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Abstract. The implicit trace estimation problem asks for an approximation of the trace of a
square matrix, accessed via matrix-vector products (matvecs). This paper designs new randomized
algorithms, XTRACE and XNYSTRACE, for the trace estimation problem by exploiting both variance
reduction and the exchangeability principle. For a fixed budget of matvecs, numerical experiments
show that the new methods can achieve errors that are orders of magnitude smaller than existing al-
gorithms, such as the Girard—Hutchinson estimator or the Hutch++ estimator. A theoretical analysis
confirms the benefits by offering a precise description of the performance of these algorithms as a
function of the spectrum of the input matrix. The paper also develops an exchangeable estimator,
XDiag, for approximating the diagonal of a square matrix using matvecs.
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1. Introduction. Over the past three decades, researchers have developed ran-
domized algorithms for linear algebra problems such as trace estimation [14, 19, 26],
low-rank approximation [15], and overdetermined least squares [3, 30]. Many of these
algorithms collect information by judicious random sampling of the problem data.
As a consequence, we can design better algorithms using techniques from the theory
of statistical estimation, such as variance reduction and the exchangeability princi-
ple. This paper explores how the exchangeability principle leads to faster randomized
algorithms for trace estimation.

Suppose that we wish to compute a quantity Q(A) associated with a matrix A.
A typical randomized algorithm might proceed as follows:

1. Collect information about the matrix A by computing matrix-vector prod-
ucts Awr, ..., Awy with random test vectors wn,...,wy.
2. Form an estimate of Q(A) from the samples Awq,..., Awy.
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The question arises: Given the data Awnq,..., Awy, what is an optimal estimator for
Q(A)? One property an optimal estimator must obey is the exchangeability principle:

Exchangeability principle: If the test vectors wy,...,wy are exchangeable, the
minimum-variance unbiased estimator for Q(A) is always a symmetric function
of wi,...,wg.

“Exchangeability” means that the family (wi,...,wy) has the same distribution as
the permuted family (wy(1),...,wqx)) for every permutation o in the symmetric
group Sg. In particular, an independent and identically distributed (i.i.d.) family is
exchangeable.

The implication of the exchangeability principle is that our estimators should be
symmetric functions of the samples whenever possible. This idea is attributed to
Halmos [16], and it plays a central role in the theory of U-statistics [21].

This paper will demonstrate that the exchangeability principle can lead to new
randomized algorithms for linear algebra problems. As a case study, we will explore
the problem of implicit trace estimation:

Implicit trace estimation problem: Given access to a square matrix A via
the matrix-vector product (matvec) operation w — Aw, estimate the trace of A.

Trace estimation plays a role in a wide range of areas, including computational sta-
tistics, statistical mechanics, and network analysis. See the survey [35] for more
applications.

As we will see, it is natural to design randomized algorithms for trace estimation
that use matvecs between the input matrix and random test vectors. At present,
the state-of-the-art trace estimators do not satisfy the exchangeability principle. By
pursuing this insight, we will develop better trace estimators. Given a fixed budget
of matvecs, the new algorithms can reduce the variance of the trace estimate by
several orders of magnitude. This case study highlights the importance of enforcing
exchangeability in the design of randomized algorithms.

1.1. Stochastic trace estimators. In this section, we outline the classic ap-
proach to randomized trace estimation based on Monte Carlo approximation. Then
we introduce a more modern approach that incorporates a variance reduction strategy.

1.1.1. The Girard—Hutchinson estimator. The first randomized algorithm
for trace estimation was proposed by Girard [14] and extended by Hutchinson [19].

Let A € RV*YN be a square input matrix. Consider an isotropic random vector
weRN:

(1.1) Elww*]=1.
For example, we may take a random sign vector w ~ UNIFORM{=£1}". By isotropy,
Elw*(Aw)] =trA.

The symbol * denotes the transpose. This relation suggests a Monte Carlo method.
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Accordingly, the Girard—Hutchinson trace estimator takes the form

~ 1
1.2 t =— T(Aw,; here the w; i.i.d. ies of w.
(1.2) TGH = sz( w;), where the w; are i.i.d. copies of w

This estimator is exchangeable, and it is unbiased: IE[t/fGH] =trA. We can measure
the quality of the estimator using the variance, Var [trgn|. The variance depends on
the matrix A and the distribution of w, but it converges to zero at the Monte Carlo
rate ©(m~!) as we increase the number m of samples. See the survey [25, sect. 4] for
more discussion.

1.1.2. The HutcH++ estimator. To improve on the Girard-Hutchinson esti-
mator, several papers [12, 23, 26, 31] have advocated variance reduction techniques.
The key idea is to form a low-rank approximation of the input matrix. We can com-
pute the trace of the approximation exactly (as a control variate), so we only need to
estimate the trace of the residual. This approach can attain lower variance than the
Monte Carlo method.

The HuTCH++ estimator of Meyer, Musco, Musco, and Woodruff [26] crystallizes
the variance reduction strategy. Let A € RV*YN be a square input matrix. Given a
fixed budget of m matvecs, with m divisible by 3, HUTCH++ proceeds as follows:

1. Sample i.i.d. isotropic vectors wi,...,Wap /3 € RY asin (1.1).
2. Sketch Y = A [wm/3+1 Wi /342 " me/:;].

3. Orthonormalize Q = orth(Y).

4. Output the estimate

m/3

(13)  frnes = tr(Q"(AQ)) + — 7 i1 Q)AL - QQ")w).

See Algorithm 1.1 for efficient HUTCH++ pseudocode.

To appreciate how HUTCH++ takes advantage of low-rank approximation, we first
observe that A = QQ"A is a low-rank approximation of the matrix A. Indeed,
the matrix A coincides with the randomized SVD [15] formed from the test matrix
[Wi/341 o+ Wapys|. HUTCH++ computes the trace of the low-rank approximation:

trA=1tr(QQ*A) =tr(Q*AQ).

Afterward, HuTCH++ applies the Girard—Hutchinson estimator to estimate the trace
of the residual

tr(A—A) =tr((I-QQ")A) =tr((I- QQ")AI - QQ")).

Algorithm 1.1 HuTCH++ [26].

Input: Matrix A € RV*N and number m of matvecs, where m is divisible by 3
Output: Trace estimate fratrA

1: Draw i.i.d. isotropic wi,...,Waom /3 € RY > For example, w; ~ UNIFORM{+1}*
2: Y < Alwyz11 oo wgm/g,] > Use matvecs
3: Q <« orth(Y)

4 G w0 W] - QQwr o wiys]

5: tr+tr(Q*(AQ)) + (m/3)"'tr(G*(AG)) > Use matvecs

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/29/24 to 5.198.139.106 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4 E. N. EPPERLY, J. A. TROPP, AND R. J. WEBBER

Like the Girard—Hutchinson trace estimator, the HUTCH++ estimator is unbiased. In
contrast to the ©(m 1) variance of Girard-Hutchinson, the variance of HUTCH++ is no
greater than O(m~2). In practice, the reduction in variance is conspicuous. However,
the HuTCH++ estimator violates the exchangeability principle, so we recognize an
opportunity to design a better algorithm.

