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FOR LINEAR SYSTEMS AND EIGENVALUE PROBLEMS\ast 
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Abstract. This paper develops a class of algorithms for general linear systems and eigenvalue
problems. These algorithms apply fast randomized dimension reduction (``sketching"") to accelerate
standard subspace projection methods, such as GMRES and Rayleigh--Ritz. This modification makes
it possible to incorporate nontraditional bases for the approximation subspace that are easier to
construct. When the basis is numerically full rank, the new algorithms have accuracy similar to
classic methods but run faster and may use less storage. For model problems, numerical experiments
show large advantages over the optimized MATLAB routines, including a 70\times speedup over gmres

and a 10\times speedup over eigs.

Key words. eigenvalue problem, linear system, numerical linear algebra, Petrov--Galerkin
method, projection method, randomized algorithm, Rayleigh--Ritz, sketching, subspace embedding
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1. Introduction. In many scientific computing and machine learning problems,
we expend the majority of our computational resources in solving large-scale linear
algebra problems [48, 49, 29], typically linear systems \bfitA \bfitx = \bfitf or eigenvalue problems
\bfitA \bfitx = \lambda \bfitx . Numerical linear algebra (NLA) is a research field that attempts to devise
practical algorithms for solving these problems.

Arguably, the most exciting recent development in NLA is the advent of new
randomized algorithms that are fast, scalable, robust, and reliable. For example,
many practitioners have adopted the ``randomized SVD"" and its relatives [23, 33]
to compute truncated singular value decompositions of large matrices. Randomized
preconditioning [47, 3] allows us to solve highly overdetermined least-squares problems
faster than any previous algorithm. Yet the NLA community has made less progress
on other core challenges, especially problems involving nonsymmetric square matrices.
Exceptions include [5], which we discuss more in subsection 1.5.

This paper exposes a new class of algorithms for solving nonsymmetric linear
systems and eigenvalue problems; the methods can also be competitive for symmetric
problems. Our framework combines subspace projection methods [48, 49], such as
GMRES and the Rayleigh--Ritz process, with the modern technique of randomized
dimension reduction [52, 67, 33]. This approach allows us to accelerate the existing
methods by incorporating approximation subspaces that are easier to construct. The
resulting algorithms can be asymptotically faster than their classic counterparts, with-
out much loss of accuracy. While the methods require the computational basis to be
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1184 YUJI NAKATSUKASA AND JOEL A. TROPP

numerically full rank, we can easily and reliably detect rank-deficiency and retrench
to a conservative (but more expensive) approach.

This introduction section offers an overview of our approach and some prelimi-
nary evidence about potential applications in scientific computing and optimization.
The rest of the paper fleshes out the proposal by providing more technical details,
examples, and extensions. The technical report [38] contains further information.

1.1. Sketching a least-squares problem. The sketch-and-solve paradigm [52,
67, 33] is a basic tool for randomized matrix computations. The idea is to decrease the
dimension of a large problem by projecting it onto a random low-dimensional subspace
and to solve the smaller problem instead. The solution of this ``sketched problem""
sometimes serves in place of the solution to the original computational problem. This
section offers a short example; see section 2 for full details.

A sketching matrix is a random matrix \bfitS \in Cs\times n that preserves the squared
length of a fixed vector in expectation:

(1.1) E\| \bfitS \bfitx \| 22 = \| \bfitx \| 22 for each \bfitx \in Cn.

The expectation E averages over the randomness in \bfitS , and \| \cdot \| 2 denotes the \ell 2 norm.
There are many constructions of fast sketching matrices that we can apply to a vector
in Cn with O(n logn) arithmetic operations. The choice of the embedding dimension
s depends on the application.

Consider an overdetermined n\times d least-squares problem:

(1.2) minimize\bfity \in Cd \| \bfitM \bfity  - \bfitf \| 2,

where \bfitM \in Cn\times d is a tall matrix with n \gg d. The right-hand side \bfitf \in Cn. Draw
a random sketching matrix \bfitS \in Cs\times n with embedding dimension s = 2(d + 1). We
formulate and solve the smaller s\times d sketched problem:

(1.3) minimize\bfity \in Cd \| \bfitS (\bfitM \bfity  - \bfitf )\| 2.

With high probability1 (whp) over the choice of the sketching matrix \bfitS , this procedure
produces a satisfactory result. Indeed, we can compare the residual norms of the
solution \^\bfity to the sketched problem (1.3) and the solution \bfity  \star to the original problem
(1.2). More precisely, the sketching method ensures that

(1.4) \| \bfitM \bfity  \star  - \bfitf \| 2 \leq \| \bfitM \^\bfity  - \bfitf \| 2 \leq const \cdot \| \bfitM \bfity  \star  - \bfitf \| 2 whp.

The constant depends on the ratio d/s, and it is usually less than 10; see (2.3).
Provided that the original problem has a tiny residual, the solution to the sketched
problem also yields a tiny residual! For a fast sketching matrix \bfitS , the whole sketch-
and-solve process can be significantly faster than solving (1.2) directly.

1.2. Solving linear systems by sketched GMRES. Now, suppose that we
wish to solve the (nonsymmetric, nonsingular) linear system

(1.5) Find \bfitx \in Cn : \bfitA \bfitx = \bfitf where \bfitA \in Cn\times n and \bfitf \in Cn.

1In practice, the sketching method rarely fails, and we can make the method even more reliable
by a slight increase in the embedding dimension s. The worst-case scenario is that the constant
in the error (1.4) may be a little larger. For this reason, it is distracting to quantify the failure
probabilities. For more precise statements, see general discussions in [23, sect. 10] and [33]. For the
least-squares problem, see [15].
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1185

All algorithms in this paper access the matrix via products: \bfitx \mapsto \rightarrow \bfitA \bfitx . This is a good
modeling assumption for a wide range of problems, especially when \bfitA approximates a
differential operator or integral kernel. It is also useful when \bfitA is sparse or has some
algebraic structure (e.g., a Gram matrix).

Our approach to solving (1.5) builds on a standard template, called a subspace
projection method [48], which casts the linear system as a variational problem. We
can treat this formulation by sketching. Let us summarize the ideas; a full exposition
appears in sections 3 and 4.

1.2.1. Sketched GMRES. For the moment, suppose that we have acquired a
tall matrix \bfitB \in Cn\times d, called a basis, with the property that range(\bfitB ) contains a good
approximate solution to the linear system (1.5). That is, \bfitA \bfitB \bfity \approx \bfitf for some \bfity \in Cd.
In addition, assume we have the reduced matrix \bfitA \bfitB \in Cn\times d at hand. In typical
situations, the basis has very low dimension: d\ll n. We will discuss the construction
of a basis in subsection 1.2.2.

At its heart, the GMRES algorithm [51, 50, 48] is a subspace projection method
that replaces the linear system (1.5) with the overdetermined least-squares problem

(1.6) minimize\bfity \in Cd \| \bfitA \bfitB \bfity  - \bfitf \| 2.

The solution \bfity  \star to (1.6) yields an approximate solution \bfitx \bfitB = \bfitB \bfity  \star to the linear
system (1.5). The residual norm \| \bfitA \bfitx \bfitB  - \bfitf \| 2 reflects how well the basis \bfitB captures
a solution to the linear system.

The least-squares formulation (1.6) is a natural candidate for sketching. Draw a
fast random sketching matrix \bfitS \in Cs\times n with s= 2(d+ 1), and sketch the problem:

(1.7) minimize\bfity \in Cd \| \bfitS (\bfitA \bfitB \bfity  - \bfitf )\| 2.

The solution \^\bfity of the sketched problem (1.7) induces an approximate solution \^\bfitx =\bfitB \^\bfity 
to the linear system (1.5). According to (1.4), the residual norm of the sketched
solution is comparable with the original residual norm:

\| \bfitA \bfitx \bfitB  - \bfitf \| 2 \leq \| \bfitA \^\bfitx  - \bfitf \| 2 \leq const \cdot \| \bfitA \bfitx \bfitB  - \bfitf \| 2 whp.

In summary, the sketched formulation (1.7) is effective if and only if the subspace
range(\bfitB ) contains an accurate approximate solution of the linear system.

We refer to (1.7) as the sketched GMRES problem (sGMRES). For an unstruc-
tured basis \bfitB , the sGMRES approach is faster than solving the original least-squares
problem (1.6), both in theory and in practice. With careful implementation, sGMRES
is robust, even when the conditioning of the reduced matrix \bfitA \bfitB is poor. Indeed, it
suffices that \kappa 2(\bfitA \bfitB ) \lesssim u - 1, where u is the unit roundoff;2 see subsection 3.4. As a
consequence, we have a significant amount of flexibility in choosing the basis \bfitB .

1.2.2. Krylov subspaces. To make sGMRES work well, we must construct a
basis that captures an approximate solution to the linear system (1.5). Where can we
get this basis? One appealing option is a Krylov subspace, which takes the form

(1.8) Kp(\bfitA ;\bfitf ) := span\{ \bfitf ,\bfitA \bfitf ,\bfitA 2\bfitf , . . . ,\bfitA p - 1\bfitf \} .

This is a natural subspace to build because we access \bfitA via matrix-vector products.
Furthermore, the Krylov subspace often contains an excellent approximate solution
to the linear system, even when the depth p\ll n. See [48, Chap. 6 and 7].

2In standard IEEE double-precision arithmetic, the unit roundoff u\approx 2 \cdot 10 - 16.
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1186 YUJI NAKATSUKASA AND JOEL A. TROPP

For computations, we need an explicit basis \bfitB whose columns span the Krylov
subspace. Although it is straightforward to form the monomial basis visible in (1.8),
the condition number of the basis often grows exponentially in p, rendering the basis
useless for numerical purposes [9, 20]. The standard practice is to fully orthogonalize
the monomial basis (using the Arnoldi process of subsection 4.2), which is costly.
But sGMRES only requires range(\bfitB ) = Kp(\bfitA ;\bfitf ) to operate. It does not require an
orthogonal basis! Instead, we can consider other procedures that quickly construct
Krylov subspace bases with a modest condition number. Section 4 outlines several
possible approaches.

For concreteness, this paper focuses on the k-truncated Arnoldi process; the
parameter k is a small natural number. This algorithm assembles a basis \bfitB =
[\bfitb 1, . . . ,\bfitb d] \in Cn\times d iteratively by orthogonalizing each new vector against the pre-
vious k vectors in the basis. In detail, define \bfitb  - i = 0 for i \geq 0. Set \bfitb 1 = \bfitf /\| \bfitf \| 2
and

(1.9) \bfitb j =\bfitw j/\| \bfitw j\| 2 where \bfitw j = (I - \bfitb j - 1\bfitb 
\ast 
j - 1  - \cdot \cdot \cdot  - \bfitb j - k\bfitb 

\ast 
j - k)(\bfitA \bfitb j - 1)

for each j = 2, . . . , d. We have written \ast for the (conjugate) transpose. Note that we
obtain the reduced matrix \bfitA \bfitB as a by-product of this computation.

We have found that k-truncated Arnoldi often yields a basis with moderate con-
dition number, even when k = 2 or k = 4. Nevertheless, we are not aware of any
fast, universal procedure for constructing a Krylov subspace basis with full numerical
rank, short of strategies that perform more costly orthogonalization steps. This is a
matter for further research.

1.2.3. Comparison with GMRES. To recap, the standard version of the
GMRES algorithm [51] applies the expensive Arnoldi process (with full orthogonaliza-
tion; see subsection 4.2) to build an orthonormal basis for a Krylov subspace, and it
exploits the structure of this basis to solve the least-squares problem (1.6) efficiently.

In contrast, we propose to use a quick-and-dirty construction, such as the k-
truncated Arnoldi process, to obtain a nonorthogonal basis. Then we solve the
sGMRES least-squares problem (1.7) to produce an approximate solution of the linear
system. When the basis dimension d\ll n, the sGMRES approach has lower arithmetic
costs than classic GMRES, while attaining similar accuracy:

GMRES:O(nd2) operations vs. sGMRES:O(d3 + nd logd) operations.

This expression assumes that sGMRES uses k-truncated Arnoldi for k constant, as
well as a fast sketching matrix (subsection 2.4). See Algorithm 1.1 for pseudocode.

As evidence for the benefits of using sGMRES, we use it to solve a finite-element
(FEM) discretization of a two-dimensional (2D) convection-diffusion equation in the
diffusion-dominant regime. Figure 1 depicts a 70\times speedup when the discretized
linear system has dimension n = 1,050,625. In this case, sGMRES with 2-truncated
Arnoldi attains the same accuracy as GMRES with full orthogonalization. sGMRES
is faster than restarted GMRES with restarting frequency 10, whose convergence
is significantly impaired. Section 8 details the experimental setup and offers more
illustrations.

1.3. Solving eigenvalue problems by sketched Rayleigh--Ritz. Similar
ideas apply to spectral computations. We pose the nonsymmetric eigenvalue problem

(1.10) Find nonzero \bfitx \in Cn and \lambda \in C : \bfitA \bfitx = \lambda \bfitx where \bfitA \in Cn\times n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1187

Algorithm 1.1. sGMRES + k-truncated Arnoldi.
Input: Matrix \bfitA \in Cn\times n, right-hand side \bfitf \in Cn, initial guess \bfitx \in Cn, basis

dimension d, number k of vectors for truncated orthogonalization, stability
tolerance tol=O(u - 1).

