10P Publishing

Classical and Quantum Gravity

Class. Quantum Grav. 40 (2023) 215015 (22pp) https://doi.org/10.1088/1361-6382/acfcfe

Tidally-induced nonlinear resonances in

EMRIs

with an analogue model

David Bronicki'*©, Alejandro Cardenas-Avendano”>*
and Leo C Stein'

! Department of Physics and Astronomy, The University of Mississippi, University,
MS 38677, United States of America

2 Programa de Matematica, Fundacién Universitaria Konrad Lorenz, 110231
Bogota, Colombia

3 Illinois Center for Advanced Studies of the Universe, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, United States of America

4 Department of Physics, Princeton University, Princeton, NJ 08544, United States
of America

E-mail: dbronick @go.olemiss.edu

Received 10 March 2023; revised 24 July 2023

Accepted for publication 25 September 2023 @
Published 10 October 2023

CrossMark
Abstract

One of the important targets for the future space-based gravitational wave
observatory Laser Interferometer Space Antenna is extreme mass ratio inspir-
als (EMRIs), where long and accurate waveform modeling is necessary for
detection and characterization. Modeling EMRI dynamics requires account-
ing for effects such as the ones induced by an external tidal field, which can
break integrability at resonances and cause significant dephasing. In this paper,
we use a Newtonian analogue of a Kerr black hole to study the effect of an
external tidal field on the dynamics and the gravitational waveform. We have
developed a numerical framework that takes advantage of the integrability of
the background system to evolve it with a symplectic splitting integrator, and
compute approximate gravitational waveforms to estimate the timescale over
which the perturbation affects the dynamics. Comparing this timescale with
the characteristic time under radiation reaction at resonance, we introduce a
tool for quantifying the regime in which tidal effects might be included when
modeling EMRI gravitational waves. As an application of this framework, we
perform a detailed analysis of the dynamics at one resonance to show how dif-
ferent entry points into the resonance in phase-space can produce substantially
different dynamics, and how one can estimate bounds for the parameter space
where tidal effects may become dominant. Such bounds will scale as ¢ 2 Cq,
where ¢ measures the strength of the external tidal field, ¢ is the mass ratio,
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and C is a number which depends on the resonance and the shape of the tide.
We demonstrate how to estimate C using our framework for the 2:3 radial to
polar frequency resonance in our model system. This framework can serve as
a proxy for proper modeling of the tidal perturbation in the fully relativistic
case.

Keywords: black holes, EMRIs, LISA, resonances, tidal perturbation,
integrability

(Some figures may appear in colour only in the online journal)
1. Introduction

Future space-based detectors, such as the Laser Interferometer Space Antenna (LISA) [1],
will allow studies of the gravitational waves (GWs) emitted when a small compact object, with
mass m, falls into a supermassive one, with mass M, in an extreme mass-ratio inspiral (EMRIs),
i.e. satisfying ¢ = m/M < 1. EMRIs emit GWs in wavelengths inaccessible to ground-based
detectors, such as the LIGO/Virgo/KAGRA detectors. They are expected to happen rarely in
any one galaxy, but nevertheless thought to occur within the lifetime (~4 years) of the LISA
mission [2, 3].

Generic EMRI orbits, which to zeroth order are bound Kerr geodesics, can be highly eccent-
ric and inclined, and therefore the emitted GWs are expected to encode a rich phenomeno-
logy [4]. Geodesic motion in Kerr is integrable [5], so a bound Kerr orbit lies on a phase-space
torus characterized by three frequencies: one each associated with the radial, polar, and axial
motion [6, 7]. This torus is ergodically filled for most trajectories, but not for the resonant
ones, i.e. when two frequencies form a co-prime low-integer ratio.

When a system is Liouville integrable [8], i.e. there are the same number of degrees of
freedom as independent Poisson-commuting integrals of motion (such as geodesics in Kerr),
the dynamics around resonances does not show a distinctive character. However, in the pres-
ence of a generic perturbation, there can be qualitative changes to phase space. From the
Kolmogorov—Arnold—Moser (KAM) theorem [9], for sufficiently small perturbations, almost
all non-resonant tori are deformed but continue to foliate phase space. Meanwhile, close to
resonant tori, we expect nonlinear resonances and chaos to develop.

Beyond the test-particle approximation, the dynamics deviate from geodesic motion due to
a force arising from the gravitational field generated by the small particle. That perturbation is
known as the particle’s self-force [10, 11] and generates dissipative (e.g. the radiation-reaction
force) and conservative effects (e.g. the advance of the pericenter angle in each orbit).

The formative work on EMRIs was performed under the so-called ‘adiabatic’ approxima-
tion [12], which only captures the long timescale behavior [13], in which radiation reaction
effects are torus-averaged to compute the inspiral. The modern approach is to instead use the
more general method of near-identity transformations [14], which is able to also capture the
oscillatory short-timescale dynamics. These methods may fail near resonances [15], where
a new timescale is introduced, and a more general method of multiple timescales must be
employed [16]. Near resonances, the effects of perturbations are boosted (relative to their non-
resonant size) by an amount inversely proportional to the square root of the mass ratio, and
cause the system to evolve more rapidly, or ‘jump,” from one adiabatic orbit to another [15,
17]. While this effect is well explored [15, 18] in current models [14, 16], radiation reaction
is not the only potential source of perturbation.
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A ‘jump’ can also arise from the conservative sector of the dynamics [19-22], at the level
of the geodesic of a non-integrable system. Within the adiabatic approximation, prolonged
resonances have been shown to appear [19, 22], that are expected to translate to ‘glitches’ in
the GW frequency [22].

