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Sequence-based data-constrained deep
learning framework to predict spider
dragline mechanical properties
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Spider dragline silk is known for its exceptional strength and toughness; hence understanding the link
between its primary sequenceandmechanics is crucial. Here,weestablish adeep-learning framework
to clarify this link in dragline silk. The method utilizes sequence and mechanical property data of
dragline spider silk as well as enriching descriptors such as residue-level mobility (B-factor)
predictions. Our sequence representation captures the relative position, repetitiveness, as well as
descriptors of amino acids that serve to physically enrich the model. We obtain high Pearson
correlation coefficients (0.76–0.88) for strength, toughness, and other properties, which show that our
B-factor based representation outperforms pure sequence-based models or models that use other
descriptors. We prove the utility of our framework by identifying influential motifs and demonstrating
how the B-factor serves to pinpoint potential mutations that improve strength and toughness, thereby
establishing a validated, predictive, and interpretable sequence model for designing tailored
biomaterials.

Spider dragline silk is well known for its extraordinary strength and
toughness; higher than other natural silks, Kevlar, and steel1,2. While
extensibility3 and tensile strength4–6 are diametrically opposed properties,
they are uniquely both attained in spider silk’s lifeline, the dragline silk.
Microbial fabrication of protein-based materials7–11 positions spider silk to
show even greater potential in the fields of protective gear, textile engi-
neering, medicine, and surgery by increasing yield and other desirable
attributes1,12. It has been found in the literature that the spider silk properties
are highly dependent on its semicrystalline structure which in turn is
dependent on the amino acid sequence13. Therefore it is paramount to
understand the influence of the sequence on properties.

Experimental techniques like X-ray14, solid-state NMR
spectroscopy15,16 and Raman spectroscopy17 along with tensile tests18 have
been able to capture the structure-property relationships in the spider silk.
Computational models such as Molecular Dynamics (MD) simulations
have characterized the importance of β-sheet crystal confinement in the
concerted failure of hydrogen bonds, which is partly facilitated by disorder-
inducing Prolines19. MD has also been used to study the impact of β-sheet
nanocrystal size onmesoscalemechanical properties20,21. Dissipative particle
dynamics (DPD) and MD simulations are used complementarily to
establish andvalidate relationships among experimental process parameters
such as spinning solution concentration and spin speed22,23 and to

understand the impact of spidroin hydrodynamic flow in the spider duct24.
Overall, MD simulations have served as an invaluable tool for establishing
mechanistic insights into the molecular underpinnings of spider silk’s
superb properties and other mechanisms20,25. However, given the compu-
tationally intensive nature of MD calculations, establishing a rigorous
relation between the primary sequence of the spider silk to themacroscopic
mechanical properties has been elusivewithMDand other physicalmodels.

Noting the challenges of physics-based modeling for protein-based
materials, there is aneed for apredictivemodel to bridge the gapbetween the
primary sequence and the macroscale properties. In case of spider silk, the
quantitative link between the primary sequence and properties remains
elusive.One suchwork for spider silk in the literature predicts the peak force
obtained from the MD simulation based on the features obtained from the
primary sequence of the repetitive region26. However, since the data used is
still based on nanoscale simulations at fast rates of deformation, the com-
parisons are largely qualitative. In another work, researchers have proposed
a transformer-based generative model to design sets of de novo silk
sequences27 but the results of the generative model remains to be experi-
mentally validated. With the recent advances in the field of machine
learning (ML), several groups have worked toward establishing a primary
sequence-property relationship in other contexts either using a large
sequence-based deep learning (DL)models28–30 or MLmodels likeXGBoost
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and random forest30. DLmodels have the risk of overparameterizationwhen
trained on small (<500) data sets. On the other hand,MLmodels with small
number of trainable parameters require prior knowledge of the application
to extract input features fromtheprimary sequence.To fulfill theneed for an
experimentally validated, quantitative, and predictive model to link the
sequence and mechanical properties of spider silk, we train a DL model for
dragline spider silk on the recently published spider silkome database31.
Uniquely, we use limited data and no assumptions about the important
motifs in spider silk. We then use our DLmodel to show the importance of
residues’ dynamic property information (B-factor) for the prediction of
mechanical properties of dragline spider silk; hence drawing a parallel with
the findings that theDebye-Waller parameter is strongly correlatedwith the
mechanical properties in polymers32.

The layout of the study is as follows. First, we establish aDLmodelwith
less trainable parameters to predict the mechanical properties of spider
dragline silk. For the DL model, we explore a sequence-length agnostic
representation that captures the relative position, repetitiveness, as well as
descriptors of amino acids that serve to physically enrich the model. We
show the benefit of choosing the B-factor as the enriching descriptor.
Subsequently, we use our framework to solve the large combinatorial pro-
blem ofmotif identification and establish some design rules for modulating
different mechanical properties. We then carry out a systematic study of
potential mutations that can improvemechanical properties. Finally, we try
to interpret thesemutations from the viewpoint ofmolecularmobility, using
the B-factor as a sequence-dependent local order parameter. We conclude
withmutations andmotifs that seempromising for future synthetic silk-like
material designs.

Results and discussion
Model architecture
Predicting the mechanical properties of spider silk based on the primary
sequence of various spidroins is a complex task due to the lack of knowledge
about themicrostructural organization of the silk and how that translates to
constitutive relations. Additional complexity arises from the fact that dif-
ferent spidroins (MaSp1, MaSp2, MaSp3, MaSp, MiSp) are present in the
spider silk and theirmolecular organization is largely unknown31. This poses
challenges to the physics-based modeling of silks, and as such makes data-
driven methods that are agnostic to structural data advantageous for this
purpose. This calls for a representation that can capture the effect of each
spidroin on the properties of the spider silk. With the advancements in the
field of deep learning, one common strategy is to use pre-trained models
such as ProtBERT33. ProtBERT has been used previously for predicting
properties in other contexts. However, this method involved fine-tuning
more than a million parameters29,33. Fine-tuning would approximately
require 500 or more training data29, making it infeasible for the Spider
Silkome Database (SSD) (see “Dataset” section in “Methods”). For this

reason, we present a new representation of the sequence that deals with the
complexities and data constraints mentioned herein (see “Representation”
section in “Methods”). The complete deep-learning framework used for the
prediction ofmechanical properties of the dragline spider silk is discussed in
the “Deep learning model” section of “Methods”.

It has been reported in the literature that certain motifs have a higher
impact on the properties31 but the list of motifs is limited and needs a
framework to identify important motifs for different properties. Ideally, a
predictive model should be able to help ascertain which segments of the
primary sequence (motifs) impact (positively or negatively) each property.
Identifying influential motifs is crucial for designing new sequences that
result in improved mechanical properties, for instance through microbial
production of designer sequences to form a silk dope that can be spun into
fibers. However, motif identification in protein is a large combinatorial
problem34. Therefore, our secondary goal with this study is to build a fra-
mework that can identify critical motifs.