1.2. New exchangeable trace estimators. The HUTCH++ estimator is not
exchangeable because it uses some test vectors to perform low-rank approximation,
while it uses other test vectors to estimate the trace of the residual. Although it
might seem natural to symmetrize HUTCH++ over all splits of the test vectors, this
approach is computationally infeasible due the combinatorial explosion in the number
(23//33) > 2™/3 of assignments of 2m/3 test vectors to two groups of m/3.

To circumvent this obstacle, we develop a new family of exchangeable trace esti-
mators that use an unbalanced splitting of m/2 — 1 test vectors for low-rank approx-
imation and just one test vector for residual trace estimation. By symmetrizing this
unbalanced estimator, we effectively use all of the test vectors for low-rank approxi-
mation and for estimating the trace of the residual. To make this efficient, we use a
leave-one-out technique that can be implemented at the same computational cost as
Hurcu++. This innovation can reduce the variance by several orders of magnitude.

1.2.1. The XTRACE estimator. Our first method, called XTRACE, is an ex-
changeable trace estimator designed for general square matrices. It computes a family
of variance-reduced trace estimators. Each estimator uses all but one test vector to
form a low-rank approximation, and it uses the remaining test vector to estimate the
trace of the residual. XTRACE then averages the basic estimators together to obtain
an exchangeable trace estimator.

Let us give a more detailed description. Fix a square input matrix A €
The parameter m is the number of matvecs, where m is an even number. Draw an
iLid. family wy,..., w2 € RY of isotropic test vectors, and define the test matrix

RNXN

Q:[wl Wy W3 ... wm/g].
Construct the orthonormal matrices
(1.4) Q) =orth(AQ_;) foreachi=1,...,m/2,

where _; is the test matrix with the ¢th column removed. Compute the basic trace
estimators

(1.5) tri == tr(Q( (AQy))) + wi (1- Q1 Q) (A1 - Q1) Q[y))w:)

fori=1,...,m/2. The XTRACE estimator averages these basic estimators:
1 m/2
1.6 trx = ——= Y fr;.
o “np

The XTRACE method gives an unbiased, exchangeable estimate for the trace. Theo-
rem 1.1 provides a detailed a priori bound for the variance. We can also obtain an a
posteriori estimate for the error via the formula

m/2

1 i o 2
(72 (g2 1) 2 (i — )%

—~2
erry =
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Algorithm 1.2 XTRACE: Naive version. (Efficient version in supplement.)

Input: Matrix A € RV*Y and number m of matvecs, where m is even
Output: Trace estimate tr ~ trA and error estimate érr = |tr — trA|

1: Draw i.i.d. isotropic wi,...,wp /2 € RN > See subsection 2.3
2: Y+ Alwr - wpy) > Matvecs
3: for i=1,2,3,...,m/2 do

4: Q(i) +—orth(Y _;) > Remove ith column of Y
5: tr; tr(QE‘i)(AQ(i))) +wi(I- Q(i)Q’{i)) (A(T- Q(i)QZ‘i)))wi > Matvecs
6: end for

Tt (m/2) L S

8: ati”  ((m/2)(m/2 — 1))~ L IE (fr; — fr)?

Subsection 3.1 contains further discussion of the error estimate. See Algorithm 1.2
for a naive implementation of XTRACE.

While it may not seem obvious from (1.4)-(1.6), XTRACE requires exactly m
matvecs with the input matrix A. Indeed, as we detail in subsection 2.1, all the
information needed to form the XTRACE estimator can be collected in two batches
of matvecs. First, compute Y := A2, where 2 := [wl wm/g]. Next, orthonor-
malize the columns of Y to obtain @ :=orth(Y"). In a second round of matvecs, we
compute AQ. With careful attention to the linear algebra, we can use AQ2 and AQ to
form the X TRACE estimator at the same O(m?N) cost as computing a single estimator
(1.5); see subsection 2.1 and section SM3 of the supplementary material for details.

1.2.2. The XNvYsTRACE estimator. Our second method, called XNYSTRACE,
is an exchangeable trace estimator designed for positive-semidefinite (psd) matrices.
Rather than using a randomized SVD to reduce the variance, this estimator uses a
Nystrom approximation [25, sect. 14] of the psd matrix A € RV*¥. The Nystrom
approximation takes the form

(1.7) A(X):=AX(X*AX)(AX)* for a test matrix X € RVN*¥,

The Nystrom method requires only k£ matvecs to compute a rank-k approximation,
while the randomized SVD requires 2k matvecs.
Let us summarize the XNYSTRACE method. Draw i.i.d. isotropic test vectors

Wi, .. ,Wm, and form the test matrix 2 = [wl wm}. The basic estimators take
the form
(1.8) tr = trA(Q_) +wi ((A— A(Q_))w,;) fori=1,...,m.

As usual, ©_; denotes the test matrix with the ith column removed. To obtain the
XNYSTRACE estimator and an error estimate, we use the formulas

m m

(1.9) trxN 1= % i_zltri and errxy 1= ﬁ i_zl(tri — trXN)Q-
The XNYSTRACE estimator is unbiased and exchangeable. Theorem 1.1 provides a
bound for the variance. See Algorithm 1.3 for naive XNYSTRACE pseudocode and
subsection 2.2 for a more efficient approach.

The recent paper [28] describes an estimator called NYSTROM++ that uses a
Nystrom approximation to perform reduced-variance trace estimation. NYSTROM++
violates the exchangeability principle, while XNYSTRACE repairs this weakness.
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Algorithm 1.3 XNYSTRACE: Naive version. (Efficient version in supplement.)

Input: Psd matrix A € RV*Y and number m of matvecs
Output: Trace estimate tr ~ trA and error estimate érr = |tr — trA|

1: Draw i.i.d. isotropic wi,...,wm € RY > See subsection 2.3
2 Qe [wr ... wp

3:Y + AQ > Matvecs
4: for i1 =1,2,3,...,m do

5 A Y (9, Y_ )Y, > Remove ith column of Y and €2
6: fr; « trA; + wi((A- fL)wi) > Matvecs
7: end for

8 tre-m 1Y

9: GFi*  (m(m — 1)) Y (it — )

1 OO T T T T T
0090000000000 0
-
Qo
= -5
Z 1071 —e— Hutch
g Hutch++
= —— XTrace
% —A—XNysTrace
&
5 10710}
g
=
[: )

0 50 100 150 200 250 300
Matrix—vector products m

FiG. 1. Exploiting spectral decay. Average error of trace estimators applied to a (synthetic)
psd matriz with exponentially decreasing eigenvalues. See subsection 1.3.1.

1.2.3. Stochastic diagonal estimators. As an extension of XTRACE, we also
propose the XDIAG algorithm for estimating the diagonal of an implicitly defined
matrix. We will discuss this approach in subsection 2.4.