Resonant effects can also be induced by the tidal field of nearby stars or stellar-mass black
holes, a dark matter distribution, or the rest of the galactic potential [23, 24]. These tidal res-
onances will cause a secular shift to the orbital angular momentum, that, if properly modeled,
would provide information about the distribution of mass near a galactic-center black hole [24].
Due to the intrinsic complexity and sources of resonant effects, a generic description is still
lacking, and assessing the importance of resonant effects on future gravitational detections
with LISA has proven difficult [25, 26].

In this work, we carry out an analysis that highlights important features of the resonant
phenomena that should be taken into account when modeling EMRIs. To this end, we study
a Newtonian Kerr ‘analogue’ [27-29] and add a tidal perturbation. The analogue system is
Euler’s 18th century problem of two fixed gravitating centers [27], which is the unique sta-
tionary and axisymmetric Newtonian potential that shares several key properties of the Kerr
metric [28]. In particular, it is integrable, bound orbits are characterized by three fundamental
frequencies, and has the same recurrence relation for the mass multipole moments [28, 29].

This analogue is a compromise between a system complex enough to exhibit resonant
effects, and still simple enough to be tractable. First we numerically evolve the trajectories of
the perturbed system and compute approximate gravitational waveforms. Then we perform an
analysis of dephasing times, and estimate a region of parameter space for which the character-
istic timescale of the tidal perturbation at resonance is shorter than the characteristic timescale
of radiation reaction at resonance. That is, we estimate a range of parameter space where tidal
perturbations will need to be further considered in waveform modeling. Similar to findings
in previous work [15, 19], we also found that the different entry points into the resonance in
phase space can produce substantially different dynamics.

The remainder of this paper shows the details of the calculations that led to the above con-
clusions. In section 2 we give an overview of the Newtonian analogue, and in section 3 we
present how it is tidally perturbed. Our numerical scheme is presented in section 4. We char-
acterize the resonant dynamics in section 5, before studying the approximate GWs in section 6.
Finally in section 7 we present our conclusions and perspectives. Throughout the paper we use
geometric units in which Gy = ¢ = 1, and set M = 1 for all our numerical implementations.

2. A Newtonian analogue to the Kerr spacetime

The system we study in this work is a particle moving in the oblate version of Euler’s potential
of two fixed centers [27]. In this section, we give a brief summary of the system and only the
equations directly required for our purposes. For a more complete description of the system,
see [27-29].

The gravitational potential is generated by two fixed point particles with some separation
2a. To make the system analogous to the Kerr spacetime, the masses of both particles are set
to M/2 (making the potential parity symmetric) and an oblate characteristic is enforced by
setting the separation to an imaginary value 2ia [27, 30]. Upon making the further choice of
aligning the separation with the z axis, the potential can be expressed as

M i
V__RZﬁ Kr—a, W
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where R = \/ (r? — a?)? +4a*z% = r,rp, and r, and r,, are the distances from each fixed mass.

In the analogy to the Kerr spacetime, M and a are analogous to the mass and spin of the black
hole, respectively, and also fully describe the solution. The analogue is endowed with a third
independent commuting constant of motion, and thus, it is completely integrable [27], as is
the Kerr spacetime. Furthermore, the analogue has a multipolar expansion that follows exactly
the same relation as the mass multipole moments of the Kerr solution [27-29]. A detailed list
and analysis of the qualitative and quantitative similarities between the two problems can be
found in [29].

The motion can be separated in oblate spheroidal coordinates with

radial-like coordinate: r=a¢ € [0,00)
polar-like coordinate: cosf=ne[-1,1]
azimuthal coordinate: ¢ €[0,2m) 2)

related to cylindrical coordinates by

p=aTFEVI=T

z=a&n. 3

Since we are considering motion to be that of a test mass, we work with quantities per unit
test mass, i.e. p = P/m and H = E/m, where P and E are the standard momenta and energy.
In particular, the momenta relate to the above coordinates by

pe = d e+ ;
3 1+€2 ’

2 2
2 5+77).
Pnp=a 7,
! (1—772

po=a (1+&) (1-1%) o, 4)

and the Hamiltonian is

PR +E pr -t P 1 M¢

Swerp Wt wirei-p a@rp O

As two coordinates do not appear in the Hamiltonian, we have two immediate conserved quant-
ities: from the time symmetry we have H = const., and from the axial symmetry we have
£ := py = const. The Hamilton—Jacobi theory can be implemented to further separate the sys-
tem and obtain the third and final independent conserved quantity:

EZ
14 &2
[2
1—n

B=-2aH(1+&)+p: (1+&) - —2aM¢

=-2H(1—n") —p; (1-7%) — . (6)
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Following this separation, new expressions for the momenta arise:

. 2a°H (1+ &) + 15 +2aME+ B

L JpHpe),

T 1re

and

2
Pn = i\/_zaZH(l — 772) _ lfnz -5

+1
21_7172\/1’77(1'1,57@77), @)

where P¢ and P,, are fourth order polynomials in £ and 7, respectively.