Choice of enrichment descriptor of amino acids
To use the representation of the primary sequence discussed in "Repre-
sentation" section in "Methods" for the prediction of mechanical properties,
it is necessary to first fix certain parameters through parametric studies. To
establish the maximum distance (max(m)) between a pair of amino acids
used to develop the representation, in Supplementary Notes 2 we have
established appropriate max(m) values (refer Supplementary Fig. 2 and
Supplementary Tables 1 and 2) for all properties. In Supplementary Note 3,
we establish a choice between the two representations (P or L; refer Sup-
plementary Fig. 3) based on the best way to store the descriptors of amino
acids in a pair. It is pointed out in the “Deep learning model” section of
“Methods” that input features fi’s are downselected from representation P
or L based on user-defined cutoff values. These cutoff values are heur-
istically chosen to keep the number of tunable parameters low. In Supple-
mentary Fig. 4, we also show the impact of the cutoff value on the model
performance. Next, we study the relative importance of amino acid’s
enriching descriptor d. Figure 1 shows the comparison between different d
for the best-chosen max(m) and representation for all the properties. The
d=B-factor with L representation clearly outperforms all other d’s for all
properties except ϵsup, which is evident from Pr and Pc values given in
Tables 1 and 2 respectively. The B-factor renders features that are most
informative for the prediction ofmechanical properties as it performs as the
best descriptor for all properties except ϵsup. This can be physically justified
by the fact that the Debye-Waller factor of atoms in polymers is found to
have an inverse correlation with its bulk modulus32,35, and also serves as an
indicator for glass-transition behavior. We also know that the cohesive
energy, which is also related to the Debye-Waller factor, is used to compute
the bulk modulus which governs all other mechanical properties in models
like the group interactionmodel (GIM)36 and other constitutive laws37. This

Fig. 1 | Effect of different enriching descriptor don themodel performance. a Shows the comparison ofR2, andb shows the comparison of PCC. The error bars in thefigure
indicate ±standard deviation.
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implies that there is a correlation between molecular mobility and
mechanical properties. The outperformance of themodel using d = B-factor
supports the notion that the segmental molecular mobility in proteins is
strongly related to macroscale mechanical properties. For ϵsup, d = 1 per-
forms the best. This can either be due to the lack of data in the case of ϵsup or
the fact that ϵsupmajorly depends on just the occurrence of certainmotifs in
the spider silk. In the literature31 it has been shown that the ϵsup highly
depends on the occurrence of poly-Alaninemotifs. It is also clear fromFig. 1
and Supplementary Table 3 that the developedDLmodel works the best for
ϵsup with mean R2 > 0.7. This can be attributed to the fact that ϵsup follows a
uniform distribution as shown in Supplementary Fig. 1 leading to a similar
range of output values in the train and test dataset. Furthermore, it’s
important to recognize that the stress-strain curve of theprotein relies on the
intricate nanomechanics governing its unraveling process38. This com-
plexity is further advancedwhenmultiple proteins (such as spidroins in this
scenario) are simultaneously subjected to a pulling force. Consequently,
predicting the stress-strain curve from the primary sequence of spider silk is
a highly non-linear problem. Therefore we observe R2 < 0.7 for properties
obtained from the stress-strain curve. We also present the comparison of
results from the task-specific model and the model trained on all the
properties (multi-task) simultaneously in Supplementary Note 6. The
model architecture formulti-task learning is shown inSupplementary Fig. 5.
From the results shown in Supplementary Fig. 6, it is clear that the task-
specific model is a better option.

Supplementary Note 5 captures the details of best-performing models
for all mechanical properties. Based on the parametric studies presented for
different representations, properties (d), and max(m) values (see Supple-
mentaryNotes 2–4), the best choice for eachmechanical property is given in
Supplementary Table 3. Supplementary Table 4 gives details about the
number of input features to FFNN and the number of trainable parameters
in FFNN for each mechanical property. From the above discussions, we
have shown that the deep learning model developed for the prediction of
mechanical properties of spider silk is robust and accurate, considering the
high variability in experimental data as discussed in the “Training details”
section in “Methods”.

To further prove the robustness of our model, we test it against an
experimental mutation study presented in the literature. One of the
experimental studies39 shows that mutating Tyr (Y) to Phe (F) in MaSp1 of
biomimetic spider silk decreases ϵsup. Therefore, in our test dataset, we
replace Y with F in MaSp1 and observe a mean decrease of 71% in ϵsup.
Therefore, ourmodel predicts the same trend as observed in the experiment,
thereby validating our model.

Motif identification
Having proved the robustness of our deep-learning based model, in this
section, we will discuss the motifs identified to be most influential for dif-
ferent mechanical properties. As the first step, we calculate the feature
importance (qi) of all the features (fi) considered for the prediction of the
properties using themethod discussed in the “Feature importance analysis”
section in “Methods”. Subsequently, for the featureswithqj > 0.1, the 3 types
ofmotifs (ϕw, ϕt, andϕb) are identified and their impact (Pm) is quantized as
described in the “Method for motif identification and quantifying their
effect” section in “Methods”. The complete information about the motifs
and their impact is presented in Supplementary Note 7. It can be observed
from the Supplementary Tables 5–9 that Pm values can take on positive or
negative values indicating a positive or negative correlation between the
number ofmotifs (θn in Eq. (6)) and the property respectively. At this point,
it is essential tophysically interpret the impactmagnitudePm. To that extent,
let us take motif LVSSGP (fromMaSp1) for ϵf as an example as it is one of
the motifs with the highest positive impact on ϵf. It is evident from Sup-
plementary Table 5 that LVSSGP contributes 0.61% of the max ϵf value per
θn. Now, if wewant to increase the ϵf by 1.83% ofmax ϵf value, thenwe need
to increase θnof LVSSGPby3. BasedonEq. (6), θn canbe increasedby either
increasing the number ofmotifs or decreasing the number of repeat units in
the sequence. It is also very interesting to note that the mean B-factor of
LVSSGPmotif inMaSp1 is 0.42which is higher than themeanB-factor of all
individual amino acids (Fig. 2a). This suggests that the LVSSGP segment
exhibits greater mobility and flexibility within MaSp1, thereby positively
impacting strain.

All the mechanical properties of the dragline spider silk are due to the
collective effect of several motifs. This is evident from the fact that none of
the Pm values in Supplementary Tables 5–9 are extremely high. The con-
tribution of somany differentmotifs makes it very difficult to come upwith
one common design rule for optimizing any property. For example,
increasing the LVSSGP motif in MaSp1 increases ϵf but it also leads to the
increase of SSmotif which has a negative impact on ϵf. Hence, relationships
like this need to be considered while designing fibrous protein-based
materials. For the same reason, optimizing a primary sequence for two
properties at the same time will be more difficult especially when most
motifs have contrasting effects on the two properties. For instance, itmay be
desirable to increase both ϵf and σUTS, however, motifs like SS have negative
and positive impacts on both properties as shown in Supplementary
Tables 5 and 7 respectively.

