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Abstract

One of the important targets for the future space-based gravitational wave

observatory Laser Interferometer Space Antenna is extreme mass ratio inspir-

als (EMRIs), where long and accurate waveform modeling is necessary for

detection and characterization. Modeling EMRI dynamics requires account-

ing for effects such as the ones induced by an external tidal f㘶eld, which can

break integrability at resonances and cause signif㘶cant dephasing. In this paper,

we use a Newtonian analogue of a Kerr black hole to study the effect of an

external tidal f㘶eld on the dynamics and the gravitational waveform. We have

developed a numerical framework that takes advantage of the integrability of

the background system to evolve it with a symplectic splitting integrator, and

compute approximate gravitational waveforms to estimate the timescale over

which the perturbation affects the dynamics. Comparing this timescale with

the characteristic time under radiation reaction at resonance, we introduce a

tool for quantifying the regime in which tidal effects might be included when

modeling EMRI gravitational waves. As an application of this framework, we

perform a detailed analysis of the dynamics at one resonance to show how dif-

ferent entry points into the resonance in phase-space can produce substantially

different dynamics, and how one can estimate bounds for the parameter space

where tidal effects may become dominant. Such bounds will scale as ε! Cq,

where ε measures the strength of the external tidal f㘶eld, q is the mass ratio,
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and C is a number which depends on the resonance and the shape of the tide.

We demonstrate how to estimate C using our framework for the 2:3 radial to

polar frequency resonance in our model system. This framework can serve as

a proxy for proper modeling of the tidal perturbation in the fully relativistic

case.

Keywords: black holes, EMRIs, LISA, resonances, tidal perturbation,

integrability

(Some f㘶gures may appear in colour only in the online journal)

1. Introduction

Future space-based detectors, such as the Laser Interferometer Space Antenna (LISA) [1],

will allow studies of the gravitational waves (GWs) emitted when a small compact object, with

massm, falls into a supermassive one, with massM, in an extrememass-ratio inspiral (EMRIs),

i.e. satisfying q= m/M≪ 1. EMRIs emit GWs in wavelengths inaccessible to ground-based

detectors, such as the LIGO/Virgo/KAGRA detectors. They are expected to happen rarely in

any one galaxy, but nevertheless thought to occur within the lifetime (∼4 years) of the LISA

mission [2, 3].

Generic EMRI orbits, which to zeroth order are boundKerr geodesics, can be highly eccent-

ric and inclined, and therefore the emitted GWs are expected to encode a rich phenomeno-

logy [4]. Geodesic motion in Kerr is integrable [5], so a bound Kerr orbit lies on a phase-space

torus characterized by three frequencies: one each associated with the radial, polar, and axial

motion [6, 7]. This torus is ergodically f㘶lled for most trajectories, but not for the resonant

ones, i.e. when two frequencies form a co-prime low-integer ratio.

When a system is Liouville integrable [8], i.e. there are the same number of degrees of

freedom as independent Poisson-commuting integrals of motion (such as geodesics in Kerr),

the dynamics around resonances does not show a distinctive character. However, in the pres-

ence of a generic perturbation, there can be qualitative changes to phase space. From the

Kolmogorov–Arnold–Moser (KAM) theorem [9], for suff㘶ciently small perturbations, almost

all non-resonant tori are deformed but continue to foliate phase space. Meanwhile, close to

resonant tori, we expect nonlinear resonances and chaos to develop.

Beyond the test-particle approximation, the dynamics deviate from geodesic motion due to

a force arising from the gravitational f㘶eld generated by the small particle. That perturbation is

known as the particle’s self-force [10, 11] and generates dissipative (e.g. the radiation-reaction

force) and conservative effects (e.g. the advance of the pericenter angle in each orbit).

The formative work on EMRIs was performed under the so-called ‘adiabatic’ approxima-

tion [12], which only captures the long timescale behavior [13], in which radiation reaction

effects are torus-averaged to compute the inspiral. The modern approach is to instead use the

more general method of near-identity transformations [14], which is able to also capture the

oscillatory short-timescale dynamics. These methods may fail near resonances [15], where

a new timescale is introduced, and a more general method of multiple timescales must be

employed [16]. Near resonances, the effects of perturbations are boosted (relative to their non-

resonant size) by an amount inversely proportional to the square root of the mass ratio, and

cause the system to evolve more rapidly, or ‘jump,’ from one adiabatic orbit to another [15,

17]. While this effect is well explored [15, 18] in current models [14, 16], radiation reaction

is not the only potential source of perturbation.
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A ‘jump’ can also arise from the conservative sector of the dynamics [19–22], at the level

of the geodesic of a non-integrable system. Within the adiabatic approximation, prolonged

resonances have been shown to appear [19, 22], that are expected to translate to ‘glitches’ in

the GW frequency [22].

