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ARTICLE INFO ABSTRACT

Keywords: An important question in the context of compound disasters is the degree to which geophysical
Multilevel modeling disasters amplify the transmission of infectious diseases during pandemics and how this relation-
Lon_git“diﬂal da_t?_i ship is influenced by the social vulnerability of affected populations. This article proposes a spa-
Social vulnerability tiotemporal modeling approach to understand spatially varying social, demographic and health

Compound hazards drivers of vulnerability during pandemics co-occurring with geophysical hazards. A multilevel

mixed-effects model is developed to investigate the dynamic association between census tract-
level Covid-19 case count trajectories co-occurring with a hurricane and demographic, socioeco-
nomic and health factors. A state-level analysis is conducted to identify the distinct geographical
regions in which significant changes are seen in the infection count trends due to the hurricane. A
subsequent region-level analysis is performed to describe, at a higher spatial resolution, the im-
pact of social vulnerability on the infection count trajectories at a community level. The method
provides an approach to systematically study the effects of compound hazards and distinct pat-
terns of infectious disease spread during hurricanes by quantifying (1) dynamic associations be-
tween infection counts and social factors and (2) spatial heterogeneities of these associations be-
tween communities. A case study for modeling the spatiotemporal variation of social vulnerabil-
ity with data from Covid-19 pandemic and Hurricane Sally in Florida is presented to illustrate the
application of the approach.

1. Introduction

Large-scale disasters, in particular, concurrently occurring geophysical hazards and pandemics, disproportionately affect disad-
vantaged communities. The coronavirus disease 2019 (Covid-19/SARS-CoV-2) pandemic, which caused more than 97 million cases
and 1,072,582 deaths in the United States as of November 6, 2022 [1], has highlighted systemic social and health inequities that dis-
proportionately affected racial minority and underserved groups in the U.S. and the World. It is shown that natural disasters increase
the spread of infectious diseases during pandemics. For example, after Hurricane Katrina in 2005, a norovirus outbreak affected over
1000 evacuees residing in the Astrodome megashelter [2]; after the 2011 Japan earthquake and tsunami, overcrowded shelters
caused high incidence of respiratory infections [3]; and the Haiti earthquake in 2010 was followed by a cholera outbreak resulting in

* Corresponding author.
E-mail address: oavanli@eng.fsu.edu (O.A. Vanli).

https://doi.org/10.1016/].ijdrr.2023.104095

Received 12 December 2022; Received in revised form 10 September 2023; Accepted 28 October 2023
Available online 31 October 2023

2212-4209/© 2023 Elsevier Ltd. All rights reserved.


https://www.sciencedirect.com/science/journal/22124209
https://www.elsevier.com/locate/ijdrr
mailto:oavanli@eng.fsu.edu
https://doi.org/10.1016/j.ijdrr.2023.104095
https://doi.org/10.1016/j.ijdrr.2023.104095
https://doi.org/10.1016/j.ijdrr.2023.104095

S. Abazari et al. International Journal of Disaster Risk Reduction 98 (2023) 104095

more than 9000 deaths and 650,000 infections [4]. When a pandemic concurrently occurs with a natural disaster, disaster response
and support agencies should carefully evaluate the complex health effects of disasters to ensure a safe and successful delivery of evac-
uation and sheltering services to vulnerable sub-populations such as the elderly, children, and persons with disabilities [5]. To make
equitable decisions on allocating health and emergency response resources, caring for vulnerable sub-populations, and implementing
local and state-level interventions, access to dynamic pandemic and disaster situation data and data on key vulnerabilities at the com-
munity level are essential [6].

The current paper proposes a new multilevel mixed-effects modeling methodology to understand the associations between the
census-tract infection-count trajectories observed during a pandemic a co-occurring with a disruptive hurricane and the demographic
and socioeconomic characteristics of communities. Mixed-effects models are particularly well-suited for this specific application, with
their flexibility in modeling spatial heterogeneities in dynamic associations between the infection-count time trajectories and social
factors. Based on the proposed mixed-effects models, we propose a new heterogeneity metric that measures the spatial variations in
Covid-19 case rate accelerations between census tracts following a hurricane and show its practical implications for quantifying local
impacts of compound disasters. In a case study we demonstrate the application of the proposed method used to assess the association
between social vulnerability and the pandemic spread by using publicly available spatial social vulnerability data and daily infection
case counts collected during the Covid-19 pandemic co-occurring with a hurricane in Florida.

The proposed approach makes unique contributions to the literature as follows. A critical shortcoming of the existing pandemic
vulnerability indicators, which utilize (total) infection counts at a particular point in time, is that they lack the ability to include the
temporal dimension in vulnerability analysis. The proposed modeling method enables the study of dynamic associations between the
temporally observed infection counts and social characteristics of communities and provides a unique ability to investigate the social
drivers and patterns of infectious disease spread during pandemics with a particular focus on the co-occurrence of geophysical haz-
ards. Secondly, the mixed-effects model can estimate spatially varying model coefficients which provides the ability to make statisti-
cal inferences about the spatial heterogeneities of such associations. The abilities to add the temporal dimension in the study of vulnera-
bilities and to make statistical inferences about spatial heterogeneities are crucial in the understanding of local drivers of vulnerabil-
ity during compound hazards. For example, it enables to test whether the variation in the speed of the disease progression in different
communities is significant and how this variation is related to the social vulnerabilities and the co-occurrence of geophysical hazards.
The ability to quantify the vulnerabilities of communities against compound hazards, e.g., hurricane-hits during pandemics, in turn,
will be helpful for policy and decision-makers in emergency management and healthcare operations planning to make effective re-
source allocation and disaster mitigation decisions.

2. Relevant literature

In the event of disasters of all types, including pandemics like Covid-19, socioeconomic factors like the percentage of people living
in poverty or without access to transportation can contribute to the degree to which communities withstand disaster impacts and ex-
acerbate human suffering and financial loss. The knowledge of factors that describe a community's social vulnerability against disas-
ters is crucial to enable the identification of populations most likely to need support before, during, and after a disaster and in deter-
mining how resources might be allocated for mitigation and response. For example, lack of access to health resources or facilities may
be a cause of increased vulnerabilities to hurricane-pandemics in a certain place. Vulnerability is defined as the potential to suffer
losses and influences the way people “anticipate, cope with, resist, and recover from the impact” of an event [7]. One of the earliest
definitions of social vulnerability using indices was proposed by Cutter et al. [8], to describe the relative social vulnerability of com-
munities to natural hazards.