Output: Approximate solution \^\bfitx \in Cn to linear system (1.5) and estimated residual
norm \^rest

1 function sGMRES
2 Draw subspace embedding \bfitS \in Cs\times n with s= 2(d+1)  \triangleleft See subsection 2.4
3 Form residual and sketch: \bfitr = \bfitf  - \bfitA \bfitx and \bfitg =\bfitS \bfitr 
4 Normalize basis vector \bfitb 1 = \bfitr /\| \bfitr \| 2 and apply matrix \bfitm 1 =\bfitA \bfitb 1
5 for j = 2,3,4, . . . , d do  \triangleleft See also subsection 5.2
6 Truncated Arnoldi: \bfitw j = (I - \bfitb j - 1\bfitb 

\ast 
j - 1 - . . . - \bfitb j - k\bfitb 

\ast 
j - k)\bfitm j - 1  \triangleleft \bfitb  - i = 0 for

i\geq 0
7 Normalize basis vector \bfitb j =\bfitw j/\| \bfitw j\| 2 and apply matrix \bfitm j =\bfitA \bfitb j
8 Sketch reduced matrix: \bfitC =\bfitS [\bfitm 1, . . . ,\bfitm d]
9 Thin QR factorization: \bfitC =\bfitU \bfitT 
10 if condition number \kappa 2(\bfitT )> tol then warning. . .

11 Either whiten \bfitB \leftarrow \bfitB \bfitT  - 1 or form new residual and restart  \triangleleft See subsection
5.3

12 Solve least-squares problem: \^\bfity = \bfitT  - 1(\bfitU \ast \bfitg )  \triangleleft See (3.7)
13 Residual estimate: \^rest = \| (I - \bfitU \bfitU \ast )\bfitg \| 2  \triangleleft See (3.8)
14 Construct solution: \^\bfitx =\bfitx + [\bfitm 1, . . . ,\bfitm j ]\^\bfity 
Implementation: In line 6, use double Gram--Schmidt for stability. In line 9, the

QR factorization may require pivoting. In lines 11--12, apply \bfitT  - 1 via triangular
substitution.

100 200 500 1000 1500 2500
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Fig. 1. sGMRES versus GMRES: FEM discretization of a convection-diffusion equation.
These panels compare the performance of MATLAB gmres (with and without restarting) against
the sGMRES algorithm (where the basis \bfitB is computed by k-truncated Arnoldi with k = 2). Left:
Relative residual norms and condition number \kappa 2(\bfitA \bfitB ) of the reduced matrix. Right: Total runtime
including basis generation.

As before, we access the matrix via products: \bfitx \mapsto \rightarrow \bfitA \bfitx . Typically, we seek a family
of eigenvectors associated with a particular class of eigenvalues (e.g., largest real
part, closest to zero). Let us outline a sketched subspace projection method for the
eigenvalue problem. Full details appear in sections 6 and 7.
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1188 YUJI NAKATSUKASA AND JOEL A. TROPP

1.3.1. Sketched Rayleigh--Ritz. As in subsection 1.2.1, suppose that we have
procured a basis \bfitB \in Cn\times d and the reduced matrix \bfitA \bfitB \in Cn\times d. The range of the
basis should contain approximate eigenvectors \bfitx for which \bfitA \bfitx \approx \lambda \bfitx . In this setting,
the most commonly employed strategy is the Rayleigh--Ritz (RR) method.

We begin with the classic variational formulation [43, Thm. 11.4.2] of RR:

(1.11) minimize\bfitM \in Cd\times d \| \bfitA \bfitB  - \bfitB \bfitM \| F.

The solution is \bfitM  \star =\bfitB \dagger \bfitA \bfitB , where the dagger \dagger denotes the Moore--Penrose pseu-
doinverse. At this point, RR frames the small d\times d eigenvalue problem \bfitM  \star \bfity = \theta \bfity .
Each solution yields an approximate eigenpair (\bfitB \bfity , \theta ) of the matrix \bfitA .

Evidently, the least-squares problem (1.11) is ripe for sketching. Draw a random
sketching matrix \bfitS \in Cs\times n with s= 4d, and pass to the sketched RR problem:

(1.12) minimize\bfitM \in Cd\times d \| \bfitS (\bfitA \bfitB  - \bfitB \bfitM )\| F.

We can compute the solution \^\bfitM = (\bfitS \bfitB )\dagger (\bfitS \bfitA \bfitB ) to the sketched problem (1.12)
faster than we can obtain \bfitM  \star . As before, we frame an ordinary eigenvalue problem:

(1.13) \^\bfitM \bfity = \theta \bfity .

For each solution (\^\bfity , \^\theta ), we obtain an approximate eigenpair (\bfitB \^\bfity , \^\theta ) of the original
matrix \bfitA . We will show---both theoretically and empirically---that the computed
eigenpairs of (1.13) are competitive with the eigenpairs obtained from RR.

We refer to (1.12) as the sketched Rayleigh--Ritz (sRR) formulation. Although
it demands a careful implementation, sRR is faster than the original least-squares
method (1.11) for an unstructured basis \bfitB . Moreover, sRR is robust, even when the
basis \bfitB has poor conditioning. Indeed, it suffices that \kappa 2(\bfitB )\lesssim u - 1.

1.3.2. Comparison with Arnoldi + Rayleigh--Ritz. We can also deploy a
Krylov subspace (1.8) for eigenvalue computations [43, 49]. In this case, it is appro-
priate to use a random starting vector \bfitomega \in Cn to generate the subspace Kp(\bfitA ;\bfitomega ).

To solve a large nonsymmetric eigenvalue problem, one standard algorithm [49,
sect. 6.2] applies the Arnoldi process (with full orthogonalization; see subsection 4.2)
to form an orthonormal basis for the Krylov subspace, and it uses the structure of
the basis to solve the RR eigenvalue problem efficiently.

Instead, we propose to combine a fast construction of a computational basis, such
as k-truncated Arnoldi (1.9), with the sRR eigenvalue problem (1.13). When the basis
dimension d\ll n, this algorithm uses less arithmetic than the classic approach:

RR:O(nd2) operations vs. sRR:O(d3 + nd logd) operations.

This expression includes basis generation via k-truncated Arnoldi for k constant, and
sRR uses a fast sketching matrix (subsection 2.4). See Algorithm 1.2 for pseudocode.

As evidence that sRR is effective, Figure 2 highlights an eigenvalue computation
arising from the trust-region subproblem in numerical optimization. In this instance,
sRR runs over 10\times faster than the MATLAB eigs command. Even so, both meth-
ods compute the desired eigenpair to the same accuracy. Section 8 describes the
experimental setup and provides further illustrations.

1.3.3. Block Krylov subspaces. For eigenvalue problems, there is also a com-
pelling opportunity to explore alternative subspace constructions. For example, con-
sider the block Krylov subspace

(1.14) Kp(\bfitA ;\Omega ) := span\{ \Omega ,\bfitA \Omega ,\bfitA 2\Omega , . . . ,\bfitA p - 1\Omega \} where \Omega \in Cn\times b.
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1189

Algorithm 1.2. sRR + k-truncated Arnoldi.
Input: Matrix \bfitA \in Cn\times n, initial vector \bfitb \in Cn, basis dimension d, number k of

vector for partial orthogonalization, stability tolerance tol=O(u - 1), convergence
tolerance \tau .

Output: Approximate eigenpairs (\bfitx i, \lambda i) such that \bfitA \bfitx i \approx \lambda i\bfitx i and estimated
residual norms \^rest,i.

1 function sRR
2 Draw subspace embedding \bfitS \in Cs\times n with s= 4d  \triangleleft See subsection 2.4
3 Starting vector: \bfitw 1 = randn(n,1)
4 Normalize basis vector \bfitb 1 =\bfitw 1/\| \bfitw 1\| 2 and apply matrix \bfitm 1 =\bfitA \bfitb 1
5 for j = 2,3,4, . . . , d do
6 Truncated Arnoldi: \bfitw j = (I - \bfitb j - 1\bfitb 

\ast 
j - 1  - \cdot \cdot \cdot  - \bfitb j - k\bfitb 

\ast 
j - k)\bfitm j - 1  \triangleleft \bfitb  - i = 0

for i\geq 0
7 Normalize \bfitb j =\bfitw j/\| \bfitw j\| 2 and apply matrix \bfitm j =\bfitA \bfitb j
8 Sketch basis \bfitC =\bfitS [\bfitb 1, . . . ,\bfitb d\mathrm{m}\mathrm{a}\mathrm{x} ] and reduced matrix \bfitD =\bfitS [\bfitm 1, . . . ,\bfitm d\mathrm{m}\mathrm{a}\mathrm{x} ]
9 Thin QR factorization: \bfitC =\bfitU \bfitT 
10 if \kappa 2(\bfitT )> tol then warning:

11 Either whiten \bfitB \leftarrow \bfitB \bfitT  - 1 or stabilize and solve (6.13)  \triangleleft See subsection 6.5
12 Solve eigenvalue problem: \bfitT  - 1\bfitU \ast \bfitD \bfity i = \lambda i\bfity i for i= 1, . . . , d  \triangleleft See (6.12)
13 Form residual estimates \| \bfitD \bfity i  - \lambda i\bfitC \bfity i\| 2/\| \bfitC \bfity i\| 2  \triangleleft See (6.10), subsection

6.4
14 Identify set \scrI of indices i where residual is at most \tau 
15 Compute \bfitx i =\bfitB \bfity i and normalize \bfitx i :=\bfitx i/\| \bfitx i\| 2 for i\in \scrI , and output (\bfitx i, \lambda i)
Implementation: In line 6, use double Gram--Schmidt for stability. In line 9, the

QR factorization may require pivoting. In lines 11--12, apply \bfitT  - 1 via triangular
substitution.

We commonly generate the Krylov subspace from a random matrix \Omega . The standard
prescription recommends a very small block size b and a large depth p, but recent
research [33, sect. 11] has shown the value of a large block size with a moderate
depth.

We must take care in constructing the block Krylov subspace. Truncated Arnoldi
is only competitive when the block size b is a small constant. For larger b, the
Chebyshev recurrence offers an elegant way to form a basis \bfitB = [\bfitB 1, . . . ,\bfitB p]\in Cn\times bp:

\bfitB 1 =\Omega ; \bfitB 2 =\bfitA \Omega ; \bfitB i = 2\bfitA \bfitB i - 1  - \bfitB i - 2 for i= 3, . . . , p.

We obtain the reduced matrix \bfitA \bfitB as a by-product. In practice, the Chebyshev
polynomials must be shifted and scaled to adapt to the spectrum of \bfitA . See section 7
for details and alternative methods for fast basis construction.

1.4. Discussion. Our idea to combine subspace projection methods with sketch-
ing offers compelling advantages over the classic algorithms, especially in modern
computing environments. Nevertheless, it must be acknowledged that this approach
suffers from some of the same weaknesses as GMRES and RR. For example, when
the basis \bfitB is a Krylov subspace, all these methods are limited by the approximation
power of Krylov subspaces. Furthermore, we are not aware of a universal method for
quickly computing a numerically full-rank basis for a Krylov subspace, short of costly
strategies based on full orthogonalization. Both points merit further attention.
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Fig. 2. RR versus sRR: Nonsymmetric eigenvalue problem. These panels compare the perfor-
mance of MATLAB eigs against the sRR algorithm (where the basis \bfitB is computed by k-truncated
Arnoldi with k = 10). The sparse eigenvalue problem \bfitA \bfitx = \lambda \bfitx has dimension n = 7102 > 106,
and it arises from a trust-region subproblem in optimization. Left: Relative residual norm for the
rightmost eigenpair and the condition number \kappa 2(\bfitB ) of the basis. Throughout, all eigenvectors are
normalized to have unit norm. Right: Total runtime including basis generation.

With hindsight, our framework appears as an obvious application of the sketch-
and-solve paradigm for overdetermined least-squares problems. A critical reader may
even wonder whether this idea is actually novel. Let us respond to this concern.

This paper is the first to crystallize the idea that we can solve linear systems
and eigenvalue problems by applying sketching directly to a generic subspace pro-
jection method with a nonorthogonal basis. Our work is independent from related
contemporary studies [5, 4, 6, 7]. These alternative methods, described below, target
the Gram--Schmidt process at the heart of the Arnoldi algorithm, rather than the
subspace projection formulation.

Second, to obtain algorithms that are asymptotically faster than classic methods,
we must also employ efficient constructions of subspace bases. In the past, researchers
have regarded nonorthogonal bases as a way to postpone expensive orthogonalization
steps in parallel computing environments [26, 44]. In contrast, sketching sometimes
allows us to eliminate the orthogonalization steps. Thus, we can finally take full
advantage of the potential of fast computational bases.

