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Abstract.

High-dimensional data is commonly encountered in various applications, including genomics, as
well as image and video processing. Analyzing, computing, and visualizing such data pose
significant challenges. Feature extraction methods are crucial in addressing these challenges by
obtaining compressed representations that are suitable for analysis and downstream tasks. One
effective technique along these lines is sparse coding, which involves representing data as a
sparse linear combination of a set of exemplars. In this study, we propose a local sparse coding
framework within the context of a classification problem. The objective is to predict the label of a
given data point based on labeled training data. The primary optimization problem encourages
the representation of each data point using nearby exemplars. We leverage the optimized
sparse representation coefficients to predict the label of a test data point by assessing its
similarity to the sparse representations of the training data. The proposed framework is
computationally efficient and provides interpretable sparse representations. To illustrate the
practicality of our proposed framework, we apply it to agriculture for the classification of crop
diseases.
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Introduction

Agriculture is an essential activity that supplies the basic necessities required for our survival. In
addition, in many middle-income and low-income countries, agriculture is a foundational aspect
of the national economy (Alston et al., 2014). The agricultural sector faces several challenges,
with their effects being more pronounced in less-developed countries. These challenges include
climate change, pests, crop diseases, and a growing population (Calicioglu et al., 2019). This
paper focuses on crop diseases due to their critical impact on food security. Identifying and
managing crop diseases is a central issue in agriculture, requiring expert knowledge and labor
(Chaube et al., 2005). In recent years, signal processing and machine learning techniques have
been used to assist experts in the time and cost intensive process of disease identification
(Ferentinos et al., 2018, Haridasan et al., 2023, Shruti et al., 2019).

We consider the setting where we have existing training data consisting of labeled examples of
healthy and diseased plants. Using this data, our goal is to predict whether a new plant from the
same category is healthy or not. The training data is assumed to be a collection of images, such
as plant leaf images. Given this setup, a typical initial step is to use established image
processing tools to extract useful features or obtain compressed representations that aid in
disease identification (Antonini et al., 1992, Lowe et al., 1999, Nixon et al., 2019). Recently,
machine learning and deep learning techniques have been widely used for image classification,
largely due to the availability of large amounts of training data (Krizhevsky et al., 2017,
Sheykhmousa et al., 2020). In this paper, we propose a local sparse coding approach for plant
disease identification. Sparse coding is a signal processing framework where data points are
represented as a combination of a few underlying components, known as atoms, which form a
dictionary (Aharon et al., 2006, Olshausen et al., 1990). Specifically, the n data points are
represented as yq,¥2,...,¥n, With A = [a4,a,, ...a,] denoting the dictionary composed of m
atoms. The goal of sparse coding is to represent the i-th data point as y; ~ Ax;, where x; is a
sparse vector, meaning most of its entries are zero. Various techniques are used to promote
sparsity (Foucart et al., 2013, Micchelli et al., 2013). In this paper, we employ a local sparse
coding approach first proposed in (Tasissa et al., 2023) In this approach, beyond regular
sparsity, the representation also aims to utilize nearby atoms. In addition, entries of the sparse
vectors are non-negative and sum to 1 and can be equivalently modeled as probabilities. Once
sparse coding is completed, the resulting sparse representations can be used for downstream
tasks. The main contribution of this paper is a plant disease identification algorithm based on
this local sparse coding approach. The core idea is to use sparse coding on the data or
extracted features to obtain sparse representations of the data points. To classify a test plant as
healthy or diseased, we first compute its sparse representation and then compare it to the
sparse representations of labeled plants from different classes using the cosine similarity metric.
Given two vectors x and y the cosine similarity between the two vectors is defined as

, sim(x,y) = m (1)

where x « y indicates the dot product of two vectors and || || denotes the length of a vector.
Local sparse coding

Given n data points represented as y,, y,, ..., Y, With A = [a4, a,, ... a;,] denoting the dictionary,
sparse coding seeks to obtain sparse representations x;, x5, ..., x, such that y; = Ax;. Here on,
we assume the data points lie in R. Hence, 4 € R¥™ and x; € R™. In the typical setting,
sparse coding solves the following problem to estimate x; € R (Lee et al., 2006):

y (2)

min - [lAx; =il + Ax

where ||z ||, = [Y;z? denotes the £, norm of a vector and ||z ||; = X;|z;| denotes the ¢,
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norm of a vector. The parameter 1 is a regularization parameter that balances reconstruction of
the data point y; using the dictionary A with the sparsity level of x;. The ¢; regularization is one
choice to promote sparsity of x;. There are also regularizers designed to promote structured
sparsity (Elhamifar et al., 2011, Huang et al., 2009). In this paper, we adopt the local sparse
coding approach in (Tasissa et al., 2023). We briefly highlight the differences of this approach in
contrast to the standard ¢, regularized problem. First, each x; € R” has non-negative entries
that sum to 1. From here on, the set S represents the set of vectors in R with non-negative
entries and that sum to 1. Second, in representing a data point y; using the dictionary 4, we
seek sparse representations that put more weights on nearby atoms. More concretely, local
sparse coding solves the following optimization problem to estimate x; € R":

m

2
;rllggl ||Axi—}’i||z+Azj:1(xi)j||yl'_aj||2’ ©

where (x;); indicates the j-th entry of x;. We contrast the optimization problem in (2) with (3).
We note that the second term in (3) is a proximity regularization that promotes representation of
yi using nearby atoms i.e., for suitably set regularization, if y; is relatively far from a;, (x;); will
be relatively small. We note that the set S is a convex set and the objective of the optimization
program in (3) is also convex. This implies that (3) is a convex optimization program, for which
efficient algorithms exist to obtain the optimal sparse representations. In this paper, we use the
algorithm in (Tasissa et al., 2023) which is based on algorithm unrolling (Monga et al., 2021). In
our framework, it is assumed that the dictionary A is fixed. With that, the sparse representations
X1, X2, ..., X, Can be computed independently.