Factors affecting community vulnerability have been well studied in the context of geophysical disasters like floods and hurricanes
and in the context of pandemics. For pandemics, Flanagan et al. [9], working with the U.S. Centers for Disease Control, developed a
social vulnerability index, termed CDC SVI. CDC SVI estimates the relative vulnerability of each census tract in the U.S. by ranking 15
variables grouped across four dimensions: The socioeconomic theme that comprises percentage below poverty, percentage unem-
ployed, per capita income, and percentage with no high school diploma; the household composition theme that comprises the per-
centage aged >65 years, percentage aged <17 years, percentage civilian with a disability, and percentage single-parent households;
the minority status theme that comprises percentage minority and the percentage who speak English less than well; and the housing
and transportation theme that constitutes percentage multiunit structures, percentage mobile homes, percentage crowding, percent-
age no vehicle, and percentage group quarters. Karaye and Horney [10] used CDC SVI to study Covid-19 prevalence. More recently,
Marvel et al. [11], developed a vulnerability index, labelled COVID PVI, incorporating Covid-19 specific covariates including, dia-
betes, obesity, hospital intensive care unit (ICU) beds per capita, and health insurance coverage. Rahman et al., [12] explored the im-
pact of various demographic, socioeconomic, mobility and health related variables on the incidence of COVID-19 cases and investi-
gated a static pandemic vulnerability index at the city level (PVI-CI), at a specific point in time, to classify cities into five vulnerability
classes, ranging from very high to very low. Obesity was identified as a risk factor for progression during the 2009 H1N1 influenza
epidemic and with Covid-19 in the U.S. by researchers [13]. Diabetes has been found to be a risk factor in early studies of Covid-19
[14]. Fewer ICU beds were found to be positively associated with increased cases and deaths; health insurance coverage, more preva-
lently seen in rural counties, was found to be positively associated with increased cases and deaths [15]. Long-term exposure to par-
ticulate matter pollution was shown to correlate with Covid-19 prevalence [16,17]. Other studies focusing on socio-economic deter-
minants of the prevalence of Covid-19 include [18,19].

The most basic and well-studied model in epidemiology is the Susceptible-Infected-Removed (SIR) compartmental model that de-
scribes the dynamics of an epidemic in which an individual is in one of three disjoint compartments at any given time: susceptible to
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disease, infected and recovered [20]. The compartmental models are based on systems of differential equations for the movement of
the population through discrete states, including entry into and exit from the population. The SIR models have been successfully ap-
plied to estimate the infection and recovery rates from observed data and assess the effectiveness of various interventions, such as
school closures and mask wearing, on pandemic spread [21]. However, it is usually difficult to accommodate spatial heterogeneity
and risk factor covariates in such models. A more natural and flexible way to model the time trajectory of infectious disease counts is
to model them from growth curve or longitudinal data, which consists of repeated measurements of some characteristic obtained
from a single subject or geographical unit (e.g., census tract) at different occasions or times (e.g., infection counts in consecutive time
periods). Longitudinal data have a temporal order, due to this ordering observations for different geographical units are clustered and
data within a cluster will typically exhibit positive correlation which must be accounted for in the analysis. Mixed-effects models are
powerful modeling tools that allow for the analysis of infection data with complex associations with socioeconomic covariates, hierar-
chical structures [22,23], in particular, infectious disease data, to account for unobserved spatial heterogeneity by means of random
effects. The hierarchical data sets of interest often consist multiple levels of nesting, for example, longitudinal infection counts from
census tracts, nested under regions of census tracts, and regions nested under a state. Fritz and Kauermann [24] used region-specific
random effects in their Covid-19 spread prediction models to account for unobserved heterogeneities due to super spreader events or
local outbreaks in meat processing plants.

Time trajectories of epidemic curves often exhibit nonlinearities or inflection points that require the use of flexible, non-
parametric functions for modeling. Boschi et al. [25], investigated the patterns of Covid-19 mortality curves in Italy and their associa-
tion with mobility, positivity, and socio-demographic, infrastructural and environmental covariates by using functional data analysis
techniques. Logistic regression with a smooth temporal effect was used to identify adequate risk factors for severe Covid-19 cases in a
matched case-control study in Scotland [26]. Jiang et al. [27], proposed modeling the Covid 19 infection trajectories using a piece-
wise linear quantile trend model to naturally capture the phase transitions of the epidemic growth rate via change-points. Basellini
and Camarda [28] investigated the regional differences in the epidemic mortality time trends during the first Covid 19 wave in Italy
and associated risk factors through regression splines and random effects that account for regional heterogeneities. Approaches based
on recurrent neural networks from the field of deep learning, specifically Long Short-Term Memory (LSTM) neural networks, have
been utilized for analyzing and forecasting the dynamics of Covid-19. Nikparvar et al. [29], demonstrated the efficacy of a multivari-
ate LSTM network incorporating mobility data, resulting in improved accuracy in forecasting spatial patterns of Covid-19 spread.
Shahid et al. [30], highlighted the superiority of bidirectional LSTM in forecasting Covid-19 cases, deaths, and recoveries compared
to time series and support vector machine methods. While the primary focus of LSTM models is modeling complex temporal depen-
dencies in sequential data, their main drawback is that they are not specifically tailored to handle spatial dependencies or hetero-
geneities. Compared to the approach proposed in the current paper, from the modeling perspective the approach of [28] is quite simi-
lar in the sense that both approaches consider modeling epidemic curves to study their associations with socioeconomic risk factors.
However, the latter does not consider the effect of another disruptive event, such as a hurricane, which our approach account for ex-
plicitly.

The relationship between explanatory variables and an outcome variable in statistical modeling is not always constant across a
study area. Variations in relationships over space are referred to as spatial heterogeneity (LeSage and Pace [31], p.29) and spatial
non-stationarity (Fotheringham et al. [32], p. 9). Two competing models to address this issue are geographically weighted regression
or GWR [32] and multilevel mixed-effects (random coefficient) models [22] with spatially varying coefficient processes (SVCP).
While GWR assumes local relationships vary smoothly, the SVCP allows coefficients to vary randomly ([32], p.20). GWR and spatial
random effects models are considered to be the two main approaches to estimate spatially varying associations between outcomes and
covariates. However, mixed-effects models have several advantages over GWR [33]. Unlike GWR, in mixed-effects models, the data
do not need to be independent to define inference; the model can explicitly incorporate spatial correlation (or dependence) in the ob-
servations and associations through the spatial random effect (prior) distributions. To account for possible spatial dependence among
adjacent regions, an error term following a spatial autoregressive (SAR) model and an adjacency matrix can be incorporated in the
mixed-effects models (Waller and Gotway [34], pp.363). As an extension of SAR models, which focus solely on the spatial dependence
aspect, spatial panel data models have been developed to analyze not only the spatial dependence but also the time dependence in the
data by incorporating temporally lagged covariates and error terms in the model (Ehorst, [35]). The basic reference for spatial corre-
lation structures used with linear models with no random effects is Cressie [36] and spatial correlation structures in the context of
mixed-effects models are described at length in Diggle et al. [37]. Note that in this study our model formulation accounts for spatial
heterogeneity but not spatial dependency. However, framework is general and can be extended to incorporate spatial correlation,
through for example a SAR structure [34]. In addition, mixed-effects models provide the ability to conduct model-based estimation
and inference on whether the spatial heterogeneity due to some factor is significant, while GWR only allows relatively ad hoc infer-
ence.