1.3. Numerical experiments. To highlight the advantages of the XTRACE
and XNYSTRACE estimators, we present some motivating numerical experiments.
Section 4 contains further numerical work.

1.3.1. Exploiting spectral decay. Our first experiment uses a synthetic input
matrix to illustrate how the exchangeable estimators wring more information out of
the samples.

We apply several trace estimators to a psd matrix with exponentially decreasing
eigenvalues; see subsection 4.1 for the details of the matrix. Figure 1 reports the
average error over 1000 trials. The Girard—Hutchinson estimator (HUTCH) converges
at the Monte Carlo rate, whereas the newer estimators all converge much faster. This
improvement comes from variance reduction techniques that exploit the spectral de-
cay. Observe that XTRACE and XNYSTRACE converge exponentially fast at 1.5x
and 3x the rate of HUTCH++ until reaching machine precision. For a fixed budget
of m matvecs, XTRACE and XNYSTRACE can reduce the error by several orders of
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magnitude compared to HUTCH++. Strikingly, the reduction in variance from enforc-
ing exchangeability is almost as significant as the reduction in variance from using a
low-rank approximation as a control variate.

1.3.2. Computing partition functions. Our second experiment shows how
the advantages of using exchangeable estimators persist in a scientific application.

We apply several trace estimators to compute the partition function for a quantum
system

2(8) :=trexp(~BH),

where H is a symmetric Hamiltonian matrix and 8 > 0 is an inverse temperature.
Specifically, we consider the Hamiltonian matrix H for the tranverse-field Ising model
on 18 sites, which has dimension N = 2!® =262144. See subsection 4.3 for details on
the matrix H and the partition function Z(8). To evaluate matvecs with exp(—SH),
we use the code of Higham [18] that implements an adaptive polynomial approxi-
mation [2]. For this problem, each matvec is expensive, occupying over 98% of the
total computation time for XTRACE with m = 100. Thus, the cost of all the trace
estimators is dominated by the computational cost of the matvecs.

Figure 2 reports the mean estimation error over 100 trials. With just m = 10
matvecs, all the variance-reduced methods achieve errors that are five orders of mag-
nitude smaller than the Girard—Hutchinson estimator. Furthermore, XTRACE and
XNYSTRACE converge more quickly than HUTCH++ as we increase the number of
matvecs. For example, with m = 40 matvecs, XTRACE is 240X more accurate,
and XNyYsTRACE is 2400x more accurate. The disparate performance of the
three variance-reduced methods is a consequence of the eigenvalues of the matrix
exp(—pH), which drop sharply from eigenvalue 19 to 20: A19/A29 = 4600. Because
XNYSTRACE, XTRACE, and HUTCH++ use approximation ranks of roughly m, m/2,
and m/3, it takes these algorithms 20, 40, and 60 matvecs to capitalize on this eigen-
value drop, leading to the significant differences in performance between the methods.

1.4. Theoretical guarantees. To explain the excellent performance of the ex-
changeable estimators, we establish detailed theoretical guarantees. For theoretical
convenience, our analysis uses standard normal test vectors. As a consequence, we

10°
5 —&-Hutch
;: Hutch++
g —— XTrace
.% 108 —A-XNysTrace| |
S
bt
o
&
S
=1
10710
10’ 102

Matrix—vector products m

Fic. 2. Computing a partition function. Average error of trace estimators applied to the
partition function of the transverse-field Ising model. See subsection 1.3.2.
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can deliver explicit constants that allow us to make meaningful comparisons among
the methods.

THEOREM 1.1 (variance bounds). Let A € RN*N be a square matriz. Fiz
the number of matvecs: m > 8. The HuTCH++, XTRACE, and XNYSTRACE es-
timators are unbiased estimators of the trace. With standard normal test vectors
w ~NORMAL(O,1I), these estimators satisfy the variance bounds

(E|trpss — trA] )% < min <\/§A_[[A]]T”F>7

r<m/3-2 vm/3—r—1

3 , 1A —[A]| 1A — [A]-l[r
Ejtrx —trA|")2 <+/ 2 2
( |rX 3 ‘) mr<r£}r21—4< m/2—r—3+ em/Q*T*?’ 7

3 1A — [A]-| 1A — [A]-l[r
(E|frxn — trA]?)? < m min (\f o r \[( T
A - [Al-]l+
5 2H s .
oe (m—r—"5)2
These formulas involve the Frobenius norm |||, the spectral norm |||, and the

trace/nuclear norm |-||,. The matriz [A], is a simultaneous best rank-r approxi-
mation of A in these norms.

In addition, for each of these three methods, it suffices to use m = O(n~'/?)
matvecs to achieve the variance bound

(1.10) Var|tr] :E“tAr —trAl’] <nl|A|2  forne(0,1).

The proof of Theorem 1.1 appears in section 5.

As the number m of matvecs increases, Theorem 1.1 ensures that the variance of
XTRACE, XNYSTRACE, and HUTCH++ decreases at a rate of O(1/m?). Therefore,
these algorithms are all superior to the Girard—Hutchinson estimator, whose variance
decreases at the Monte Carlo rate ©(1/m).

Theorem 1.1 also demonstrates the advantage of XTRACE and XNYSTRACE for
matrices whose singular values decay rapidly. This benefit is visible from the error
bounds because they allow for larger values r of the approximation rank. As an
example, consider a psd matrix A whose eigenvalues have exponential decay with
rate a € (0,1):

Ni(A)<ab fori=1,2,3,....
The errors of HuTcH++, XTRACE, and XNYSTRACE decay like

(E|trns s — trA]")* < C1(a) a2,
(]E‘tArX — trA|2)1/2 <VmCs(a) ™2,
(IE’tArXN — trA|2) 1/2 <mCs(a)a™.
For this class of matrix, XTRACE converges exponentially fast at 1.5x the rate of

HurcH++, and XNYSTRACE converges exponentially fast at 3x the rate of HUTCH++.
This is precisely the behavior we observe in Figure 1.
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1.5. Benefits. In summary, the XTRACE and XNYSTRACE estimators have
several desirable features as compared with previous approaches:

1. Higher accuracy: For a budget of m matvecs, XTRACE and XNYSTRACE
often yield errors that are orders of magnitude smaller than HUTCH++.

2. Efficient algorithms: We have designed implementations of XTRACE and
XNYSTRACE that only require m matvecs plus O(m?N) arithmetic opera-
tions, which is the same computational cost as HUTCH++.

3. Error estimation: We can equip the XTRACE and XNYSTRACE estimators
with reliable error estimates.

1.6. A brief history of stochastic trace estimation. Girard wrote the first
paper [14] on stochastic trace estimation, in which he proposed the estimator (1.2)
with test vectors drawn uniformly from a Euclidean sphere. His goal was to develop an
efficient way to perform generalized cross-validation for smoothing splines. Hutchinson
[19] suggested using random sign vectors instead: w ~ UNIFORM{£1}". See [25,
sect. 4] for further details.