In particular, there may be an opportunity to design a new class of preconditioners
for iterative solution of large-scale linear algebra problems. Indeed, since our approach
allows for more flexible bases and mitigates orthogonalization costs, we can still derive
benefits from a mediocre preconditioner that only reduces the iteration complexity to
100s or 1000s of iterations.

1.5. Related work. There has been relatively little research on the applica-
tion of sketching for high-accuracy solvers for nonsymmetric linear systems or for
nonsymmetric eigenvalue problems. Let us review the existing literature.

First, Balabanov and Nouy [6, 7] have argued that randomized algorithms may be
used to accelerate reduced-order modeling. They focus on sketching an approximation
subspace that captures solutions to a parameterized system of linear equations. In this
setting, many additional complications arise from the need to scope out the parameter
manifold and to interpolate between solutions at different parameter values. Their
work does not suggest the simple, fast algorithms that we propose here.
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1191

Second, Balabanov and Grigori [5, 4] observed that sketching can reduce the
cost of orthogonalization in the (block) Arnoldi method. This is an elegant idea,
but it depends on the Hessenberg structure that results from the Arnoldi algorithm.
Moreover, while it reduces the leading constant in the arithmetic cost of the basis
construction, it does not change the asymptotic scaling. In contrast, our approach
can yield asymptotically faster algorithms, and it allows for the use of general (non-
Krylov) bases. There may be opportunities to combine their approach with ours.

1.6. Roadmap. In section 2, we give a rigorous treatment of sketching for least-
squares problems. Sections 3 to 5 develop and analyze the sGMRES method and
associated basis constructions. Sections 6 and 7 contain the analogous developments
for sRR. Computational experiments in section 8 confirm that these algorithms are
fast, robust, and reliable. Sections 9 and 10 survey extensions and prospects.

1.7. Notation. The symbol \ast denotes the (conjugate) transpose of a vector or
matrix. We write \| \cdot \| 2 for the \ell 2 norm or the spectral norm, while \| \cdot \| F is the
Frobenius norm. The dagger \dagger denotes the pseudoinverse. For a matrix \bfitM \in Cn\times d,
define the largest singular value \sigma max(\bfitM ) := \sigma 1(\bfitM ) and the minimum singular value
\sigma min(\bfitM ) := \sigma min\{ n,d\} (\bfitM ). The condition number \kappa 2(\bfitM ) := \sigma max(\bfitM )/\sigma min(\bfitM ).

2. Background on sketching. In the introduction, we defined a sketching map
as a matrix that satisfies the norm-preservation relation (1.1). While this definition
is intuitive, we actually need the sketching map to satisfy a more stringent condition
called subspace embedding. We begin with a deterministic statement of the subspace
embedding condition and its consequences, and then we argue that certain random
matrices can serve as subspace embeddings.

2.1. Subspace embeddings. A subspace embedding is a linear map, usually
from a high-dimensional space to a low-dimensional space, that preserves the \ell 2 norm
of each vector in a given subspace. This definition is due to Sarl\'os [52]; see also [67,
33].

Definition 2.1 (subspace embedding). Suppose that the columns of \bfitB \in Cn\times d

span the subspace L \subseteq Cn. A matrix \bfitS \in Cs\times n is called a subspace embedding for L
with distortion \varepsilon \in (0,1) if

(2.1) (1 - \varepsilon ) \cdot \| \bfitB \bfity \| 2 \leq \| \bfitS \bfitB \bfity \| 2 \leq (1 + \varepsilon ) \cdot \| \bfitB \bfity \| 2 for all \bfity \in Cd.

For matrix computations, we need to design subspace embeddings that have sev-
eral additional properties. First, the subspace embedding \bfitS should be equipped with
a fast matrix-vector multiply so that we can perform the data reduction process effi-
ciently. Second, the subspace L is typically unknown, so we must draw the subspace
embedding \bfitS at random to achieve (2.1) with high probability. Last, to randomly em-
bed a d-dimensional subspace with distortion \varepsilon , the optimal scaling of the embedding
dimension s follows the law s \approx d/\varepsilon 2. Owing to this relation, subspace embeddings
are only appropriate in settings where a moderate distortion, say, \varepsilon = 1/

\surd 
2, is enough

for computational purposes.
Before turning to constructions in subsection 2.4, let us outline the applications

of subspace embeddings that we will need in this paper.

2.2. Sketching for least-squares problems. As discussed in subsection 1.1,
we can use a subspace embedding to reduce the dimension of an overdetermined least-
squares problem. This idea is also due to Sarl\'os [52]; it serves as the foundation for a
collection of methods called the sketch-and-solve paradigm [67, 33].
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1192 YUJI NAKATSUKASA AND JOEL A. TROPP

Fact 2.2 (sketching for least-squares). Let \bfitM \in Cn\times d be a matrix, and suppose
that \bfitS \in Cs\times n is a subspace embedding for range([\bfitM ,\bfitf ]) with distortion \varepsilon \in (0,1).
For every vector \bfity \in Cd, we have the two-sided inequality

(2.2) (1 - \varepsilon ) \cdot \| \bfitM \bfity  - \bfitf \| 2 \leq \| \bfitS (\bfitM \bfity  - \bfitf )\| 2 \leq (1 + \varepsilon ) \cdot \| \bfitM \bfity  - \bfitf \| 2.

In particular, the solution \bfity  \star to the least-squares problem (1.2) and the solution \^\bfity to
the sketched least-squares problem (1.3) satisfy residual norm bounds

(2.3) \| \bfitM \bfity  \star  - \bfitf \| 2 \leq \| \bfitM \^\bfity  - \bfitf \| 2 \leq 
1 + \varepsilon 

1 - \varepsilon 
\cdot \| \bfitM \bfity  \star  - \bfitf \| 2.

When \varepsilon = 1/
\surd 
2, (2.3) justifies the statement (1.4) with const= 6.

2.3. Whitening the basis. Rokhlin and Tygert [47] observed that a subspace
embedding yields an inexpensive way to precondition an iterative algorithm for the
overdetermined least-squares problem. We can reinterpret their idea as a scheme to
approximately orthogonalize, or whiten, a given basis.

Fact 2.3 (whitening). Let \bfitB \in Cn\times d be a basis with full column rank. Let
\bfitS \in Cs\times n be a subspace embedding for range(\bfitB ) with distortion \varepsilon \in (0,1). Compute
a QR factorization of the sketched basis: \bfitS \bfitB =\bfitU \bfitT with \bfitU \in Cs\times d orthonormal and
\bfitT \in Cd\times d permuted triangular. Then the whitened basis \=\bfitB :=\bfitB \bfitT  - 1 satisfies

(2.4) \kappa 2( \=\bfitB ) =
\sigma max( \=\bfitB )

\sigma min( \=\bfitB )
\leq 1 + \varepsilon 

1 - \varepsilon 
.

Furthermore, we have the condition number diagnostic

(2.5)
1 - \varepsilon 

1 + \varepsilon 
\cdot \kappa 2(\bfitT )\leq \kappa 2(\bfitB )\leq 1 + \varepsilon 

1 - \varepsilon 
\cdot \kappa 2(\bfitT ).

2.4. Constructing a subspace embedding. There are many performant con-
structions of fast randomized subspace embeddings that work for an unknown sub-
space of bounded dimension [33, sect. 9]. Let us summarize two that are most
relevant for our purposes. In each case, when the subspace dimension is at most d,
to obtain a random subspace embedding that has empirical distortion \varepsilon \in (0,1) with
high probability, we set the embedding dimension s= d/\varepsilon 2. In summary,

For distortion \varepsilon , set the embedding dimension s= d/\varepsilon 2.

We focus on the complex field; modifications for the real field are straightforward.

2.4.1. SRFTs. First, we introduce the subsampled randomized Fourier trans-
form (SRFT) [2, 69, 60, 33]. This subspace embedding3 takes the form

(2.6) \bfitS =

\sqrt{} 
n

s
\bfitD \bfitF \bfitE \in Cs\times n.

In this expression, \bfitD \in Cs\times n is a diagonal projector onto s coordinates, chosen
independently at random, \bfitF \in Cn\times n is the unitary discrete Fourier transform, and \bfitE \in 
Cn\times n is a diagonal matrix whose entries are independent Steinhaus4 random variables.
The cost of applying the matrix \bfitS to an n\times d matrix is O(nd logd) operations using
the subsampled FFT algorithm [69]. It is an easy exercise to verify that \bfitS satisfies
(1.1).

3For worst-case problems, a more elaborate SRFT construction may be needed [33, sect. 9].
4A Steinhaus random variable is uniform on the complex unit circle \{ z \in C : | z| = 1\} .
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1193

2.4.2. Sparse maps. Next, we describe the sparse dimension reduction map [34,
39, 12, 13, 33], which is useful for sparse data and may require less data movement.
It takes the form

(2.7) \bfitS =
1\surd 
\zeta 
[\bfits 1, . . . ,\bfits n]\in Cs\times n.

The columns of \bfitS are statistically independent. Each column \bfits i has exactly \zeta nonzero
entries, drawn from the Steinhaus distribution, placed in uniformly random coordi-
nates. For reliability, we choose the sparsity level \zeta = \lceil 2 log(1+ d)\rceil . We can apply \bfitS 
to a matrix \bfitM with O(\zeta \cdot nnz(\bfitM )) operations, but it may require a sparse arithmetic
library to achieve the best performance. You may check that \bfitS satisfies (1.1).

3. Solving linear systems with sGMRES. We return to the linear system

(3.1) Find \bfitx \in Cn : \bfitA \bfitx = \bfitf where \bfitA \in Cn\times n and \bfitf \in Cn.

This section elaborates on the sGMRES method outlined in subsection 1.2. Section 4
discusses methods for constructing the basis required by sGMRES. Section 5 combines
these ideas to obtain complete sGMRES algorithms.

3.1. Derivation of GMRES. Fix a full-rank basis \bfitB \in Cn\times d and the reduced
matrix \bfitA \bfitB \in Cn\times d. Suppose that \bfitx 0 \in Cn is an initial guess for the solution of (3.1)
with residual \bfitr 0 := \bfitf  - \bfitA \bfitx 0. Lacking prior information, we may take \bfitx 0 = 0.

To find a solution of (3.1), consider the affine family of vectors of the form \bfitx =
\bfitx 0 +\bfitB \bfity where \bfity \in Cd. Among this class, we may search for a representative whose
residual \bfitr = \bfitf  - \bfitA \bfitx = \bfitr 0  - \bfitA \bfitB \bfity has the minimum \ell 2 norm:

(3.2) minimize\bfity \in Cd \| \bfitA \bfitB \bfity  - \bfitr 0\| 2.

With some imprecision, we refer to (3.2) as the GMRES problem [51]. By calculus,
the least-squares problem (3.2) is equivalent to the normal equations:

(3.3) Find \bfity \in Cd : (\bfitA \bfitB )\ast (\bfitA \bfitB \bfity  - \bfitr 0) = 0.

We can stably solve (3.2) using a QR factorization of the reduced matrix \bfitA \bfitB [24,
Chap. 20]. The cost is O(nd2) arithmetic operations, assuming that the reduced
matrix \bfitA \bfitB is unstructured. Given a solution \bfity \bfitB to either problem (3.2) or (3.3),
we obtain a new approximate solution \bfitx \bfitB = \bfitx 0 +\bfitB \bfity \bfitB to (3.1) with residual \bfitr \bfitB =
\bfitf  - \bfitA \bfitx \bfitB .

The GMRES algorithm [50, 51] arises as a mechanism for solving (3.2) with a
special choice of basis. The algorithm forms an orthonormal basis \bfitB for the Krylov
subspace Kd(\bfitA ;\bfitr 0) via the Arnoldi process (subsection 4.2). The basis construction
requires (d  - 1) matvecs with \bfitA plus O(nd2) arithmetic. This reduces (3.2) to a
Hessenberg-structured least-squares problem that can be solved in O(d2) operations.

3.2. Derivation and analysis of sGMRES. To develop the sGMRES method,
we just sketch the GMRES problem (3.2). Construct a subspace embedding \bfitS \in Cs\times n

for range([\bfitA \bfitB ,\bfitr 0]) with distortion \varepsilon \in (0,1). The sGMRES problem is

(3.4) minimize\bfity \in Cd \| \bfitS (\bfitA \bfitB \bfity  - \bfitr 0)\| 2.

Let \^\bfity \in Cd denote the solution of (3.4). Write \^\bfitx =\bfitx 0 +\bfitB \^\bfity and \^\bfitr = \bfitf  - \bfitA \^\bfitx .
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1194 YUJI NAKATSUKASA AND JOEL A. TROPP

We have an a priori comparison of the GMRES (3.2) and sGMRES (3.4) residual
norms because of the relation (2.3):

(3.5) \| \bfitA \bfitx \bfitB  - \bfitf \| 2 \leq \| \bfitA \^\bfitx  - \bfitf \| 2 \leq 
1 + \varepsilon 

1 - \varepsilon 
\cdot \| \bfitA \bfitx \bfitB  - \bfitf \| 2.