Spatial differences or heterogeneities in community vulnerability have been previously studied within the context of disasters. The
focus was limited to studying the impacts of a single disaster, such as, geophysical disasters [8] or pandemics [9,38], separately. How-
ever, research studying heterogeneities in vulnerabilities against compound disasters is limited. Karaye and Horney [10] studied the
variables associated with increased cumulative Covid-19 case counts from the US county-level case count data. To accommodate the
fact that vulnerability to Covid-19 may actually be nonstationary and vary between U.S. counties, a GWR model was constructed us-
ing social vulnerability indicators. Another regression model with spatially varying coefficients to model cumulative case counts at
the county-level was presented by Snyder and Parks [39] with a wider breadth of Covid-19 specific covariates including, diabetes,
obesity, hospital beds per capita, and health insurance coverage. A multilevel Bayesian local regression approach presented by Song
et al. [40], aimed at modeling spatial heterogeneities of vulnerability against Covid-19.
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3. Study region, time period and data set: the first Covid-19 wave in Florida

To motivate the proposed methodology, we describe the region and time period of focus in our study and the data set that will be
used in the illustrations of the paper. We consider data from the first wave of the Covid-19 pandemic, covering July 22 to October 17,
2020 as the study period, and focusing on the state of Florida. Covid-19 was declared by the World Health Organization as a pandemic
on March 11, 2020 [41]. The study time period coincides with the first phase of the Covid-19 pandemic during which no vaccines
were yet available (the first vaccines only became publicly available starting in December 2020). In addition, during this time period
a concurrent geophysical hazard, hurricane Sally impacted the study region, which made landfall in Alabama and Pensacola, FL as a
category 3 hurricane on Sep 16, 2020 [42].

The study period covers 88 days, and the study region of the state of Florida covers more than 4200 census tracts, which makes a
mixed-effects modeling of the Covid-19 infection curves at the census-tract level for the entire state computationally intractable. To
ease the computational burden, Florida census tracts are grouped into 7 non-overlapping regions, as shown in Fig. 1, and the analysis
is conducted for the regions separately. The regions are constructed, as an aggregation of between 300 and 900 contiguous census
tracts, following the Florida Department of Health, health care coalitions district definitions [43] and numbered according to the
proximity to the hurricane landfall location. Fig. 1 shows the counties of the regions and the Hurricane Sally's 5-day ahead forecast is-
sued by National Hurricane Center (NHC) on Sep 15, 2020. Table 1 provides the number of census tracts and the respective popula-
tions of the regions.

Confirmed daily Covid-19 case count data for Florida zip codes are accessed at Florida Covid-19 Hub [44]. The United States Cen-
sus Bureau provides zip code tabulation area (ZCTA) files to convert mail route-defined zip codes into areal units. The zip codes are
matched with census tracts using the ZCTA to Census Tract Relationship File [45]. The Covid-19 case counts at the census tract level
are obtained as a population-weighted average of the zip code level case counts using populations of the zip codes as weights. The
census tract populations required to find the daily infection rates (i.e., daily infection count divided by population) were obtained
from 2020 U S. Census [46], which aligns with the infection count timeframe. The data and documentation on demographic and so-
cioeconomic variables were accessed at the Centers for Disease Control and Prevention Social Vulnerability Index (SVI) web site
[47,48]. In addition, the number of hospital beds per 1000 people, air pollution, prevalence of diabetes and obesity and percent unin-
sured, that were associated with worsening prognosis of Covid-19 are considered as health-related variables [11,39]. The health-
related variables measured at the county level were accessed at the COVID Pandemic Vulnerability Index (PVI) public repository
[49]. Table 2 shows the definitions and data sources of the 21 variables in addition to the infection case counts used in the study. All
data processing and modeling have been conducted' in R statistical computing language [50].

4. Proposed method: mixed-effect model for infection count trajectories of geographic regions

In this research we develop a statistical modeling methodology to study the spatially varying relation between the growth of cen-
sus tract-level infectious disease counts over time and the demographic, socioeconomic and health characteristics of the communities
during a pandemic that is concurrently occurring with a hurricane. As shown in Fig. 2 from each census tract daily Covid-19 infection
counts are observed. The census tracts are nested under regions and regions are nested under the study region. The nested structure of
the data requires a multi-level model be constructed. Since the lowest spatial level of modeling is census tracts, the terms community
and census tract will be used interchangeably in this paper. An application to the first Covid-19 wave in Florida and hurricane Sally is
presented. A multilevel linear mixed-effects model is constructed to study the statistical dependence of the changes in the infection
rates over time and how these changes are associated with the community characteristics and the timing of the hurricane. Using the
proposed approach, we show how to determine the demographic, socioeconomic and health variables that are most influential on the
significant trends of the infection rate trajectories and to identify the hot spots where community vulnerability and the occurrence of
the hurricane were positively associated with increased case rates.

A flexible regression-spline smoothing is used to construct the temporal structure of the model and account for the possible
changes in the infection rates of census-tracts that are impacted by the hurricane. The covariates of the mixed-effects model are se-
lected by variable selection from a pool of potentially important demographic, socioeconomic and health factors. Demographic and
socioeconomic factors include those that impact the community's capacity to respond to Covid-19 and hurricanes, such as, education,
race, age, income, prevalence of disabilities and language, all measured at the census tract level [9]. Health factors include pre-
existing conditions and behaviors that are thought to increase disease incidences such as smoking prevalence, diabetes, obesity,
health insurance coverage, number of hospital beds per capita, and air pollution.

For each census tract, the outcome variable is determined by dividing the daily counts of confirmed Covid-19 cases by the total
population of the respective census tract. To satisfy the parametric requirement of normal probability distribution of linear models,
we log-transformed the outcome variable and exponentiated the model coefficients for ease of interpretation. Accordingly, the out-
come variable is defined as Yy = log((zij + 1)/m;) where z; is the confirmed infection count in census-tract i at the j-th measurement
occasion and m; is the total population of census tract i. The outcome variable of interest y; is, therefore, a log infection rate (with 1
added to each to avoid taking the logarithm of zeros for zero count census tracts). By dividing the counts by the population at risk, the
counts from different census tracts are made more comparable, since the sizes of the population at risk differ in different census tracts.
Furthermore, the normal approximation is more appropriate with the log rates than applied to counts ([34], p. 347).

1 The R codes and data of the study can be obtained at https://github.com/avanli/Longitudinal Covid19MixedModel.
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Fig. 1. Florida Department of Health regions [43] showing the counties and the 5-day ahead forecast and uncertainty cone for Sep 15, 2020, 1:00pm advisory [42].

Table 1
Populations and numbers of census tracts of the Florida regions.

Region 1 2 3 4 5 6 7
Population 922,106 386,941 2,287,758 3,891,048 3,660,723 1,672,241 5,558,784
Number of census tracts (N) 218 95 464 1,020 719 425 1,235

The proposed approach arrives at the final multi-level model of each region in two stages. In the first stage, the method identifies
the optimal temporal structure of the mixed-effects models for all regions shown in Fig. 1 to describe the temporal changes of the
Covid-19 case counts after the hurricane landfall. Based on the temporal trends of the regions, the method also identifies the regions
that are most significantly impacted by the occurrence of the hurricane. In the second stage, the method focuses on the most impacted
regions and develop more detailed mixed-effects models that contains both temporal trends and the spatially varying effects of demo-
graphic, socioeconomic and health covariates on the census tract-level infection count trajectories. Both the temporal structure and
the covariates of the model were selected using the Akaike Information Criterion. To demonstrate the spatial heterogeneities in how
the covariates predict Covid-19 case counts across the census tracts, coefficient choropleth maps were generated for the random coef-
ficients of the predictor variables using hot-cold rendering color schemes.