Resonant effects can also be induced by the tidal f㘶eld of nearby stars or stellar-mass black

holes, a dark matter distribution, or the rest of the galactic potential [23, 24]. These tidal res-

onances will cause a secular shift to the orbital angular momentum, that, if properly modeled,

would provide information about the distribution ofmass near a galactic-center black hole [24].

Due to the intrinsic complexity and sources of resonant effects, a generic description is still

lacking, and assessing the importance of resonant effects on future gravitational detections

with LISA has proven diff㘶cult [25, 26].

In this work, we carry out an analysis that highlights important features of the resonant

phenomena that should be taken into account when modeling EMRIs. To this end, we study

a Newtonian Kerr ‘analogue’ [27–29] and add a tidal perturbation. The analogue system is

Euler’s 18th century problem of two f㘶xed gravitating centers [27], which is the unique sta-

tionary and axisymmetric Newtonian potential that shares several key properties of the Kerr

metric [28]. In particular, it is integrable, bound orbits are characterized by three fundamental

frequencies, and has the same recurrence relation for the mass multipole moments [28, 29].

This analogue is a compromise between a system complex enough to exhibit resonant

effects, and still simple enough to be tractable. First we numerically evolve the trajectories of

the perturbed system and compute approximate gravitational waveforms. Then we perform an

analysis of dephasing times, and estimate a region of parameter space for which the character-

istic timescale of the tidal perturbation at resonance is shorter than the characteristic timescale

of radiation reaction at resonance. That is, we estimate a range of parameter space where tidal

perturbations will need to be further considered in waveform modeling. Similar to f㘶ndings

in previous work [15, 19], we also found that the different entry points into the resonance in

phase space can produce substantially different dynamics.

The remainder of this paper shows the details of the calculations that led to the above con-

clusions. In section 2 we give an overview of the Newtonian analogue, and in section 3 we

present how it is tidally perturbed. Our numerical scheme is presented in section 4. We char-

acterize the resonant dynamics in section 5, before studying the approximate GWs in section 6.

Finally in section 7 we present our conclusions and perspectives. Throughout the paper we use

geometric units in which GN = c= 1, and set M= 1 for all our numerical implementations.

2. A Newtonian analogue to the Kerr spacetime

The system we study in this work is a particle moving in the oblate version of Euler’s potential

of two f㘶xed centers [27]. In this section, we give a brief summary of the system and only the

equations directly required for our purposes. For a more complete description of the system,

see [27–29].

The gravitational potential is generated by two f㘶xed point particles with some separation

2a. To make the system analogous to the Kerr spacetime, the masses of both particles are set

to M/2 (making the potential parity symmetric) and an oblate characteristic is enforced by

setting the separation to an imaginary value 2ia [27, 30]. Upon making the further choice of

aligning the separation with the z axis, the potential can be expressed as

V=− M

R2
√
2

√

R2 + r2 − a2 , (1)
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where R≡
√

(r2 − a2)2 + 4a2z2 = rarb, and ra and rb are the distances from each f㘶xed mass.

In the analogy to the Kerr spacetime,M and a are analogous to themass and spin of the black

hole, respectively, and also fully describe the solution. The analogue is endowed with a third

independent commuting constant of motion, and thus, it is completely integrable [27], as is

the Kerr spacetime. Furthermore, the analogue has a multipolar expansion that follows exactly

the same relation as the mass multipole moments of the Kerr solution [27–29]. A detailed list

and analysis of the qualitative and quantitative similarities between the two problems can be

found in [29].

The motion can be separated in oblate spheroidal coordinates with

radial-like coordinate: r= aξ ∈ [0,∞)

polar-like coordinate: cosθ = η ∈ [−1,1]

azimuthal coordinate: φ ∈ [0,2π) (2)

related to cylindrical coordinates by

ρ= a
√

1+ ξ2
√

1− η2

z= aξη. (3)

Since we are considering motion to be that of a test mass, we work with quantities per unit

test mass, i.e. p= P/m and H= E/m, where P and E are the standard momenta and energy.