In the last five years, researchers have developed far more efficient methods for
trace estimation by incorporating variance reduction techniques. In 2017, Saibaba,
Alexanderian, and Ipsen [31] proposed a biased estimator that outputs the trace of
a low-rank approximation as a surrogate for trA. Around the same time, Gambbhir,
Stathopoulos, and Orginos [12] proposed a hybrid estimator, similar to HUTCH++,
that outputs the trace of a low-rank approximation, trA, plus a Girard-Hutchinson
estimate for tr(A — A). The paper [23] of Lin contains a similar approach.

In 2021, Meyer et al. [26] distilled the ideas from [12, 23] to develop the HUTCH++
algorithm. They proved that HUTCH++ satisfies a worst-case variance bound of
O(1/m?). Meyer et al. also proposed a version of HUTCH++ that needs only a single
pass over the input matrix. The follow-up paper [20] sharpens the analysis of the
single-pass algorithm.

Persson, Cortinovis, and Kressner [28] have introduced several refinements to
the HUTCH++ estimator. Their first improvement adaptively apportions test vectors
between approximating the matrix and estimating the trace of the residual in order
to meet an error tolerance. Their second contribution is NYSTROM++, a version of
HurcH++ for psd matrices that uses Nystrom approximation.

XTRACE and XNYSTRACE build on the previous strategies of variance reduction
using low-rank approximation. However, XTRACE and XNYSTRACE take a step
forward by also enforcing the exchangeability principle. These algorithms push the
ideas of HUTCH++ and NYSTROM++ to their limit by using all the test vectors for
low-rank approximation and all the test vectors for residual trace estimation.

To conclude, let us mention two techniques designed for computing the trace of
a standard matrix function (that is, trf(A)). First, stochastic Lanczos quadrature
[34] approximates the spectral density of A, from which estimates of trf(A) for any
function f(-) are immediately accessible. See [8] for a recent overview of stochastic
Lanczos quadrature and related ideas. As a second approach, when the matvecs
wr f(A)w are computed using a Krylov subspace method [17, sect. 13.2], the paper
[7] recommends reuse of the matvecs from the Krylov subspace method for the purpose
of trace estimation.

1.7. Reproducible research. Optimized MATLAB R2022b implementations

of our algorithms as well as code to reproduce the experiments in this paper can be
found online at https://github.com/eepperly /X Trace.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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1.8. Outline. The remainder of the paper is organized as follows. Section 2
describes efficient implementations for XTRACE, XNYSTRACE, and the diagonal es-
timator XDIAG. Section 3 discusses error estimation and adaptive stopping, section
4 presents numerical experiments, and section 5 proves our theoretical results.

1.9. Notation. Matrices and vectors are denoted by capital and lowercase bold
letters. The i¢th column of B is expressed as b;, and the (4, j)th entry of B is b;;. For
a matrix B, we form a matrix B_; by deleting the ith column from B. Similarly,
we form B_;; by deleting the 7th and jth columns. We work with the spectral
norm ||-||, the Frobenius norm ||-||, and the trace/nuclear norm |[-||,. The symbol
[B], denotes a (simultaneous) best rank-r approximation of B with respect to any
unitarily invariant norm.

2. Efficient implementation of exchangeable trace estimators. This sec-
tion works through some issues that arise in the implementation of the XTRACE and
XNYSTRACE estimators. Subsections 2.1 and 2.2 show how to implement the new
estimators efficiently using insights from numerical linear algebra. Subsection 2.3
discusses a method of renormalizing the test vectors that improves the accuracy of
XTRACE and XNYSTRACE. Subsection 2.4 develops the XDIAG estimator.

2.1. Computing XTRACE. In this section, we develop an efficient implementa-
tion of the X TRACE estimator from subsection 1.2.1. Recall that A € RV*¥ is a, gen-
eral square matrix. We introduce the test matrix Q = [wl wm/z] e RVx(m/2),

First, we form the matrix product A2 and compute the orthogonal decomposition
AQ =QR. Following [10, App. A.2], we make the critical observation that the basis
matrix Q(i) = orth(A€_;) is related to the full basis matrix @ by a rank-one update:

(2.1) Q= Q(I-s;s7)Q", where R’ ;s,=0 and Isill,, =1.

Thus, the rank-one update requires a unit vector s; € RY in the null space of R* .
Let us exhibit an efficient algorithm that simultaneously computes all the vectors

s; for 1 <i<m/2. We argue that the matrix S = [81 ... S.m/g} can be represented
as
(2.2) S=(R*)"'D,

where the diagonal matrix D rescales the columns of S to have unit norm. Indeed,
since R*S = D is diagonal, the ith column of R* ;S is the zero vector. We reach the
desired conclusion R* ;s; =0.

In summary, given the full basis @, we can use (2.2) to compute all the vectors
s; needed to construct the orthogonal projectors Q(i)QZ‘i) for 1 <14 < m/2 appear-
ing in (2.1). This calculation requires just O(m?) operations, which is dominated
by the cost of solving m/2 triangular linear systems. It follows that the XTRACE
estimator can be computed in just O(m?2N) operations, which is the same asymptotic
cost as HuTcH++. For full details, see the efficient MATLAB implementation in the
supplementary materials Program SM4.1.

2.2. Computing XNvysTrRAcCE. We can design a similar method to compute
the XNYSTRACE estimator (1.9) efficiently. Let A € RV*YN be a psd matrix, and
define the test matrix € = [wl wm].

As before, we compute the orthogonal decomposition A2 = QR. We can express
the Nystrom approximation (1.7) in the form

A(Q)=QRH'R'Q",

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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where H = Q" AQ. After deleting the ith column from €, the resulting Nystrom
approximation satisfies

(2:3) A{Q-)=QR_,H_, R ,Q",

where H ;) is H on deletion of its ith row and column. To compute A (€2_;) efficiently,
we recognize that (2.3) can be expressed as a rank-one update:

H 'ee;H™!

Ly — -1 —
(2.4) AQ_)=QR <H oH e

Taking advantage of the rank-one update formula (2.4), we can form the XNYSTRACE
estimator using just m matvecs and O(m?2N) postprocessing operations. An efficient
MATLAB implementation appears in the supplementary materials Program SM4.2,
which incorporates several additional methods from [22, 33| to improve its numerical
stability.

2.3. Normalization of test vectors. For the best general performance of
XTRACE and XNYSTRACE, we recommend a modification of the basic XTRACE and
XNYSTRACE procedure in which the test vectors are orthogonalized against the low-
rank approximation Q(i)Q’(ki)A or A(Q2_;) and renormalized. This renormalization
strategy proceeds as follows: First, we draw the test vectors from a spherically sym-
metric distribution, such as w ~ NORMAL(0,I). We use these test vectors to form
the matrix Q ;) or the Nystrom approximation A(Q_;). Second, when computing the
basic trace estimates, we normalize the test vectors. In XTRACE, we compute

pi=1-QHQf))wi and v;:= N_rank(Q“))'H:\i\ '
i1y

To obtain the ith trace estimate, we form
tr, =tr(Q(,(AQ(;))) + v (Av,).