Thus, sGMRES produces approximate solutions to (3.1) with small \ell 2 residuals pre-
cisely when GMRES does.5 A posteriori, we can diagnose the quality of the computed
solution \^\bfitx by examining the sketched residual norm:

(3.6) \^rest := \| \bfitS (\bfitA \bfitB \^\bfity  - \bfitr 0)\| 2 \in [1 - \varepsilon ,1 + \varepsilon ] \cdot \| \bfitA \^\bfitx  - \bfitf \| 2.

The last display is a consequence of (2.2).
For both GMRES (3.2) and sGMRES (3.4), the fundamental challenge is to pro-

duce a basis \bfitB that captures an approximate solution to the linear system (3.1). We
return to this matter in section 4.

3.3. Implementation. Let us outline a numerically robust implementation of
sGMRES and describe some of the issues that arise.

The algorithm operates with either an SRFT (2.6) or a sparse embedding (2.7),
depending on which is more appropriate to the computational environment. We
recommend the embedding dimension s = 2(d+ 1), which typically yields distortion
\varepsilon = 1/

\surd 
2. In view of (3.5), the sGMRES residual norm should be less than 6\times the

GMRES residual norm, although the discrepancy is often smaller in practice.
To obtain the data for the sGMRES problem (3.4), we sketch the reduced matrix

(\bfitS \bfitA \bfitB \in Cs\times d) and the right-hand side (\bfitS \bfitr 0 \in Cs) at a cost of O(nd logd) operations.
To solve (3.4), we compute a thin, pivoted QR decomposition of the sketched matrix:
\bfitS \bfitA \bfitB = \bfitU \bfitT where \bfitU \in Cs\times d is orthonormal and \bfitT \in Cd\times d is a triangular matrix
with permuted columns. A minimizer of the sGMRES problem is

(3.7) \^\bfity = (\bfitS \bfitA \bfitB )\dagger (\bfitS \bfitr 0) = \bfitT  - 1(\bfitU \ast (\bfitS \bfitr 0)).

Of course, we apply the inverse by triangular substitution. The sketched residual
norm (3.6) admits the simple expression

(3.8) \^rest = \| (I - \bfitU \bfitU \ast )(\bfitS \bfitr 0)\| 2.

We can obtain the quantities in the last two displays with O(d3) arithmetic since
s = O(d). Last, we construct the approximate solution \^\bfitx = \bfitx 0 + \bfitB \^\bfity at a cost of
O(nd) operations.

In summary, given any basis \bfitB \in Cn\times d, the cost of forming and solving the
sGMRES problem (3.4) is O(d3+nd logd) arithmetic. In contrast, for an unstructured
basis, the cost of solving the GMRES problem (3.2) is O(nd2) arithmetic. Section 5
gives an accounting of the total computational cost, including basis construction.

3.4. Stability. The classical stability result for least-squares computations [24,
Thm. 20.3] shows that standard numerical methods for the least-squares problem (3.4)
produce a solution with essentially optimal residual (to within the order of error in
computing the residual itself) as long as \kappa 2(\bfitS \bfitA \bfitB ) \lesssim u - 1. According to (2.5), this
condition is equivalent to \kappa 2(\bfitA \bfitB )\lesssim u - 1.

5This discussion assumes exact arithmetic. The situation changes with roundoff errors, in par-
ticular when \kappa 2(\bfitA \bfitB )\gtrsim u - 1.
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1195

Our computational work (section 8) confirms that sGMRES is stable unless the
reduced matrix \bfitA \bfitB is very badly conditioned. Moreover, we can evaluate the con-
ditioning reliably and cheaply using Fact 2.3. In our experience, it suffices that
\kappa 2(\bfitA \bfitB ) \leq 1015 in double-precision arithmetic. Therefore, we have wide latitude
to design bases that we can construct quickly; see section 4. We will provide evidence
that sGMRES with a fast basis construction is more efficient than GMRES with a
structured basis.

3.5. Restarting. Standard implementations of GMRES periodically restart [48,
sect. 6.5.5]. That is, they use a basis \bfitB to compute an approximate solution \bfitx \bfitB to
the linear system (3.1) with the residual vector \bfitr \bfitB = \bfitr 0 - \bfitA \bfitx \bfitB . If the residual norm
\| \bfitr \bfitB \| 2 exceeds an error tolerance, the residual vector \bfitr \bfitB is used to generate a new
basis, which is fed back to GMRES to construct another approximate solution. This
process is repeated until a solution of desired quality is obtained.

Restarting has a number of benefits for the process of basis construction. It allows
us to work with bases that have fewer columns, which limits the cost of storing the
basis. For orthogonal basis constructions, restarting reduces the cost of orthogonaliza-
tion. For nonorthogonal basis constructions, the restarting process helps control the
conditioning of the basis. On the other hand, restarted GMRES may not converge if
the bases are not rich enough (see Figure 1). As we will discuss in section 5, sGMRES
can help us manage all of these issues.

3.6. Preconditioning. For difficult linear systems, we may need a precondi-
tioner \bfitP \in Cn\times n to solve it successfully with either GMRES or sGMRES. The pre-
conditioned system has the form

(3.9) \bfitP  - 1\bfitA \bfitx =\bfitP  - 1\bfitf .

A good preconditioner has two features [48, Chap. 9 and 10]. First, the matrix \bfitP  - 1\bfitA 
has a more ``favorable"" structure than\bfitA . Second, we can solve \bfitP \bfitz = \bfitg efficiently. (Let
us emphasize that we only interact with \bfitP  - 1 by solving linear systems!) Although
preconditioning is critical in practice, it is heavily problem dependent, so we will not
delve into examples.

We may derive sGMRES for the preconditioned system (3.9), following the same
pattern as before. Note that we employ the preconditioned matrix \bfitP  - 1\bfitA when we
construct the basis \bfitB and the reduced matrix \bfitP  - 1(\bfitA \bfitB ). The details are routine.
We believe that sGMRES opens up new opportunities for designing preconditioners
because it is faster and more flexible than GMRES.

4. Constructing a basis for sGMRES. As we have seen, the success of both
GMRES (3.2) and sGMRES (3.4) hinges on the approximation power of the basis.
Krylov subspaces are, perhaps, the most elegant way to capture solutions to a linear
system when we access the matrix via products [48, Chap. 6 and 7]. In this setting,
the standard practice is to form an orthonormal basis for the Krylov subspace, but
this approach may be prohibitively expensive. Remarkably, sGMRES does not require
orthogonal bases, so we can look for cheaper constructions.

In this section, we describe several strategies for producing a nonorthogonal basis
for a Krylov subspace. Although these strategies are decades old, they warrant a
fresh look because sGMRES has a fundamentally different computational profile from
GMRES. See the technical report [38] for further discussion of Krylov subspaces and
other types of bases.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1196 YUJI NAKATSUKASA AND JOEL A. TROPP

4.1. The single-vector Krylov subspace. Many iterative methods for solving
the linear system (3.1) implicitly search for solutions in the Krylov subspace

Kp(\bfitA ;\bfitr ) := span\{ \bfitr ,\bfitA \bfitr ,\bfitA 2\bfitr , . . . ,\bfitA p - 1\bfitr \} = span\{ \varphi (\bfitA )\bfitr : deg(\varphi )\leq p - 1\} .

In this context, the generating vector \bfitr \in Cn is often the normalized residual \bfitr 0/\| \bfitr 0\| 2,
defined by \bfitr 0 = \bfitf  - \bfitA \bfitx 0, where \bfitx 0 is an approximate solution to (3.1). The function
\varphi ranges over polynomials with degree at most p - 1.

A basis \bfitB \in Cn\times d for the Krylov subspace Kp(\bfitA ;\bfitr ) comprises a system of vectors
that spans the subspace. We can write

\bfitB = [\bfitb 1, . . . ,\bfitb d] where \bfitb j =\varphi j(\bfitA )\bfitr for j = 1, . . . , d.

The filter polynomials (\varphi j : j = 1, . . . , d) have degree at most p  - 1, and they are
usually linearly independent (so d = p). In most cases, the polynomials are also
graded (deg(\varphi j) = j - 1), and they are constructed sequentially by a recurrence. The
recurrence often delivers the reduced matrix \bfitA \bfitB without any extra work.

For example, the monomial basis takes the form \bfitb 1 = \bfitr and \bfitb j = \bfitA \bfitb j - 1 for
j = 2, . . . , p. The associated filter polynomials are \varphi j(t) = tj - 1 for j = 1, . . . , p.
For many matrices \bfitA , the conditioning of the monomial basis for Kp(\bfitA ;\bfitr ) grows
exponentially with p, so it is inimical to numerical computation [20].

We will consider other constructions of Krylov subspace bases that are more
suitable in practice. Our aim is to control the resources used to obtain the basis,
including arithmetic, (working) storage, communication, synchronization, etc. We can
advance these goals by relaxing the requirement that the basis be well-conditioned.

For theoretical analysis of the approximation power of Krylov subspaces in the
context of linear system solvers, see [48, sect. 6.11].

4.2. The Arnoldi process. For motivation, we begin with the classic approach
for producing a fully orthonormal Krylov basis. It is supremely natural to build an
orthonormal basis \bfitQ \in Cn\times p for the Krylov subspace Kp(\bfitA ;\bfitr ) sequentially. This is
called the Arnoldi process [48, sect. 6.3]. The initial vector \bfitq 1 = \bfitr /\| \bfitr \| 2. After j
steps, the method updates the partial basis \bfitQ j = [\bfitq 1, . . . ,\bfitq j ] by appending the vector

\bfitq j+1 =\bfitw j+1/\| \bfitw j+1\| 2 where \bfitw j+1 = (I - \bfitQ j\bfitQ 
\ast 
j )(\bfitA \bfitq j).

The Arnoldi basis \bfitQ p \in Cn\times p has the happy property that

\bfitA \bfitQ p =\bfitQ p\bfitH p +\bfitw pe
\ast 
p where \bfitH p \in Cp\times p is upper Hessenberg.

As a consequence, we can solve the least-squares problem (3.2) with \bfitB =\bfitQ p in O(p2)
time and produce the approximate solution \bfitx \bfitB in O(np) operations. This is roughly
how the standard implementation of the GMRES algorithm operates [51].

The orthogonalization steps in the Arnoldi process are expensive. For p iterations,
they expend O(np2) arithmetic, and they may also involve burdensome inner products,
communication, and synchronization. Robust implementations usually incorporate
modified or double Gram--Schmidt or else use Householder reflectors.

The literature contains many strategies for controlling the orthogonalization costs
in the Arnoldi process [48, Chap. 6]. sGMRES motivates us to reevaluate techniques
for building a nonorthogonal basis. For example, we can use k-truncated Arnoldi, as
in (1.9), which reduces the cost of basis generation to O(npk). Provided the reduced
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1197

matrix \bfitA \bfitB is reasonably conditioned, we can still obtain accurate solutions to the
linear system via sGMRES (3.4).

Relatedly, Balabanov and Grigori [5] have proposed to use a low-dimensional
sketch of the basis to implement an approximate orthogonalization strategy inspired
by Fact 2.3. Their approach has the same asymptotic cost as full orthogonalization,
but similar ideas might be invoked to accelerate partial or selective orthogonalization.

4.3. The Lanczos recurrence. For this subsection, assume \bfitA is Hermitian. In
this case, the Arnoldi process simplifies to a three-term recurrence [48, sect. 6.6]:

\bfitq j+1 =\bfitw j+1/\| \bfitw j+1\| 2 where \bfitw j+1 = (I - \bfitq j\bfitq 
\ast 
j  - \bfitq j - 1\bfitq 

\ast 
j - 1)(\bfitA \bfitq j).

The Lanczos basis \bfitQ p = [\bfitq 1, . . . ,\bfitq p]\in Cn\times p has the remarkable property that

(4.1) \bfitA \bfitQ p =\bfitQ p\bfitJ p +\bfitw p\bfite 
\ast 
p where \bfitJ p \in Cp\times p is tridiagonal.

This fact allows us to solve the least-squares problem (3.2) with \bfitB = \bfitQ p in O(p)
time, and we construct the approximate solution \bfitx \bfitB with O(np) arithmetic. This is
roughly how the MINRES algorithm operates [41].

For p iterations, the Lanczos recurrence costs just O(np) operations, but it has
complicated behavior in finite-precision arithmetic. This issue is not devastating when
Lanczos is used to solve linear systems [31, Chap. 5], but it can present a more serious
challenge when solving eigenvalue problems [43, Chap. 13].

Although it is very efficient to solve the least-squares problem (3.2) by passing to
the tridiagonal matrix \bfitJ p, this approach can suffer from loss of orthogonality in the
computed \bfitQ p matrix [53, 54]. It is more reliable to sketch \bfitS (\bfitA \bfitQ p) and to solve the
sketched problem (3.4) instead, as then \kappa 2(\bfitQ p)\gg 1 is allowed. The approach based
on sketching has runtime competitive with MINRES when the depth p\ll n.

The literature describes many approaches for maintaining the orthogonality of
the Lanczos basis, such as selective orthogonalization [43, Chap. 13]. When using the
Lanczos basis for sGMRES, we can omit the extra orthogonalization steps. Alterna-
tively, we may adopt the approximate orthogonalization strategies from subsection 4.2.