In particular, the momenta relate to the above coordinates by

pξ = a2
(

ξ2 + η2

1+ ξ2

)

ξ̇,

pη = a2
(

ξ2 + η2

1− η2

)

η̇,

pφ = a2
(

1+ ξ2
)(

1− η2
)

φ̇, (4)

and the Hamiltonian is

H=
p2ξ

2a2
1+ ξ2

ξ2 + η2
+

p2η

2a2
1− η2

ξ2 + η2
+

p2φ

2a2
1

(1+ ξ2)(1− η2)
− Mξ

a(ξ2 + η2)
. (5)

As two coordinates do not appear in the Hamiltonian, we have two immediate conserved quant-

ities: from the time symmetry we have H= const., and from the axial symmetry we have

ℓ := pφ = const. The Hamilton–Jacobi theory can be implemented to further separate the sys-

tem and obtain the third and f㘶nal independent conserved quantity:

β =−2a2H
(

1+ ξ2
)

+ p2ξ
(

1+ ξ2
)

− ℓ2

1+ ξ2
− 2aMξ

=−2a2H
(

1− η2
)

− p2η
(

1− η2
)

− ℓ2

1− η2
. (6)
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Following this separation, new expressions for the momenta arise:

pξ =±

√

2a2H(1+ ξ2)+ ℓ2

1+ξ2 + 2aMξ+β

1+ ξ2

=
±1

1+ ξ2

√

Pξ (H,ℓ,β;ξ),

and

pη =±

√

−2a2H(1− η2)− ℓ2

1−η2 −β

1− η2

=
±1

1− η2

√

Pη (H,ℓ,β;η), (7)

where Pξ and Pη are fourth order polynomials in ξ and η, respectively.

In studying the motion of particles in bound orbits, the previous two equations become quite

important. By requiring the arguments of the radicals to be positive (so as to have real-valued

momenta), we see that the motion in ξ and η becomes constrained to be between the roots

of Pξ and Pη respectively. To sit above the separatrix (analogous to requiring we not sit in a

plunging orbit), we assign ξ1 = r1/a and ξ2 = r2/a to be the largest and second largest roots

of Pξ. The other two roots may be real or complex. For motion along the polar coordinate, we

def㘶ne ηmax to be the smallest positive root of Pη . Pη is a biquadratic, so −ηmax is also a zero

and is the lower turning point. The other roots ofPη are also symmetric to one another andmust

both be real. The set of turning points (r1,r2,ηmax) constitute an alternative set of constants

of motion. To relate these constants to more traditional Keplerian style orbital constants, we

def㘶ne eccentricity e, semilatus rectum p, and inclination I such that

r1 =
p

1− e
, r2 =

p

1+ e
, sin I= ηmax . (8)

As in the Kerr solution, the radial and polar coordinates are not periodic functions of the

proper time [6]. However, when expressed in Mino time [31], the equations of motion sep-

arate further and periodicity becomes manifest. Following this insight, as found in [29], the

equations of motion become

dξ

dλ
=±

√

Pξ (ξ)
dφ

dλ
= ℓ

[

1

1− η2
− 1

1+ ξ2

]

dη

dλ
=±

√

Pη (η)
dt

dλ
= a2

(

ξ2 + η2
)

. (9)

The last equation here is the def㘶ning relation of Mino-like time, λ.

We note that the fundamental frequencies of the system can be found analytically. By

considering the equations of motion directly, these fundamental frequencies are derived in

appendix E of [29]. We will make use of these frequencies in section 6.

3. Tidal perturbation

We now consider the effect of an additional gravitating body or a congregate gravitational

potential. This perturbing potential can for example arise from a nearby supermassive black
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hole, a star orbiting the primary outside the orbit of the secondary, or an overall galactic poten-

tial due to nearby stars and dark matter. In general relativity, the local effects of gravity—such

as an external tidal f㘶eld—can be modeled by using Riemann normal coordinates [32]; the

dominant effect is captured by the electric part of the Riemann tensor,

Eij = R0i0j, (10)

whereRµνρσ is the Riemann curvature tensor.Meanwhile in Newtonian gravity, wemay Taylor

expand an external gravitational potential about the origin as

Vext = V0 +Vjx
j+

1

2
Vjkx

jxk+O
(

x3
)

. (11)

The f㘶rst term is a constant and is removed by redef㘶ning zero energy. The second, linear, term

results in a constant force on both the central body and the test particle equally, and can be

removed by choosing a freely falling frame for the binary. This leaves, to lowest order,

Vext =
1

2
Vijx

i xj . (12)

Although V ij may in general depend on time, we will consider no time dependence for

simplicity.