In studying the motion of particles in bound orbits, the previous two equations become quite
important. By requiring the arguments of the radicals to be positive (so as to have real-valued
momenta), we see that the motion in £ and 7 becomes constrained to be between the roots
of P¢ and P, respectively. To sit above the separatrix (analogous to requiring we not sit in a
plunging orbit), we assign £ = ry/a and & = r,/a to be the largest and second largest roots
of P¢. The other two roots may be real or complex. For motion along the polar coordinate, we
define 7max to be the smallest positive root of P;,. Py, is a biquadratic, SO —7max is also a zero
and is the lower turning point. The other roots of P,, are also symmetric to one another and must
both be real. The set of turning points (r1,72,7max) constitute an alternative set of constants
of motion. To relate these constants to more traditional Keplerian style orbital constants, we
define eccentricity e, semilatus rectum p, and inclination / such that

p _ b
) = )
1—e 1+e

ry =

sin/ = TImax - (8)

As in the Kerr solution, the radial and polar coordinates are not periodic functions of the
proper time [6]. However, when expressed in Mino time [31], the equations of motion sep-
arate further and periodicity becomes manifest. Following this insight, as found in [29], the
equations of motion become

dé_ %_ 1 _ 1
o~ EVPe©) d)\_g[lnz 1+§2]

dn dr
o = EVPa ) o=@ E ). ©)

The last equation here is the defining relation of Mino-like time, \.

We note that the fundamental frequencies of the system can be found analytically. By
considering the equations of motion directly, these fundamental frequencies are derived in
appendix E of [29]. We will make use of these frequencies in section 6.

3. Tidal perturbation

We now consider the effect of an additional gravitating body or a congregate gravitational
potential. This perturbing potential can for example arise from a nearby supermassive black

5
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hole, a star orbiting the primary outside the orbit of the secondary, or an overall galactic poten-
tial due to nearby stars and dark matter. In general relativity, the local effects of gravity—such
as an external tidal field—can be modeled by using Riemann normal coordinates [32]; the
dominant effect is captured by the electric part of the Riemann tensor,

Ej; = Roioj (10)

where R,,, . is the Riemann curvature tensor. Meanwhile in Newtonian gravity, we may Taylor
expand an external gravitational potential about the origin as

. 1 .
Vem:V0+\/jxf+§1/jkxka+0(x3). (11)

The first term is a constant and is removed by redefining zero energy. The second, linear, term
results in a constant force on both the central body and the test particle equally, and can be
removed by choosing a freely falling frame for the binary. This leaves, to lowest order,

1 oo
Vex[ = E‘/ij.xl xX. (12)

Although V;; may in general depend on time, we will consider no time dependence for
simplicity.

Note that in our units, H = E/m (and by extension V and V) is dimensionless. Since x;
has dimensions of mass, Vj; = 0;0;Vex has units of 1 /M2. We will define € and Aj; such that
Vij = €A / M?, where M is the mass of the central body, A;; is dimensionless and order unity,
and we capture the smallness of the external tidal field by € < 1. Equation (12) now becomes

1 X ¥
Vext = §€AUMM .
If the tidal force is due to a gravitating body of mass M, at a distance d from the center of the
system, then

13)

MM,

g~ (14)

As an illustrative case, consider the environment in the center of our own galaxy, where we
have a BH with mass M = Mggax ~ 4 X 10°M,,, expected to be surrounded by a population of
stellar-mass black holes M, ~ 40M, with a mean distance of d ~ 7.5 x 10! meters [33]. With
these values, the tidal strength is € ~ 5 x 1072, We can also consider a system in which the
primary is a supermassive black hole with M = 10° M, and is perturbed by another super-
massive black hole, with M, = 10° M. By considering the perturber to be near by with
d ~ 4 x 10" meters, e.g. during the late stages of the merger of galaxies, we find a stronger
perturbation amplitude of € ~ 5 x 1075,

As the detection rates and specifics of these different types of systems are subject to several
uncertainties [1, 3, 23], for our analysis we consider cases with perturbation amplitudes in the
range € € [10_97 10_5]. Furthermore, to reduce the parameters modeled, we make the arbitrary,
symmetry-breaking choice of

1.2 1.3 12
A= (13 13 12 ]. (15)
1.2 1.2 =25

Our results are independent of the choice of these numbers, provided that the constraints of
symmetric and trace free are satisfied, these number are of order unity, and that there is no
accidental symmetry (such as axial symmetry).

6
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4. System integration algorithm

Due to its desirable properties for long-duration integration, we implement a symplectic split-
ting integrator [34] to evolve the system. As such, we split the Hamiltonian into

H:H0+Vexta (16)

where Hy was discussed in section 2 and V. was discussed in section 3. For a generic sym-
plectic splitting method [34], the system state (x, p) is evolved under H by the scheme

exp (AtDy) (x,p) = exp (a1 AtDy,, ) exp (b1 AtDy,) - - -exp (ayAtDy,,)

x exp (byAtDy,) (x,p) + error, (17)
where the infinitesimal time evolution operator is defined by a Poisson bracket
Dy (A) ={A,H}, (18)

for a generic function A : M — R, where M is the phase space manifold. We require the coef-
ficients to be constrained by

Za,- :Zb,- =1, (19)

so that over one step the system is evolved a total of Az through both Hy and V. As with all
numerical techniques, the order of accuracy depends on the number of stages (N) used and the
coefficients (a; and b;). Explicit systems of equations can be constructed from equation (17) by
either Taylor expansion of the exponentials or application of the Baker—Campbell-Hausdorff
formula. We set N =2 and placed error constraints (discussed shortly) to arrive at

a;=1/4 by =2/3
ay =3/4 by=1/3. (20)

This choice produces an algorithm accurate to third order in time step and to first order in
perturbation magnitude. That is, our single-time step (local) error terms are all of the form

error = O (' A¥) | 1)

where either i > 2 or j > 4. Despite the relatively low order, we found A = 0.3 to retain suf-
ficient long-term characteristics for this analysis, as is expected for symplectic algorithms in
general.