4.4. The Chebyshev recurrence. In some settings, we may wish to avoid the
orthogonalization steps entirely because they involve operations on high-dimensional
basis vectors. We can achieve this goal by using other polynomial recurrences to
construct a Krylov subspace basis. This idea is attributed to Joubert and Carey [26].
Here is one appealing example of this technique.

For simplicity, suppose that the spectrum of \bfitA is contained in the axis-aligned
rectangle [c \pm \delta x,\pm \delta y], and set \varrho = max\{ \delta x, \delta y\} . Then we can assemble a shifted-
and-scaled Chebyshev basis \bfitB \in Cn\times p via the following recurrence [32, 26]. Let
\bfitb 1 = \bfitr /\| \bfitr \| 2 and \bfitb 2 = (2\varrho ) - 1(\bfitA  - cI)\bfitb 1. Then

(4.2) \bfitb j =
1

\varrho 

\Biggl[ 
(\bfitA  - cI)\bfitb j - 1  - 

\delta 2x  - \delta 2y
4\varrho 

\bfitb j - 2

\Biggr] 
for j = 3, . . . , p.

In practice, we also rescale each basis vector \bfitb j to have unit \ell 2 norm after it has
played its role in the recurrence. The key theoretical fact is that the Chebyshev
basis tends to have a condition number that grows polynomially in p, rather than
exponentially. This claim depends on assumptions that the eigenvalues of the matrix
are equidistributed over an ellipse [19, 32, 26, 44].
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1198 YUJI NAKATSUKASA AND JOEL A. TROPP

Table 1
GMRES versus sGMRES: Arithmetic. This table compares the total arithmetic cost of solv-

ing an n \times n linear system using a d-dimensional basis via standard GMRES and via sGMRES.
For sGMRES, we consider both k-truncated Arnoldi and the Chebyshev basis. Heuristically, the
parameters k\ll d\ll n. Constant factors are suppressed.

Matrix access Form basis Sketch LS solve Form soln.

Std. GMRES dT\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{v}\mathrm{e}\mathrm{c} nd2 --- d2 nd

sGMRES-k dT\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{v}\mathrm{e}\mathrm{c} ndk nd logd d3 nd

sGMRES-Cheb dT\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{v}\mathrm{e}\mathrm{c} nd nd logd d3 nd

To implement this procedure, we may first apply a few iterations of the Arnoldi
method (subsection 6.2) to estimate the spectrum of \bfitA . More generally, we find
a (transformed) ellipse that contains the spectrum. Then we adapt the Chebyshev
polynomials to this ellipse [44]. The overall cost of constructing a Chebyshev basis
for Kp(\bfitA ;\bfitr ) is O(np), and it involves no orthogonalization whatsoever. The quality
of the estimates and distribution of the spectrum can impact the performance.

4.5. Local orthogonalization. We can improve the conditioning of a computed
basis \bfitB \in Cn\times d by local orthogonalization. Indeed, it is generally helpful to orthogo-
nalize subcollections of basis vectors, even if it proves too expensive to orthogonalize
all of the basis vectors. In particular, scaling each column to have unit \ell 2 norm is
always appropriate. See [66] for an analysis.

5. sGMRES algorithms. This section presents complete algorithms for solving
the linear system (3.1) via sGMRES, including options for adaptive basis generation.

5.1. Basic implementation. Algorithm 1.1 contains pseudocode for a simple
implementation of sGMRES using the k-truncated Arnoldi basis (1.9). We recommend
this version of the algorithm when the user lacks information about the spectrum of
\bfitA . Given bounds on the spectrum, one may replace the truncated Arnoldi basis with
a Chebyshev basis (subsection 4.4). Table 1 summarizes the arithmetic costs.

5.2. Iterative sGMRES. As noted, most methods for producing the Krylov
subspace basis generate the columns of \bfitB and the reduced matrix \bfitA \bfitB sequentially.
This observation suggests an iterative implementation of sGMRES. We sketch the
columns of the reduced matrix as they arrive, incrementally solving the sGMRES
problem (3.4) at each step. Here are the details.

Let dmax be a user-specified parameter that bounds the allowable depth of the
Krylov subspace. Draw and fix a randomized subspace embedding \bfitS \in Cs\times n with
embedding dimension s= 2(dmax+1). As we compute each column\bfitA \bfitb j of the reduced
matrix, we immediately form the sketch \bfitS (\bfitA \bfitb j) and update the QR decomposition:

(5.1) \bfitS (\bfitA \bfitB j) =\bfitU j\bfitT j where \bfitB j = [\bfitb 1, . . . ,\bfitb j ].

At each step, we obtain an approximate solution to the linear system:

(5.2) \^\bfity j = \bfitT  - 1
j (\bfitU \ast 

j (\bfitS \bfitr 0)) with \^rest,j = \| (I - \bfitU j\bfitU j)
\ast (\bfitS \bfitr 0)\| 2.

Repeat this process until the estimated residual norm \^rest,j is sufficiently small or we
breach the threshold dmax for the size of the Krylov space. After d iterations, the
arithmetic costs of (5.1) and (5.2) match the nonsequential implementation (subsec-
tion 3.3) with a basis of size d.
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1199

5.3. Adaptive restarting and whitening. There is a further opportunity to
design an adaptive strategy for restarting. According to (2.5), the condition number
\kappa 2(\bfitT j) is comparable with \kappa 2(\bfitA \bfitB j). When first \kappa 2(\bfitT j)> tol, we recognize that it
is time to restart. We generate the new Krylov subspace using the previous residual
\^\bfitr j - 1 = \bfitr 0  - \bfitA \bfitB j - 1\^\bfity j - 1.

Alternatively, instead of restarting, we can approximately orthogonalize \bfitB j - 1 by
replacing it with the whitened basis \=\bfitB j - 1 :=\bfitB j - 1\bfitT 

 - 1
j - 1, whose condition number is

constant. Once we have done so, we may continue generating new basis vectors. Un-
fortunately, given \bfitT j - 1, whitening still requires O(nd2) arithmetic operations. More-
over, experiments suggest that once whitening is needed, the subsequent basis \bfitB 
becomes ill-conditioned rapidly. A practical approach is to switch to the construction
in after the first whitening, although this also increases the cost to O(nd2) operations.

5.4. Storage-efficient versions. In situations where storage is at a premium,
we can avoid storing the reduced matrix \bfitA \bfitB j by sketching its columns sequentially
and discarding (or warehousing) them right after sketching. Once the estimated
residual norm \^rest,j is sufficiently small, we construct the approximate solution

\^\bfitx j =\bfitx 0 +\bfitB j \^\bfity j =\bfitx 0 +

j\sum 
i=1

(\bfitB j)i(\^\bfity j)i

by iteratively regenerating the columns of the reduced matrix \bfitA \bfitB j and linearly com-
bining them on the fly. For some basis constructions (e.g., truncated Arnoldi or
Chebyshev), we only need to maintain a few columns of \bfitB and the j columns of
\bfitS (\bfitA \bfitB j). Note that regenerating vectors doubles the arithmetic cost associated with
basis formation. A similar technique was used in [70].

6. The sketched Rayleigh--Ritz method. Let us turn to the nonsymmetric
eigenvalue problem

(6.1) Find nonzero \bfitx \in Cn and \lambda \in C : \bfitA \bfitx = \lambda \bfitx where \bfitA \in Cn\times n.

We will provide an implementation and analysis of the sRR method outlined in sub-
section 1.3.1. Subsection 6.8 describes modifications for the symmetric eigenvalue
problem. Section 7 covers techniques for constructing the basis for sRR.

6.1. Perspectives on Rayleigh--Ritz. Fix a full-rank basis \bfitB \in Cn\times d, and let
\bfitA \bfitB \in Cn\times d be the reduced matrix. RR is best understood as a Galerkin method for
computing eigenvalues [49, sect. 4.3]. Among nonzero vectors of the form \bfitx = \bfitB \bfity ,
we seek a residual \bfitr =\bfitA \bfitx  - \theta \bfitx orthogonal to range(\bfitB ). More precisely,

(6.2) Find nonzero \bfity \in Cd and \theta \in C : \bfitB \ast (\bfitA \bfitB \bfity  - \theta \bfitB \bfity ) = 0.

Since \bfitB \dagger = (\bfitB \ast \bfitB ) - 1\bfitB \ast , we see that (6.2) can be posed as an ordinary eigenvalue
problem:

(6.3) \bfitM  \star \bfity :=\bfitB \dagger (\bfitA \bfitB )\bfity = \theta \bfity where \bfity \not = 0 and \theta \in C.

Recall that eigenvalue problems are invariant under similarity transforms. In the
present context, the computed eigenpairs only depend on the range of \bfitB , so they are
invariant under the map \bfitB \mapsto \rightarrow \bfitB \bfitT for a nonsingular \bfitT \in Cd\times d. Therefore, if \bfitQ \in Cn\times d

is an orthonormal basis for range(\bfitB ), then we may pass to

(6.4) \bfitQ \ast (\bfitA \bfitQ )\bfitz = \theta \bfitz where \bfitz \not = 0.
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1200 YUJI NAKATSUKASA AND JOEL A. TROPP

Given a solution (\bfitz , \theta ) to (6.4), we obtain an approximate eigenpair (\bfitQ \bfitz , \theta ) of the
matrix \bfitA . This is the most typical presentation of RR.

In contrast, consider the problem of minimizing the residual over the subspace:

(6.5) minimize\bfity \in Cd,\theta \in C \| \bfitA \bfitB \bfity  - \theta \bfitB \bfity \| 2 subject to \| \bfitB \bfity \| 2 = 1.

This formulation is sometimes called a rectangular eigenvalue problem [11, 25]. Let
us emphasize that the RR method (6.3) does not solve the rectangular eigenvalue
problem. Nevertheless, for any eigenpair (\bfity  \star , \theta  \star ) of the matrix \bfitM  \star , it holds that

(6.6) \| \bfitA \bfitB \bfity  \star  - \theta  \star \bfitB \bfity  \star \| 2 = \| (\bfitA \bfitB  - \bfitB \bfitM  \star )\bfity  \star \| 2.

The matrix \bfitM  \star from (6.3) does solve a related variational problem [43, Thm. 11.4.2]:

(6.7) minimize\bfitM \in Cd\times d \| \bfitA \bfitB  - \bfitB \bfitM \| F.

These connections support the design and analysis of a sketched version of RR.

6.2. The Arnoldi method. The Arnoldi method is a classic algorithm [49,
sect. 6.2] for eigenvalue problems based on RR. First, it invokes the Arnoldi process
(subsection 4.2) to build an orthonormal basis \bfitQ \in Cn\times d for the Krylov subspace
Kd(\bfitA ;\bfitomega ) generated by a random vector \bfitomega \in Cn at a cost of O(nd2) operations. This
construction ensures that \bfitQ \ast \bfitA \bfitQ has Hessenberg form, so we can solve the eigenvalue
problem (6.3) with O(d2) operations by means of the QR algorithm [49, Chap. 7].
Each eigenpair (\bfity , \theta ) of (6.3) induces an approximate eigenpair (\bfitB \bfity , \theta ) of \bfitA , which
we can form with O(nd) operations.

6.3. Derivation of sRR. We can view the sRR method as a sketched version
of the matrix optimization problem (6.7). Consider a subspace embedding \bfitS \in Cs\times n

for range([\bfitA \bfitB ,\bfitB ]) with distortion \varepsilon \in (0,1). The sketched problem is

(6.8) minimize\bfitM \in Cd\times d \| \bfitS (\bfitA \bfitB  - \bfitB \bfitM )\| F.

First, the sRR method finds a solution \^\bfitM \in Cd\times d to this optimization problem. Then
it poses the ordinary eigenvalue problem

(6.9) \^\bfitM \bfity = \theta \bfity where \bfity \not = 0.

This computation yields up to d eigenpairs (\^\bfity i,
\^\theta i) of the matrix \^\bfitM . We obtain

approximate eigenpairs of \bfitA by the transformation (\bfitB \^\bfity i,
\^\theta i).

Sketching allows us to obtain inexpensive a posteriori error bounds. For a com-
puted eigenpair (\^\bfity , \^\theta ) of \^\bfitM , it is cheap to form the sketched residual:

(6.10) \^rest := \^rest(\^\bfity , \^\theta ) := \| \bfitS (\bfitA \bfitB \^\bfity  - \^\theta \bfitB \^\bfity )\| 2/\| \bfitS \bfitB \^\bfity \| 2.

By definition, the subspace embedding \bfitS ensures that the true residual satisfies

(6.11)
1 - \varepsilon 

1 + \varepsilon 
\cdot \^rest \leq 

\| \bfitA \bfitB \^\bfity  - \^\theta \bfitB \^\bfity \| 2
\| \bfitB \^\bfity \| 2

\leq 1 + \varepsilon 

1 - \varepsilon 
\cdot \^rest.