A multi-level mixed-effects model summarizes the coefficients in terms of two parts: a “fixed” part which is common across census
tracts, and a “random” part, which is allowed to vary from tract-to-tract. A general formula for the model used to describe the changes
in the infection rate y; over time periods t; for census-tract i and measurement occasion j, to model impacts of compound hurricane-
pandemic events is

yi=0(t;) +v(x) +f (17) + & (%) +ei=1,....ni=1,2,... N (@})

where N is the number of census tracts within the region of interest, n is the number of measurements and x; = (x;,...X;) is the collec-
tion of p (non-time varying) covariates that comprise the demographic, socioeconomic, and health related variables for census-tract i.
Table 1 lists N and populations of different regions and for the study period n = 88 days for all regions and census tracts.

The fixed-effects part of the model, 6(.) + y(.), models the predicted Covid-19 infection rate trajectory for the entire region, while
the random-effects part of the model, fi(.) + g(.), models the deviation over time of i-th census tract trajectory from the region trajec-
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Table 2
Demographic, socioeconomic and health variables. Data sources are CDC [47] and COVID19 PVI [49].

Name Source Description

AirPollution COVID19PVI Particulate matter

Diabetes COVID19PVI Diabetes prevalence

Obesity COVID19PVI Adult obesity prevalence

Smoking COVID19PVI Adult smoking prevalence

PctNolns COVID19PVI Percentage of persons with no health insurance

PctBeds COVID19PVI Number of hospital beds per population (per 1000 persons)
EP_POV CDC Percentage of persons below poverty

EP_UNEMP CDC Percentage of civilians (age >16) unemployed

EP_PCI CDC Per capita income

EP_NOHSDP CDC Percentage of persons with no high school diploma (age > 25)
EP_AGE65 CDC Percentage of persons aged 65 and older

EP_AGE17 CDC Percentage of persons aged 17 and younger

EP_DISABL CDC Percentage of population with a disability

EP_SNGPNT CDC Percentage of single parent households with children under 18
EP_MINRTY CDC Percentage minority (all persons except white, non-Hispanic)
EP_LIMENG CDC Percentage of persons (age >5) who speak English less than well
EP_MUNIT CDC Percentage of housing in structures with 10 or more units
EP_MOBILE CDC Percentage of mobile homes

EP_CROWD CDC Percentage of housing units with more people than rooms
EP_NOVEH CDC Percentage of households with no vehicle available
EP_GROUPQ CDC Percentage of persons in institutionalized group quarters

State

A 4
[sen? |

|
v v v
T, |Tractm| | Tract, | | Tractzl see see

Fig. 2. Nested nature of the dataset used in the study.

tory and ¢;; is the random modeling error which describes the within-census-tract deviations. From Fig. 2, a region-level trajectory is
the mean of the trajectories of all the census-tract-level trajectories below it, and the state-level trajectory is the mean of all region-
level trajectories. The functions 6(.) and f{(.) model the association between the changes in the infection rates and time and constitute
the “temporal structure” of the model. By contrast, the functions y(.) and g;(.) model the association between the changes in the infec-
tion rates and the covariates and constitute the “covariate structure” of the model. In what follows we will describe our methodology
to determine the specific functional definitions of these two structures.

4.1. Selecting the optimal temporal structure by modeling the data of entire study region

In this section we discuss the proposed methodology to determine, from the observed infection count data, the best representation
of the fixed-effect term 6(.) and random-effect term f;(.) that explain the temporal trends. In this first stage of the analysis no covari-
ates are included in the model (i.e., y(.) = 0 and g(.) = 0). The temporal trajectories of the daily infection count of census tracts are
highly non-linear functions of time, in particular, at the early stages of a pandemic where the community spread is very fast. In order
to flexibly describe such nonlinear trends, regression-splines temporal smoothing [51] is used to represent the temporal trends

i = By + oty + ﬂ3t,_,2/. + 840 (t5) + by + bogty + by,L (1) + €5 @

(1) fi(ty)

where « is the breakpoint or knot, set equal to the known day of the hurricane landfall. The linear spline function L(ty) = (t—x) + de-
fines the linear spline function [51]. The “+” subscript denotes the positive part; that is, for any number u, u, = uif uis positive and

equals zero otherwise. The quadratic spline function Q (z;) = (7; — K)i is defined in a similar way: that is, for any number u, u> = 1 ifu

is positive and equals zero otherwise. The spline functions Q(t;) and L(t;) are the unique aspect of our modeling methodology to ac-
count for potential changes in the infection rates due to the hurricane landfall depending on the geographic location.

The mixed-effects model (2) consists of the fixed effects (f1,5,,53,84) and the random effects (b;;,bq;,b3;). The fixed effects describe
the global patterns (for the entire region) of change in the mean infection rates. The random effects describe how the temporal trend
of the i-th census-tract deviates from the region trend, thus accounts for spatial heterogeneities. The random effects, modeled using
appropriate probability distribution functions, allow each spatial unit to follow a different time trend. The intercept f; is the mean in-
fection rate at time 0, 5, and f; are the linear and quadratic increases per day in the mean infection rate. j, is the additional change
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(increase or decrease) in the quadratic time trend incurred following the hurricane landfall at time « (owing to the fact that Q(.) is
non-zero only after the hurricane landfall). That is, it measures potential accelerations or decelerations in Covid-19 case rates in-
curred in the region after the hurricane. The random effects b,; and b,; allow the intercept and the linear trend, respectively, to vary
randomly from one census tract to another. Similarly, the random slope bs; of the linear spline measures the additional change (in-
crease or decrease) in the linear time trend, that is, potential acceleration or deceleration in Covid-19 case rates, incurred in each cen-
sus tract following the hurricane. In summary, the spline terms of the model provide a unique ability to account for possible effects of
the hurricane on the infection rates both at the region level and locally: 3, measures the association of the hurricane event with in-
creased Covid-19 cases at the region-level and bs; measures the association of the hurricane with increased Covid-19 counts to vary
between census-tracts. In this sense, our approach provides a framework to treat disrupting events similar to intervention measures,
such as school closures, in the SIR epidemiology literature. However, the mixed effect model has the added benefit of the ability to ac-
count for spatial heterogeneities by incorporating random effects.

We remark that the temporal trend of the census-tract infection rates may be better described by a more complex model than (2).
To be prepared for this possibility and select the most appropriate model, we adopt a model selection approach that evaluated the fit
of various potential spline-regression models for the random-effects structures (with the same quadratic-spline for the fixed-effects
part). For assessing the quality of the fit of a linear mixed-effects model and comparing several models, Akaike Information Criterion
(AIC) will be used as the model selection criteria [52]. Given a set of candidate models fitted to the data, the AIC estimates the quality
of each model relative to each of the other models and provides a means for model selection. The AIC is defined as twice the differ-
ence between the value of the log-likelihood (a measure of fit) and the total number of parameters (a penalty for model complexity)
and the preferred model is the one with the minimum AIC value.