Design rules
One of the aims of this work is to find the mutations that are required for
increasing the mechanical properties in the dragline spider silk. To discuss
mutations, we introduce the nomenclature used to indicate substitution as
well as deletion/insertion in proteins, which follows standard mutation
nomenclature40. The nomenclature for substitution is <Resb><pos><Resa>
which means that amino acid Resb is being replaced by amino acid Resa
at position pos. To indicate the deletion/insertion we use
<Ress><Ress pos> <Rese><Rese pos>delins< group of newly inserted
aminoacid > as the nomenclature where Ress and Rese indicate the first and
last amino acid deleted.

Based on the observations fromSupplementary Tables 5–9, we present
some mutation recommendations to increase the properties in Table 3.
Before interpreting thesemutations, it is essential to recall that the spider silk
structure consists of crystalline aswell as amorphous regions. The crystalline
region consists of groups of amino acids forming β-sheets. Based on the

Table 2 | Pc =P(PCC ≥ 0.7) for different choice of enriching
descriptor d

Choice of d

B-factor
(L)

1 Monomer
weight (L)

Monomer pI
value (L)

Hydrophobicity
(L)

ϵf 0.87 0.54 0.73 0.67 0.32

σUTS 0.75 0.34 0.29 0.33 0.32

T 0.92 0.5 0.42 0.45 0.44

E 0.79 0.06 0.18 0.05 0.22

ϵsup 0.90 0.99 0.57 0.80 0.52

The highest probability (best scenario) is shown in bold.

Table 1 | Pr =P(R2 ≥ 0.5) for different choice of enriching
descriptor d

Choice of d

B-factor
(L)

1 Monomer
weight (L)

Monomer pI
value (L)

Hydrophobicity
(L)

ϵf 0.80 0.5 0.63 0.56 0.20

σUTS 0.70 0.29 0.25 0.28 0.30

T 0.86 0.48 0.33 0.39 0.38

E 0.75 0.02 0.12 0.02 0.14

ϵsup 0.86 0.96 0.33 0.74 0.36

The highest probability (best scenario) is shown in bold.
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literature41, it is understood that the amino acids Ala, Val, Ile, Tyr, Cys, Trp,
Phe, andThr aremore likely to be found in β-sheet regions and amino acids
Gly, Pro, Asn, and Ser are more likely to be found in the turns connecting
two β-sheets. Further considering the likelihood/propensity of the amino
acids to form β-sheet, they can be ranked as L, V > A >G42. From the
perspective of major ampullate spidroins in spider silk, literature43,44 high-
lights that Ala and Gly constitute their primary components. Most Ala
residues are integrated into the β-sheet structure, underscoring their strong
propensity for β-sheet formation. Gly is present in the β-sheets as poly(GA)
and in the amorphous regions. Poly-valine is also found to form β-sheets
within an amorphous network to improve toughness and strength45. These
observations reinforce that A andV have higher β-sheet propensity than G.
Additionally it is shown experimentally that Proline usually favors a more
amorphous structure46 or is present in β-turns as GPGXX47. Building upon
the aforementioned insights regarding the propensity of various amino
acids to form β-sheets, we will investigate the impact of mutations among
different motifs. To examine this effect, we report the ΔPm value which is
defined as the difference between the higher and lower Pm values. In the
literature, it has beenestablished that theβ-sheet represents a highly ordered
domain within spider silk17 and that the local order of a protein region

correlates with its B-factor48. Consequently, in the next section, we inves-
tigate the impact of mutations on the mechanical properties from the per-
spective of the B-factor.

Taking the above facts into consideration, we study the effect of dif-
ferent mutations on different mechanical properties. We first start with ϵf
andhypothesize that it increases 50%of the timeswhen themutations of the
amino acids decrease the β-sheet propensity. Next, we examine σUTS and E
and observe that 50% of times the mutation of amino acids that increase
β-sheet propensity also increases the property. The percentage 50% might
look like a coin-toss probability but it is important to note in this case there
are 3 possible mutations: high to low propensity, low to high propensity or
the trend is not very clear such as for mutation G to N. The toughness (T)
does not show any clear trend like other properties because T is dependent
on the area under the stress-strain curve. The area under the stress-strain
curve is driven by high σUTS and ϵf. Since differentmutations favor σUTS and
ϵf, we cannot observe a clear trendofTwith respect to theβ-sheet propensity
like other properties. Higher toughness requires a higher area under the
stress-strain curve which in turn requires higher maximum stress or the
strain at break or both.

Upon comparing themotifs documented in the SSDpaper31with those
presented in Supplementary Tables 5–9, we observe notable parallels.
Specifically, in the case of ϵf, akin to the findings in the SSD paper, we
identify that motifs such as SAAAAA and AS exert a negative influence on
the property. Conversely, both studies concur that the motif GGAGQ
within MaSp1 contributes positively to ϵf. Both our research and the SSD
paper indicate that motifs QGPSG and YGPGS in MaSp2 impact ϵf posi-
tively and negatively, respectively. Furthermore, the motif GGPGGYG in
MaSp2 affects ϵf negatively. In terms of σUTS, our observation regarding the
adverse impact of a poly-Ala segment aligns with the findings in the SSD
paper. However, augmenting the poly-Ala segment with Q and G
demonstrates a positive effect on the property; for instance, the motif
AGQGGA positively influences σUTS. Both the SSD paper and our study
identify that motifs YGGL and GAGQGGY in MaSp1 positively impact
σUTS. Additionally, in MaSp2, both studies ascertain that motifs PGGY and
GPGGY positively affect σUTS. Concerning property E, both works indicate
that motifs QGGQGG and AGQGGY within MaSp1 exhibit a positive
impact. Furthermore, both studies highlight the recurrence of segments
GQGG and GP in several motifs affecting E in MaSp1 and MaSp2 respec-
tively. In the case of propertyT, both investigations reveal thatmotifs YGGL
and YGG in MaSp1 have a positive influence. Moreover, they observe the
segment GQ in many significant motifs for property T in MaSp1, while
segments QGP and PG emerge in numerous impactful motifs for T in
MaSp2. Overall, our approach has introduced an accelerated framework for
identifying significantmotifs by prioritizing feature importance, rather than
relying on exhaustive motif searches. Additionally, we offer a more struc-
tured method to measure the influence of motifs through the computation
of Pm.