For XNYSTRACE, we set

Py :=orthQj, p;:= (1= Py Pfy))wi, and v, = N*rank(P(“)'ﬁ'
Hille,

Then we define the basic trace estimates
tr = trA(Q_,) + v} (Av,).

The normalization removes a source of variance related to the random lengths of the
vectors p,, improving the accuracy compared to unnormalized Gaussian test vectors
or uniform random vectors on the sphere. We compare this normalization approach
against alternative distributions for test vectors in subsection 4.2.

2.4. Diagonal estimation. In the spirit of Girard and Hutchinson, the paper
[5] of Bekas, Kokiopoulou, and Saad (BKS) develops an estimator for the diagonal of
an implicit matrix:

Do wi O (Aw;)

2.5 diagp,q = ==L
( ) ZBKS qu:l w; o W,

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Here, ® denotes the entrywise product, and the division is performed entrywise. The
recent paper [4] proposes a biased estimator for the diagonal, called D1AG++, that is
inspired by BKS and HuTCH++.

We have observed that the exchangeability principle leads to an unbiased diagonal
estimator with lower variance. Our diagonal estimator, XDIAG, takes the form

diagy = ma Z diag(Q;)(Q(»A)) + ( o (@)w( ) ’
i1 1 3

where Q ;) is defined in (1.4). In contrast to XTRACE, the XDIAG estimator requires
matvecs with A™ in addition to matvecs with A. The same ideas from subsection 2.1
allow us to implement XDIAG in O(m?2N) operations; an implementation is provided
in the supplementary materials (Program SM4.3).

3. Error estimation and adaptive stopping. Our exchangeable estimators
depend on averaging over a family of basic estimators, and we can reuse the basic
estimators to compute a reliable posterior approximation for the error (subsection
3.1). The error estimate allows us to develop adaptive methods for selecting the
number m of matvecs to achieve a specified error tolerance (subsection 3.2). These
refinements are very important for practical implementations.

3.1. Error estimation. The XTRACE and XNYSTRACE estimators are both
formed as averages of individual trace estimates try,...,tr,, where
il * * * * m

2
try =tr(AQ_)) + wi(A— A(Q_))w (:=m (XNYSTRACE).

79

The scaled variance of the individual trace estimates tr; provides a useful estimate for
the squared error in the trace estimate:

1 L o ~ 2 O
3.1 ot = ——— ) | — ] & |tr(A) — |7, wh tr==- .
(3.1) err €<£_1>;|r r|” &~ |tr(A) — tr| where tr E;r

The next result contains an analysis of this posterior error estimator.

PROPOSITION 3.1 (error estimate). The error estimate (3.1) satisfies

1-— COI‘(G‘l,E}Q)
1+ (¢ —1)Cor(fry, tro)

Eeri? = B |tr(A) — &)

We have written Cor(-,-) for the correlation of two random variables.

The proof and some additional discussion of the correlation Cor(tArl,tAr2) appear
in subsection 5.6. In practice, we find that the individual trace estimators have a
small positive correlation, so we typically underestimate the true error by a small
amount. Thus, the posterior error estimate is a valuable but imperfect tool. For an
illustration, see Figure 5(a) in subsection 4.3.

3.2. Adaptive stopping. In practice, we often wish to choose the number m
of matvecs adaptively to estimate trA up to a prescribed accuracy level:

|tr(A) —fr|<e-[trA| for e € (0,1).

One simple way to achieve this tolerance is through a doubling strategy:

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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. To initialize, collect my matvecs Awq,.. Awmo, and set j < 0.

. Use Awl, Awm to form a trace estimate tr 7) and an error estimate &'’

e <e. |tr | then stop.

. Collect m; additional matvecs Aw.y,; 11, -, AWap,. Set j < j+1 and m; <
2m;_1. Go to step 2.

The doubling strategy requires at most twice the optimal number of matvecs to meet

the tolerance and maintains the O(m?N) computational cost of XTRACE and XNYs-

TRACE. We implement this approach in our experiments to produce Figure 5(b).

W N

4. Numerical experiments. This section presents a numerical evaluation of
XTRACE, XNYSTRACE, and XDIAG. Subsection 4.1 compares different trace esti-
mators on synthetic matrices, subsection 4.2 evaluates XNYSTRACE with different
distributions for the test vectors, subsection 4.3 applies XTRACE and XNYSTRACE
to computations in quantum statistical physics, and subsection 4.4 applies XDIAG to
computations in network science. Throughout this section, we compare different trace
estimators based on the error they achieve for a given budget of matvecs; experiments
comparing the runtime of different trace estimators is provided in section SM2. Code
to reproduce the experiments can be found at https://github.com/eepperly /X Trace.

4.1. Comparison of trace estimators. The first experiment is designed to
compare the accuracy of six trace estimators that each use m matvecs:

e HurcH: Girard-Hutchinson estimator (1.2).

e LRA: Saibaba, Alexanderian, and Ipsen estimator [31] (without additional
subspace iteration). This estimator is defined to be the trace trA of the low-
rank approximation A = QQ* A furnished by the randomized SVD. Here,
Q =orth(AQ).

e HuUTCH++ estimator (1.3).

e NYSTROM++ estimator [28]. We use the implementation provided by the
authors of [28], modified to use the test vector w ~ UNIFORM{%1}V.

e XTRACE estimator (1.6).

e XNYSTRACE estimator (1.9).

To create a fair comparison, we apply all six estimators using a test matrix whose en-
tries are uniformly random signs: € ~ UNIFORM{£1}V** as was used in HUTCH++.
The additional benefit for XTRACE and XNYSTRACE of using normalized, spherically
symmetric test vectors is explored in subsection 4.2. The supplementary materials
(section SM1) contain additional comparisons with the adaptive HUTCH++ algorithm
of [28]; this comparison requires a more complicated experimental setup.

We apply each of these estimators to randomly generated matrices of the form

AA)=Udiag(\) U™,

where U is a Haar random orthogonal matrix. We use four choices for the
eigenvalues A:

o flat: A=(3-2(i—1)/(N—-1):i=1,2,...,N).
e poly: A=(i"2:i=1,2,...,N).

e exp: )\ (0.7¢: 2—0,1,...,N—1).

e step: A (1, ., 1,1073...,1073).

%,_/
50 times N — 50 times

We fix the matrix dimension N = 1000, and we report the relative error |tr(A) —
tr|/tr(A) averaged over 1000 trials.