Equation (17) assumes exact or near exact methods exists to integrate each subsystem H
and V. While Hy can in principle be expressed analytically by relating the coordinates at
time ¢ to those at time 7+ b; Ar with elliptic integrals, it is far simpler to numerically evolve
the separated system in adapted coordinates. The precise numerical integrating method used to
evolve each subsystem is not important; we chose to use the RK45 method of the solve_ivp
routine provided by scipy [35].

This choice comes with a caveat, however. Since we intend to integrate through many orbits,
the system will pass through many turning points. At each turning point, for instance at &;, the
relevant equation of motion is locally

¢
oo
The issue here is twofold. First, the sign is ambiguous, and so care would have to be taken to
keep track of which direction we travel and when this direction switches. Secondly, since the

FAVE - & (22)

7
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square root function has unbounded derivative, this system violates the Lipschitz condition for
existence and uniqueness [36]. We therefore implement new phase angle coordinates v and
to replace £ (or r) and 7, defined by

p

L =r= 1+ecost)’

and 7 = Mmax COS X- (23)

Unlike £ and 7, ¥ and x are monotonic, removing the sign issue. These definitions also analyt-
ically cancel the roots at the turning points; after a bit of algebra, their time derivatives satisfy
the Lipschitz condition. In particular, the new equations of motion are

d V/—202HE & (€ +bE +c)

ax ¢
% =4/ —2a’H(z4 —1?) (24)
with
gt
= (6 b6+ 42, 25)

2a’H

and z. is the square of the upper root of P,,. Although the integration here is done with respect
to Mino time A, the integration is terminated once time ¢ has advanced by b;Af so as to be
consistent with the requirements of the symplectic integrator.

The integration under V. is far simpler since it is only a function of position and not
momentum. In Cartesian coordinates, we have

¥ = {xi,Vext} =0
pi=1{pi,Vex} = — Vi (26)

So x' does not change, and p; changes linearly with time (a ‘momentum kick’). The new system
state is then realized by re-evaluating the various ‘constants’ of motion. Since this changes the
turning points, the phase angles x and 1) must also be re-evaluated.

Summarizing, our algorithm consists of alternating between evolving under H using a
scipy integrator and evolving under Vi using the analytic ‘momentum kick’ above, with
coordinate changes interleaving the two techniques. A constant time step At is inherent to our
symplectic splitting scheme, while the time steps used internally by the scipy integrator are
free to change. It is only important that the scipy integrator evolves a total of b; At for each
stage and accumulates low global error (we set relative and absolute tolerances of 10713).

5. Dynamics at resonance

In this section, we delve into the dynamics at resonance when under a tidal perturbation. To
this end, we will discuss three core components: Poincaré sections, the KAM theorem, and
resonance angles [9].
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Figure 1. A schematic diagram showing the characteristics of a Poincaré surface of
section for a perturbed system. The inner circles, where the original torus structure is
preserved, are far from resonance, while the outer circles show the breaking of a reson-
ant torus into a nonlinear resonance, forming a ‘chain of islands.” The red cross and blue
flow lines show one (out of four) hyperbolic point and the direction the system evolves
under the Poincaré map near it. The centers of the ‘islands’ are elliptic points. With four
elliptic points and four hyperbolic points, this diagram could correspond to a radial to
polar frequency resonance of 1:4, 3:4, or 5:4, etc.

5.1. Poincaré sections

Let us briefly discuss a useful technique for graphically representing the behavior of the
dynamical system. The graphical representation, known today as a Poincaré surface of sections
or map of first recurrence [37], is obtained by considering the intersections of trajectories shar-
ing the same value of energy with an arbitrary, but fixed, two-dimensional surface in phase
space. Whenever the trajectory pierces the surface, the location in phase space is recorded,
and the pattern generated on the surface constitutes the Poincaré surface of sections. The res-
ulting figure, initially proposed by Poincaré, is extremely useful for systems of two degrees
of freedom, as it is capable of providing a complete two-dimensional graphical representa-
tion of the four dimensional manifold, as sketched in figure 1. We describe its structure in the
following section.

In our case, we choose the equatorial (xy) plane as the surface that any bound orbit with
a non-zero inclination will consistently intersect. With the further constraints of accepting
only ascending trajectories and H = const., we are left with a four dimensional surface in
phase space. Thus, the two dimensional representation originally conceived by Poincaré cannot
accurately capture the behavior of the perturbed system, as it will be a projection. However, as
pointed out in [38] if the fourth dimension is represented by a color variation (see [39—41] for
some examples), all the dimensions can be visualized, to some degree, on a colored 3D plot.
An example of such 4D space of section is shown in figure 2.
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Figure 2. A four-dimensional Poincaré section for a perturbed system with e = 1075,
close to a nonlinear resonance. The colors correspond to the momentum associated with
the coordinate ¢, which, for visualization purposes, has been scaled as pg = 10*(py —
P3"). The (minor) mixing of the colors indicates the presence of weakly chaotic orbits in
the ‘sea’ surrounding the quasiperiodic islands. A single orbit in this sea can pass close
to a hyperbolic fixed point, hence the sea can completely surround the elliptic islands.
The islands and surrounding sea are extremely narrow when projected onto the (r,p;)
plane, but it is apparent that the KAM curve has non-zero width.