Proposed Classification Algorithm

We assume that there are n training data points that belong to k distinct different classes. The
image classification problem is to identify the class an unlabeled testing image belongs to. Here
onY = [y1,y2 -.Yn] denotes the matrix of the training data. The test data is denoted by y_test.
In (Wright et al., 2008), a sparse coding approach for classification was proposed. The first step
of the algorithm is to do sparse coding for each data point as follows:

min ||xl~||1 subject to ||Ax; — yl-||2 <e (3)

where € models the level of noise in the image y;. In (Wright et al., 2008), the dictionary A is
assumed to be the training data matrix Y. To identify to which of the k classes a test data point
belongs to, the work in (Wright et al., 2008) makes use of the following characteristic function.
For each class i, define §;: R™ — R™ as the function that selects the entries corresponding to
class i. Formally, given a vector x € R™,[5;(x)]; = x; if y; is in class i and 0 otherwise. With
that, a test data point is classified as follows:

F”'gmin ||A5i (Xtest) — Veestl |2 (4)

i€[1,2,...k]
For our proposed method, to design an efficient sparse coding framework, the dictionary is not
set to be all the training data points. Rather, it is based on m-centroids obtained from the K-
means algorithm (Arthur et al., 2007, Lloyd, 1982). Given that, the atoms of dictionary are not
directly associated to any training data. Therefore, we use cosine similarity metric, defined in
(1), between the sparse representations of training and testing data to do classification. We
compute the average cosine similarity between a testing data point and the training data points
in a given class i as follows:

. 1 .
SiMgyg,i = n_ 2 SLm(xj,xtest),
t yj€classi

where n; is the number of training data points in class i. The testing data point is assigned to the
class with the highest average cosine similarity:
identity (Veese) = argmaxieq 2,... k3 SiMayg,i-
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If training and testing data points in the same class are generated by the same set of dictionary
atoms with similar sparse codes, then the cosine similarity between the testing data points and
these training data points should be high and close to 1. On the other hand, if the set of
dictionary atoms used by training and testing data points in different classes use different sets of
dictionary atoms, then the corresponding cosine similarity should be low and close to 0. In this
way, we get a reliable label assignment for the testing data. We note that computing and
comparing all the relevant cosine similarities with our local sparse codes can be done efficiently.

Results

In this section, we apply our proposed classification algorithm for plant disease identification
using the PlantVillage dataset (Hughes et al., 2015, Mohanty et al., 2016), which consists of
54,305 images of crop leaves. This dataset includes 14 crop species and 38 classes of healthy
or infected leaves. For our experiments, we use only the apple leaves, categorized into four
classes: leaves with apple scab, leaves with black rot, leaves with cedar-apple rust, and healthy
leaves. There are over 3,000 data points across these four classes, with the number of images
per class ranging from 275 to 1,645.

The original data consists of 256-by-256 pixels RGB images. We use two methods to process
the data for input into our algorithm. The first method is converting the RGB images to grayscale
images and downsampling them to 15-by-15 pixels. The second method uses transfer learning
(Zhuang et al., 2020). In this approach, we input the RGB images to the VGG16 network
(Simonyan et al., 2015) and use the last fully connected layer with 4096 channels as the
features of the images. The network is pretrained by ImageNet (Deng et al., 2009).

For both data pre-processing methods, we compare our algorithm with two baseline algorithms.
Our algorithm uses the input data and applies local sparse coding to generate the sparse
representations. In the end, it employs cosine similarity to classify the images. The first baseline
algorithm classifies the images directly using cosine similarity on the input data. The second
baseline algorithm first applies K-means clustering with the number of clusters equal to the
number of classes. The sparse code for the data is based on the cluster that each data point
gets. For example, if the data point i is assigned to the second cluster, then the sparse
representation of it is a sparse vector where the only non-zero entry is a 1 in the second entry.
With the sparse representation obtained in this manner, cosine similarity is again used for
classification. In each experiment, half of the data is randomly chosen for training, while the
remaining half is used for testing. We repeat the experiment five times and report the average
results. The code to reproduce our numerical experiments can be found at this link.

Table 1: Average classification accuracy and standard deviation of 3 algorithms. For local
sparse coding, the number of dictionary atoms is set to be 400. Methods with the highest
average accuracy are in bold.

Methods Direct Downsampling | VGG16 features
Local Sparse Coding 0.572 +0.011 0.876 + 0.013
Raw Data 0.295 + 0.018 0.744 £ 0.008
K-means Sparse Coding 0.256 + 0.056 0.862 + 0.015

Results are summarized in Table 1. When downsampling is used to process the data, local
sparse coding obtains a 57.2% accuracy, significantly outperforming the baseline algorithm on
the same data. When VGG16 features are used as the input, accuracy increases for all three
methods. However, local sparse coding still outperforms the two baseline algorithms with an
accuracy of 87.6%.

Conclusion or Summary

In this paper, we explored the application of local sparse coding for plant disease identification.
Our proposed method efficiently obtains sparse features from input data, and classification is
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https://github.com/TigeeerL/Local-Sparse-Coding-Leaf-Disease-Identification

subsequently performed using average cosine similarity. Preliminary experiments on the
PlantVillage dataset show the method yields competitive results. Future work will test the
proposed method on extensive datasets.
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