Note that in our units, H= E/m (and by extension V and Vext) is dimensionless. Since xi
has dimensions of mass, Vij = ∂i∂jVext has units of 1/M2. We will def㘶ne ε and Aij such that

Vij = εAij/M
2, where M is the mass of the central body, Aij is dimensionless and order unity,

and we capture the smallness of the external tidal f㘶eld by ε≪ 1. Equation (12) now becomes

Vext =
1

2
εAij

xi

M

xj

M
. (13)

If the tidal force is due to a gravitating body of massM∗ at a distance d from the center of the

system, then

ε∼ M2M∗

d3
. (14)

As an illustrative case, consider the environment in the center of our own galaxy, where we

have a BHwith massM=MSgrA∗ ∼ 4× 106M⊙, expected to be surrounded by a population of

stellar-mass black holesM∗ ∼ 40M⊙ with a mean distance of d∼ 7.5× 1011 meters [33].With

these values, the tidal strength is ε∼ 5× 10−12. We can also consider a system in which the

primary is a supermassive black hole with M= 109M⊙, and is perturbed by another super-

massive black hole, with M∗ = 106M⊙. By considering the perturber to be near by with

d∼ 4× 1013 meters, e.g. during the late stages of the merger of galaxies, we f㘶nd a stronger

perturbation amplitude of ε∼ 5× 10−8.

As the detection rates and specif㘶cs of these different types of systems are subject to several

uncertainties [1, 3, 23], for our analysis we consider cases with perturbation amplitudes in the

range ε ∈ [10−9,10−5]. Furthermore, to reduce the parameters modeled, wemake the arbitrary,

symmetry-breaking choice of

A=

⎡

⎣

1.2 1.3 1.2
1.3 1.3 1.2
1.2 1.2 −2.5

⎤

⎦ . (15)

Our results are independent of the choice of these numbers, provided that the constraints of

symmetric and trace free are satisf㘶ed, these number are of order unity, and that there is no

accidental symmetry (such as axial symmetry).
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4. System integration algorithm

Due to its desirable properties for long-duration integration, we implement a symplectic split-

ting integrator [34] to evolve the system. As such, we split the Hamiltonian into

H= H0 +Vext, (16)

where H0 was discussed in section 2 and Vext was discussed in section 3. For a generic sym-

plectic splitting method [34], the system state (x, p) is evolved under H by the scheme

exp(∆tDH)(x,p) = exp(a1∆tDVext
)exp(b1∆tDH0

) · · ·exp(aN∆tDVext
)

× exp(bN∆tDH0
) (x,p)+ error , (17)

where the inf㘶nitesimal time evolution operator is def㘶ned by a Poisson bracket

DH (A) = {A,H} , (18)

for a generic function A :M→ R, where M is the phase space manifold. We require the coef-

f㘶cients to be constrained by

∑

ai =
∑

bi = 1, (19)

so that over one step the system is evolved a total of ∆t through both H0 and V. As with all

numerical techniques, the order of accuracy depends on the number of stages (N) used and the

coeff㘶cients (ai and bi). Explicit systems of equations can be constructed from equation (17) by

either Taylor expansion of the exponentials or application of the Baker–Campbell–Hausdorff

formula. We set N= 2 and placed error constraints (discussed shortly) to arrive at

a1 = 1/4 b1 = 2/3

a2 = 3/4 b2 = 1/3. (20)

This choice produces an algorithm accurate to third order in time step and to f㘶rst order in

perturbation magnitude. That is, our single-time step (local) error terms are all of the form

error= O
(

εi∆tj
)

, (21)

where either i" 2 or j " 4. Despite the relatively low order, we found ∆t= 0.3 to retain suf-

f㘶cient long-term characteristics for this analysis, as is expected for symplectic algorithms in

general.