On the other hand, if we utilize the (approximate) exact azimuthal symmetry of the (per-
turbed) unperturbed case, we are able to further stipulate ¢ = const. and safely ignore the azi-
muthal coordinate. This reduces our visual representation to a traditional two dimensional
surface, as seen in figure 1 or in the » — p, plane of figure 2.

5.2. KAM theorem

The KAM theorem [42] enters our discussion as it makes statements regarding integrable sys-
tems when perturbed. In particular, under a sufficiently small perturbation, quasi-periodicity
is retained for almost all orbits, resulting in small deformations of the nested torus structure
of integrable Hamiltonian systems. However, the theorem only guarantees this behavior for
‘sufficiently irrational’ ratios of fundamental frequencies. Our interest is exactly at the reson-
ant tori, with small-integer ratios of frequencies. We find, as is generally the case, that when
sufficiently close to a resonance, the torus structure breaks completely. This break of structure
constitutes a topological change, and can lead to both nonlinear resonances and chaos [42].

A cartoon of the structure of nonlinear resonances on a Poincaré section is shown in figure 1.
The inner sections of the figure are far from resonance and so the nested torus structure is
retained. A resonant torus of the unperturbed system has developed into a chain of ‘islands’ of a
single nonlinear resonance. Each island surrounds an elliptic fixed point, and they are separated
by an equal number of hyperbolic fixed points (red crosses). In the nomenclature of [18], if an
EMRI crossed such a nonlinear resonance, it would be called a ‘sustained’ resonance, since
two or more fundamental frequencies have an approximately constant ratio throughout the
entire island.
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The dynamics within the elliptic islands can be intuitively understood by drawing an ana-
logy with a nonlinear pendulum (the pendulum analogy can be made even more precise in cer-
tain Solar System dynamics systems [43]). The pendulum’s degree of freedom is analogous to
the slow oscillation of a Lissajous figure of the nonlinearly resonant trajectory. Approaching
the elliptic fixed point, the amplitude of the oscillation decreases. The edge of the island is ana-
logous to the separatrix of the pendulum’s motion—outside the island is the region where the
pendulum rotates rather than oscillates. The analogy is strengthened in that the period of oscil-
lation becomes amplitude-independent (like a simple harmonic oscillator) when approaching
the elliptic fixed point, while the period diverges when approaching the separatrix.

The loss (or non-existence) of a constant of motion can result in trajectories which pro-
ject down to areas in the r — p, plane (see e.g. figure 2), despite being confined to a three-torus
within the six-dimensional phase space. This makes it difficult to distinguish whether or not the
torus structure has actually broken [41]. A full four-dimensional Poincaré section would distin-
guish the two scenarios; therefore we use a three-dimensional projection with color encoding
the fourth dimension [38]. The mixing of colors or the appearance of irregular behavior on the
three-dimensional projection signals the breaking of a KAM torus. Thus, when studying the
perturbed system, we first use the 3D colored projection to check that the trajectory belongs to
a broken torus structure. This method lets us assess the 4D smoothness of geometrical struc-
tures that appear in the 3D projections, and thus find points near non-linear resonances. Then
we return to the 2D projection, as if we only had two degrees of freedom, to study the dynamics
more easily.

5.3. Resonance angles

When considering (orbital) dynamics at resonance, one finds by definition that two of the
system’s phase angles evolve together with a specific rational ratio remaining approximately
constant. As a result, one may define a ‘resonance angle’ to be the difference of these phase
angles with integer coefficients [43—45]. We will focus on a system with a 2 : 3 polar to radial
frequency resonance, that is,

¥ & 3wot + g radial phase angle
X =~ 2wot + Xo polar phase angle
W := 3y — 29 =~ constant resonance angle, 27

where 1 and x were defined in equation (23). When a perturbation is applied, however, the
phase angles will no longer evolve in such a simple fashion (it will now depend on a multi-
periodic function), and so non-trivial dynamical information can be garnered from the reson-
ance angle. In figure 3, we show how the resonance angle evolves near resonance for various
amplitudes of perturbation. We can see a qualitative difference between trajectories inside the
elliptic region to those outside. As expected from the pendulum model, we observe oscillating
behavior only inside.

To better explore the dynamics inside and outside of the elliptic region, we further specialize
to a perturbation amplitude of ¢ = 10~7-3 and perform a sweep of trajectories with initial condi-
tions in each category. A few samples of these sweeps are shown in figure 4. From these plots,
we see that near the center of the elliptic region, trajectories become near perfect sinusoids,
where the period is approximately amplitude-independent (the behavior of a simple harmonic
oscillator). Far from the center, near the separatrix of the region, the orbits remain oscillatory,
but with arbitrarily long periods (the behavior of a pendulum near its separatrix). Outside the

1
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Figure 3. Dynamics of the resonance angle ¥ inside the elliptic region and outside.
Various levels of perturbation are shown for each plot. Inside the islands (upper panel)
shows oscillatory motion, while the exterior (lower panel) shows rotating behavior,
where ¥ grows without bound. We also note a shorter period of oscillation and faster
rotation for larger perturbation amplitudes.

region, we see the resonance angle ‘rotate,” W monotonically decreasing or increasing with
time, depending on what side of the hyperbolic point they sit.