To accommodate more complex temporal trends, a quadratic-spline temporal random effects model is also considered:

i = Bi + Boty + ﬂ3tl.2j + 840 () + by + byt + bytl?j +by0 () + ¢y 3)

Model (2) and Model (3) are referred to as the linear-spline and quadratic-spline random effects models, respectively. To determine
the significance of the spatial heterogeneities in the temporal trends due to the hurricane impact, we compare the linear-spline and
quadratic spline models to the following “benchmark” model which does not include a random slope for the linear spline

yii =By +ﬂ2t[j+ﬂ3ti2j+ﬂ4Q () + by + baty + €5 4

Model (4), referred to as the non-spline random effects model, can account for region-level change in the time trend of Covid-19 case
rates after the disruptive hurricane, but not the heterogeneities of the census tracts. We define a Heterogeneity Metric (HM), com-
puted based on the mixed-effect models, to quantify the spatial heterogeneities of Covid-19 case rate accelerations between census
tracts incurred following the hurricane as

AIC, - AIC,

HM = ———— (5)
|AIC|

which measures the improvement in the fit of the model (reduction of the AIC) of the non-spline random effects model attained by us-

ing a spline random effects model. Specifically AIC, is the AIC of non-spline model (4) and AIC; is the smallest AIC out of the AICs of

the linear and quadratic spline models (2) and (3), respectively. The larger the HM, the more heterogeneous the impact of the hurri-

cane on Covid-19 case rate accelerations in a region.

4.2. Selecting the optimal covariate structure by modeling the data of impacted regions

In the second stage of the analysis (once the best functional forms of the temporal trends are identified) we determine the func-
tional forms and the covariates of y(x;) and g;(x;) from the observed infection count and demographic data. The analysis consists in op-
timally selecting the sets of demographic, socioeconomic and health variables that are most strongly associated with increased longi-
tudinal Covid-19 counts in the regions and time periods of interest. The resulting mixed-effects model with covariates will enable us
to determine how changes in census tract-level infection counts are associated with the demographic, socioeconomic and health char-
acteristics of the region.

To represent the relation between the covariates x; and the infection counts in addition to the temporal trends, we add in Model
(2) two new terms, a fixed effect term y(.) and a random effect term g(.). Both terms assume a linear functional form, that is,
Y(x) = nxi + ... + ypxp and gi(x;) = gux; + ... + gpXp, where (13,...,7,) is the vector of fixed slopes of the covariates and (gjs,...,8j) is
the vector of random slopes of the covariates for census tract i. Accordingly, a linear-spline temporal random effects model with co-
variates is:

Vi = Br+ Baty + B3t + B0 (1) + 7 (x;) + by + boyty + L (1) +8; (x;) + € ©

O(r,‘,)+y(xl) f,-(r,-,-)+g,(x,)

The fixed slopes (y,...,y,) describe the relation between the region-level mean infection rates and the covariates, while the random
slopes (g;1,.-.,8p) describe how the i-th census-tract relation deviates from the region-level relation.
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The model parameters are estimated using a restricted maximum likelihood estimation (RMLE) approach ([22,23]). The model
parameters to be estimated consist of the vector of fixed effects 8 = (f1,62,83,84,11,---»¥p), containing 1 intercept, 3 temporal slopes and
p covariate slopes, and the vector of random effects b; = (by;,b2:,D3:,8i1,- ---&p) for each census tract indexed by i, containing 3 temporal
slopes and p covariate slopes for each census tract, for a total of N(p + 3) slopes for the entire region. The estimation approach relies
on the assumption that the random effects b; and the random modeling errors ¢;; from N census tracts and n observation periods follow
Gaussian probability density functions:

b; ~N,(0,%),and ¢y, ..., €, ~ N (0,6%)

where ¥ is the r X r variance-covariance matrix of the r = p + 3 dimensional vector of random-effects b; and o2 is the error variance.
The terms N,(0,%) and N(0,6%) denote Gaussian density functions: the first one being an r-dimensional distribution with zero mean
and covariance matrix ¥ and the second one being a univariate distribution with zero mean and with common variance 2. The para-
meters of the model to be estimated by the RMLE method, therefore, are #,by,...,by, ¥ and ¢2. The heterogeneities in random effects
are measured by their standard deviations, which are obtained as the square root of the diagonal elements of the matrix ¥: the effects
that have large spatial variations have large standard deviations.

The demographic, socioeconomic and health-related variables listed in Table 2 were used as potential covariates to describe a
community's social vulnerability against high Covid-19 infections. A top-down variable selection strategy, commonly used in the
mixed-effects model selection literature ([23], p.135), was utilized to select the covariates of the mixed-effects models. For a given re-
gion, the global relations and trends are dictated by the fixed effects, however, if the random effects are poorly chosen, the fixed ef-
fects are biased because the random effects work their way into the standard errors of the slopes for the fixed effects. On the other
hand, if the variation in the outcome variable is not modeled in terms of fixed effects, it ends up in random effects. Finding the correct
random structure, therefore, is crucial not only to adequately estimate the fixed slopes of the model by properly modeling the vari-
ance, but also through the estimation of the random slopes which will enable the analysts to assess the spatial heterogeneities of the
relations.

The top-down strategy consists of the following steps: (a) Start with a model where the fixed component contains all potential co-
variates and a random structure consisting of random slopes only for the temporal effects. This is called the beyond optimal model. (b)
Using the beyond optimal model, find the optimal random structure. Start with a random intercept, enter a random slope for one co-
variate at a time to the random structure using the likelihood ratio test until no significant random slopes remain (c) Once the optimal
random structure has been found, the optimal fixed structure is found by comparing several models with nested fixed effects, but with
the same random structure. A fixed slope for one covariate at a time is removed from the fixed structure using the likelihood ratio test.

Estimation, diagnostics, and visualization of the multilevel mixed-effects models to the spatial infection, demographic and socioe-
conomic data are conducted using the lmer function in the R package 1me4. In addition, the R package tigris is used to read and
process the shape files of the census tract polygonal boundaries and their populations and the functions in sp package are used for
plotting mapping functions.

5. Application to the first COVID-19 wave and hurricane Sally in Florida

In the first stage, we identify the temporal structure of the mixed-effects model based on the census-tract level daily Covid-19 in-
fection count data for the Florida regions shown in Fig. 1. To accommodate the different rates of change in the infection case rates be-
fore and after the occurrence of hurricane Sally at the region level, we fitted the benchmark model (4) with a common knot at day
7 = 52, that corresponds to Sally's landfall date of Sep 10, 2020. Since the benchmark model does not contain a spline in the random-
effects part, it is able to quantify the temporal impact of the hurricane at the region level but not at the census-tract level. To accom-
modate any census-tract level heterogeneities in the changes in the Covid-19 infection case rates after the hurricane, we fitted the lin-
ear-spline and quadratic-spline random-effects models (2) and (3), respectively. We compare these models to model (4) on the basis of
AIC and compute the Heterogeneity Metric (HM) using Equation (5), to determine which regions impacted the most, in terms of het-
erogeneities in the Covid-19 case rate accelerations, following the hurricane. All spline models have a common knot at day z = 52..