Discussion. The variance-reduced trace estimators dramatically outperform
HuUTCH, except on the flat instance (Figure 3(a)). The implication is that HuTCH

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.


https://github.com/eepperly/XTrace

Downloaded 02/29/24 to 5.198.139.106 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

14 E. N. EPPERLY, J. A. TROPP, AND R. J. WEBBER

10 - L = 10
e Hutch
E 1071 -=-LRA E
B Hutch++ 5}
v Nystrom+-+ @
Z 42 —¢XTrace =
E; 10 —4-NysTrace E:
g = =1 g
= 10% s p=
Ny 77_‘
10 10°
0 50 100 150 200 250 300 0 50 100 150 200 250 300
m Matrix vector products m
(a) flat. (b) poly.
10° 10°
| R S S PP PP
ot 5 ot
(=] (=]
g 10° g
< <
o o
3 3
E E
= = s N
e 4.,*7£
10715 . 1075 ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Matrix vector products m Matrix vector products m
(c) exp. (d) step.

Fic. 3. Synthetic instances. Average relative error of trace estimators for matrices with par-
ticular spectral profiles using random sign test vectors. See subsection 4.1 and Figure 4.

only makes sense when estimating the trace of a matrix with a nearly flat spectrum.
For the flat instance, the performance of LRA is especially poor because LRA is a
biased estimator that substantially underestimates the trace.

Across all the instances, XTRACE produces smaller errors than HUTCH++, some-
times by orders of magnitude. For the exp instance (Figure 3(c)), the error of X TRACE
decays exponentially fast at a rate 1.5x faster than HuTCH++. The superiority of
XTRACE is also visible for the step instance (Figure 3(d)), where XTRACE achieves
accuracy 10™# with just m ~ 120 matvecs as compared to m ~ 160 for HUTCH++.

XNYSTRACE is frequently the most accurate of the trace estimation methods.
For the exp instance (Figure 3(c)), XNYSTRACE converges at a rate 2x faster than
XTRACE and NYSTROM++ and 3x faster than HuTcH++. However, XNYSTRACE
(and NYSTROM++ ) can exhibit poor performance for matrices that possess a long tail
of slowly decreasing eigenvalues (see the step instance in Figure 3(d)). To understand
this phenomenon, observe that the error bounds for XNYSTRACE depend on the
trace/nuclear norm, which is sensitive to slow eigenvalue decay (Theorem 1.1). We
can improve the performance by using the normalization approach of subsection 2.3,
as we detail in the next section.

4.2. Choice of test vectors. In subsection 2.3, we recommended an implemen-
tation of XTRACE and XNYSTRACE that uses rotationally invariant test vectors for
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k
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Fic. 4. Normalization of test vectors. The average relative error of the XTRACE estimator
using normalized test vectors (subsection 2.3) as compared with alternative (unnormalized) test
vector distributions. See subsection 4.2.

low-rank approximation and normalizes the distinguished test vector used for trace
estimation.

Figure 4 shows how this method can improve over estimators that lack the nor-
malization step. The figure compares the Girard—Hutchinson estimator, HUTCH++,
XTRACE with normalized test vectors, and XTRACE with test vectors from the
standard normal distribution w ~ NORMAL(0,I), the random sign distribution
w ~ UNIFORM{+1}¥ or the uniform distribution on the sphere w ~ UNIFORM{x €
RY : ||| &= V/N}. The differences between X TRACE test vectors are only visible for
matrices whose spectra have flat segments, as in the flat and step examples. For
these examples, the normalization strategy is conspicuously the best, followed by the
uniform sign and uniform sphere distributions, with the standard normal distribution
lagging well behind.

4.3. Application: Quantum statistical mechanics. Our next experiment
shows the benefits of using XTRACE and XNYSTRACE for an application in quantum
physics. To compute a phase diagram, we must evaluate a large number of trace
estimators. Our exchangeable estimators reduce the number of matvecs needed to
achieve a desired tolerance, and we can use the posterior error estimator to adaptively
determine the minimum number m of matvecs.
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The average energy of a quantum system with a symmetric Hamiltonian matrix
H e RVXN at inverse temperature 3> 0 is

EB)= %ﬁ)tr[H exp(—SH)], where Z(3)=trexp(—SH).

The quantity Z(3) is the partition function, introduced in subsection 1.3. We ob-
serve that tr[H exp(—GH)] and trexp(—SH) are ideal candidates for estimation us-
ing XTRACE and XNYSTRACE since the matrix exponential leads to rapidly decaying
eigenvalues.

We apply XTRACE and XNYSTRACE to compute the partition function and
energy for the transverse field Ising model (TFIM) for a periodic one-dimensional
chain [29], which is specified by the Hamiltonian matrix

(4.1) H=-)Y ZZiy—hY X;eR¥",
i=1 i=1

Here, X; and Z; denote Pauli operators acting on the ith site; that is,

xi=i Ve[l lent, z=ga Ve[l O]y,
and Z,, 11 = Z; by periodicity. The eigenvalues of H are known exactly [24, egs. (16)—
(17)], which allows us to precisely evaluate the error of stochastic estimates of Z(8) =
Z(B,h) and E(B) = E(S,h). Before applying stochastic trace estimation, we shift the
Hamiltonian matrix by a constant b= (1+ h)n so that H + bl is positive semidefinite.

Figure 5(a) shows the errors of HuTCH++, XTRACE, and XNYSTRACE when
computing the partition function Z(8,h) of the TFIM with n = 18, h = 10, and
B =0.6; this is the same setting as in Figure 2. (The Girard—Hutchinson estimator is
omitted because the error is four orders of magnitude larger than the other methods.)
The thick lines indicate the average errors over 10 trials, while the dashed lines (for
XTRrACE and XNYSTRACE) indicate the average error estimates introduced in sub-
section 3.1. We observe that the error estimates closely track the true errors, differing
by a factor of at most 3.2.

Figure 5(b) shows the average energy F(3,h)/n per site for parameters 8, h €
[1071,10], up to a relative error of 1073, We compute the energy by using XNys-
TRACE, together with the doubling strategy from subsection 3.2. To ensure the

-4
107 10'
b
5 0.3
5 10
g Hutch++ A
E —XTrace < 10°
£ 10°® —A-XNysTrace
E 3
S
=
10710
107 -10
-1 0 1
10' 102 " e N
B
Matrix—vector products m
(b)
(a)

Fi1G. 5. Quantum statistical mechanics. Left: Mean relative error (solid lines) and mean
postertor error estimates (dashed lines) when computing the partition function Z (B = 0.6,h = 10).
Right: Awverage energy E(B,h)/n per site for 8,h € [10~1,10'] as computed by XNyYSTRACE. See
subsection 4.3.
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robustness of the doubling strategy, we use a slightly stricter tolerance ¢ = 10~* than
our desired accuracy of 1073.

4.4. Application: Networks. One of the basic problems in network science
is to measure the centrality of each node in a graph. We focus on two centrality
measures, which can be defined in terms of the adjacency matrix M:

1. The number of triangles [1] incident on node i is given by A;(M) = 3(M?);.
2. The subgraph centrality [11] of node i is defined as SC; := (exp(M)).;.
Both centrality measures are the diagonal entries of functions of the adjacency matrix.