In other words, we can diagnose when the sRR method has (or has not) produced a
high-quality approximate eigenpair (\bfitB \^\bfity , \^\theta ) of the original matrix \bfitA .
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1201

6.4. Implementation of sRR. To implement sRR, we may use either an SRFT
embedding (2.6) or a sparse embedding (2.7). We recommend the embedding dimen-
sion s= 4d, which typically results in distortion \varepsilon = 1/

\surd 
2 for the range of [\bfitA \bfitB ,\bfitB ].

We first sketch the reduced matrix (\bfitS \bfitA \bfitB \in Cs\times d) and the basis (\bfitS \bfitB \in Cs\times d) at
a cost of O(nd logd) operations. Next, we compute a thin, pivoted QR decomposition
\bfitS \bfitB =\bfitU \bfitT of the sketched basis. A minimizer of the sRR problem (6.8) is the matrix

(6.12) \^\bfitM := (\bfitS \bfitB )\dagger (\bfitS \bfitA \bfitB ) = \bfitT  - 1(\bfitU \ast (\bfitS \bfitA \bfitB ))\in Cd\times d.

We apply the inverse by triangular substitution. Then invoke the QR algorithm to
solve the eigenvalue problem (6.9). Each of the last three steps costs O(d3) operations.

Given a computed eigenpair (\^\bfity , \^\theta ), we can obtain the sketched residual value
\^rest(\^\bfity , \^\theta ) from (6.10) at a cost of O(d2) operations. If the residual estimate is suffi-
ciently small, we declare that (\bfitB \^\bfity , \^\theta ) is an approximate eigenpair of \bfitA . For maximum
efficiency, we present the approximate eigenvector \^\bfitx =\bfitB \^\bfity \in Cn in factored form. If
we need the full vector \^\bfitx , it costs O(nd) operations. Ironically, if we extract a large
number of explicit eigenvectors, this last step dominates the cost of the computation.
Usually, the number of high-quality approximate eigenpairs is much smaller than d.

In summary, given the basis \bfitB , if we use sRR to solve (6.1), the cost of reporting
the factored form of d approximate eigenpairs is O(d3 + nd logd) operations. In
contrast, RR requires O(nd2) arithmetic with an unstructured basis. Our numerical
experience indicates that sRR is a robust alternative to RR so long as the condition
number of the basis \kappa 2(\bfitB )\leq 1015. This fact allows us to exploit fast nonorthogonal
basis constructions; see section 7. See Algorithm 1.2 for a simple implementation of
sRR with a partial Arnoldi basis.

6.5. Stabilization. The output of sRR is almost identical to RR provided that
\kappa 2(\bfitB ) \lesssim u - 1. This condition is very generous. In contrast, recall that the standard
stability analysis [43, Chap. 13] for the Lanczos algorithm asks that \kappa 2(\bfitB )< 1+

\surd 
u.

If the sketched basis \bfitS \bfitB is badly conditioned (\kappa 2(\bfitS \bfitB )\gtrsim u - 1), then the condition
number diagnostic (2.5) implies that the basis \bfitB is also badly conditioned. In this
case, we can stabilize sRR by restarting or whitening the basis; see subsection 7.2.

Alternatively, we can regularize the sketched basis and use a more reliable com-
putational procedure. First, compute the truncated SVD:

\bfitS \bfitB =\bfitU \Sigma \bfitV \ast +\bfitE where \| \Sigma \| 2/\| \bfitE \| 2 \leq tol.

Then we use the QZ algorithm [21, sect. 7.7] to solve the generalized eigenvalue
problem6

(6.13) (\bfitU \ast \bfitS \bfitA \bfitB )\bfitV \bfitz = \theta \Sigma \bfitz .

Each solution yields an sRR eigenpair (\bfitV \bfitz , \theta ) and an associated approximate eigen-
pair (\bfitB \bfitV \bfitz , \theta ) of \bfitA . The asymptotic cost is the same as the basic implementation.

6.6. Why does sRR work? We will argue that RR and sRR solve eigenvalue
problems that are similar to a pair of nearby eigenvalue problems involving the ma-
trices \=\bfitM  \star and \=\bfitM defined below.

First, recall that \bfitS \bfitB =\bfitU \bfitT is the QR decomposition of the sketched basis. Per
(2.4), the whitened basis \=\bfitB :=\bfitB \bfitT  - 1 has conditioning \kappa 2( \=\bfitB )\leq (1+ \varepsilon )/(1 - \varepsilon ). Now,

6When \kappa 2(\bfitB )\gtrsim u - 1, numerical experiments suggest this approach is more stable than reducing
to a standard eigenvalue problem as in (6.12).
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1202 YUJI NAKATSUKASA AND JOEL A. TROPP

consider the variational problem (6.7) with respect to the whitened basis \=\bfitB and its
sketched version:

minimize\bfitM \| \bfitA \=\bfitB  - \=\bfitB \bfitM \| F with solution \=\bfitM  \star := \=\bfitB 
\dagger 
\bfitA \=\bfitB ;

minimize\bfitM \| \bfitS (\bfitA \=\bfitB  - \=\bfitB \bfitM )\| F with solution \=\bfitM := (\bfitS \=\bfitB )\dagger (\bfitS \bfitA \=\bfitB ).

Let \bfitQ be an orthonormal basis for range( \=\bfitB ). Then we recognize that \=\bfitM  \star is similar
to the RR matrix \bfitQ \ast \bfitA \bfitQ . In view of (6.12) and the relations \bfitS \=\bfitB = \bfitS \bfitB \bfitT  - 1 = \bfitU ,
the sketched solution \=\bfitM is similar to the sRR matrix \^\bfitM :

\=\bfitM =\bfitU \ast (\bfitS \bfitA \bfitB )\bfitT  - 1 = \bfitT \^\bfitM \bfitT  - 1.

Eigenvalue problems are invariant under similarity, so it suffices to show \=\bfitM \approx \=\bfitM  \star .
To that end, we invoke (2.3) columnwise to obtain the comparison

(6.14) \| \bfitA \=\bfitB  - \=\bfitB \=\bfitM  \star \| F \leq \| \bfitA \=\bfitB  - \=\bfitB \=\bfitM \| F \leq 
1 + \varepsilon 

1 - \varepsilon 
\cdot \| \bfitA \=\bfitB  - \=\bfitB \=\bfitM  \star \| F.

Using the definitions of \=\bfitM  \star and \bfitQ , we find that

\| \bfitA \=\bfitB  - \=\bfitB \=\bfitM  \star \| F = \| (I - \bfitQ \bfitQ \ast )\bfitA \=\bfitB \| F \leq \sigma max( \=\bfitB ) \cdot \| (I - \bfitQ \bfitQ \ast )\bfitA \bfitQ \| F.

From the last two displays, a short argument using the triangle inequality (add and
subtract \bfitA \=\bfitB ) and the conditioning of the whitened basis produces

\| \=\bfitM  - \=\bfitM  \star \| F \leq 
1

\sigma min( \=\bfitB )
\cdot \| \=\bfitB ( \=\bfitM  - \=\bfitM  \star )\| F \leq 

2(1 + \varepsilon )

(1 - \varepsilon )2
\cdot \| (I - \bfitQ \bfitQ \ast )\bfitA \bfitQ \| F.

Here is an interpretation. If range(\bfitQ ) = range(\bfitB ) is close to an invariant subspace
of \bfitA , then (I  - \bfitQ \bfitQ \ast )\bfitA \bfitQ \approx 0. In this case, \=\bfitM \approx \=\bfitM  \star . Therefore, sRR and RR
solve nearby eigenvalue problems, and we deduce that sRR is a backward stable
approximation to RR in exact arithmetic.

More generally, as long as range(\bfitB ) contains an approximate eigenvector of \bfitA 
with small residual, (6.11) shows that the same vector yields a comparably small
residual for the sketched eigenproblem (6.9). Unfortunately, even in this case, there
is no guarantee that sRR will find an approximate eigenpair with a small residual.
Indeed, the behavior of classic RR is already complicated, and pathological examples
are known [58, p. 282]. Nevertheless, RR provides excellent outputs in the vast
majority of cases; see [37, 49, 56] for the analysis.

6.7. sRR with a Krylov subspace basis. When \bfitB is a (graded) basis for a
Krylov subspace, the analysis of sRR simplifies further. In this case, the solutions
\bfitM  \star and \^\bfitM to (6.7) and (6.8) differ only in the final column! To verify this point,
observe that (6.7) decouples into a family of d least-squares problems:

minimize\bfitm i\in Cd \| \bfitA \bfitb i  - \bfitB \bfitm i\| F for i= 1, . . . , d.

By construction, the vector \bfitA \bfitb i lies in the span of \bfitB for i = 1, . . . , d  - 1. Each of
these problems has a unique solution with zero residual. Thus, the sketched problem
(6.8) correctly identifies the exact solution.

6.8. The symmetric case. Consider the symmetric eigenvalue problem

(6.15) \bfitA \bfitx = \lambda \bfitx where \bfitA =\bfitA \ast .
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1203

We can apply sRR directly to (6.15). Unfortunately, sRR is not guaranteed to (and in
fact does not always) return real eigenvalue estimates. At root, the sketched eigenvalue
problem (6.9) is not (similar to) a symmetric problem. Accordingly, the computed
eigenvectors need not be orthogonal. This is an inherent drawback.

Fortunately, for (6.15), sRR often computes eigenvalue estimates that are real (or
nearly real), and the associated eigenvectors tend to be nearly orthogonal. We can
anticipate this outcome when the whitened matrices satisfy \=\bfitM \approx \=\bfitM  \star . Indeed, the
eigenvalues of a symmetric matrix are well-conditioned under nonsymmetric pertur-
bations [27, 59]. As for the eigenvectors, if two approximate eigenpairs (\^\bfitx 1, \^\lambda 1) and
(\^\bfitx 2, \^\lambda 2) of a symmetric matrix \bfitA have small residuals and sufficient gap | \^\lambda 1  - \^\lambda 2| ,
then it follows that \^\bfitx 1, \^\bfitx 2 are nearly orthogonal [43]. This forces the high-quality
eigenvectors computed by sRR to be nearly orthogonal.

For a real symmetric matrix \bfitA , our implementation of sRR simply extracts the
real part of the computed eigenvalues and eigenvectors. When \bfitA is complex Hermit-
ian, we force the eigenvalues (but not the eigenvectors) to be real. The design of a
fast algorithm that respects symmetry remains an open problem.

7. Constructing a basis for sRR. The performance of RR and sRR depends
on the quality of the basis construction. For these problems, it is natural to con-
sider block Krylov bases generated by random vectors. As before, we can consider
nonorthogonal basis constructions. Owing to the overlap with the discussion of single-
vector Krylov spaces, our presentation here is more telegraphic.

7.1. Block Krylov subspaces. For the eigenvalue problem (6.1), we can search
for solutions using sRR with a block Krylov subspace. Let \Omega \in Cn\times b be an initial
matrix; the dimension b is called the block size. Define

(7.1) Kp(\bfitA ;\Omega ) := range[\Omega ,\bfitA \Omega , . . . ,\bfitA p - 1\Omega ] = span\{ \varphi (\bfitA )\Omega : deg(\varphi )\leq p - 1\} .

Setting d= bp, we can express a basis \bfitB \in Cn\times d for this subspace in the form

\bfitB = [\bfitB 1, . . . ,\bfitB p] = [\varphi 1(\bfitA )\Omega , . . . ,\varphi p(\bfitA )\Omega ].

Here, \{ \varphi i : i = 1, . . . , d\} is a linearly independent family of filter polynomials. For
eigenvalue problems, the generating matrix \Omega \in Cn\times b may be drawn at random from
a standard normal distribution.

Historically, the NLA literature has prescribed a small block size, say, b \leq 4,
and a very large depth p. More recent research [33, sect. 11] has identified an
opportunity to use a larger block size b, say, 10s or 100s, and a moderate depth p.
This shift in perspective has already transformed the computational profile of block
Krylov methods for low-rank approximation. For instance, we can parallelize the
computation over the columns of \Omega (or over the filter polynomials \varphi i). In combination
with sRR, nonorthogonal basis constructions promise further benefits. See [35, 62, 63]
for theoretical analysis of block Krylov subspaces for low-rank matrix approximation
and symmetric eigenvalue problems.

Remark 7.1 (other kinds of bases). There are subspace projection methods for
eigenvalue problems that involve bases other than Krylov subspaces. For example,
the Jacobi--Davidson method [55] and the LOBPCG algorithm [28] use alternative
ideas to build a search space. These methods may also be combined with sRR.

7.2. Basis diagnostics and restarting. As with single-vector Krylov sub-
spaces, we can sketch basis vectors as they are generated to collect summary in-
formation about the quality of the basis. Indeed, if \bfitB \in Cn\times d is a basis, then the
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1204 YUJI NAKATSUKASA AND JOEL A. TROPP

condition number of the sketched basis \kappa 2(\bfitS \bfitB ) serves as a proxy for \kappa 2(\bfitB ); see (2.5).
When the basis is poor, it can be important to use stabilized sRR (subsection 6.5).