Equation (17) assumes exact or near exact methods exists to integrate each subsystem H0

and Vext. While H0 can in principle be expressed analytically by relating the coordinates at

time t to those at time t+ bi∆t with elliptic integrals, it is far simpler to numerically evolve

the separated system in adapted coordinates. The precise numerical integrating method used to

evolve each subsystem is not important; we chose to use the RK45 method of the solve_ivp

routine provided by scipy [35].

This choice comes with a caveat, however. Since we intend to integrate throughmany orbits,

the system will pass through many turning points. At each turning point, for instance at ξ2, the

relevant equation of motion is locally

dξ

dλ
≈±A

√

ξ − ξ2. (22)

The issue here is twofold. First, the sign is ambiguous, and so care would have to be taken to

keep track of which direction we travel and when this direction switches. Secondly, since the

7
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square root function has unbounded derivative, this system violates the Lipschitz condition for

existence and uniqueness [36]. We therefore implement new phase angle coordinates ψ and χ

to replace ξ (or r) and η, def㘶ned by

aξ = r=
p

1+ ecosψ
, and η = ηmax cosχ. (23)

Unlike ξ and η, ψ and χ are monotonic, removing the sign issue. These def㘶nitions also analyt-

ically cancel the roots at the turning points; after a bit of algebra, their time derivatives satisfy

the Lipschitz condition. In particular, the new equations of motion are

dψ

dλ
=

√

−2a2Hξ1ξ2 (ξ2 + bξ+ c)

ξ

dχ

dλ
=
√

−2a2H(z+ − η2) (24)

with

b= ξ1 + ξ2 +
1

aH

c= (ξ1 + ξ2)b− ξ1ξ2 +
β

2a2H
+ 2 , (25)

and z+ is the square of the upper root of Pη . Although the integration here is done with respect

to Mino time λ, the integration is terminated once time t has advanced by bi∆t so as to be

consistent with the requirements of the symplectic integrator.

The integration under Vext is far simpler since it is only a function of position and not

momentum. In Cartesian coordinates, we have

ẋi = {xi ,Vext}= 0

ṗi = {pi ,Vext}=−Vijxj. (26)

So xi does not change, and pi changes linearly with time (a ‘momentum kick’). The new system

state is then realized by re-evaluating the various ‘constants’ of motion. Since this changes the

turning points, the phase angles χ and ψ must also be re-evaluated.

Summarizing, our algorithm consists of alternating between evolving under H0 using a

scipy integrator and evolving under Vext using the analytic ‘momentum kick’ above, with

coordinate changes interleaving the two techniques. A constant time step∆t is inherent to our

symplectic splitting scheme, while the time steps used internally by the scipy integrator are

free to change. It is only important that the scipy integrator evolves a total of bi∆t for each

stage and accumulates low global error (we set relative and absolute tolerances of 10−13).

5. Dynamics at resonance

In this section, we delve into the dynamics at resonance when under a tidal perturbation. To

this end, we will discuss three core components: Poincaré sections, the KAM theorem, and

resonance angles [9].

8
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Figure 1. A schematic diagram showing the characteristics of a Poincaré surface of
section for a perturbed system. The inner circles, where the original torus structure is
preserved, are far from resonance, while the outer circles show the breaking of a reson-
ant torus into a nonlinear resonance, forming a ‘chain of islands.’ The red cross and blue
f㘶ow lines show one (out of four) hyperbolic point and the direction the system evolves
under the Poincaré map near it. The centers of the ‘islands’ are elliptic points. With four
elliptic points and four hyperbolic points, this diagram could correspond to a radial to
polar frequency resonance of 1:4, 3:4, or 5:4, etc.

5.1. Poincaré sections

Let us brief㘶y discuss a useful technique for graphically representing the behavior of the

dynamical system. The graphical representation, known today as a Poincaré surface of sections

or map of f㘶rst recurrence [37], is obtained by considering the intersections of trajectories shar-

ing the same value of energy with an arbitrary, but f㘶xed, two-dimensional surface in phase

space. Whenever the trajectory pierces the surface, the location in phase space is recorded,

and the pattern generated on the surface constitutes the Poincaré surface of sections. The res-

ulting f㘶gure, initially proposed by Poincaré, is extremely useful for systems of two degrees

of freedom, as it is capable of providing a complete two-dimensional graphical representa-

tion of the four dimensional manifold, as sketched in f㘶gure 1. We describe its structure in the

following section.