In the case of supercontraction (ϵsup), it is evident from thePm values in
Supplementary Table 9 that the larger the length of the poly-Ala motif, the
larger the decrease in ϵsup. This observation is backed by the literature study
that shows that the ϵsup is positively correlatedwith the amorphous/poly-Ala
region length ratio (PCC=0.53)31. Increasing the length of even onepoly-Ala
motif leads to the decreases in amorphous/poly-Ala region length ratio and
subsequently the ϵsup. Building on this, we observe from Table 3 that
mutating a larger poly-Ala to a smaller one increases the property. The role
of poly-Ala blocks (4 or more Ala) is further highlighted by the presence of
several poly-Ala blocks in themotifs reported in Supplementary Tables 5–9.
The literature also emphasizes the significance of poly-Ala blocks in facil-
itating the formation of β-sheets43,49,50. The research49 indicates that a
minimumof three poly-Ala blocks is necessary for the formation of β-sheets
in spider silk. Beyond three blocks of poly-Ala, an additional increase in the
block count enhances crystallinity by 25–39%. It has also been shown
experimentally in the literature that poly-Ala enhances the ability of the
recombinant spider silk protein to form β-sheet structure, thereby
increasing the σUTS and T 50.

Fig. 2 | Effect ofmutations inMaSp1. aVariation of normalized B factor prediction
with respect to the amino acids in MaSp1. b, d, f, h Heatmap showing
P(Increase > 20%) for σUTS, ϵf, E, T respectively. c, e, g, i Heatmap showing
P(Decrease > 20%) for σUTS, ϵf, E, T respectively.
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Can B-factor explain the effect of mutations?. Based on the obser-
vations in the previous section, it is clear thatmutations among the amino
acids can have an impact on the mechanical properties. To clearly
understand the impact of the mutation of one amino acid to another, we
first choose certain amino acids from hydrophobic, polar, and charged
groups based on the results shown in Supplementary Fig. 7. For this
study, we focus on σUTS, ϵf, E, and T as they are all derived from the same
stress-strain curve. We want to point out that we did not consider amino
acids A and G for the mutation as they both are extremely important for
the formation of β-sheet and amorphous region in MaSp1 spidroin
respectively51. However, we will briefly discuss the impact of A and G on
mechanical properties toward the end of this section. To understand the
terms used for studyingmutation refer to the “Mutation study” section in
“Methods”.

In this section, our analysis is focused on the effects of mutations in
MaSp1 and MaSp2. However, we have chosen not to include MaSp3 and

MiSp in the mutation study, based on the discussion below. We use test
datasets for the mutation study as the performance of the DLmodel on the
test dataset reflects its true performance.Out of 203 dragline species, only 22
dragline species have MaSp3 data document for them. We allocate 10% of
the total examples as the test dataset, resulting in a statistically insignificant
representation of dragline specieswithMaSp3within the test dataset. This is
the reason the mutation study on MaSp3 is not added to our work. As for
MiSp, the reason for its inclusion to generate input features fi is discussed in
the “Representation” section in “Methods” even though it is primarily
associated with auxiliary spiral silk52. Due to this, some of the input features
derived from MiSp might just be a noise leading to some unrealistic
mutation results. Hence, we have not included themutation study forMiSp
in our work.

From Fig. 2b, c, it can be observed that there are reasonably higher
chances that Q→ <D,K> and S→ <K,D> in MaSp1 will increase σUTS
whereas V→ E in MaSp1 will lead to a decrease in σUTS. This can be very

Table 3 | Design rules for each property

Property Before mutation After mutation Mutations ΔPm

ϵf QVKT QVNT K3N 0.88

GGAGQQ GGYGPQ A3Y, Q5P 0.35

GGQGPYG GGPGGYG Q3P, P5G 0.35

SAVST SSGPT A2_S4delinsSGP 0.10

AAAAGY AAAGGY A4G 0.26

QGPGG QGPSG G4S 0.15

σUTS AAAAAAAAA AGQGGAGAA A2_A7delinsGQGGAG 0.46

AGQGGA AGAAAA Q3_G5delinsAAA, 0.43

GAAAA AAGGA G7A, A9_A10delinsGG

AGQGGA AGAAAA Q3_G5delinsAAA, 0.43

GAAAA AAGGA G7A, A9_A10delinsGG

GGAGGAGQG GAGAAAAAA G2_G5delinsAGAA, 0.27

GLGSGQGY GGAGQGGY G7_G9delinsAAA,

L11_Q15delinsGAGQG

AAAAAAAGGS AAAGGYGPGS A4_G8delinsGGYGP 0.16

SGPGGYGPGS SGPGGYGPAS G9A 0.11

E YGSA YGPA S3P 1.89

AGQGGL ALVHIL G2_G5delinsLVHI 1.1

YQGP YGAP Q2_G3delinsGA 0.60

QGGYGGY QGGQGGY Y4Q 0.57

VHILGSSSIGQVN VHILGSANIGQVN S7_S8delinsAN 0.55

SGGQGGY SQNQGGY G2_G3delinsQN 0.32

T PGGAGGSGPY PGGQGPYGPG A4Q, G6_S7delinsPY, 4.7

GPAASAA AAAAAAA Y10_P12delinsGAA,

AAAGY AAGGY S15A, A20G

TSSNKLQA TGAAAAAA S2_Q7delinsGAAAAA 0.99

QGPGGAGQ QGPSGPGA G4S, A6P, 0.93

QGPGGQ YGPGSQ Q8_Q9delinsAY

QGPGQQG QGPGGYG Q5_Q6delinsGY, 0.17

PGGQGP PGQQGP G10Q

ϵsup GN GL N2L 0.83

AAA AA A3del 0.38

AAAAAA AAAAA A6del 0.37

AAAAA AAAA A5del 0.28

AAAA AAA A4del 0.26

Mutation from column 2 to column 3 increases the property.

https://doi.org/10.1038/s43246-024-00519-y Article

Communications Materials |            (2024) 5:83 5



well explained using the B-factor values shown in Fig. 2a for all amino acids
inMaSp1 spidroin. It is clear fromFig. 2a thatQandShave ahigherB-factor
compared to D and K. Even though D and K have more chances to exhibit
higher B-factor53, they exhibit lower B-factor than a polar amino acid S in
MaSp1. This can be explained by the fact that in MaSp1 the amino acid A
and T are themost frequent neighbors of D and K respectively. Amino acid
A is mostly available in the crystalline part of the MaSp1 spidroin13 and
amino acid T has a higher propensity of forming β-sheets54. Thus implying
the presence of D and K in a more crystalline/structured region of the
MaSp1. On the other hand, amino acid S has the highest chance of being
present next to amino acid G which is majorly present in the amorphous
region inMaSp113. This explains thehighB-factor of S inMaSp1.Overall the
lower B-factor ofD andK implies their ability to form crystalline/structured
regions in MaSp1; leading to an increase in σUTS. Conversely, amino acid E
has a higher B-factor than V; hence V→ E in MaSp1 leads to a decrease in
σUTS. For ϵf to be higher, high extensibility and low stiffness are typically
needed. This can be achieved bymutating to amino acids that have a higher
B-factor as that can reduce theβ-sheet regions in the spider silk. SincePhas a
higher B-factor and amino acid T has a lower B-factor compared to Q, we
observe fromFig. 2d, e thatQ→ P andQ→T inMaSp1 lead to an increase
and decrease in ϵf respectively.