It can also be effective to restart production of the Krylov subspace when the
quality of the basis starts to decline. The Krylov--Schur algorithm [57] is a standard
restarting method, but other approaches are possible here. For example, we may com-
pute a basis for the Krylov subspace Kp(\bfitA ;\Omega ), and we can feed this basis to sRR to
extract a matrix \bfitX whose columns approximately span the desired invariant subspace
of \bfitA . Then we pass to the Krylov subspace Kp(\bfitA ;\bfitX ), and so forth. Randomized
subspace iteration [23] is a simple version of this technique.

Another possibility for restarting is to deflate converged eigenpairs by working
in their orthogonal complement. Convergence of Ritz pairs and loss of orthogonality
are known to be tightly linked [43, Chap. 11]. Felicitously, sRR is able to identify
such eigenpairs cheaply. Optimizing the sRR restarting strategy is left as future
work.

7.3. Block monomial basis with orthogonalization. Although the mono-
mial basis is anathema for large-degree polynomials, we can still use it for shal-
low Krylov subspaces (say, when p < 5). In this case, we can assemble a basis
\bfitB = [\bfitB 1, . . . ,\bfitB p] for Kp(\bfitA ;\Omega ) as follows. Set \bfitB 1 = orth(\Omega ), and iterate

\bfitB j = orth(\Omega j) where \Omega j =\bfitA \bfitB j - 1 for j = 2,3, . . . , p.

We acquire the reduced matrix \bfitA \bfitB as a by-product of this computation.
The block monomial basis has been used in the ``blanczos"" method [46, 22, 35,

61, 33] for low-rank matrix approximation, but it requires an expensive full orthogo-
nalization of \bfitB in the final step. When used as an input to sRR, however, it may not
be necessary to reorthogonalize the block monomial basis \bfitB .

7.4. Block Arnoldi with truncation. We can mitigate the rapid condition
number growth of the block monomial basis by adding extra orthogonalization steps.
For recurrence length k \in N, we set \bfitB 1 = orth(\Omega ) and iterate

\bfitB j = orth(\Omega j) where \Omega j = (I - \bfitB j - 1\bfitB 
\ast 
j - 1  - \cdot \cdot \cdot  - \bfitB j - k\bfitB 

\ast 
j - k)(\bfitA \bfitB j - 1).

The resulting basis \bfitB = [\bfitB 1, . . . ,\bfitB p] serves as an input to sRR. The choice k = 1 or
k= 2 already improves substantially over the block monomial basis.

When \bfitA is Hermitian, the choice k= 2 corresponds to the block Lanczos method
without reorthogonalization [43, Chap. 13]. Historically, the reorthogonalization step
has been regarded as important for achieving robustness. If we use block Lanczos
with sRR, then we can often dispense with reorthogonalization.

As with sGMRES, in the unblocked case (b = 1), we recommend k-truncated
Arnoldi with a modest k as shown in Algorithm 1.2. However, for eigenvalue compu-
tations, there is a compelling reason to take the block size b\gg 1. As the block size b
increases, the cost of orthogonalization quickly becomes devastating.

7.5. Block Chebyshev recurrence. By employing other polynomial recur-
rences, we can potentially eliminate all expensive computations that involve orthogo-
nalizing high-dimensional basis vectors. In particular, the shifted-and-scaled Cheby-
shev recurrence emerges as an appealing option.
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1205

Suppose that we have prior knowledge that the spectrum of \bfitA is contained in
the axis-aligned rectangle [c\pm \delta x,\pm \delta y], and set \varrho =max\{ \delta x, \delta y\} . Then we can form a
block Chebyshev basis \bfitB = [\bfitB 1, . . . ,\bfitB p] for Kp(\bfitA ;\Omega ) as follows:

(7.2) \bfitB 1 =\Omega ; \bfitB 2 =
1

2\varrho 
(\bfitA  - cI)\Omega ; \bfitB j =

1

\varrho 

\Biggl[ 
(\bfitA  - cI)\bfitB j - 1  - 

\delta 2x  - \delta 2y
4\varrho 

\bfitB j - 2

\Biggr] 
.

To implement this procedure, we typically need to perform a coarse initial eigenvalue
computation (using sRR + block Arnoldi) to obtain a rough estimate for the spectrum
of \bfitA . For this purpose, a small block size b and depth p usually suffice. We may also
consider Chebyshev polynomials based on rotated ellipses, as in [44].

A remarkable feature of this approach is that we can compute the block Chebyshev
basis for Kp(\bfitA ;\Omega ) with b(p  - 1) matvecs plus O(nbp) operations. In contrast, it
requires O(n(bp)2) extra operations to produce an (approximately) orthogonal basis.
Beyond that, the Chebyshev recurrence can be implemented efficiently in parallel or
with SIMD processors, and the lack of inner products and orthogonalization steps
allows us to evade communication and synchronization costs.

8. Computational experiments. This section presents numerics that show-
case the potential of sGMRES and sRR for solving large linear systems and eigenvalue
problems. All examples involve real-valued matrices, with appropriate modifications
to the methodology. All computations were performed in MATLAB version 2020a on
a workstation with 256 GB memory and 96 cores, each clocked at 3.3 GHz. See the
technical report [38] for numerical work we have not shown in detail.

8.1. Solving linear systems with sGMRES. This subsection shows how the
sGMRES method can solve nonsymmetric and symmetric linear systems.

8.1.1. Algorithm details. Our implementation of sGMRES follows the pseu-
docode in Algorithm 1.1. We construct a basis using k-truncated Arnoldi (1.9) with
small values k \in \{ 2,4\} or with the Chebyshev basis (subsection 4.4). We do not
whiten the basis or restart sGMRES. The subspace embedding is based on an SRFT
matrix (2.6) where \bfitE has independent Rademacher7 entries and \bfitF is a discrete co-
sine transform (DCT2). This sketch is easy to implement in MATLAB, but it uses
O(nd logn) operations rather than O(nd logd).

We do not report tests on the more elaborate algorithms discussed in section 5,
because fine-tuning performance is outside the scope of this exploratory research.

8.1.2. Nonsymmetric linear systems. We begin with details about the non-
symmetric linear system discussed in the introduction (Figure 1). We use the IFISS
toolbox [17] to generate a FEM discretization of the convection-diffusion equation\Biggl\{ 

 - \varepsilon \nabla 2u+\bfitw \cdot \nabla u= 0 on \Omega ;

u= g on \partial \Omega .

Our example is based on the first convection-diffusion test problem from Elman,
Silvester, and Wathen [18, Ex. 6.1.1]. The domain is the unit square \Omega = [ - 1,+1]2

with ``hard"" Dirichlet boundary conditions designed to produce a sharp interface in
the solution. The viscosity parameter \varepsilon = 10 and the velocity \bfitw = (0,1), which
corresponds to a diffusion-dominant regime. The dimension of the discretized linear
system is n= 220 \approx 1.05 \cdot 106.

7A Rademacher random variable takes values \pm 1 with equal probability.
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1206 YUJI NAKATSUKASA AND JOEL A. TROPP

We compare sGMRES with the MATLAB command gmres without restarting
and with restarting frequencies \{ 10,30,100\} . The k-truncated Arnoldi basis (with
k= 2) leads to a reduced matrix \bfitA \bfitB whose condition number grows significantly, but
the condition number remains below the tolerance u - 1 throughout the computation.
This property ensures that sGMRES is effective.

Figure 1 illustrates that GRMES and sGMRES both solve the discretized
convection-diffusion problem with relative residual on the order of 10 - 14, after build-
ing a basis with dimension d\approx 2500. For this problem instance, sGMRES runs about
70\times faster than GMRES. Restarted versions of GMRES do not attain accurate so-
lutions, and they are still slower than sGMRES. For this 2D problem, the cost of
sGMRES is similar to a sparse direct solver.

Nonsymmetric 3D problems are beyond the scope of this paper, although we have
obtained promising initial results for symmetric 3D problems. We used the IFISS3D
toolkit [42] to construct a FEM discretization of a 3D Poisson problem, resulting in
a symmetric linear system with dimension 218. For this problem, the matrix has
many more nonzero entries and fill-ins (in the LU factorization) than the 2D case,
and sGMRES (runtime 22s) is 5\times faster than GMRES (105s) and 11\times faster than a
sparse direct solver (MATLAB backslash, 250s). All three methods yield comparable
residuals, below 3\times 10 - 14.

8.1.3. Symmetric linear systems. Surprisingly, for symmetric linear systems,
sGMRES may even be competitive with CG and MINRES. As a simple example,
consider a symmetric test matrix \bfitA with dimension n= 106, obtained from a finite-
difference approximation of the 2D Laplacian.8 We solve \bfitA \bfitx = \bfitf , where the right-
hand side \bfitf = \bfitA \bfitx 0 for a traceless vector \bfitx 0. Although specialized algorithms (e.g.,
multigrid) are preferable to Krylov subspace methods, this example still offers an
inspiring illustration of our methodology.

Figure 3 describes the progress of sGMRES when the basis is generated by
k-truncated orthogonalization for k = 2 and when the basis is generated by the
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Fig. 3. sGMRES versus GMRES: Laplacian system. For a 2D Laplacian system \bfitA \bfitx = \bfitf with
dimension n = 106, these panels compare the performance of MATLAB gmres (with and without
restarting) against the sGMRES algorithm (with 2-partial orthogonalization or the Chebyshev basis).
Left: Relative residual and condition number \kappa 2(\bfitA \bfitB ) of the reduced matrix associated with the
k-truncated Arnoldi basis. Right: Total runtime including basis generation.

8To generate the matrix we used the code in https://www.mathworks.com/matlabcentral/
fileexchange/27279-laplacian-in-1d-2d-or-3d.
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Chebyshev recurrence. We compare with the MATLAB commands pcg and gmres

without restart and with restart frequencies in \{ 10,30,100\} . sGMRES achieves the
same accuracy as GMRES, but the sketched version is up to 100\times faster after 3000
iterations. Restarted GMRES is both slower and less accurate. For comparison, d
iterations of sGMRES take about 50\% longer than d iterations of CG. Nevertheless,
for the same number d of iterations, sGMRES achieves \ell 2 residual norms up to 10\times 
smaller than CG. By this metric, the sGMRES method is more efficient than CG.9

For indefinite systems, sGMRES can also be a valuable tool when MINRES is
unstable due to loss of orthogonality in the Lanczos vectors [16]. We have found
examples where sGMRES outperforms MINRES, but the difference was not dramatic.

8.1.4. sGMRES: Hard examples. We must acknowledge that sGMRES is not
always an effective tool for solving linear systems. In some cases, sGMRES inherits
its weaknesses from GMRES, but there are also new phenomena that arise.

First, there are linear systems where classic GMRES cannot produce a small
residual because the Krylov subspace does not have sufficient approximation power.
sGMRES cannot cure this debility. In these cases, preconditioning is critical.

Second, sGMRES is not especially useful for problems where the matrix-vector
multiply \bfitx \mapsto \rightarrow \bfitA \bfitx is costly relative to the other arithmetic. For example, when \bfitA is
dense, over 99\% of the runtime of GMRES or sGMRES may be devoted to matvecs.

Third, and most seriously, there are linear systems where it is very difficult to
construct a numerically full-rank basis for the Krylov subspace without meticulous
orthogonalization. The rest of this subsection documents one such problem instance.

Consider the matrix FS 680 1 from Matrix Market, which is known to generate
Krylov bases with bad behavior [44, Table 2]. In this case, the basis \bfitB and the re-
duced matrix \bfitA \bfitB and their sketches \bfitS \bfitB and \bfitS \bfitA \bfitB have rapidly increasing condition
number. Once \kappa 2(\bfitS \bfitA \bfitB ) > u - 1, numerical errors can cause sGMRES to fail, even
when GMRES is successful. See Figure 4 for an illustration, which also shows that
increasing the extent k of the truncation does not help.

We can always monitor the conditioning of the reduced matrix \bfitA \bfitB inexpensively
by means of its sketch \bfitS \bfitA \bfitB . Unfortunately, we are not aware of a reliable mechanism
for controlling the conditioning, short of full orthogonalization. Indeed, k-truncated
Arnoldi does not even guarantee monotone decrease of the condition number as k
increases. This issue remains a challenge for sGMRES.

One remedy is to whiten the basis once \kappa 2(\bfitS \bfitB ) is larger than a tolerance, set
to 103 in the figure.10 Note that whitening recurs frequently, essentially at every step
in the final iterations. Another effective approach is to build the vectors after the
first whitening using sketched Gram--Schmidt [5]. However, both of these procedures
increase the arithmetic cost from O(nd logd) to O(nd2).

When k-truncated Arnoldi is used for basis generation, we anticipate that \bfitB 
remains well conditioned when the skew-symmetric part 1

2 (\bfitA  - \bfitA \ast ) is small in norm
relative to \bfitA . This is a question for further research.

8.2. Solving eigenvalue problems with sRR. This subsection studies the
performance of sRR for solving nonsymmetric and symmetric eigenvalue problems.

9Of course, GMRES minimizes the residual in the Krylov subspace, while CG minimizes the
\bfitA -norm of the error [21, sect. 11]. Which quantity is more relevant depends on the problem.

