fig. 18. We describe
each component below.

6.2 The Greedy Processing Component
There are two sub-modules in the greedy processing component in
Fig. 18. One is gate scheduling matching sub-module and the other
is swap-insertion model.
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(d) Gate Count in Sycamore

Figure 17: Pure-Greedy vs Solver vs Ours.
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Figure 18: Our compiler framework

In the gate-scheduling sub-module, we process hardware-compliant
gates. We use graph coloring for this module. Each hardware-
compliant gate is a node. Each edge represents if they share a
qubit or if they have non-trivial crosstalk. Then we try to color the
graph and choose the color that has maximal number of gates, and
schedule these gates. By doing so, we take crosstalk into account.

The next-submodule is the SWAP-insertion module. At the same
layer, we can insert SWAPs on idle qubits to help the two-qubit
gates that are not hardware-compliant. We let each qubit be a node
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and each gate be an edge. For each potential SWAP gate (a SWAP
that can reduce the distance of a separated pair of qubits that have
to perform a computation gate), we assign weightF = 1

4 , 4 is the
two-qubit gate error rate on the physical link. Then we �ndminimal
weight perfect matching (MWPM) of these gates. The weights in
MWPM characterize the error rate variability.

6.3 The ATA Pattern Prediction Component
The goal of ATA pattern prediction is to provide a bound for the
compiled result of the rest of the circuit given current qubit mapping.
After all, we only need a qubit mapping for following the all-to-all
solution and skip the non-existent gates in the real problem graph.
This component has two sub-modules: (1) Range detector, and (2)
pattern generator.

CC1

CC3

CC2

Figure 19: Range detection – we narrowed the whole archi-
tecture down to three sub-regions with respect to qubit in-
teraction.

Range Detector. Note that as the candidate list is being updated,
there are fewer and fewer gates in it. We process the sub-graph of
the input problem graph that has active edges (remaining gates in
the candidate list). Firstly, we �nd the disjoint connected compo-
nents (CC) from the remaining QAOA problem graph, which refer
to di�erent set of qubits that have interaction (transitively), and
we name these sets as interacting-qubit-set. Secondly, by checking
with the current mapping c , we �nd regions c⇠⇠ in the architec-
ture graph that correspond to di�erent interacting-qubit-set. If the
regions are disjoint, we make ATA prediction using a smaller-sized
architecture with the same shape. If two regions overlap, we merge
them into one region. For example, We have three non-overlapping
regions (minimal sycamore shape that encloses an interacting-qubit-
set) in Fig. 19, which means if we follow the ATA pattern, we can
just limit the interaction within each bounded region, and hence
given a better bound of depth/gate-count/�delity, compared with
following ATA for the entire region. We apply the same idea when
we perform 2xUnit operation to further improve the bound.

Pattern generator. generates the pattern in the particular region
with the given qubit mapping. This step is trivial as it simply follows
the process cycles in the ATA solution until all gates in the given
problem graph are processed.

6.4 Compiled Circuits Selector
When there is no gate in the candidate list, it means we have
processed all gates. Now we would compare the �nal depth/gate-
count/�delity of the greedy compilation method, with that of the
versions that have been previously recorded (partially greedy +
partial ATA) at each layer when qubit mapping changes. If the
estimated value of a partial greedy + partial ATA is better, we
would revert compiled circuit back to that point and append it with
ATA processed rest of circuit. This step guarantees that the �nal
depth/gate-count/�delity is bounded by the one that would other-
wise be produced by the ATA solution. But it could be better than
the ATA solution when the problem graph is sparse.

We choose the �nal version of compiled circuit by the value calcu-
lated through the cost function, F = U% 5 ⇡

>⇡ + (1 � U%) 5 834;8C~
1
5 ⌧ .

5 ⇡ is the depth of compiled circuit, >⇡ is the depth of original
greedily compiled circuit, 5 ⌧ is the gate count of compiled circuit,
and 5 834;8C~ is the product of error rate of gates in the circuit. The
smaller value of F is better.

T������ 6.1. Our method combines the bene�ts of both in our
compilation framework such that it always produces a compiled circuit
that is better or at least the same good as the one that would otherwise
be produced by following the patterns in the clique-circuit.