6. Approximate gravitational waveforms

Equipped with an understanding of the dynamics at resonance for this system, we now turn
to analyze the implications for detectability and modeling. For this purpose and neglecting
GW dissipation, we construct kludge waveforms [46, 47] for the perturbed system and for the
unperturbed system. We then consider the match between these to find whether or not it is
necessary to model external tidal perturbations.

With our goals set in mind, several details must be handled. First, we must obtain the kludge
waveforms from the phase space information we have. Second, we must find a consistent way
to find pairs of systems, one perturbed and the other unperturbed, which can be identified
together and compared via waveform match calculations. And finally, we must choose a figure
of merit for estimating whether or not tidal perturbations dominate the dynamics and to what
degree.

6.1. Construction of kludge waveforms

We compute approximate gravitational waveforms closely following the procedure described
in [46—48]. In this approach, the motion around the central black hole is interpreted as motion
in flat spacetime, and gravitational waves are emitted as if in flat spacetime via a multipole
decomposition [49].

These approximate waveforms, also known as ‘numerical kludges,” are defined as h = hy —
ihy, where the two waveform polarizations (‘plus’ and ‘cross’) are obtained from hy =

€’ hi" /2. To lowest order, the metric perturbation in transverse-traceless gauge is
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Figure 4. Top: behaviour of the resonance angle inside the elliptic region. Each curve
shows different values for Aty =) — 1)y, where 1; is the initial radial phase angle
and )y is the radial phase angle of the hyperbolic fixed point. The blue dotted line is
nearest to the elliptic fixed point while the green solid line is nearest to the separat-
rix and hyperbolic fixed point. Bottom: behaviour of the resonance angle outside the
elliptic region. Each curve shows different values for Ar, = r; — ro, where r; is the ini-
tial radial coordinate and ry is the radial coordinate of the hyperbolic fixed point. The
orange dashed line is nearest to the separatrix and the hyperbolic fixed point.
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In these expressions, STF denotes the symmetric-tracefree projection operator, TT is the
transverse-traceless projection operator, R the flat-space distance from the source to the
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observer, and x; (¢) is the set of Cartesian components of the spatial trajectory of the small
compact object. Under this approach, a trajectory is interpreted as if in flat space.

Since we work in a Newtonian analogue to Kerr spacetime, no reinterpretation is needed
and we may use equation (3) to relate our phase-space variables to Cartesian coordinates.
Furthermore, we can evaluate the velocity, acceleration, and jerk of the particle in Cartesian
coordinates by evaluating v; = {x;,H}, a; = {v;,H}, and j; = {a;,H}.

The polarization tensors e’fh « are built from an orthonormal triad with two components, p
and g, chosen by the observer, and the third, #, in the direction of wave propagation. Explicitly,
these polarization tensors are €;; = p;p; — qi q; and €x;; = 2p(; q ;. We use the most common
triad, given in terms of the observation point’s latitude and azimuth, © and ®, respectively,
[47, 48] given explicitly by

010 1 8}. (30)

{n.p.a} = {(%’R@@’Rsin@aé

We scale the resulting strain by setting R =1 and choose a polar angle of © = /6 and azi-
muthal angle of ® = /4.

Despite the approximations made during the generation of these waveforms, this procedure
reproduces most of the features expected for EMRI sources and, for certain parameters, shows
great agreement with more accurate Teukolsky-based waveforms [47, 50].

6.2. Locating comparable trajectories

In the case of a real detection, a signal is received (/ops) and the best matching modeled signal
is found (Ay04e1)- Since we are not including radiation reaction, the perturbed system serves as
our best proxy for the observed signal, and the unperturbed system serves as our model signal.
In this manner, the two signals only differ by the tidal effect; this is loosely akin to including
full general relativity in the model but neglecting the tidal effect. We therefore first find a set
of initial conditions {)\pert} which are in the non-linear resonance for the perturbed system,
and integrate them with H to obtain a waveform Aq,s. We then seek a set of initial conditions
{)\unpert} for the unperturbed system which, once integrated with H,, produce a waveform
hmodel, Which maximizes the match with Zgps.

To the first task, we use the analytic expressions for fundamental frequencies found in [29]
to find the radial to polar frequency ratio associated with any set of initial conditions. We then
choose a =0.7, p=1.3, e =0.25, require fp : f, = 2 : 3, and then solve numerically for 7y,x ~
0.542. We select this 2 : 3 resonance because it is expected to be the one with the strongest
impact on the inspiral, i.e. producing significant phase shifts [25], it is common in several
EMRI systems [13], and is capable of producing sustained resonances [18].

These initial conditions place the system in resonance and, when perturbed, produces a
non-linear resonance. With phase angles of ¢ =0, ¥ = 7, and x = 0, we find trajectories near
the hyperbolic point. To find the exact location of the hyperbolic point, we produced Poincaré
sections spanning the hyperbolic point, and assessed the necessary initial conditions by eye.
This hyperbolic point is then used as a jumping off point to analyzing trajectories inside the
elliptic region, by adjusting the initial radial phase angle, or outside the elliptic region, by
adjusting the turning point, r;.