Using the BKS, DiaGg++, and XDIAG diagonal estimators, we estimate these
centrality measures for the protein-protein interaction network M € R2361x2361 fq;
budding yeast [6], available in the SuiteSparse collection [9]. (Following [4], DIAG++
is omitted for the triangle problem because M?/2 is not psd.) The matrix M?>/2 has
modest spectral decay (01/0100 = 40), and the matrix exp(M) has significant spectral
decay (01/0100 = 10°). We evaluate the quality of our estimates using the relative /o,
error

error((ia\g) = max <icn |aii — diag,|

maxi<i<nN |aii| ’

averaged over 1000 trials. Figure 6 shows the results. For the subgraph centrality
problem, after m = 200 matvecs, XDIAG is more accurate than BKS by five orders of
magnitude and more accurate than DIAG++ by three orders of magnitude.

5. Theoretical analysis. In this final section, we prove Theorem 1.1, which
provides refined error bounds for three trace estimators, and we prove Proposition
3.1, which describes the behavior of the posterior error estimator.

5.1. XTrRAcCE variance bound. To begin, let us establish an initial variance
bound for the XTRACE estimator. This result shows that the variance depends on
the error in a low-rank approximation of the input matrix. Later, we will bound these
errors using standard results for the randomized SVD.

PROPOSITION 5.1 (XTRACE error). Fiz A € RN*N and consider the XTRACE
estimator trx defined in (1.6) with a test matriz & = [wl wm/g] consisting of

100 Ml
8 g
£ ~e-BKS £ 10°
o Diag++ ;
E 1072 ——XDiag =
= = P
& =
4 =
510 g
S =
=t =
107
10°®
0 50 100 150 200 0 50 100 150 200
Matrix—vector products m Matrix—vector products m
(a) Subgraph centralities SC;(M). (b) Numbers of triangles A;(M).

Fic. 6. Networks. Mean error of BKS diagonal estimator and XDIAG for the subgraph cen-
tralities (left) and triangle numbers (right) for the yeast graph. See subsection 4.4.
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m/2 standard normal test vectors. The estimator is unbiased: Eirx =trA. Moreover,
the variance satisfies

~ ~ 2 " *
Varlfix] =Bt — tr Al < JZ5E] (T Q@) Allf +4E[[(T- Qs Qi) A

where Q ;) = orth(AR_;) and Q;;) = orth(AQ_;;).

Proof. For all indices 1 < i,5 < m/2, we abbreviate the orthogonal projectors
II; .= Q(i)QZ‘) and IT;; := Q(ij)Q?ij). Note that w; is independent from II;, while
(wi,wj) is independent from IL;;.

For each 1 <i <m/2, we can check that the basic estimator tr; defined in (1.5)
is unbiased. In fact, even more is true. Condition on _;, and average over w; to

arrive at the identity

E[ﬁ‘z ‘ Q—z] = E[tr(HiAHi) + wf (I - Hl)A(I - Hi)wi ’ Q_l]
—1II

(5:1) — E[tx(IL ATL) + tr((T - TL) A(L- 1)) | @] = trA.

The second equality uses the fact that each test vector w; is isotropic and independent
from II;, which is a function of £2_;. The third equality follows when we cycle the
traces and invoke the fact that the projector I — IT; is idempotent. We confirm that
tr; is unbiased by applying the tower property to take the total expectation of (5.1).
The full estimator tArX is unbiased because it averages the unbiased estimators tArz-.

To bound the variance, use the exchangeability of w1, ...,w,, > to compute
1L 1 1
Var[tArX] = Var m—/z ;t}z] = <m/2> Var[tArl] + <1 — m/2> Cov[ﬁrl,ﬁg] .
- A B

So Var [trx] is the weighted average of a variance term A and a covariance term B.
To evaluate the variance term A, condition on €_1, and average over w;. Thus,

/-\=Var[tAr1} zE[Var[tArl ’Q_lﬂ + Var [E [tArl ‘Q_l]]
= E[Var [tI‘(HTAHl) + WT(I - Hl)A(I — Hz)wl | Q_l]]
=E[Var[w}(I - ) A1 — I)w; |Q_,]] <2E[(I-IL)A(I-IL)|;.

The first relation is the chain rule for the variance. To reach the second line, invoke
the fact (5.1) that the conditional expectation is constant. To pass to the third line,
drop the trace, which is conditionally constant. The last relation follows from a direct
calculation using the facts that w; is standard normal and independent from II;.

To bound the covariance term B, we isolate the part of the covariance that only
depends on w; and ws. To do so, we observe that, for any (random) matrix X € RV*N
that is independent from w; and wo,

(5.2) E[(fr; —tr A+ tr X —wjXw,)(fra —tr A+ tr X — w3 Xw,)]
=E[(tr; —tr A+ tr X — wi Xw,) (tro — tr A)]
(5.4) :IE[(tArl —trA) (tArg —trA)] =Cov [tArl,tArg].

To pass to (5.3), we condition on £_; and average over wi, exploiting the fact (5.1)
that try is an unbiased estimator of tr A, conditional on ©_;. To reach (5.4), condition
on Q_5, and average over ws.
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To continue, select the particular random matrix X = (I — IT5)A(I — II;9).
Applying the Cauchy—Schwarz inequality, we find that

B:Cov[t/fl,tArg] :E[(f}l —trA+trX —w“{le)(tArg —trA+trX —w’z‘Xwg)}
SE’ﬁq—trA—&—trX—wTle’?
=EVar[w][I-T1)AI-IL) — X]w; | Q4]
<2F[|(I-H)AI-IL,) - X|2.

Since range(Q 1)) C range(Qy)), we have the relations Iz = IT;II;3 and I —1II; =
(I - Hl)(I - ng). Since X = (I - ng)A(I - le), it follows that

(0= T0) AT - T0) - X7 = || (0 T0) X (1 - 10) - X

|
= | (T- ;) XTL, + 10, X ||}
=|(T-m) X1 |, + |[m X
< |XTL |5+ T X |5
= || X (1T, — T) || + || (T, — T2) X |
| . .
=||x (11, - 1112)y|2 + || (11, - H12)XH2 <2|X|?.

We invoke the Pythagorean theorem to pass to the third line. To reach the fifth line,
exploit the representations X = X (I —1II;2) and X = (I - II;2)X. To pass to the
sixth line, note that IT; —II;5 is a rank-one orthogonal projector; the Frobenius norm
and spectral norm coincide for rank-one matrices. Combining the last two displays,
we deduce that

B = Cov|[fry, tra] <4E||[(I— i) A(I - )|,

Combine the estimates for A and B to arrive at the stated bound for the variance. O

5.2. HuTrcH++ variance bound. By a similar argument, we can obtain an
initial variance bound for the HUTCH++ estimator. This result is more elementary be-
cause it does not require us to account for interactions between the simple estimators.

PROPOSITION 5.2 (HUTCH++ error). Fiz A € RN*N and consider the HUTCH++
estimator try,1 defined in (1.3) with 2m/3 standard normal test vectors. The esti-
mator is unbiased: Etrgy, =tr A. Moreover, the variance satisfies

2

E |E}H++ —tI'A‘Z S m/3

E[|I-QQ")Allf,

where @Q = orth(A€Y) and Q= [wm/3+1 UJQm/g}.