Brief Proof. Before we start the circuit compilation, given an
initial mapping, the input problem graph and the underlying archi-
tecture, we can directly generate a compiled circuit by following the
clique pattern exactly. We name it compiled circuit 220. The depth
and gate count of 220 is linearly bounded because it is a purely
solver-guided solution. Then we start doing compilation in greedy
manner. At every point, we record the part of ciruit already com-
piled by the pure greey solution, and combine it with the rest of the
circuit as if the rest of the circuit is generated by the solver-based
solution. We obtain many hybrid solutions, and we name them as
228 where 0 < 8 < : and : is the total number of solutions.

In Compiled Circuits Selector, we select the compiled circuit
2214BC with the best � value de�ned above. That means 2214BC is
better than all 228 where 8 denotes one of the hybrid solutions,
including 220. Hence Compiled Circuits Selector will choose the
circuit at least as good as 220, the one achieved by following the
solver-based solution exactly. Therefore it is proved.

6.5 Limitations of Our Work
Our work is built upon the pattern discovered through our optimal
solver, which is designed speci�cally for quantum circuits with
commutable operators only. As such, there are twomajor limitations
to our work.

Firstly, our work is not suitable for the circuit where the gate
dependency is �xed. However, if the circuit contains mostly com-
mutable gates, we may still be able to solve the compilation problem
by adapting our work. We leave it as our future work. Secondly,
the regularity of physical qubit connections is necessary to allow
our method to be applied, as a high level idea. If the underlying
architecture does not have regularity, our approach does not apply.
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7 EVALUATION
In this section, we present a comprehensive analysis of our method
by comparing it with state-of-art approaches QAIM [3], 2QAN
[16], QAOA-OLSQ [30], SATMAP [20] and Paulihedral [19]. The
comparison is conducted from various aspects, including depth,
gate count, and �delity.

7.1 Experiment Setup
Architecture. Weusemainly IBMheavy-hex andGoogle Sycamore

hardware. Both architectures have a regular pattern and can be
expanded to any scale by following the pattern. IBM heavy-hex
consists of a bunch of dodecagons. Google sycamore is a rotated
2D grid with certain vertices and edges missing on the boundary.

To show the scalability of our method, we scale both architec-
tures to 1024 qubits and keep the shape close to a square. In the
experiment, we use the minimum size of architecture that can han-
dle the corresponding input problem graph.

We also use IBM machine Mumbai which has 27 qubits and has
dodecagons in its structure as well. The IBM machine has error
variability in its qubits and gate errors.

Metrics. We use the circuit depth, two-qubit gate count, and
total variant distance (TVD) as metrics to evaluate the e�ectiveness
of our method. Circuit depth is the length of the critical path in
the compiled circuit which is correlated with the circuit duration.
The circuit depth is expected as small as possible to reduce the
decoherence error. We also use compilation time as a metric.

Two-qubit gate count is the number of CX gate in the compiled
circuit including the original circuit gates and those decomposed
from the added SWAP gates. Two-qubit gate error is dominant
in the accumulated gate errors and fewer gate count means less
accumulated gate errors. We decompose the compiled circuit into
single-qubit basis gate and CX gates. TVD measures the distance
between the output distribution of real machine experiment with
the noisy free result from the simulation. So TVD can only be used
for small-sized benchmarks as it needs ground truth. A smaller
TVD is better.

Baselines. We compare our method with three baselines: Paulihe-
dral [19], QAIM [3], and 2QAN [16]. Paulihedral is mainly designed
for compiling arbitrary Pauli-string simulation, where QAOA and
2-local Hamiltonian simulation are a special case. QAIM is the �rst
domain-speci�c compiler that tackles QAOA compilation. 2QAN is
the one using gate unifying to augment the SWAP insertion strat-
egy. We also did comparisons with QAOA-OLSQ proposed by Tan
et al. [30] and SATMAP [20] by Molavi et al. They are both SAT
solver based approaches.

Benchmarks. For benchmarks of input problem graphs, we use
python library NetworkX [11] to generate two types of graphs, ran-
dom graph and regular graph. We set the density of random graph
as 0.3 and 0.5. We also try to set the density of regular graph close to
0.3 or 0.5 by varying the degree of each vertex. The number of ver-
tices of two types of benchmarks are from 64 to 1024. For each size
of benchmark, we randomly generate 10 cases and use the average
values to do the comparison. For the input problem graphs to the
2-local Hamiltonian. We use next nearest neighboring (NNN) 1D-
Ising model, NNN-2D-XY model, and NNN-3D-Heisenberg model.

Each interaction graph has 64 vertices. These are of the same type
as those used in 2QAN [16].