To visualize the basic features of the mixed-effect models, Fig. 3 compares the predictions of models (2), (3), and (4) to the ob-
served Covid-19 counts for only one census tract in Volusia County and one census tract in Okaloosa County. Note that fitted models
provide predicted case rate y; of census tract i at measurement time j. Therefore, the predicted case count is obtained using the inverse
transformation z; = exp(y;)m; + 1 where m; is the population. There is an evident change in the slope of the case counts near the
landfall on day 52 for Volusia but the change in Okaloosa is somewhat before day 52. The linear-spline model (2) has a broken-line
turning point at the knot (green line), while the quadratic-spline model (3) has a smooth turning point at the knot (red line). The base-
line model (4) (blue line) is not able to capture the turning point and fits the data poorly.

It is important to note that in most of the public health surveillance studies a common practice is to use some type of moving aver-
age or weekly sum of infection case counts to smooth the volatility in the reported infection count data [53]. In this application we
used 7-day moving-averaged case count data to fit the mixed-effects models in order to reduce the effect of volatility on the estimated
parameters. In addition, to see the effects of data volatility on the model results, we repeat the analysis of the temporal model with the
raw (un-averaged) case count data.

Supplementary Appendix 1a shows the AIC values of the fitted models for all Florida regions. The last column is the Heterogene-
ity Metric (HM), measuring the improvement of the model fit by the addition of a random slope on the spline with a knot at the hurri-
cane landfall time (AIC;) over the benchmark, non-spline model (AIC,). HM of regions are summarized in Fig. 4. HM explicitly quan-
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Fig. 3. Covid-19 count trajectories and model predictions of case counts of two census tracts in region 1 using various spline functions (a) a tract in Volusia County (b) a
tract in Okaloosa County. Vertical dashed line corresponds to the known land fall day x = 52.
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Fig. 4. Heterogeneity metric computed based on the mixed-effects models of the regions representing the effect of hurricane landfall on Covid-19 case rates.

tifies the impact of the hurricane landfall on the spatial heterogeneity of Covid-19 case rate accelerations within census tracts. It can
be seen that, as expected, the hurricane has the greatest impact on the heterogeneity of increased Covid-19 case rates in region 1,
with the closest proximity to the landfall location, among all regions. In addition, region 5, that has the second highest impact due to
the hurricane, even though it is located farther away from the landfall, warrants further consideration, and will be evaluated in what
follows. In addition (from Appendix 1a) the linear-spline model, model (2), provides the best fit compared to non-spline benchmark
model (4) and the quadratic-spline model (3), in all but one of the regions, as indicated by the smaller AIC values (the smallest AIC
value is shown in bold fonts). Therefore, for identifying the regions most impacted by the hurricane and selecting the covariates of
the models, we consider a linear-spline random-effects structure in the second level analysis. Supplementary Appendix 1b shows the
model AICs of the regions fitted with the raw data. It can be seen that similar conclusions are obtained with raw data to those from
smoothened data (regions 1 and 5 are impacted greatest and the linear spline random effects model fits best in all but one of the re-
gions). While the use of smoothened data is preferred in this analysis, this comparison is useful in highlighting the robustness of the
conclusions obtained with the proposed method with both data types.

The second stage analysis will be applied to both regions 1 and 5 using the 7-day moving-averaged case count data. The observed
Covid-19 case count trajectories and the predictions obtained by the fitted multi-level linear-spline mixed-effects model (2) are shown
in Figs. 5 and 6 for regions 1 and 5, respectively. The predicted daily infection counts for each census-tract are shown with a different
color, with a solid line corresponding to the prediction and a dashed line corresponding to the observed data, and panels correspond-
ing to different counties (The curves are grouped for counties in separate panels for ease of viewing). The predicted case counts follow
the observed case counts closely, demonstrating that the model describes census-tract level trends well.

In the second stage of the analysis, we identify which of the demographic, socioeconomic and health covariates given in Table 2
are most strongly associated with increased Covid-19 case rates in the highly impacted the regions. As the number of potential covari-
ates is relatively high, using all of them in the model before a dimension reduction can result in highly unstable models and degraded
predictive performance if the covariates are highly multicollinear. In order to avoid multicollinearity between the predictors a heuris-
tic approach [54] is used to remove a minimum number of covariates to ensure that all pairwise correlations are below a threshold of
0.6. Supplementary Appendix 2a and 2b show the correlation matrix of the covariates with data from regions 1 and 5, respectively.
Each pairwise correlation is colored according to its magnitude and the covariates have been grouped using a clustering technique so
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Fig. 5. Census-tract level daily infection count data and predictions for region 1. The time period covers from 7/22/2020 to 10/17/2020. Vertical line shows the land-
fall date November 9, 2020 of hurricane Sally. Dashed lines: Confirmed daily counts; Solid lines: Mixed-effects model predictions. Each solid or dashed line pair with
the same color corresponds to a different census tract within the county. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

that collinear groups of predictors are adjacent to one another [55]. For example, for region 1 (in Appendix 2a) it can be seen that,
looking along the diagonal, there are 2 blocks of strong positive correlations that indicate clusters of collinearity. Based on the heuris-
tic algorithm, EP_NOHSDP, EP_PCI, EP_POV and Obesity were dropped for the region 1 analysis and EP_MINRTY, EP._ NOHSDP, EP_S-
NGPNT, EP_POV, EP_AGE65 and EP_NOVEH were dropped from the region 5 analysis.

The proposed top-down variable selection strategy is then applied to the resulting list of reduced dimensional variables and choose
which covariates should be added to determine the optimal mixed-effects model (6). The coefficients of the resulting optimal mixed-
effect models for region 1 and region 5 are shown in Table 3 and Table 4, respectively. The estimated § slopes provide the fixed-effects
of the covariates, while the random-effects part provides the estimated standard deviations and the corresponding 95 % confidence
interval, for each random slope b;. At 95 % confidence, a fixed effect is deemed significant (i.e., the region level effect is different than
0) if the corresponding p-value is less than 0.05, while a random effect is deemed significant (i.e., the census-tract level heterogeneity
is large) if the 95 % confidence interval of the standard deviation does not encompass 0.