Ideally, finding the best matching set of unperturbed initial conditions {)\unpen} would
involve a full parameter search. This is, however, quite computationally expensive, due to
each evaluation requiring a full integration of initial conditions. We therefore use the dynam-
ical quantities of the perturbed system to make this process faster. We obtain the fundamental
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frequencies of the signal by considering the evolved phase coordinates as functions of time,
and taking the slope of a linear fit. Intuitively, this is quite similar to taking

foert final ~ Winita 31)

1 At )

where /" is the ith fundamental frequency and of*" is the ith phase angle. We found this
frequency extraction technique to perform better than a Fourier-based approach (as the one
presented in, for instance, [19]). We then find approximately best-fitting constants of motion
by requiring the fundamental frequencies £, to be the same as /", and, as mentioned in
section 2, we have analytic expressions for the frequencies®. We do not perform any search on
the phase angles (¢, x, %), instead simply using the same initial phase angles.

For any waveform generated from a perturbed system, we can now generate a nearby unper-
turbed waveform. If using an unperturbed system is a good approximation, then the match
between the two waveforms should be quite high (or equivalently the mismatch quite low).
Given two waveforms /; and h,, we use the fitting factor for match [51]:

hi|h
FF (o) e ——hilh2) (32)
(hi|hy) (ha|hz)
where the inner product is defined by
hi () 15 ()
(mhy) = 4R/ ——=—=df, (33)
Su (/)

where the asterisk is a complex conjugate, h is the Fourier transform of /, and S, is the noise
power spectral density of the detector (which we take to be the sky-averaged LISA noise).

To simulate the evolving match found as observation time grows, only the first # units of
time of h; and h, are considered. In this way, we are able to make the above fitting factor
a function of observation time. In figure 5, we show a comparison for this mismatch when at
resonance and when not at resonance. To put these values in context, M = 10% M, corresponds
to GM/c* ~ 5 seconds, so in resonance, a perturbation of ¢ = 10~% can produce a mismatch
of 107! in about two days. Per the KAM theorem, when off-resonance, the effect of the per-
turbation can almost be absorbed into shifting of fundamental frequencies (since the tori are
then only deformed). This confirms our understanding that these tidal perturbations need not
be modeled for EMRI systems when off-resonance, given the planned sensitivity of LISA.

6.3. Radiation reaction characteristic time

An exact functional form of the characteristic time of radiation reaction in resonance is still
not known. Assuming that the phase of the tidal force changes slowly during a resonance, the
resonant self-force dephase time scales as [15, 52]

47 1
i~ _~yf . 34
Trd AL = T o + ke (34

This expression, however, requires to know the rate of change of the orbital frequencies at res-
onance. Thus, to obtain an order of magnitude estimate, we instead choose to use a result for

3 Notably, frequencies in Mino time will not do here. It is possible to find a system which agrees in all three frequencies
in Mino time but which has a different average value for dz/d\ and therefore have different true frequencies.
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Figure 5. Dephasing between perturbed and unperturbed orbits when in a nonlinear
resonance and when far from resonance with ¢ = 1073, For illustration purposes, the
vertical axis has a linear scale near zero (in the finely segmented region up to 4 x 107%)
and a log scale elsewhere. Note that the off-resonance mismatch does not exceed 107°.

circular Keplerian orbits, i.e. we make the further approximation W~ WKepler- By expand-
ing the derivative as Wkepler ~ H(dw/dH )kepier, We reach to the following (rough) estimate for
the characteristic time of the resonance due to radiation reaction:

Tt ~ (| 2p ] (35)

" 24q

Here we use p (as defined in equation (8)) in place of a, and for the initial energy we use
the Hamiltonian per unit mass for the system, i.e. E = gH. For order of magnitude estimates,
which is what we are after in this work, the most important property of this scaling is that

Trad X 1/4/4.

6.4. Dephase time

To quantify the necessity of modeling tidal effects in our system, we will be comparing the
above characteristic time to a dephase time. For our approximate analysis, this is a much
simpler calculation than e.g. computing the phase jump accumulated when crossing a reson-
ance [17]. Instead, we use a 95% match threshold to mark when the perturbed and unperturbed
systems have ‘dephased’ [51, 53, 54]. We take this value of the mismatch as a weak criterion,
bearing in mind the limited accuracy of our simple approximate model, whose ingredients are
only qualitatively correct [54]. Denote this dephase time as Tgephase- Failing to properly model
perturbations at resonance may lead to inaccuracies in phase and detectable differences in
waveforms. Therefore we are interested in the region of parameter space where Trag > Tdephase-
This dephase time, however, requires some further consideration. This is because the exact
time to reach the 95% threshold depends on the exact initial conditions within the resonance.
This is made evident in figure 6, where significantly different dephase times can be found for
the same magnitude of perturbation. Most notably, we can find arbitrarily long dephase times
very near the hyperbolic points and near the elliptic points. We have observed consistent deph-
ase times roughly halfway inside the elliptic region, and so we take this to be a characteristic

dephase time of the resonance.
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Figure 6. Match comparison inside and outside of the elliptic region with a perturbation
amplitude of e = 107>, We present the same values for At) =1); — 1)y and Ar, =
r; — ro shown in figure 4. As expected, little dephasing is seen near the elliptic fixed
point (dotted green line in top figure) or near the hyperbolic fixed point (dashed blue line
in bottom figure). The most representative region of initial conditions (based on several
more cases not shown here) is about half way inside the elliptic region (represented by
the red line in the top figure).