Proof. The idea is to condition on the low-rank approximation QQ* A and invoke
the chain rule for the variance, as in the proof of Proposition 5.1. See the argument
in [27, Thm. 10], which was supplied by the second author of this paper. ]

5.3. XNvysTrRACE variance bound. Finally, we establish an initial variance
bound for the XNYSTRACE estimator. This result shows how the variance depends on
the error in a randomized Nystrom approximation. Later, we will use recent results
for the Nystrom approximation to obtain a complete variance bound.
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PROPOSITION 5.3 (XNYSTRACE error). Let A € RV*N be psd. Consider the
XNYSTRACE estimator tryx with m standard normal test vectors as defined in (1.9).
The estimator is unbiased: Etrnx = tr A. Moreover, the variance satisfies the bound

[ — tr A < ZE A - A@ )2 +2E] 4 - A@ )

1>HF

Proof. The proof resembles the proof of Proposition 5.1 but is slightly simpler.
The unbiasedness of XNYSTRACE follows from a short computation similar to (5.1).
To control the variance, we calculate that

Ztr‘] - ( ) w+<1_ ;) Cov iy, ]

A B

Var [E}XN = Var

The variance term is exactly
A= Var[ir,] =2E||A - A(Q_) |}

To bound the covariance term B, we set X = A — A(2_12) in (5.2). Applying the
Cauchy—Schwarz inequality, we find that

B:Cov[ﬁl,tArQ] :E[(ﬁ"l —trA +trX —w“{le)(tArg —trA +trX —ngwg)]
§E|t/f1 —trA +trX —wTlef
=[EVar [w’{ [A(Q,12> — A(Q,ﬁ]wl ’ Q,l}
— 2B A(Q_1) — A1)}

The psd matrix A(Q_;1) — A(2_12) has rank one, and it is bounded above by A —
A(2_12) in the psd order. Therefore,

B = Cov [a‘l,&g] < QEHA — A<Q,12> H2
Combine the displays to complete the proof. ]

5.4. Error bounds for low-rank approximations. To prove the main result,
Theorem 1.1, we need two auxiliary lemmas. First, we present error bounds for
randomized SVD and randomized Nystrom approximation, drawn from the recent
paper [32, Thm. 6.7 and Cor. 6.8].

LEMMA 5.4 (randomized SVD and randomized Nystrom error). Fix a matriz
A e RVN " and draw a standard normal matriz Q € RN>%. For any r < k — 2, the
. -1
E[[(I-QQ")A|% < m”A - [A][I,

randomized SVD error is bounded by
2
— A - [[A]]TII%>,
r
where Q = orth(AQ).

Assume that A € RNXN s o psd matriz. For any r < k — 4, the randomized
Nystrém error is bounded by

k—H‘

E||(I-QQ")A|” < (IIA— [AD-|* +

k+r— \fe

(ElA- A" <7

(IIA (Al +— 1A~ [[A]}rll*>,

(ElA-A@IR)" < mom—mruﬁ\/,:le—nAﬂTn*).
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Second, we report a standard fact about the decay rate of the singular values,
which is also exploited in [27, Lem. 13] and [13, Lem. 7]. We omit the easy proof.

FACT 5.5. For any matriz A € RN*N and any r > 1,

||A||

414 < A4 pag e < 1A

\/;
5.5. The complete variance bound. To establish the main result, Theo-

rem 1.1, we begin with the initial variance bounds and introduce the results from
Lemma 5.4 and Fact 5.5.

Proof of Theorem 1.1. We recognize that all the terms in the error formulas in
Propositions 5.2-5.3 reflect the squared approximation error in a randomized SVD
or a randomized Nystrom approximation. Therefore, we can apply the error bounds
in Lemma 5.4 to obtain more explicit error representations. For HUTCH++, when
r<m/3—2,

E |&H++ — th’z <

—=E|(I-QQ")A|f < 1A — [A].II5

2
/3 m/3—r—1

For XTRACE, when r <m/2—4

R 2 . \
E |frx — trA|” < m7/2]EH (- QyQ{) Al +4E[|(1- Quup) Q12 Al

4m 9 4e’*m 9
QL — i —  _J|A- )
— m/277,73||A [[A]]TH + (m/277,73)2”‘4 [[A]]THF
Finally, for XNYSTRACE, when r < m — 6,
1/2 _ V2 1/2 1/2
(B [frxy — trA[) f(EHA A" +V2(EA - A-w)[)
\/gm \/im 5e2m
< ——A-TA] ||+ —————=||A — [A]» ——||A - [A].]|«.
< A AL e 1A AL e+ g A~ (AL

Thus, we confirm the detailed error bounds in Theorem 1.1.
All that remains is to show that each trace estimator tr satisfies

1/2
IIAII*

(5.5) (E|tr — trA[?)
for an absolute constant C. To that end, apply Fact 5.5 to bound ||A — [A].|| and
lA — [A]]|r in terms of ||A — [A];||«. For HUTCH++, we set r = |[m/6] — 1. For
XTRACE, we set = |m/4] —2. For XNYSTRACE, we set = |m/2] — 3. Simplifying
yields (5.5) for each estimator. |

5.6. Proof of Proposition 3.1. We must argue that the posterior error es-
timator érr defined in (3.1) reflects the actual error. We instate the notation from
Proposition 3.1.

For both XTRACE and XNYSTRACE, each individual trace estimate tr; is unbi-
ased. As a consequence, the variance takes the form

E|tr—trA} = Var(fr) = 7 Z Cov ( trl,trj)

3,j=1

A short calculation yields
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¢
1 ~ ~ o~
—~2_ 1 N ey
Eerr” = ZU=1) . g [Var (trj) Cov (trz,trj)] .
4,j=1
Since the samples wq,...,wy are exchangeable, the variance is the same for each j,

and the covariance is the same for all ¢ # j. Therefore,

E[& — tr(A)[* = Lvar (f11) + =L Cov (@1, fra)

14 l
Befi® = Var (1) — 5 Cov (fi, f2).

The result follows when we take the ratio of these two quantities and simplify.
As a final comment, we observe that the calculations in subsection 5.1 show for
symmetric matrices that the XTRACE correlations are bounded by

E||(I- Q12 Qf12) AT~ Q12)Qf1a))||”
E[[(1- Q@) AT - QuQ)|ly

where Q1) and Q5 are defined in Proposition 5.1. These correlations are small
for matrices with slow rates of singular value decay, i.e., when ||A — [A],,/2—1(F >
|A—=[A];n 22|l In practice, we observe the correlations to be small even for matrices
with singular values, which decay more quickly. As an example, for the matrix with
exponentially decaying eigenvalues in Figure 1, the XTRACE correlations (measured
over 10* independent runs of the algorithm) are no higher than 0.06, and the average
error estimate is correct up to a factor of 1.2.

Cor(t/h , ﬁ‘g) S 2
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