The property E is very similar to σUTS as it also increases with the
formation of more β-sheet regions in the spider silk. Hence, mutating to
amino acids with lower B-factor is beneficial for E. We observe exactly the
same from Fig. 2f, g that mutating Q→ <D,K,N,S, I>, and
S→ <K,D,T,V,I,P> in MaSp1 leads to an increase in E. On the other hand,
V→ <E,Q,P> leads to a decrease in the property as they have a higher
B-factor compared to V.

As discussed in the above section, higher T needs higher σUTS and ϵf.
Also fromFig. 2h, i it is difficult tohypothesize anypatternofTwith respect to
the B-factor prediction. Then we plot P(Increase > 20%) and P(Decrease >
20%) with respect to ΔB-factor as shown in Fig. 3a, b respectively and also
report the correlation (PCC) between the two variables. It is evident from the
figures that in MaSp1, mutations that lead to the decrease in B-factor are
favorable for toughness. It can also be hypothesized from Fig. 2h, i that the
presence of amino acids F and Y are favorable in MaSp1 for higher T.

It has been argued previously that MaSp1 is mostly responsible for the
strength of the spider silkwhereasMaSp2 is responsible for the elasticity and
extensibility55. Therefore, we carry out a similar mutation study for MaSp2
spidroin as well, to see if there are contrasting effects of mutations. The two
probabilities discussed in Fig. 4 are also calculated for mutations in MaSp2
and shown in Fig. 4.

From Fig. 4b it can be observed that mutations Q→ I, P→ I, and
S→D inMaSp2 lead to an increase in σUTS due to the decrease in B-factor
after mutation. From Fig. 4a, d, e, it can be inferred that the mutation of
P→R in MaSp2 leads to a decrease in the B-factor, thus leading to a
decrease in ϵf due to the formation of a more ordered region. But not all the
mutations that lead to a decrease in the B-factor (S→D, P→Q and S→Y
inMaSp2), negatively impact ϵf. It is seen in the literature that S has a higher
propensity of forming β-sheet54 than D, and P has a higher probability of
being present in the β-turns than Q56. The former observations from the
literature can explain why mutations S→D and P→Q have higher
chances of increasing ϵf. To explain the impact of S→Y, we find in the
literature31 that motifs such as GS, GGS, and AS more negatively impact ϵf
than GY, GGY, and AY respectively. This explains the reason for the
increase in ϵf after S→Y.

Fig. 3 | Variation of probabilities related to T with respect to ΔB-factor.
a, b P(Increase > 20%) versus ΔB-factor and P(Decrease > 20%) versus ΔB-factor
respectively in MaSp1, c, d P(Increase > 20%) versus ΔB-factor and P(Decrease >
20%) versus ΔB-factor respectively in MaSp2. The green marker indicates that the

higher values are favorable for T and the red marker indicates the higher values are
detrimental for T. A black line is fitted to the data to indicate the nature of the
correlation.
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From Fig. 4f it can be observed that E increases due to the mutation of
P→ (Q, D, or K) in MaSp2 as these mutations lead to a decrease in the
B-factor. But two of the mutations S→ P and V→ P increase the B-factor
and E both. Therefore, this trend cannot be explained using the B-factor
alone.However, it has been noted in the literature55 thatMaSp2 is a Proline-
rich spidroin and this is important for the structure of MaSp2. Also, it has
been observed in the literature31 that the increase in the occurrence of V in
MaSp2 spidroin negatively impacts E. Thus, the increase in E due to V→ P
mutation is supported by these prior findings.

Similar to MaSp1, we plot P(Increase > 20%) and P(Decrease > 20%)
with respect to ΔB-factor as shown in Fig. 3c, d respectively. Figure 3c does
not show any correlation between P(Increase > 20%) and ΔB-factor. But
from Fig. 3d it can be observed that in MaSp2, an increase in the B-factor
aftermutation is favored. It is in accordancewith the literature57,where it has
been shown that amino acid P participates in β-turns and contributes to the
elasticity of the MaSp2 spidroin. It can be hypothesized from Fig. 4h, i that
amino acids D, E, and P are favorable in MaSp2 for higher T.

As pointed out above, we did not consider A and G for the mutation
study, but we performed A→G andG→A inMaSp1 andMaSp2 to stress
test the model. We observe that G→A in MaSp1 strongly favors σUTS, E,
and T with P(Increase > 20%) ≈ 0.6 whereas A→G does not have a strong
impact on any properties. TheG→Amutation leads to a decrease in the B-
factor; hence increasing the σUTS,E, andT. InMaSp2,A→GandG→Ado
not have a huge impact on any properties.

In conclusion, the B-factor can verywell explain the effect ofmutations
onmechanical properties inMaSp1. InMaSp2, the B-factor can explain the
effect of most of the mutations except for the few mutations involving
Proline (P). This is due to the fact that MaSp2 is Proline (P) rich spidroin55

with Pmajorly participating in the β-turns57, contributing to the elasticity of
the dragline silk.Additionally, this study alsohighlights a fewmutations that
can improve or worsen a group of properties. For example, Q→D in
MaSp1 increases σUTS, T, and E and S→ < any hydrophobic amino acid >
increases T and E. Conversely, Q→R in MaSp1 worsens σUTS and T and
V→ E in MaSp1 worsens σUTS and E. Similarly, we find that P→Q
mutation in MaSp2 has a high chance to increase ϵf, T, and E.

Conclusion
The outstanding mechanical properties of spider dragline silk surpass
engineered polymers and give us great inspiration for leveraging
sequence-defined properties of proteins in materials science. How-
ever, due to its complex multi-phasic hierarchical structure, it is very
difficult for any physics-based model to establish a relationship
between the primary sequence of various spidroins in spider silk and
its mechanical properties. A key contribution of this study is a new
DL framework that predicts the mechanical properties of the dragline
spider silk from primary sequence information. Distinctly, our DL
framework uses a sequence-length agnostic representation of the
primary sequence, making it easier to train a deep-learning model
with a small set (180) of training examples. We train and test our
model for 5 different mechanical properties of the spider silk and
obtain an R2 and PCC in the range of 0.6–0.75 and 0.76–0.88
respectively. The reported values of the R2 are remarkably good
considering that process and environmental conditions are not fac-
tored into the model. We further show using our DL framework that
enriching sequence information with the B-factor prediction tool
trained on the protein data bank helps in improving the probability
Pr by an average value of 0.39 for all properties except super-
contraction; highlighting the relationship between the dynamics and
mechanical properties. We then use our developed framework to
obtain certain important motifs along with their impact on the
mechanical properties. We further use the motifs obtained to
establish certain mutations that can help in modulating the proper-
ties. Through a mutation study, we find that nearly half of the times
the mutation of amino acids that increases β-sheet propensity
increase ϵf but decreases σUTS and E. We also find that the length of
the poly-Ala motif affects the ϵsup through the ratio of amorphous
and pol-Ala region length. Increasing the length of the poly-Ala
motif decreases the ratio, thereby decreasing the ϵsup. We uncover
that the sequence-defined B-factor values predicted by our model
clarifies the impact of mutations on the mechanical properties. For
example, mutating from a high B-factor amino acid (Q) to a low
B-factor amino acid (D) in MaSp1 helps in σUTS, T, and E. Con-
versely, mutating from low to high B-factor like V→ E in MaSp1
decreases σUTS and E. A similar mutation study in MaSp2 shows that
P→Q mutation increases ϵf, σUTS, T, and E. We also identify that
mutation to a higher B-factor in MaSp1 and MaSp2 is detrimental
and beneficial to the toughness of spider silk respectively. Collec-
tively, these observations based on our developed framework estab-
lish that B-factor is a useful measure for identifying mutation-based
rules for designing stronger protein-based biomaterials. This work
sets the stage for two future directions of inquiry. The first is to make
a generative model to guide the production of application-specific