On the basis of the fixed-effects structure of the models following insights are gained. In region 1, percentage of persons in group
quarters (EP_GROUPQ), per capita number of hospital beds (PctBeds), percentage of persons who speak English less than well (EP_LI-
MENG), air pollution level (AirPollution) and multi-unit housing (EP_MUNIT), were predictive of increased Covid-19 daily case rates.
A percentage increase in persons in group quarters (EP_GROUPQ) was associated with a 3.9 % increase in daily case rates
(e = 1.039, p= <0.0001), a unit decrease in per capita number of hospital beds (PctBeds) is associated with a 1/0.7427 = 1.35-fold
increase in daily case rates (¢/ = 0.7427, p= <0.0001) and a percentage increase in multi-unit housing (EP_MUNIT) is associated
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Fig. 6. Census-tract level daily infection count data and predictions for region 5. The time period covers from 7/22/2020 to 10/17/2020. Vertical line shows the land-
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with a 1.42 % increase in daily case rates (¢/ = 1.0142, p = 0.005). The negative relationship between percentage of persons who
speak English less well (EP_LIMENG) and the daily case counts and the negative relationship between AirPollution and the daily case
counts were counter-intuitive. The counter-intuitive negative coefficient of a variable may be due to a common confounder that was
not included in the model but has an unknown effect on both the variable and the infection counts. Confounding variables commonly
arise in non-causal statistical models, like the ones we employ here, and their coefficients do not necessarily imply causal relationship
([561, pp. 77). For example, a third confounder that is jointly causing EP_LIMENG to be lower and the infection counts to be higher in
these rural communities may result in such negative coefficients. In region 5, percentage of population with a disability (EP_DISABL),
percentage of persons in group quarters (EP_GROUPQ), percentage of persons in multi-unit housing (EP_MUNIT), and percentage of
persons who speak English less than well (EP_LIMENG) were predictive of increased Covid-19 daily case rates. A percentage increase
in population with a disability (EP_DISABL) was associated with a 4.91 % increase in daily case rates (¢/ = 1.0491, p = 0.005), a
percentage increase in persons in group quarters (EP_GROUPQ) was associated with a 3.34 % increase in daily case rates
(e = 1.0334, p < 0.0001), and a percentage increase in multi-unit housing (EP_MUNIT) was associated with a 1.79 % increase in
daily rates (¢/ = 1.0179, p = 0.001). Similar to region 1, the negative relationship between percentage of persons who speak English
less well (EP_LIMENG) and the daily case counts is counter intuitive: a percentage increase in persons who speak English less well was
associated with a 12 % decrease in daily case rates (¢/ = 0.8800, p = 0.017). However, EP_LIMENG also appears significant as a ran-
dom effect and this association is better described by local spatial variations between census tracts as modeled by the random-effect
structure of the model.,
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Table 3
Mixed-effects model for region 1.

Fixed Effects

Variable p t-value e p-value
Intercept 24.210 4.337 3.25E10 0
Linear trend, t; 0.0092 33.836 1.0092 0
Quadratic trend, t; —0.0002 -69.127 0.9997 0
Quadratic spline, Q (1;) = (1; ,()i 0.0002 26.830 1.0002 0
EP_GROUPQ 0.0383 6.861 1.0390 0
PctBeds —-0.2970 —4.386 0.7427 0
EP_LIMENG —-0.0977 -1.950 0.9068 0.051
EP_MUNIT 0.0141 2.767 1.0142 0.005
AirPollution —2.8220 —5.182 0.0594 0
Random Effects
Variable Std. Dev. 95 % LCB 95 % UCB
Intercept 1.1351 1.023 1.284
EP_GROUPQ 0.0380 0.024 0.055
Linear trend, t; 0.0095 0.008 0.010
Linear spline, L(tij) = (ti]-—lc)Jr 0.0140 0.012 0.015
Residual 0.0982 0.097 0.099

Table 4

Mixed-effects model for region 5.

Fixed Effects

Variable B t-value e p-value
Intercept -5.906 —16.988 0.0027 0
Linear trend, t 0.0092 33.858 1.0093 0
Quadratic trend, t,.zl. —0.0002 —69.169 0.9997 0
Quadratic spline, 0 (1;) = (1; - K)i 0.0002 26.827 1.0002 0
EP_DISABL 0.0479 2.794 1.0491 0.005
EP_MUNIT 0.0177 3.147 1.0179 0.001
EP_GROUPQ 0.0329 5.59 1.0334 0
EP_LIMENG -0.1277 -1.928 0.8800 0.017
Random Effects

Variable Std. Dev. 95 % LCB 95 % UCB

Intercept 1.2894 1.0552 1.519

EP_LIMENG 0.2630 0.0785 0.5087

EP_GROUPQ 0.0284 0.0183 0.0529

Linear trend, t; 0.0096 0.0087 0.0107

Linear spline, L(ty) = (t;—x) 1 0.0140 0.0127 0.0156

Residual 0.0981 0.0970 0.9900

On the basis of the random-effects structures given in Tables 3 and 4 and it can be observed that the spatial variation of the rela-
tionship between the Covid-19 daily case rates and EP_GROUPQ (for region 1) and the relationship between the daily case rates and
EP_LIMENG and EP_GROUPQ (for region 5) are very heterogeneous. For example, in region 5, the large heterogeneity measured by
the standard deviation 0.263 of the effect of EP_LIMENG helps explain the counter-intuitive result of this coefficient in the fixed-effect
structure. It implies that the fixed effect (found as e/ = 0.8800 or a 12 % decrease in the daily case rates), has a tract-to-tract varia-
tion represented by the 95 % confidence interval of ef*2¢ = ¢-0.1277%2(0.263) = (0.52,1.48). Therefore, depending on the census tract
the effect of speaking English less well on the daily Covid-19 case rates after the hurricane landfall varies between a decrease by 48 %
and an increase by 48 %. This result demonstrates a unique benefit of the mixed-effects models with spatially varying coefficients in
quantifying large spatial variations of the effects of such demographic variables.