7.2 Comparison on IBM Heavy-hex
In this section, we show comparison on IBM heavy-hex architecture
with the number of qubits from 64 to 1024. Since it is impossible
to get TVD for such large number of qubits, we only show the
circuit depth and gate count comparison. In most of our cases, our
depth and gate count are both signi�cantly smaller than that of the
baselines, which indicates better �delity for these large circuits.

In the comparisons of both types of graphs, the improvement of
our method increases when the qubit number grows. It indicates
our compiler scales well to large problems.

The comparison for depth on IBM heavy-hex is shown in Fig. 20.
When the qubit number is larger than 256, the compilation overhead
of QAIM and 2QAN is more than 24 hours, Fig. 20 only contains
data points for qubit numbers up to 256 qubits. And for the results
of 2QAN, even for 256-qubit, it takes more than a day to compile,
since 2QAN use a quadratic solver to search all possible initial
mappings and picks the one with the minimum total distance of
two qubits of each gate in the coupling graph. So we do not include
the results of 2QAN in Fig. 20. Instead we place the comparison
with 2QAN results using a separate Table 1. For all comparisons on
depth for IBM heavy-hex, our method has minimum depth. For the
benchmarks with 64 qubits, our method could achieve the depth
reduction of up to 47% over QAIM_IC, 68% over Paulihedral, and 43%
over 2QAN. For the benchmarks with 256 qubits, the improvement
is more signi�cant. Our method could achieve the depth reduction
of up to 67% over QAIM_IC, and 72% over Paulihedral.

We also did the gate count comparison on two types of problem
graphs with two di�erent densities. The result is shown in Fig. 21.
Similarly, we only show the comparison with qubit numbers up
to 256. We also place the comparison with 2QAN in Table 1. The
gate count comparison was shown on the log scale and our method
outperforms all baselines. For the benchmarks with the number of
64 qubits, our method has the gate count reduction of up to 54%
over QAIM_IC, 57% over Paulihedral, and 37% over 2QAN. The
same as the circuit depth improvement, gate count reduction is
more manifested in large benchmarks. For the benchmarks with
the number of 256 qubits, our method has the gate count reduction
of up to 63% over QAIM_IC, and 66% over Paulihedral.

For the QAOA circuits with 1024 qubits, we compare our method
with Paulihedral with two types of graphs since this is the only one
can handle such large circuits. The results shown in Table 2. Our
method has 75% of depth reduction and 70% of gate count reduction
over Paulihedral.

7.3 Comparison on Google Sycamore
Google sycamore architectures have better connectivity than IBM
heavy-hex architectures which makes baselines perform better with
their SWAP insertion strategy. It results in better circuit depth and
gate count for baselines. However, our method still outperforms
baselines in both gate count and depth comparison. The advantage
is signi�cant in large cases. Results are shown in Fig. 22 and Fig. 23.

For the same compilation overhead reason, some data of 2QAN
for 128-qubit and 256-qubit is missing. Hence 2QAN is not presented
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(b) Regular graphs in IBM Heavy-hex

Figure 20: Depth comparison for random graphs and regular
graphs on heavy-hex architecture.
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(b) Regular graphs in IBM Heavy-hex

Figure 21: Gate count comparison for random graphs and
regular graphs on heavy-hex architecture.

in Fig. 22 and Fig. 23. Instead 2QAN is presented in Table 1. In the
depth comparison, we did experiments with two types of problem
graphs again as the result is shown in Fig. 22. For the random
graphs, our method could have the depth reduction of up to 60%
over QAIM_IC, 62% over Paulihedral, and 12% over 2QAN.

The gate count comparison is shown in Fig. 23. The gate count
comparisons are limited to benchmarks with 256 qubits as well.
Our method is better than baselines for all types of graphs with
di�erent qubit counts and densities. Our method has gate count

reduction of up to 44% over QAIM_IC, 48% over Paulihedral, and
5% over 2QAN.

We also did QAOA-1024 at Google Sycamore architecture as the
results are shown in Table 2. We have 67% of depth reduction and
57% of gate count reduction over Paulihedral.
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(b) Regular graphs in Google Sycamore

Figure 22: Depth comparisons for random graphs and regular
graphs on Google Sycamore architecture.
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(b) Regular graphs in Google Sycamore

Figure 23: Gate Count comparisons for random graphs and
regular graphs on Google Sycamore architecture.