In our case, we choose the equatorial (xy) plane as the surface that any bound orbit with

a non-zero inclination will consistently intersect. With the further constraints of accepting

only ascending trajectories and H= const., we are left with a four dimensional surface in

phase space. Thus, the two dimensional representation originally conceived by Poincaré cannot

accurately capture the behavior of the perturbed system, as it will be a projection. However, as

pointed out in [38] if the fourth dimension is represented by a color variation (see [39–41] for

some examples), all the dimensions can be visualized, to some degree, on a colored 3D plot.

An example of such 4D space of section is shown in f㘶gure 2.

9
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Figure 2. A four-dimensional Poincaré section for a perturbed system with ε= 10−5,
close to a nonlinear resonance. The colors correspond to the momentum associated with

the coordinate φ, which, for visualization purposes, has been scaled as p̃φ = 104(pφ −

pmin
φ ). The (minor) mixing of the colors indicates the presence of weakly chaotic orbits in

the ‘sea’ surrounding the quasiperiodic islands. A single orbit in this sea can pass close
to a hyperbolic f㘶xed point, hence the sea can completely surround the elliptic islands.
The islands and surrounding sea are extremely narrow when projected onto the (r,pr)
plane, but it is apparent that the KAM curve has non-zero width.

On the other hand, if we utilize the (approximate) exact azimuthal symmetry of the (per-

turbed) unperturbed case, we are able to further stipulate ℓ= const. and safely ignore the azi-

muthal coordinate. This reduces our visual representation to a traditional two dimensional

surface, as seen in f㘶gure 1 or in the r− pr plane of f㘶gure 2.

5.2. KAM theorem

The KAM theorem [42] enters our discussion as it makes statements regarding integrable sys-

tems when perturbed. In particular, under a suff㘶ciently small perturbation, quasi-periodicity

is retained for almost all orbits, resulting in small deformations of the nested torus structure

of integrable Hamiltonian systems. However, the theorem only guarantees this behavior for

‘suff㘶ciently irrational’ ratios of fundamental frequencies. Our interest is exactly at the reson-

ant tori, with small-integer ratios of frequencies. We f㘶nd, as is generally the case, that when

suff㘶ciently close to a resonance, the torus structure breaks completely. This break of structure

constitutes a topological change, and can lead to both nonlinear resonances and chaos [42].

A cartoon of the structure of nonlinear resonances on a Poincaré section is shown in f㘶gure 1.

The inner sections of the f㘶gure are far from resonance and so the nested torus structure is

retained. A resonant torus of the unperturbed system has developed into a chain of ‘islands’ of a

single nonlinear resonance. Each island surrounds an elliptic f㘶xed point, and they are separated

by an equal number of hyperbolic f㘶xed points (red crosses). In the nomenclature of [18], if an

EMRI crossed such a nonlinear resonance, it would be called a ‘sustained’ resonance, since

two or more fundamental frequencies have an approximately constant ratio throughout the

entire island.

10
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The dynamics within the elliptic islands can be intuitively understood by drawing an ana-

logy with a nonlinear pendulum (the pendulum analogy can be made even more precise in cer-

tain Solar System dynamics systems [43]). The pendulum’s degree of freedom is analogous to

the slow oscillation of a Lissajous f㘶gure of the nonlinearly resonant trajectory. Approaching

the elliptic f㘶xed point, the amplitude of the oscillation decreases. The edge of the island is ana-

logous to the separatrix of the pendulum’s motion—outside the island is the region where the

pendulum rotates rather than oscillates. The analogy is strengthened in that the period of oscil-

lation becomes amplitude-independent (like a simple harmonic oscillator) when approaching

the elliptic f㘶xed point, while the period diverges when approaching the separatrix.

The loss (or non-existence) of a constant of motion can result in trajectories which pro-

ject down to areas in the r− pr plane (see e.g. f㘶gure 2), despite being conf㘶ned to a three-torus

within the six-dimensional phase space. This makes it diff㘶cult to distinguish whether or not the

torus structure has actually broken [41]. A full four-dimensional Poincaré section would distin-

guish the two scenarios; therefore we use a three-dimensional projection with color encoding

the fourth dimension [38]. The mixing of colors or the appearance of irregular behavior on the

three-dimensional projection signals the breaking of a KAM torus. Thus, when studying the

perturbed system, we f㘶rst use the 3D colored projection to check that the trajectory belongs to

a broken torus structure. This method lets us assess the 4D smoothness of geometrical struc-

tures that appear in the 3D projections, and thus f㘶nd points near non-linear resonances. Then

we return to the 2D projection, as if we only had two degrees of freedom, to study the dynamics

more easily.