In addition, the large and positive random slope of the linear spline L(t;) (in both regions 1 and 5) tells us that the of daily case rate
accelerations after the hurricane is highly heterogeneous for both regions. The mixed-effects model provides an estimated slope for
every census tract for each random effect. The larger values of the random slope of L(t;) indicate the census-tracts with large increases
in the acceleration of Covid-19 case rates after the hurricane landfall. The larger (positive) values of the random slope of the covariate
EP_GROUPQ for region 1 and, the covariates EP_LIMENG and EP_GROUPQ for region 5, indicate the census-tracts with large increases
in the Covid-19 case rates due to a percentage increase in the respective covariate. The joint effect of the pandemic and the hurricane,
therefore, can be assessed by considering these two random coefficients simultaneously: the census tracts with the large (positive)
random slope of L(t;) and the large (positive) slope of the covariate can be identified as the highly vulnerable areas because these ar-
eas experience the large increases in the case rates after the hurricane and have the strongest associations with the covariate.
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The spatially varying coefficients of mixed-effects models can be visualized to aid further interpretation. For the model fitted for
region 1 (Table 3), Fig. 7a shows a bivariate choropleth map of the census tracts colored according to both the random slope of the lin-
ear spline L(t;) (labelled “trendSally”) and the random slope of EP_GROUPQ. Similarly, for the model fitted for region 5 (Table 4), Fig.
8a shows bivariate choropleth map of region 5 according to the random slope of the spline basis and the random slope of EP_LIMENG
(The tracts shaded white represent tracts with missing population data and are excluded from the analysis). The bivariate map for
EP_GROUPQ for region 5 is omitted here to save space. Each bivariate map is constructed by dividing the joint distribution of the cor-
responding pair of slopes into 9 bins based on the 33-rd and the 66-th percentiles of each slope and classifying them into Low,
Medium, and High categories. To isolate the impact of the hurricane landfall, Fig. 7b shows the census tracts of region 1 colored only
according to the variable EP._GROUPQ and the centroids of census tracts for which both random slopes are in the High category from
Fig. 7a. Similarly, Fig. 8b shows the census tracts of region 5 colored only according to the variable EP_LIMENG and the centroids of
census tracts for which both slopes are in the High category from Fig. 8b. In these figures (Fig. 7b and 8b), the vulnerability of the cen-
sus tracts shown with darker colors and the centroid markers are driven by both the social factors and the hurricane landfall. By con-
trast, the vulnerability in the tracts that are darker but do not have their centroid indicated are driven only by social factors. This
shows the unique insights that can be gained by joint modeling of pandemic and hurricane effects using a mixed-effects model and the
use of bivariate maps such as those in Fig. 7a and 8a are crucial in identifying the needs of populations during hurricane-pandemics.
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Fig. 7. (a) Bivariate map of region 1 census tracts colored according to the random slope of the linear spline (measuring acceleration/deceleration in Covid-19 case
rates following hurricane Sally) and the random slope of EP_GROUP (measuring the effect of this factor on increased Covid-19 case rates) (b) Census tracts of region 1
colored according to the EP_GROUP variable and the centroids of the census tracts in the High-Medium and Medium-High categories of the bivariate map shown with
markers.
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Fig. 8. (a) Bivariate map of region 5 census tracts colored according to the random slope of the linear spline (measuring acceleration/deceleration in Covid-19 case
rates following hurricane Sally) and the random slope of EP_LIMENG (measuring the effect of this factor on increased Covid-19 case rates) (b) Census tracts of region 5
colored according to the EP_LIMENG variable and the centroids of the census tracts in the High-High category of the bivariate map shown with blue markers. (For in-
terpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

A remark on the choice of multiple models for regions: For this same data set, a single mixed-effects model for the entire state
could be estimated. However, in addition to the obvious computational benefits, analyzing the data for regions separately, as we
did in this paper, has the added benefit of identifying patterns that are unique to the regions and allowing the regional emergency
management officials and governments to take response and preparedness actions for allocating resources more effectively. It must
be remembered, depending on the goals of the analysis, a multi-regional/multi-level approach may present limitations in ade-
quately capturing the common characteristics or shared patterns across the entire study area. If the goal is to better understand
the local patterns, then a multi-regional model is preferable over a single-region model. However, if the goal is to understand
global patterns, then the latter approach is preferable. In our multiple region approach, Region 1 has EP_GROUPQ as the dominant
factor impacting spatial heterogeneity, while Region 5 has EP_LIMENG as the dominant factor, a conclusion that may not be
reached with a single model. In addition, the time trends of infection counts from different regions were distinct depending on the
proximity to the hurricane landfall, as the AICs of our models of the regions have shown. Similar conclusions can be reached with
a single model with random coefficients for the entire state. However, this would require an additional analysis step, such as a
spatial partitioning and grouping of the tract-level model coefficients (e.g., Ref. [57]), to understand the patterns of variations of
these coefficients under different regions.

6. Discussion: practical considerations and limitations

The proposed multi-level modeling of the compound impacts of geophysical disasters co-occurring with pandemics has practical
implications for emergency management and public health policy for coordinating resource allocation efforts between state, region,
and community (i.e., census tract) levels as shown in Fig. 2. By implementing the approach, the longitudinal infection data from more
than 4000 census tracts of the state of Florida can be analyzed in a unified framework to efficiently to extract patterns and hetero-
geneities of vulnerability unique to the local communities.

By enabling practitioners to analyze the temporal disease spread dynamics and quantifying the significance of the spatial differ-
ences of the adaptive capacities of the communities, the method provides critical insights. For example, in the case study, the percent-
age of persons in group quarters (EP_GROUPQ), a random-effect, shown a significant variation depending on the location within the
region with respect to increased infection rates, while fixed-effects, such as the effect of hospital beds, was constant throughout the re-
gion. To improve resiliency against compound hazards, the fixed effects can guide region-wide resource allocations, while the random
effects provide guidance on how allocate resources at the community level.
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Here, regions that are comprised of multiple contiguous counties, can be considered as emergency management districts. The
grouping of counties to regions was needed to ensure the computational tractability of the linear mixed effects model by maintaining
a reasonable number of parameters to be estimated from a large spatial data set and the entire state. While in practice, the emergency
management plans are coordinated between county and state levels, to illustrate the application of the approach for the entire state,
the hierarchical structure of state—region—census tract of Fig. 2 was adopted in this study. Returning to the policy front, the method-
ology is general, however, and it can be conducted for county level planning by following a region—county—census tract hierarchy.
Although the outcomes should be treated with caution, since the selected levels may impact the results due to the possible spatial rela-
tions within the levels, this type of approach can help develop and implement more efficient and integrated pre- and post-disaster
plans if incorporation between state and local agencies can be successfully achieved. Policymakers, thus, should focus on integrating
these plans with considering disparities at multiple levels (i.e., county-level vs. region-level).

7. Conclusions

The paper presented a new approach to systematically study the effects of compound hazards and distinct patterns of infectious
disease spread during hurricanes. By contrast to existing methods, the methodology provides unique contributions in modeling the
(dynamic) associations between infection case rates and social factors that vary over time and also quantifying how these associations
vary geographically between communities. An application with data from the first wave of the Covid-19 pandemic during a concur-
rent hurricane in northwest Florida is considered for illustration. It has been shown that the spatial heterogeneity assessed by the pro-
posed modeling method would provide crucial information to local health officials and emergency managers to help them allocate re-
sources and plan for community-level impacts of concurrently occurring hurricane pandemics.

The proposed approach can be extended to other locations in the U.S.; however, the efficiency of the model at a particular location
for a given hurricane-pandemic situation can be qualitatively impacted by several critical factors needed to be studied in detail, in-
cluding economic conditions, cultural traditions, local and political constraints, and spatial characteristics.

The multilevel models built for the regions of Florida helped highlight factors associated with increased Covid-19 infections both
at the region level (fixed-effects) and those associated with increased heterogeneity in their association with increased infections at
the census tract-level (random effects). The regression-spline based mixed-effects model identified one region near the hurricane
landfall location, and another somewhat remote region, to have significantly increased Covid-19 case counts after the hurricane.
Given the high uncertainty in the hurricane track forecast (Fig. 1) the increased case counts implied by the model for the remote re-
gion may be due to the evacuations of the communities between this region and the other regions or may be due to other reasons. As
future work, GPS or cell-phone human movement data, if available, can be incorporated into the mixed-effects model to uncover the
causes of the high infection counts in such regions using human mobility network approaches [58,59]. As another future work, a mul-
tivariate clustering of geographically distributed random effects coefficients, similar to Ref. [57], can be undertaken for the regional-
ization of similarly vulnerable areas for effective resource allocation purposes.
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