7.4 Real Machine Experiments
In real machine experiments, we use TVD to evaluate our method.
We compare our result with 2QAN since based on previous results,
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Table 1: Comparison with 2QAN and QAIM

Depth Gate Count (CNOT)
Arch. Graphs Ours 2QAN QAIM Ours 2QAN QAIM

Heavy-hex

64-0.3 164 241 288 3789 4902 6695
128-0.3 357 781 652 15785 19563 27799
256-0.3 703 - 1825 57157 - 126653
64-0.5 198 339 380 4385 6816 9580
128-0.5 413 939 898 17458 29088 40487
256-0.5 822 - 2503 65541 - 179085

Sycamore

64-0.3 220 235 247 4662 4785 5294
128-0.3 433 - 543 18593 - 21691
256-0.3 817 - 1634 74959 - 103010
64-0.5 233 265 348 5041 5352 7564
128-0.5 454 - 756 20266 - 31367
256-0.5 858 - 2118 81567 - 146646

Table 2: Comparison for 1024 qubit graphs

Depth Gate Count(CNOT)
Arch. Graphs Ours Paulihedral Ours Paulihedral

Heavy-hex

1024-0.3 2910 10476 962514 2744864
1024-0.5 3369 13719 1067113 3627376
1024-320 2949 10728 967297 2796326
1024-480 3299 13245 1051013 3509673

Sycamore

1024-0.3 3105 7830 1204734 2339009
1024-0.5 3252 9975 1309333 3061684
1024-320 3121 7932 1211841 2389790
1024-480 3243 9615 1293761 2953371

2QAN has the best depth and gate count for small-sized circuits.
For QAOA random 10-0.3, our method has TVD of 0.39 and 2QAN
has TVD of 0.49. For QAOA random 20-0.3, our method has TVD
of 0.62 and 2QAN has TVD of 0.66. This shows that our method is
better in real machine experiments. QAOA random-20 has worse
TVD because the larger circuit is more fragile to gate error and
decoherence error.

We also run the full-�edged QAOA implementation to calculate
max-cut using our compiled circuit. Running QAOA for multiple
passes requires to use a classical optimizer to determine the rotation
angles in the circuit (but the circuit structure, 2-qubit gates do
not change). We use the default classical optimizer COBYLA in
IBM Qiskit. We use QAOA circuits of for random graph 10-0.3 and
random graph 20-0.3 and run them on IBM-Mumbai. The results are
shown in Fig. 24 and 25. The x-axis is the number of optimization
rounds. Each round runs the full circuit with given rotation angle
numbers, for 8,000 shots. The y-axis is the negation of the expected
max-cut value. The smaller the better. It shows that our compiled
circuit converges faster in Fig. 24 and Fig. 25. The end-to-end results
demonstrate the advantage of our method.

7.5 Comparison for 2-local Hamiltonian
Problem Graphs

The results for 2-local Hamiltonian experiments are shown in Ta-
ble 3. These were run on medium scale 64-qubit IBM heavy-hex
architectures. Our compiler outperforms the 2QAN baseline in both
circuit depth and gate count.
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Figure 24: Full QAOA run at IBM Mumbai for 10-qubit ran-
dom graph with density 30%.
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Figure 25: Full QAOA run at IBM Mumbai for 20-qubit ran-
dom graph with density 30%.

Table 3: Comparison for 2-Local Hamtiltonian at IBMHeavy-
hex

Depth Gate Count (CNOT)
Benchmarks Ours 2QAN Ours 2QAN
1D-Ising 117 139 393 645
2D-XY 140 214 1050 1364

3D-Heisenberg 157 192 917 1000

7.6 Comparison with SAT Solver Based Solution
We did comparisons with QAOA-OLSQ by Tan et al. [30] and
SATMAP by Molavi et al. [20] in 2D grid architecture. We choose
the smallest coupling architecture that can �t the problem graph.
The result shows in Table 4. Note that the column olsq represents
the data of QAOA-OLSQ.

For most of the cases, our approach has better depth than QAOA-
OLSQ and SATMAP, except one case 15-4, the 15-qubit density
40% graph, where our depth is 11 and QAOA-OLSQ’s depth is 9.
However, in this case, OLSQ takes more than 2 days to run. Our
gate count is slightly worse than the QAOA-OLSQ method. Com-
pared with SATMAP, our gate count is also worse than or similar
to SATMAP. However, for the benchmarks with 15 vertices, our
method is slightly better than SATMAP. All these benchmarks are
compiled within 0.3 seconds by our compiler. But it takes hours for
QAOA-OLSQ when qubit number is beyond 15 and graph density
is beyond 30%. The compilation time of SATMAP is much shorter
than QAOA-OLSQ, but still longer than ours.
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Table 4: Comparison with SAT Solver-based Solution