5.3. Resonance angles

When considering (orbital) dynamics at resonance, one f㘶nds by def㘶nition that two of the

system’s phase angles evolve together with a specif㘶c rational ratio remaining approximately

constant. As a result, one may def㘶ne a ‘resonance angle’ to be the difference of these phase

angles with integer coeff㘶cients [43–45]. We will focus on a system with a 2 : 3 polar to radial

frequency resonance, that is,

ψ ≈ 3ω0t+ψ0 radial phase angle

χ≈ 2ω0t+χ0 polar phase angle

Ψ := 3χ− 2ψ ≈ constant resonance angle, (27)

where ψ and χ were def㘶ned in equation (23). When a perturbation is applied, however, the

phase angles will no longer evolve in such a simple fashion (it will now depend on a multi-

periodic function), and so non-trivial dynamical information can be garnered from the reson-

ance angle. In f㘶gure 3, we show how the resonance angle evolves near resonance for various

amplitudes of perturbation. We can see a qualitative difference between trajectories inside the

elliptic region to those outside. As expected from the pendulum model, we observe oscillating

behavior only inside.

To better explore the dynamics inside and outside of the elliptic region, we further specialize

to a perturbation amplitude of ε= 10−7.5 and perform a sweep of trajectories with initial condi-

tions in each category. A few samples of these sweeps are shown in f㘶gure 4. From these plots,

we see that near the center of the elliptic region, trajectories become near perfect sinusoids,

where the period is approximately amplitude-independent (the behavior of a simple harmonic

oscillator). Far from the center, near the separatrix of the region, the orbits remain oscillatory,

but with arbitrarily long periods (the behavior of a pendulum near its separatrix). Outside the
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Figure 3. Dynamics of the resonance angle Ψ inside the elliptic region and outside.
Various levels of perturbation are shown for each plot. Inside the islands (upper panel)
shows oscillatory motion, while the exterior (lower panel) shows rotating behavior,
where Ψ grows without bound. We also note a shorter period of oscillation and faster
rotation for larger perturbation amplitudes.

region, we see the resonance angle ‘rotate,’ Ψ monotonically decreasing or increasing with

time, depending on what side of the hyperbolic point they sit.

6. Approximate gravitational waveforms

Equipped with an understanding of the dynamics at resonance for this system, we now turn

to analyze the implications for detectability and modeling. For this purpose and neglecting

GW dissipation, we construct kludge waveforms [46, 47] for the perturbed system and for the

unperturbed system. We then consider the match between these to f㘶nd whether or not it is

necessary to model external tidal perturbations.

With our goals set in mind, several details must be handled. First, we must obtain the kludge

waveforms from the phase space information we have. Second, we must f㘶nd a consistent way

to f㘶nd pairs of systems, one perturbed and the other unperturbed, which can be identif㘶ed

together and compared via waveform match calculations. And f㘶nally, we must choose a f㘶gure

of merit for estimating whether or not tidal perturbations dominate the dynamics and to what

degree.

6.1. Construction of kludge waveforms

We compute approximate gravitational waveforms closely following the procedure described

in [46–48]. In this approach, the motion around the central black hole is interpreted as motion

in f㘶at spacetime, and gravitational waves are emitted as if in f㘶at spacetime via a multipole

decomposition [49].

These approximate waveforms, also known as ‘numerical kludges,’ are def㘶ned as h= h+ −
ih×, where the two waveform polarizations (‘plus’ and ‘cross’) are obtained from h+,× =

ϵ
ij
+,×h

TT
ij /2. To lowest order, the metric perturbation in transverse-traceless gauge is
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Figure 4. Top: behaviour of the resonance angle inside the elliptic region. Each curve
shows different values for ∆ψ = ψi −ψ0, where ψi is the initial radial phase angle
and ψ0 is the radial phase angle of the hyperbolic f㘶xed point. The blue dotted line is
nearest to the elliptic f㘶xed point while the green solid line is nearest to the separat-
rix and hyperbolic f㘶xed point. Bottom: behaviour of the resonance angle outside the
elliptic region. Each curve shows different values for∆r∗ = ri − r0, where ri is the ini-
tial radial coordinate and r0 is the radial coordinate of the hyperbolic f㘶xed point. The
orange dashed line is nearest to the separatrix and the hyperbolic f㘶xed point.