6.5. Comparison

In the top panel of figure 7, we show dephase times found at several magnitudes of perturbation.
However, most levels of perturbation were not thoroughly analyzed throughout the elliptic
region. Most importantly, the dephase times were not taken consistently at a point midway
into the elliptic region, and so there is more variance than would be desired. We nevertheless
find a consistent trend of dephase times following a O(1/+/¢) power law, in agreement with
analytical scaling arguments [42, 55, 56]. Since we are confident in the power law relation,
we elect to place a fit line based on & = 10~7+> only. We performed a more thorough search of
the elliptic region at this €, and it is where we found consistent dephase times midway into the
elliptic region.
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Figure 7. Top: dephasing time vs. perturbation level inside the elliptic region for a
2:3 resonance. Estimated characteristic times for various mass ratios are displayed as
horizontal lines. Red crosses are from individual simulations. The blue triangle for
e =107 was tuned to be half way inside the elliptic region, while all other crosses
were taken just outside of the elliptic region near the hyperbolic point. Bottom: the crit-
ical curve where the effects of resonance become dominant. A full modeling scheme
will be needed for perturbations at resonance for systems above the critical curve (with
larger perturbation or more extreme mass ratios).

We estimate the characteristic times for various mass ratios using equation (35) and the res-
ults are presented in the top panel of figure 7. We see that at any given magnitude of perturb-
ation, there is a critical mass ratio beyond which the system will dephase due to the tidal per-
turbation within the characteristic time of the resonance under radiation reaction. This region
is taken as an estimate for when tidal perturbations will need to be modeled, as shown in the
bottom panel of figure 7. This figure shows the critical mass ratio as a function of perturba-
tion strength, highlighting the fact that perturbations must be modeled for more extreme mass
ratios and serving as an estimate for where such modeling will be needed.

7. Discussion and conclusions

Using a Newtonian analogue of a Kerr black hole, we performed a preliminary analysis of
the effect of an external tidal field on EMRI systems. While such effects have been pre-
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viously studied, the impact tidal perturbations have when a system is at resonance has not
been thoroughly explored. We qualitatively explored some issues in the case of perturbing the
fo : fr =2 : 3resonance, such as the impact of the entry point into that resonance, and we found
an approximate threshold for which further modeling will be necessary. Our results should be
taken as indicative; a genuine relativistic implementation of our method with the inclusion
of gravitational self-force is needed to fully explore the interplay of tidal perturbations with
self-force effects.

In our analysis, we used two measures to study this effect: the fitting factor between wave-
forms from the perturbed and unperturbed systems and the evolution of the resonance angle
for the perturbed system. Both approaches proved valuable in understanding how detection
of EMRI systems will be impacted by tidal perturbations. The analysis of dephasing times
reveals a broad region of parameter space for which the characteristic timescale of the tidal
perturbation at resonance (the dephasing time) is shorter than the estimated characteristic time
for the analogue model. This criteria serves as a proxy for when proper modeling of the tidal
perturbation will be necessary to accurately model the waveform. As an example, this region
of parameter space is shown in figure 7 for a 2:3 resonance in the analogue model, and follows
the heuristic

€2 70q, (36)

where g = m/M < 1 is the mass ratio and ¢ is a dimensionless scalar quantity indicating the
strength of the tidal force. For an external perturber of mass M, at a distance d, € ~ MM, / &b.
The above scaling shows that the phase accumulated in crossing a single resonance should
be negligible for small tidal perturbations, such as the astrophysically realistic regions of the
parameter space.

To improve our understanding of these systems, future work is needed which simultan-
eously uses the Kerr spacetime, includes the gravitational self-force, and a tidal perturbation.
With such a model, the region of parameter space for which tidal perturbations are important
could be faithfully captured and account for more parameters, e.g. different orbital resonances
(beyond the 2:3 resonance studied here), eccentricity and inclination, and alignment of the tidal
force. Such work could help in constructing a robust model for traversing resonances [17], able
to account for the changes to phase space due to an arbitrary tidal force.

In addition to an estimated range for which the tidal resonance effects are relevant, we also
found that different entry points into resonance can produce substantially different dynamics.
This can be best seen in figure 4. If entering near the hyperbolic point, the resonance angle
can evolve arbitrarily slowly. This is in contrast to entering between hyperbolic points where
the resonance angle varies most quickly. This observation aligns with the sensitivity to initial
conditions found in [15]. A dependence between the entry point and the dynamics of the system
was also reported when studying a non-Kerr solution [19] in the adiabatic approximation.

We found that this Newtonian analogue is a good compromise between a system complex
enough to exhibit resonant effects, and still simple enough to be numerically and analytically
tractable. In particular, using a Newtonian system allowed us to incorporate a tidal perturbation
by simply adding a tidal potential to the Hamiltonian. In contrast, any future work in Kerr
spacetime will need to utilize more sophisticated techniques, i.e. black hole perturbation theory
and metric reconstruction, to include tidal effects [57]. Our results present another example
(e.g. see [58-60]) where the use of an analogue provides insight and motivates targeted studies
in the full system.

The LISA mission’s capacity to probe strong gravity with EMRIs depends on the ongoing
endeavors to build precise GW models for these systems. Extending the breadth of this study
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to the morphology and characteristic of these prolonged resonances could reveal when gen-
eral resonant phenomena must be included to properly model EMRIs. If these effects are not
accounted for, they could lead to incorrect parameter estimation or fundamental biases when
studying general relativity.
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