Fig. 4 | Effect ofmutations inMaSp2. aVariation of normalized B factor prediction
with respect to the amino acids in MaSp2. b, d, f, h Heatmap showing
P(Increase > 20%) for σUTS, ϵf, E, T respectively. c, e, g, i Heatmap showing
P(Decrease > 20%) for σUTS, ϵf, E, T respectively.
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computationally designed fibrous proteins that utilize the model and
design rules established in this study. The second direction is to
explore representation learning for applications with limited data
(the current application is an example) so that we can generate and
use more domain-specific sequence-length agnostic representation
rather than a generalized one. Our current work shows how effec-
tively a sequence length-agnostic representation can be used for
applications with scarce training data. We envision that the com-
putational advances reported herein will be broadly useful for
applications where data generation is expensive and time-consuming
and where the input space is high dimensional, as in establishing
sequence-property relationships in biological systems.

Methods
Dataset
Kazuharu et al.31 have carried out extensive work to test and docu-
ment various mechanical properties of dragline silks in the so-called
Spider Silkome Database. The database consists of the mechanical
properties of silks obtained from 446 species along with the respec-
tive repetitive regions of various spidroins (major and minor spi-
droins) that make up these specimens. In this work, the SSD database
was utilized for training the model. The primary sequences were
downloaded using the FASTA download option in SSD. The mean
and the standard deviation of six different mechanical properties of
the dragline of 446 species were obtained from the CSV file output of
SSD. The properties investigated herein are strain at break (ϵf),
tensile strength (σUTS), toughness (T), Young’s modulus (E), and
supercontraction (ϵsup). For our DL model, we match the IDs of the
primary sequence FASTA files and IDs in the CSV file to match the
primary sequence information to its corresponding mechanical
properties. After matching the IDs, we gather the primary sequence
and corresponding properties of the dragline of 203 species only for
all properties except ϵsup. The reduction in the data set size is a result
of the mismatch between IDs in the FASTA file and the CSV file. For
ϵsup, we gather data primary sequence and property data of 49 spe-
cies. Since SSD only documents the primary sequence of the repe-
titive part of the spidroins, hereafter the word sequence will be used
to indicate the primary sequence of the repetitive part of the spider
silk. We discuss the distribution of all the properties under con-
sideration in Supplementary Note 1. It is evident from Supplemen-
tary Fig. 1 that all the properties except ϵsup follow skew-normal
distribution whereas ϵsup exhibits uniform distribution.

Representation
We first establish a representation that deals with data constraints,
namely small property datasets, incomplete sequence information,
and the presence of multiple spidroins in each fiber, while also giving
us interpretable features that can be used for motif identification
later. In our study, we create representations only for spidroins that
form the major fraction of the sequence, namely MaSp1, MaSp2,
MaSp3, MaSp, and spidroins1,31,58. In the SSD paper31, it is shown that
certain MiSp sequences are indistinguishable from major ampullate
spidroins and vice versa. This assertion is further supported by the
SSD paper, which demonstrates an overlap between major and minor
spidroins when clustered based on repetitive and N-terminal
sequences. Such overlaps can introduce ambiguity in labeling the
spidroins. Hence, we also include MiSp for training, despite its pri-
mary occurrence in auxiliary spiral silk52. We build our representa-
tion for each spidroin based upon the Quasi Residue Couple (RC)
concept59. The RC representation converts the primary sequence
information of a spidroin of sequence length (N) to a three-
dimensional array labeled as P. In its original form, the RC repre-
sentation records the summation of the physicochemical properties
of two residues being at a specific distance from each other in the
primary sequence. From this point forward, this distance between

two residues in the primary sequence will be denoted by m. For
instance, adjacent residues in sequence space form a 20 × 20 matrix
with matrix elements representing the average sum of physico-
chemical properties of pairs of residues adjacent to each other in the
sequence. Similarly, for a sequence distance of m residues, a 20 × 20
matrix can be expressed in terms of sequence length (N), amino acid
descriptor (d) using Eqs. (1a) and (1b):

Pd
mði; jÞ ¼

1
N �m

XN�m

n¼1

Hi;jðn; nþm; dÞ; i; j 2 ½1 . . . 20� ð1aÞ

Hi;jða; b; dÞ ¼
di þ dj; if at position a amino acid i and

at position b amino acid j is present

0; otherwise

8><
>: ð1bÞ

The 20 × 20 representation for each m value (1,2,…, max(m)) can be
stacked together to get a 3D representation of dimension 20 × 20 ×max(m).
Our representation P also incorporates enriching descriptors of the amino
acids in the spidroinwhich is assigned to the variabled. To study the effect of
amino acid’s enriching descriptor, d, we train and test our model using
several different representations, which are repetition (d = 1), d as B-factor,
hydrophobicity60,monomer charges61,monomerweight61. It is important to
note that thehydrophobicity valueweuse for eachaminoacid represents the
solubility of the amino acids in the water at pH 760. Similarly, to account for
the charge using a continuous variable, we use the isoelectric point (pI) value
for each aminoacid,which represents thepHof the solutionatwhich thenet
charge of amino acids is zero61. Of particular note, we consider the B-factor
of individual residues as an enriching descriptor since it is a critical indicator
of their dynamicproperties and is similar to theDebye-Waller parameters in
the polymers53. In the literature, it has been shown that the Debye-Waller
parameter is strongly correlated with the mechanical properties62. There-
fore, in our study, we have chosen the B-factor as one of the d’s. To calculate
the B-factor based on the primary sequence of the spidroin, we use the deep
learning model developed in a previous study by some of the authors53. It
should be noted that the deep-learning model53 for the B-factor outputs the
normalized B-factor value with themean and standard deviation of 0 and 1
respectively among all the residues in a protein.