Depth Gate Count Compilation time(s)
Graphs Ours olsq satmap Ours olsq satmap Ours olsq satmap
10-2 4 5 5 12 10 12 0.001 0.24 5
10-3 6 7 10 22 19 22 0.003 33.2 6
10-4 11 12 12 32 25 30 0.04 283.4 76
12-2 3 4 3 16 12 12 0.006 0.32 5
12-3 8 7 11 26 22 25 0.09 4100.2 42
12-4 11 12 17 41 30 36 0.07 4.8 hrs 847
15-2 4 6 9 19 16 23 0.26 640.5 30
15-4 11 9 22 50 40 53 0.04 >2days 249

7.7 Compilation Time
We show the compilation overhead with respect to di�erent QAOA
graph sizes in Fig. 26. The X-axis is the number of qubits in the
range of [64, 1024] and the Y-axis is the compilation time in seconds.
Each QAOA problem graph is a random graph with a density of 0.3.
The compilation overhead increases near-linear and the time for
the circuit with 1024 qubits only takes about 30 seconds.
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Figure 26: Compilation time

8 RELATEDWORK
Circuit mapping plays an important role in the Quantum Supremacy
realization due to the imperfect qubit and limited qubit connectivity.
Previous studies in qubit mapping focus on the generic quantum
circuits that the order of each gate is �xed to keep the circuit
semantics [18, 21, 27, 28, 30, 31, 34–37].

Some recent studies of qubit mapping take permutable two-qubit
gates into account. Tan et al. [30] uses constraint-based SAT-solver
to achieve optimality by removing the gate dependency constraints
from their generic approach. Alam et al. [3] model the QAOA qubit
mapping as the binary bin-packing problem to heuristically insert
SWAP gates and schedule unmapped CPHASE gates. Paulihedral
[19] handles Pauli-string scheduling in Hamiltonian simulation
and each CPHASE gate in the QAOA corresponds to a Pauli-string.
2QAN [15] proposes a quadratic solution for QAOA qubit mapping
with respect to an objective function. It also takes the advantage of
gate unifying to reduce circuit depth and gate count.

But none of those studies take architecture regularity into ac-
count. The previous method either su�ers from large compilation
overhead or tremendous gate count and depth increment. Our
method is the �rst one that explores architectural regularity. In
addition, our method is also integrated with a greedy component
to avoid the disadvantage of rigidly following the all-to-all pattern.

In classical computing, the sorting networks and permutation
networks are the closest to our study. Clique graphs are solved in
permutation and sorting networks. But our problem is di�erent.

For the permutation network, for instance, AbrahamWaksman’s
work [32] can create arbitrary permutations for n input terminals to
n output terminals using 2-node switch building blocks. However,
if we directly apply the permutation network here, to enable all-
to-all interaction, the depth is O(n*log(n)) since each permutation
requires a depth of O(log(n)). Our work requires only O(n) depth
for the linear architecture. Moreover, the permutation network can
handle linear architecture, not multi-dimensional architecture.

For the sorting network works [5, 6, 14, 24]. They are relevant
since each comparator operation involves two elements and a po-
tential SWAP. However, it does not guarantee all-to-all interaction.
For instance, when moving an element in insert-sort [14], it may
stop at a location where it already satis�es the ordering constraint.

9 CONCLUSION
As modern quantum architectures start to exhibit regularity, it is
time to rethink the design of quantum compilers. We proposed
an optimal solver for �nding all-to-all (ATA) interaction in regu-
lar quantum hardware and adapt the ATA pattern to compile for
general programs with permutable 2-qubit operators. Experiments
on Google Sycamore and IBM heavy-hex architectures show the
advantage of our method.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive and help-
ful feedback. We thank Lingling Lao and Jiang Zhang for providing
valuable comments during the discussion. This work is supported
by grants from the Rutgers Research Council and NSF-FET-2129872.
Any opinions, �ndings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily re-
�ect the views of our sponsors.

REFERENCES
[1] Our open sourced optimal mapper. https://github.com/ata-pattern/ata-pattern.
[2] The IBM Quantum Heavy Hex Lattice, may 2022.
[3] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. Circuit compilation

methodologies for quantum approximate optimization algorithm. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
215–228, 2020.

[4] Mahabubul Alam, Abdullah Ash Saki, and Swaroop Ghosh. An E�cient Circuit
Compilation Flow for Quantum Approximate Optimization Algorithm. In Pro-
ceedings of the 57th ACM/EDAC/IEEE Design Automation Conference, DAC ’20.
IEEE Press, 2020.