10Setting a larger tolerance such as 1010 was observed to give poorer accuracy. Note that once
vectors have been whitened, the subsequent whitening steps do not change them; they only whiten
the new vectors.
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Fig. 4. sGMRES: Hard problems. For some linear systems, it is expensive to construct a well-
conditioned basis \bfitB for the Krylov subspace. When \kappa 2(\bfitA \bfitB )>u - 1, the sGMRES algorithm may fail
to match the GMRES algorithm with full orthogonalization. Left: Relative residual norms. Right:
Condition number \kappa 2(\bfitB ) of the k-truncated Arnoldi basis. When \kappa 2(\bfitB )>u - 1, the reported values
are unreliable. Effective methods (e.g., whitening) for this problem currently have cost O(nd2).

8.2.1. Algorithm details. Our implementation of sRR follows the pseudocode
in Algorithm 1.2 with minor changes to facilitate comparison with the MATLAB eigs

command. In one example, we use a single-vector Krylov subspace (b = 1), and we
use k-truncated Arnoldi to form the basis. In another example, we consider a block
Krylov subspace with a Chebyshev basis, as described in subsection 7.5. We do not
use restarting or stabilization in these experiments. The subspace embedding is a
modified SRFT (2.6) where \bfitE is diagonal Rademacher and \bfitF is a DCT4 matrix.

When using eigs, we set the option opts.p=r; opts.maxit= 1; to suppress
restart. We set the flag opts.issym to reflect whether the problem is symmetric.

8.2.2. Nonsymmetric eigenvalue problems. This section details the non-
symmetric eigenvalue problem that forms the basis for Figure 2. This computation is
modeled on the classic trust-region subproblem (TRS) from optimization [14]:

(8.1) minimize\bfitx \in Rn

1

2
\bfitx \ast \bfitC \bfitx + \bfitg \ast \bfitx subject to \| \bfitx \| 2 \leq \Delta .

This quadratic program can be reduced to a nonsymmetric eigenvalue problem [1]:

(8.2)

\biggl[ 
\bfitC \Delta  - 2\bfitg \bfitg \ast 

 - I \bfitC 

\biggr] 
\bfitx = \lambda \bfitx .

To obtain a solution to (8.1), we extract a (scaled) eigenvector of (8.2) corresponding
to the rightmost eigenvalue (which must be real).

We consider a TRS instance based on the first test problem in [45]. We form the
indefinite symmetric matrix \bfitC =\bfitL  - 5I, where \bfitL is the 2D Laplacian on a 710\times 710
square grid. The eigenvalue problem in (8.2) has dimension n = 2 \cdot 7102 > 106. The
constraint value \Delta = 100. The vector \bfitg is drawn from a standard normal distribution
and rescaled so that \| \bfitg \| 2 = 0.1.

We solve the TRS eigenvalue problem (8.2) with eigs and with sRR using 2-
truncated Arnoldi. For both algorithms, the starting vector for the Krylov subspace
is 0\oplus \bfitg . The results appear in Figure 2. With a basis of dimension d = 3000, both
methods construct eigenpairs with residuals below 10 - 10. The solution trajectories
are almost identical, but sRR is ultimately 10\times faster.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/0

1/
24

 to
 1

31
.2

15
.2

51
.1

55
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



FAST RANDOMIZED SUBSPACE ALGORITHMS 1209

8.2.3. Symmetric eigenvalue problems. For symmetric eigenvalue problems,
sRR remains a competitive algorithm because it can operate reliably with a general
computational basis. In contrast, most Krylov methods expend a lot of energy to
maintain near-orthogonality of the basis and to control the dimension of the basis.
From a user's point of view, these issues manifest themselves in long runtimes or
incorrect outputs for challenging problems (e.g., with clustered eigenvalues).

In this section, we describe a stylized application of sRR to a symmetric ei-
genvalue problem from data science. Consider the positive-semidefinite, normalized
Laplacian matrix \bfitL \in Rn\times n of an undirected graph on n vertices. This Laplacian
matrix captures information about the geometric structure of the graph. To that
end, it is valuable to compute an eigenspace of the Laplacian matrix associated with
the smallest eigenvalues. This subspace can be used for dimension reduction, graph
analysis, or graph signal processing tasks [10, 29, 40].

Krylov subspace methods can be used to find a few hundred of the smallest
eigenpairs of a (sparse) Laplacian matrix \bfitL . This approach is efficient because it only
requires matrix-vector multiplies with the Laplacian. In contrast, approaches based
on inverse iteration require us to solve linear systems in the Laplacian matrix, which
is usually a nontrivial task.

We will compare several different methods that rely on a block Krylov subspace
(7.1). As a baseline (RR), we form the basis using the block Lanczos method with
full orthogonalization, and we solve the resulting block tridiagonal eigenvalue problem;
this is essentially the same as applying RR. Second (Block-Lan), we form the basis
using block Lanczos without orthogonalization, and we solve the block tridiagonal
eigenvalue problem. Third (sRR-BLan), we form the basis with block Lanczos without
orthogonalization, and we use sRR to solve the eigenvalue problem. Last (sRR-Cheb),
we form the basis using block Chebyshev without orthogonalization, and we invoke
sRR to solve the eigenvalue problem.

As an example, we will compute eigenvalues and eigenvectors of the Laplacian of
the YouTube social network graph (n= 1,134,890) from the SNAP data set [30], after
preprocessing to remove vertices with no edges.11 We consider bases with block size
b= 10 and depths from p= 10 to p= 500; the subspace size d= bp. The results appear
in Figure 5. For the largest subspace, sRR-Cheb is 35\times faster than RR, while sRR-
BLan and Block-Lan are 28\times faster. Among the methods, RR is the most accurate,
but sRR-BLan enjoys similar performance. Meanwhile, both Block-Lan and sRR-
Cheb exhibit some instability, producing several ``ghost eigenvalues"" near zero with
large residuals, visible in the top-left corner of the inset panel in Figure 5. The reason
is that Block-Lan requires a nearly orthogonal basis, but the computed basis has
condition number around 107. Likewise, sRR-Cheb stumbles because it computes a
basis whose condition number exceeds 1015. Even so, sRR-Cheb allows us to estimate
residuals and remove ghost eigenvalues inexpensively, whereas it is costly to identify
ghost eigenvalues with Block-Lan.

9. Variations and extensions. The ideas underlying sGMRES and sRR can
be adapted to address a wide variety of eigenvalue and singular value computations.

9.1. Generalized eigenvalue problems. Consider the problem

(9.1) Find nonzero \bfitx \in Cn and \lambda \in C : \bfitH \bfitx = \lambda \bfitJ \bfitx where \bfitH ,\bfitJ \in Cn\times n.

11The graph also has a number of isolated edges; if we remove those in addition, the ghost
eigenvalues disappear from all methods.
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Fig. 5. Laplacian eigenspaces. For a normalized graph Laplacian matrix with dimension n =
1,134,890, these panels illustrate eigenvalue computations using a block Krylov subspace with block
size b = 10. Left: Residuals versus computed eigenvalues when the subspace dimension d = bp =
5000. Inset: Enlargement of the eigenvalues near zero. Right: Runtime with varying dimension d,
including basis generation.

Suppose that \bfitB \in Cn\times d is a basis that captures approximate solutions to (9.1).
Following the development in subsection 6.1, the classic RR method can be interpreted
as a variational problem:

(9.2) minimize\bfitM \in Cd\times d \| \bfitH \bfitB  - \bfitJ \bfitB \bfitM \| F.

Given a solution\bfitM  \star = (\bfitJ \bfitB )\dagger (\bfitH \bfitB ) to (9.2), we pose the ordinary eigenvalue problem
\bfitM  \star \bfity = \theta \bfity . Each eigenpair (\bfity , \theta ) induces an approximate solution (\bfitB \bfity , \theta ) to (9.1).

Given a subspace embedding \bfitS \in Cs\times n for range([\bfitH \bfitB ,\bfitJ \bfitB ]), we can pass to the
sketched problem

(9.3) minimize\bfitM \in Cd\times d \| \bfitS (\bfitH \bfitB  - \bfitJ \bfitB \bfitM )\| F.

The solution \^\bfitM = (\bfitS \bfitJ \bfitB )\dagger (\bfitS \bfitH \bfitB ). Then frame the ordinary eigenvalue problem
\^\bfitM \bfity = \theta \bfity . Each eigenpair (\^\bfity , \^\theta ) induces an approximate solution (\bfitB \^\bfity , \^\theta ) to (9.1).

Excluding basis generation, we can solve the generalized eigenvalue problem via
sketching with O(d3 + nd logd) operations. In contrast, the classic RR approach
typically requires O(nd2) operations.

9.2. Low-rank matrix approximation. The most successful application of
randomized matrix computation has been to approximate truncated singular value
decompositions efficiently [23, 33]. Using the new insights from our paper, we can
now accelerate these algorithms by sketching. The resulting techniques share some
genes with sketch-based algorithms for low-rank matrix approximation [67, 64, 65,
36], but they are different in spirit.

Let \bfitA \in Cm\times n be a matrix. Let \bfitB \in Cn\times d be a basis, and suppose that we
have access to the reduced matrix \bfitA \bfitB \in Cn\times d. We can frame low-rank matrix
approximation as a variational problem:

(9.4) minimize\bfitM \in Cd\times d \| \bfitA \bfitB \bfitM  - \bfitA \| F.

The solution \bfitM  \star = (\bfitA \bfitB )\dagger \bfitA produces the rank-d matrix approximation

\^\bfitA =\bfitA \bfitB \bfitM  \star = (\bfitA \bfitB )(\bfitA \bfitB )\dagger \bfitA =\bfitQ \bfitQ \ast \bfitA ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FAST RANDOMIZED SUBSPACE ALGORITHMS 1211

where \bfitQ \in Cn\times d is an orthonormal basis for the range of \bfitA \bfitB . If we choose \bfitB 
at random, we obtain the randomized SVD algorithm of Halko, Martinsson, and
Tropp [23]. If we form an adapted basis \bfitB by means of subspace iteration [46, 23]
or block Krylov methods [46, 22, 35, 63], we obtain much better approximations, as
described in the cited work.

Let \bfitS \in Cs\times n be an ``affine space"" embedding [68] with s= 2d. The SRFT (2.6)
and sparse map (2.7) both qualify. We pose the sketched problem

(9.5) minimize\bfitM \in Cd\times d \| \bfitS (\bfitA \bfitB \bfitM  - \bfitA )\| F.

The solution \^\bfitM = (\bfitS \bfitA \bfitB )\dagger (\bfitS \bfitA ) yields the rank-d matrix approximation

(9.6) \^\bfitA sketch = (\bfitA \bfitB )(\bfitS \bfitA \bfitB )\dagger (\bfitS \bfitA ).

The formula (9.6) is wholly unsuitable for practical computation, but it can be re-
placed with a stable and efficient variant [36]. If we choose \bfitB to be a second sketching
map, we obtain the (low-accuracy) sketched SVD algorithms from [67, 64, 36].

Our work delivers a novel insight. Introducing an adapted basis \bfitB in (9.6) leads to
a fast and accurate algorithm for low-rank matrix approximation. Excluding the cost
of basis generation, we can stably form the approximation in O(d3 + (m+ n)d logd)
operations. In contrast with sketched SVD algorithms, we attain errors similar to
randomized subspace iteration [23] or randomized block Krylov methods [35, 61].

10. Prospects. We believe that our framework for combining sketching with
subspace projection methods presents many exciting opportunities and challenges.
Let us close by highlighting some of the prospects.

First, our work suggests that traditional strategies for building high-dimensional
Krylov subspace bases merit a fresh look. For example, our experiments indicate
that we can easily run thousands of iterations of sGMRES, whereas orthogonalization
dominates the cost of classic GMRES after, say, a few dozen iterations. One conse-
quence is that it would suffice to find a ``mediocre"" preconditioner for linear systems
that reduces the iteration complexity of sGMRES to 1000s of iterations, rather than
the historical goal of 10s of iterations. Other aspects of basis generation that deserve
further attention include restarting, deflation, and pruning.

Second, we believe that the performance advantages of sGMRES and sRR algo-
rithms would be maximized in modern computing environments where communication
and synchronization costs dominate computation [8]. For example, we can trivially
parallelize the computation of block Krylov subspaces. While our experiments take
place in a serial computing environment, there are clear opportunities for efficient
implementations on GPUs, multicore and parallel processors, distributed and cloud
computing systems, and so forth.

Finally, let us mention one remaining difficulty. At present, we lack a reliable
mechanism for guaranteeing that the condition number of basis \bfitB and the reduced
matrix \bfitA \bfitB do not explode. Truncated orthogonalization is a practical approach that
often works well, but it can fail. In particular, experiments in our technical report
[38] indicate that truncated orthogonalization works well when the skew-symmetric
part of the input matrix is small.12 For general problems, it would be valuable to find
strategies for cheaply producing computational bases that are numerically full rank.

12This is not surprising: for symmetric matrices, k-truncated orthogonalization with k \geq 2
reduces to the Lanczos method, which yields an orthonormal basis in exact arithmetic.
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