In sum, P captures the property and the frequency of all possible pairs
of amino acids (20*20) in the primary sequence. It captures the information
about not only the pair of amino acids next to each other in the primary
sequence but also at a distance of m from each other in the primary
sequence. A major advantage of this representation is that the array size is
independent of the sequence length provided and is a constant oncem is set.
In the “Results and discussion” section, we discuss the effect of maxðmÞ on
the model quality. This distinction makes our representation advantageous
over other models like ProtBERT33 as their output size is dependent on the
length of the primary sequence and consequently requires large sequence-
based deep learning models to post-process the data29,63. Since we have less
data (refer to “Dataset” section in “Methods”), our choice of representation
is justified as it is agnostic to the lengthof the primary sequence anddoes not
require sequence-based models to post-process them.

One of the numerical shortcomings of the P representation is that
when amino acids i and j have highly contrastive d, addition in Eq. (1a) can
lead to loss of information due to averaging. Therefore, we introduce
another representation (L) as shown in Eqs. (2a) and (2b) which has an
extra dimension compared toP to store the values of di and dj separately as:

Ld
mði; j; kÞ ¼

1
N �m

XN�m

n¼1

Hi;jðn; nþm; k; dÞ; i; j 2 ½1 . . . 20�; k 2 ½1; 2� ð2aÞ
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Hi;jða; b; k; dÞ ¼

di; if at position a amino acid i and
�

at position b amino acid j is present
�
and (k=1)

dj; if at position a amino acid i and
�

at position b amino acid j is present
�
and (k=2)

0; otherwise

8>>>>>><
>>>>>>:

ð2bÞ
This will resolve the numerical issue for the pairs of i and j with

contrastive d values inP. It is important to note that for d = 1,P, k = 1 inL,
and k = 2 inL are exactly the same; hence for d = 1, we will be using onlyP
representation throughout the paper.

Since in the further sections, we will be studying the importance of
different elements in the representations discussed above, it is important to
introduce a nomenclature to represent each element. Any element can be
named as “(Spidroin type)-(AminoAcid)i-(AminoAcid)j-m”. The spidroin
type represents the spidroin from which the feature is derived. (Amino
Acid)i and (Amino Acid)j represent the amino acids which are represented
by the position i and j in Eqs. (1a) and (2a). As discussed in the “Repre-
sentation” section in “Methods”,m represents the gap between amino acid i
and j in the primary sequence as in Eqs. (1a) and (2a). For example, let us
consider a feature identified as MaSp1-Y-G-3. The notation indicates that
this feature belongs toMaSp1 and that the amino acid G is 3 positions away
from amino acid Y in the sequence.

Deep learning model
Once the representation is set, the next step involves choosing a deep-
learning (DL)method to process this information for predicting properties.
Before presenting the method, it is important to discuss the dimension as
well as the total number of elements in the representation. Given that we
have considered 6 types of spidroins in our study (refer “Representation”
section in “Methods”), for max(m) equal to 6, the total number of elements
fromP20�20�6 andL20�20�6�2 are size (P)*6 (14,400 features) and size(L)*6
(28,800 features) respectively.

Processing such a high-dimensional representation using deep
learning models such as 1D/2D convolution network (CNN) requires
approximately a million parameters. However, the SSD is relatively
small, so there are high chances of overfitting the data while training
the model with millions of parameters. This issue can be addressed
by using a filtering technique in which the important features are
identified based on their Pearson correlation coefficient (PCC) with
the output property (features with PCC > (user-defined cutoff value)
are selected for the DL model) as shown in Fig. 5. It is important to
note that the cutoff value to select the features can vary based on the
spidroin type to control the number of input features to the deep-
learning model. Our choice for the cutoff values can be found in the
code. Using all the features that pass this filtering, we make a vector
of the input variables of length T for each data point. For Ne number
of data points, the feature space F can be written as a 2D tensor as
shown in Eq. (3). Equation (3) indicates a feature as fij where i
indicates the example number and j represents the jth feature in the

ith example. This input vector is then fed into a feed-forward neural
network (FFNN) which maps f to predicted property Yp. To optimize
the parameters in FFNN, we use the Mean Square Error (MSE)
between predicted (Yp) and experimental (Ya) properties as shown in
Fig. 5. The formula to calculate the MSE for any property with N
training example is shown in Eq. (4). It should be noted that we use
different FFNNs for different properties and they are optimized
separately. This is in accordance with the literature64–67 where
researchers have used different DL models for different properties
emerging from the same source:

F ¼ ½f1; f2; � � � ; fNe � ¼

f 11 f 11 � � � f Ne
1

..

. ..
. ..

. ..
.

f 1j f 1j � � � f Ne
j

..

. ..
. ..

. ..
.

f 1T f 1T � � � f Ne
T

2
6666666664

3
7777777775

ð3Þ

MSE ¼
PN

i¼1 ðYa � YpÞ2
N

ð4Þ

Training details
For training and testing the model, we split the data as 80% train, 10%
validation, and the other 10% test sets. We train the model using the train
data set and check for overfitting using the validation data. Overfitting is the
point in the training when training loss continues to decrease but validation
loss starts increasing with the number of iterations. Then we use the trained
model topredict on the test dataset,which is thenused to judge thequality of
the fit on the basis of two metrics: R2 and PCC. R2 is a common metric to
study the quality of the fit for the regression problem68. However, in the
current study, we have seen that the experimental data has an average
standard deviation of 20–30% of the mean value, and similar standard
deviations in the experimentally measured mechanical properties are cor-
roborated in the literature69,70. Experimental conditions such as humidity or
spinning process parameters like reeling speed can have a significant impact
on themeasuredproperties, which explains the high variability71,72. Since the
ground truth has such a high standard deviation, we also use PCC to study
our model’s ability to capture the trend of the experimental data.

Fig. 5 | Model architecture for spider silk property prediction with representationP. This figure showcases the entire deep-learning framework for predicting dragline
spider silk properties, highlighting each step from data preparation and feature engineering to neural network design and property prediction.

Table 4 | Details of the size of the train and test dataset

Property Train data Test data

ϵf, σUTS, T, E 182 21

ϵsup 39 10
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To study the generalizability of the model, we execute the training and
testingprocess for 13different seeds.These 13 seeds are chosen in suchaway
that every experimental point is used at least once in the test dataset. The size
of train and test data in each seed is given inTable 4.Wereport themeanand
standard deviation of R2 and PCC across these 13 seeds. Two different
probabilities are used to compare models: (1) Pr = P(R2 ≥ 0.5), and (2)
Pc = P(PCC ≥ 0.7).