[5] K. E. Batcher. Sorting networks and their applications. In Proceedings of the
April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), page
307–314, New York, NY, USA, 1968. Association for Computing Machinery.

[6] Michal Bidlo and Michal Dobeš. Evolutionary development of growing generic
sorting networks by means of rewriting systems. IEEE Transactions on Evolution-
ary Computation, 24(2):232–244, 2020.

[7] Jerry Chow, Blake Johnson, Jay Gambetta, Rachel Zuckerman Sarango, and Saul.
Ibm’s roadmap for scaling quantum technology, Feb 2021.

[8] Edward Farhi, Je�rey Goldstone, Sam Gutmann, and Leo Zhou. The Quantum
Approximate Optimization Algorithm and the Sherrington-Kirkpatrick Model at
In�nite Size. Quantum, 6:759, jul 2022.

[9] Edward Farhi and Aram W Harrow. Quantum supremacy through the quantum
approximate optimization algorithm. arXiv preprint arXiv:1602.07674, 2016.

[10] Richard P Feynman. Simulating physics with computers. International journal of
theoretical physics, 21(6/7):467–488, 1982.

[11] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using NetworkX. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

121

https://github.com/ata-pattern/ata-pattern


Exploiting the Regular Structure of Modern�antum Architectures for
Compiling and Optimizing Programs with Permutable Operators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[12] IBM. IBM Quantum System.
[13] Ian D Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alá n Aspuru-

Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum Simulation of Elec-
tronic Structure with Linear Depth and Connectivity. Physical Review Letters,
120(11), mar 2018.

[14] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., USA, 1998.

[15] Lingling Lao and Dan E Browne. 2QAN: A quantum compiler for 2-local qubit
Hamiltonian simulation algorithms, 2021.

[16] Lingling Lao and Dan E Browne. 2QAN: A Quantum Compiler for 2-Local
Qubit Hamiltonian Simulation Algorithms. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, ISCA ’22, pages 351–365, New
York, NY, USA, 2022. Association for Computing Machinery.

[17] Lingling Lao, Prakash Murali, Margaret Martonosi, and Dan Browne. Designing
calibration and expressivity-e�cient instruction sets for quantum computing. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 846–859. IEEE, 2021.

[18] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for
NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1001–1014. ACM, 2019.

[19] Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan
Xie. Paulihedral: A Generalized Block-Wise Compiler Optimization Framework
for Quantum Simulation Kernels. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2022, pages 554–569, New York, NY, USA, 2022. Association
for Computing Machinery.

[20] Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, and Aws
Albarghouthi. Qubit mapping and routing via maxsat, 2022.

[21] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and
Margaret Martonosi. Noise-Adaptive Compiler Mappings for Noisy Intermediate-
Scale Quantum Computers. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’19, pages 1015–1029, New York, NY, USA, 2019. ACM.

[22] Bryan O’Gorman, William J Huggins, Eleanor G Rie�el, and K Birgitta Whaley.
Generalized swap networks for near-term quantum computing, 2019.

[23] William D Oliver and Paul B Welander. Materials in superconducting quantum
bits. MRS Bulletin, 38(10):816–825, 2013.

[24] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Di�eren-
tiable sorting networks for scalable sorting and ranking supervision. 2021.

[25] QISKit: Open Source Quantum Information Science Kit. No Title.
\url{https://https://qiskit.org/}.

[26] Rigetti. RigettiQPU, 2020.
[27] Marcos Yukio Siraichi, Vin\’\icius Fernandes dos Santos, Caroline Collange, and

FernandoMagnoQuintão Pereira. Qubit Allocation as a Combination of Subgraph
Isomorphism and Token Swapping. Proc. ACM Program. Lang., 3(OOPSLA), oct
2019.

[28] Marcos Yukio Siraichi, Vin\’\icius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintão Pereira. Qubit allocation. In Proceedings of the 2018
International Symposium on Code Generation and Optimization, pages 113–125.
ACM, 2018.

[29] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,
and Ross Duncan. t |ket>: a retargetable compiler for nisq devices. Quantum
Science and Technology, 6(1):14003, nov 2020.

[30] Bochen Tan and Jason Cong. Optimal Layout Synthesis for Quantum Computing.
In Proceedings of the 39th International Conference on Computer-Aided Design,
ICCAD ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[31] Swamit S Tannu and Moinuddin K Qureshi. Not All Qubits Are Created Equal:
A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, pages 987–999,
New York, NY, USA, 2019. ACM.