Feature importance analysis
In this section, we discuss the first step toward motif identification—cal-
culating feature importance.To calculate the feature’s importance,we follow
the method called permutation feature importance algorithm73. Addition-
ally, we use test datasets to calculate the feature importance as the perfor-
mance of the DLmodel on the test dataset reflects its true performance. To
calculate the importance of fj based on this method, we do the following:
• Calculate the MSE (eo) for test dataset with the features shown in

Eq. (3).
• Freeze all the features f 1:Ne

1 to f 1:Ne
T except f 1:Ne

j , then randomly shuffle
feature f 1:Ne

j in Eq. (3).
• Calculate the MSE (ep) for the test dataset with the shuffled fj feature.
• Feature importance (qj) for fj is calculated by ∣100*(ep− eo)/eo)∣.

The above steps are repeated for all the features in f. At this point of
analysis, we are only interested in the relative importance of all features;
hence, we divide all the q0js with max(q1,q2,…,qT). The normalized feature
importance for fj is denoted as qj. Now the values of qj lie in the range [0,1]
with 0 and1 indicating the least and themost important feature respectively.

Method for motif identification and quantifying their effect
As a part of this study, we aim to identify some of themajormotifs in spider
silk that most strongly influence specific mechanical properties. For this
purpose, we first choose the features with qj > 0.1 using the model which is
trained with d = 1. We choose the model with d = 1 because it purely cap-
tures the degree of occurrence of relative amino acid positioning in a given
spider silk and this aligns with the aim for motif identification.

Thefiltered features are not the completemotifs. Referring to the above
section it is clear from the feature name that there are gaps between the first
and the last amino acid which needs to be filled. For example, the feature
MaSp1-Y-G-3 looks like Y__G and there are 2 positions indicated with __
that need to be filled to complete the motif. For general reference, let us
indicate the incomplete motif as a1__…am+1, and the positions starting
from left to right are filled using Eq. (5) as:

ak ¼ argmax
AA

PðAAja1; . . . ak�1; amþ1Þ
k 2 ½2; ::;m�; andAA 2 20 amino acids

ð5Þ

The conditional probability in Eq. (5) is calculated using all the
examples obtained in the “Dataset” section in “Methods”. Basically, tofill an
empty position, Eq. (5) searches for the most commonly occurring amino
acid at an empty position while considering the filled positions as a con-
dition for the search through thedataset.Also, it is important tonote that the
positions are filled from left to right in the current scenario.

Once themotif is identifiedbasedonmaximumlikelihood,we consider
it for further analysis only if it appears inmore than 5%of the spider silks in
the dataset. The number 5%was intuitively chosenbasedon the SSDpaper31

in which they use the same percentage to study the correlation between the
degree of occurrence of different motifs and measured mechanical
properties.

Once all the motifs are identified using the above method, it is
important to quantify their impact on the property. Before discussing
the method for quantifying the effect of motifs, we want to introduce
a variable to count the number of motifs in the sequence of the
spidroin (MaSp1, MaSp2) in the spider silk. Since every spider silk
has a sequence of varying lengths, it is important to introduce a
variable that is independent of the length of the sequence. This is
done by normalizing the number of motifs in the sequence with the
number of repeat units in the sequence31. Spider silk spidroins consist
of several amorphous and crystalline segments in a sequence. The
reference literature31 defines a repeat unit as starting from the crystal-
forming segment and ending before the next crystal-forming segment
in the sequence. Thus, the number of repeat units can be defined as
the number of crystalline segments in a sequence. We adopt the
definition of the crystalline segment from the reference literature31 as
the continuous segments of S, A, and V amino acids with lengths of
more than 5. Therefore, based on the above discussion, we define
(θN) as the normalized number of motifs as given by Eq. (6):

θN ¼ # of motifs in the sequence
# repeat units

ð6Þ

For quantifying the effect of motifs, we first choose the best model we
obtain from the parametric study across various max(m), representations
(P &L), and d. For this study, we select the data (test dataset) on which the
model has not been trained; because the result on the test dataset reflects the
true performance of theDL framework. To quantize the impact of themotif
on the property, we do the following:
• Use the selected model to predict the property for all test datasets and

store all the predicted results in an array Yp.
• For each test example, calculate the θN value for the motif under the

assessment and store it in an array θN
• For all the test examples, remove the motif under the assessment from

the sequence and recalculate the features.
• Predict the property with the recalculated features and store the results

in an array YC.
• Calculate the percentage impact (Pm) of the motif using Eqs. (7a) and

(7b) sequentially. The max property value in Eq. (7b) for various
mechanical properties is obtained from the SSD paper31 and given in
Table 5.

Im ¼ Mean
Yp � Yc

θN

� �
ð7aÞ

Pm ¼ 100 � Im
Max Property value

ð7bÞ

Above, the entire process is discussed with the motifs obtained
from Eq. (5) using all the examples obtained in the “Dataset” section
in “Methods”. However, it is possible that the motifs in the dragline
spider silk species with very high and low mechanical properties can
be different. Therefore to study this difference, we first sort the
dragline spider silk species in the dataset31 based on the respective
mechanical properties. From the sorted list, we make two groups of
dragline silk species, one with the highest 10% and another with the
lowest 10% mechanical properties. We then obtain the motif using
Eq. (5) for both the highest and lowest 10% group of dragline spider

Table 5 | Max values of various mechanical properties
obtained from the literature for the dragline spider silk31

Property Max value

ϵf 65.3%

T 0.425 GJ/m3

σUTS 3.33 GPa

E 37 GPa

ϵsup 49.2%
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silk separately. The process to calculate Pm for these motifs remains
the same as above.

To sum up the method for the motif identification, for every feature fi
with qi > 0.1, we identify 3 types of motifs using Eq. (5) on the: (1) whole
dataset (ϕw), (2) dragline spider silk with the highest 10% property (ϕt), and
(3) dragline spider silk with lowest 10% property (ϕb). Subsequently, we
calculate thePmvalueof eachmotif identified toquantize their impact on the
property.

Mutation study
After studying different motifs in the dragline spider silk, we will also study
the effect of certain mutations on the mechanical properties. We represent
all mutations asRes1→ Res2. Thismeans that wemutate all residues of type
Res1 to Res2 in the specific spidroin of a given spider silk sample. The same
mutation can have varying degrees of impact on different spider silk sam-
ples. Hence, to account for the variation in the impact, we calculate two
probabilities: (1) the probability that themutation will lead to an increase in
the property by 20% (P(Increase > 20%), and (2) the probability that the
mutation will lead to an decrease in the property by 20% (P(Decrease >
20%). Further to study if B-factor can explain the effect mutation, we
introduce a variable ΔB-factor which is equal to the (Res2’s mean B-
factor− Res1’s mean B-factor) in Res1→Res2 mutation. The process of
selecting amino acids for the mutation study is given in Supplemen-
tary Note 8.

Code availability
The codes and files necessary for training as well as testing the model are
available on https://osf.io/76e8z/?view_only=1322ee32d0204e55a3b
65961da42c7f2 and https://github.com/pandeyakash23/spider_silk_codes.
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