[32] Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, jan 1968.
[33] Johannes Weidenfeller, Lucia C. Valor, Julien Gacon, Caroline Tornow, Luciano

Bello, Stefan Woerner, and Daniel J. Egger. Scaling of the quantum approximate
optimization algorithm on superconducting qubit based hardware, 2022.

[34] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quantum circuits
to IBM QX architectures using the minimal number of SWAP and H operations.
In Proceedings of the 56th Annual Design Automation Conference 2019, page 142.
ACM, 2019.

[35] Chi Zhang, Ari B Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z Zhang.
Time-Optimal Qubit Mapping. ASPLOS 2021, pages 360–374, New York, NY,
USA, 2021. Association for Computing Machinery.

[36] Alwin Zulehner, Alexandru Paler, and Robert Wille. An e�cient methodology
for mapping quantum circuits to the IBM QX architectures. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226–1236, 2018.

[37] Alwin Zulehner, Alexandru Paler, and RobertWille. E�cient mapping of quantum
circuits to the IBM QX architectures. In 2018 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 1135–1138. IEEE, 2018.

APPENDIX
A MANUAL OPTIMIZATIONS FOR 2D GRID
A.1 Optimization I: Reducing 2xUnit solutions
Recall that we discussed in section 3.1 to divide the solution for
clique input into 1xUnit solution and 2xUnit solution. Each 2xUnit
solution are �nished individually. However, the SWAP layers in
one 2xUnit solution are bene�cial to its nearby 2xUnit solution. For
example, originally, we �nish 2xUnit interactions A-B and C-D in
parallel, and �nish 2xUnit interactions B-C later in Fig. 27(a).

In two parallel 2xUnit solutions, all intra-unit SWAP gates in
Unit C have relatively the same position as the intra-unit SWAP
gates in Unit A as the example shown in Fig. 27(d) and (g). This
makes the each qubit in Unit C relatively has the same position
as Unit A. In addition, Unit B is adjacent to Unit C. So instead of
having 2xUnit solution for Units B-C separately, we can merge it
with A-B 2xUnit solution and C-D 2xUnit solution. As the example
shown in Fig. 27(c) and (f), each B-C inter-unit layer has a preceding
A-B and C-D inter-unit layer.

A.2 Optimization II: Merging Intra-unit
operations

Since we apply 1xUnit solution to make each unit interact with each
other, every unit will reach the bound once and only once. When
we making inter-unit CPHASE gates, every two layers of inter-unit
operations contains one top unit and one bottom unit that are not
involving any inter-unit operations. Then we can perfectly add
intra-unit CPHASE gates at idle units as the red gates in Fig. 27(c)
and (f).

The intra-unit SWAP layers in each unit of 2xUnit solution is the
same as the 1xUnit solution, so this guarantees that every intra-unit
CPHASE gates in a unit are scheduled.

In the arXiv paper in February 2022 [33] which we consider as
almost at the same time come up with solution to 2D grid, their
solution consists of four repeated layers including two consecutive
inter-unit CPHASE layers followed by a intra-unit CPHASE layer
and one SWAP layer in the end. With the second optimization, our
solution has three repeated layers. So our method could achieve
approximately 25% of reduction in circuit depth.

The time complexity: Before we do any units exchange, it takes
3N cycles to complete bipartite all-to-all inter-unit interactions
between each two adjacent units. It includes N cycles of even-odd
units and odd-even units interaction respectively, and N-2 intra-unit
swap cycles. If we consider one unit as a node, then we can apply
linear pattern to make each unit adjacent to each other. Although
N units exchange takes N-2 swap cycles, the transition from one
units placement to another takes two consecutive swap cycles. So
there are only N/2 units placement. In total, the time complexity of
executing all-to-all interactions in NxN architecture is 1.5# 2+$ (1).
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Figure 27: (a) The abstracted inter-unit interaction. Each square box is a unit standing for a row in 4x4 grid; (b) The detail of
inter-unit interactions. The intra-unit interactions are merged into inter-unit interactions as the gates highlighted in red.
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Figure 28: (a)Sycamore takes 3 swap cycles (one virtual SWAP layer to mimic the 2xN lattice inter-row interaction, (b) Corre-
sponding 2xN lattice operation requires just 1 swap cycle

B OUR MANUAL SOLUTION FOR GOOGLE
SYCAMORE

Recall that in 2xUnit solution for 2D grid, what we did is to let
each row takes a di�erent even-odd or odd-even SWAP layer si-
multaneously. This takes one SWAP layer. It turns out we can take
3 SWAP layers for 2xUnit of Sycamore to achieve the same e�ect.
And since the top-unit and bottom-unit has direct links between
elements at corresponding locations, we can let computation layer
take place immeidately after such 3 SWAP layers, such that eventu-
ally the bipartite all-to-all interaction is achieved between the two
neighboring units.

We illustrate the 3 SWAP layers of Sycamore that are analogue
to the 1 SWAP layer of 2D grid in Fig. 28.

Inter-unit. We further propose a manual optimization, we can
interleave the computation 2-qubit gates with these SWAP layers
to save 25% of depth.

If we look at three consecutive SWAP layers, we can �nd out
that the �rst layer and the third layer both contain two pair of idle
qubits. For every two consecutive three SWAP-layers, the SWAP
gates in the last SWAP layer of the �rst big step are in the alternating
position of the SWAP gates in the �rst SWAP layer of the second big
step. So we can let all of those SWAP gates scheduled in one layer
and schedule CHPASE on the vacant layer. This is equivalent to a
pure SWAP layer followed by a pure CPHASE layer. The CPHASE
gates in the pure CPHASE layer apply on the new qubit permuration
are the same as in 2D grid pattern. For example, we can rearrange
the gates in Fig. 29 (a)(3) and (b)(1) to make Fig. 29 (a)(3) only
contains SWAP gates and Fig. 29 (b)(1) only contains CPHASE

gates. The CPHASE gates in Fig. 29 (a)(1) and Fig. 29 (d)(3) could
also be considered as one pure SWAP layer plus one pure CPHASE
layer. Though this example, we can see why the separated CPHASE
layer could be merged into SWAP layers.

Intra-unit. So far we have discussed the inter-unit scheduling,
but the intra-unit scheduling is still waiting to be explored.

One simple approach to schedule intra-unit gates is that we can
form a linear connection for each two units and schedule those
intra-unit gates by following the linear pattern.

However, if we look at the second cycle of each sub-�gure in
Fig. 29, we will see each diagonal edge connects a pair of qubits
from the same unit and each pair is unique. So before or after each
second cycle at the Fig. 29 (a) to (b), we can add one more cycle to
schedule all intra-unit gates for unit A and unit B. The intra-unit
scheduling for each two units could be done in parallel as well. So
the depth cost for intra-unit scheduling is O(N), N is the size of
unit.

Time complexity: Executing all-to-all interactions in NxN
sycamore architectures has the same number of units placements as
the executions in 2D grid. Both have N/2 di�erent unit placements.
The di�erence is that the bipartite all-to-all inter-unit interactions
in here takes 4N cycles. It includes 3N swap cycles between odd-
even units. One odd-even inter-unit interactions are merged into
those swap cycles. The un-merged even-odd inter-unit interactions
take N cycles. In total, sycamore solution takes 2# 2 +$ (1) cycles.
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Figure 29: Basic Sycamore Inter-Unit Scheduling

C PROOF FOR FOR IBM HEAVY-HEX
By applying the linear pattern at the longest path two times in
heavy-hex architecture, we are able to schedule all CPHASE gates
corresponding to the clique input graph.

In the �rst pass of 1xUnit grid pattern, we can schedule all path-
2-path operations. When a path qubit adjacent to a o� path qubit,
we would pause the pattern and schedule those path-2-o�-path
gate.

Then we swap the o�-path qubit with one of its on-path neigh-
bour and apply the second pass of 1xUnit solution. Since all o�-path
qubits are now on path, the second pass of pattern can schedule all
o�-path-2-o�-path CPHASE gates.

The only question is that if the remaining path-2-o�-path opera-
tions could be covered by the second pass or not. In the �rst pass of

pattern, every qubit moves K steps, assuming the longest path has
the length of K + 1. The qubit closer to the end point would cover
more region and the qubit in the middle only traverses half of the
longest path, so every qubit visited at least half of positions in the
longest path. (A qubit at position i would �rstly traverse to one
end of path and turn the moving direction. In total it traverses K
steps and stops at K - i position.) So any two qubits that one is from
the top region and another one is from the bottom half of region
can have the overlapping activity region and they can interact with
each other after two passes of pattern.

Time complexity: The linear pattern takes O(N) cycles for the
line size of N. In the heavy-hex architecture, executing all-to-all
operations still have an overall time complexity of O(N), along with
some additional constant cost for implementing path-2-o�-path
gates.
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