hTTij =

[

2

R
I
(2)
ij +

4

3R
J
(2)
k(i ϵ

kl
j) n̂l

]TT

, (28)

with

I
(2)
ij = m [(aixj+ 2vivj+ xiaj)]

STF

J
(2)
ij = m

[

xi
(−→v ×−→a

)

j
+ 2vi

(−→x ×−→a
)

j

+ xi

(−→x ×−→
j
)

j
+ ai

(−→x ×−→v
)

j

]STF

. (29)

In these expressions, STF denotes the symmetric-tracefree projection operator, TT is the

transverse-traceless projection operator, R the f㘶at-space distance from the source to the
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observer, and xi (t) is the set of Cartesian components of the spatial trajectory of the small

compact object. Under this approach, a trajectory is interpreted as if in f㘶at space.

Since we work in a Newtonian analogue to Kerr spacetime, no reinterpretation is needed

and we may use equation (3) to relate our phase-space variables to Cartesian coordinates.

Furthermore, we can evaluate the velocity, acceleration, and jerk of the particle in Cartesian

coordinates by evaluating vi = {xi,H}, ai = {vi,H}, and ji = {ai,H}.
The polarization tensors ϵ

ij
+,× are built from an orthonormal triad with two components, p

and q, chosen by the observer, and the third, n, in the direction of wave propagation. Explicitly,

these polarization tensors are ϵ+ij = pi pj− qi qj and ϵ×ij = 2p(i q j). We use the most common

triad, given in terms of the observation point’s latitude and azimuth, Θ and Φ, respectively,

[47, 48] given explicitly by

{n,p,q}=

{

∂

∂r
,
1

R

∂

∂Θ
,

1

RsinΘ

∂

∂Φ

}

. (30)

We scale the resulting strain by setting R= 1 and choose a polar angle of Θ= π/6 and azi-

muthal angle of Φ = π/4.
Despite the approximations made during the generation of these waveforms, this procedure

reproduces most of the features expected for EMRI sources and, for certain parameters, shows

great agreement with more accurate Teukolsky-based waveforms [47, 50].

6.2. Locating comparable trajectories

In the case of a real detection, a signal is received (hobs) and the best matching modeled signal

is found (hmodel). Since we are not including radiation reaction, the perturbed system serves as

our best proxy for the observed signal, and the unperturbed system serves as our model signal.

In this manner, the two signals only differ by the tidal effect; this is loosely akin to including

full general relativity in the model but neglecting the tidal effect. We therefore f㘶rst f㘶nd a set

of initial conditions {λpert} which are in the non-linear resonance for the perturbed system,

and integrate them with H to obtain a waveform hobs. We then seek a set of initial conditions

{λunpert} for the unperturbed system which, once integrated with H0, produce a waveform

hmodel, which maximizes the match with hobs.

To the f㘶rst task, we use the analytic expressions for fundamental frequencies found in [29]

to f㘶nd the radial to polar frequency ratio associated with any set of initial conditions. We then

choose a= 0.7, p= 1.3, e= 0.25, require fθ : fr = 2 : 3, and then solve numerically for ηmax ≈
0.542. We select this 2 : 3 resonance because it is expected to be the one with the strongest

impact on the inspiral, i.e. producing signif㘶cant phase shifts [25], it is common in several

EMRI systems [13], and is capable of producing sustained resonances [18].

These initial conditions place the system in resonance and, when perturbed, produces a

non-linear resonance. With phase angles of φ= 0, ψ = π, and χ= 0, we f㘶nd trajectories near

the hyperbolic point. To f㘶nd the exact location of the hyperbolic point, we produced Poincaré

sections spanning the hyperbolic point, and assessed the necessary initial conditions by eye.

This hyperbolic point is then used as a jumping off point to analyzing trajectories inside the

elliptic region, by adjusting the initial radial phase angle, or outside the elliptic region, by

adjusting the turning point, r2.

Ideally, f㘶nding the best matching set of unperturbed initial conditions {λunpert} would

involve a full parameter search. This is, however, quite computationally expensive, due to

each evaluation requiring a full integration of initial conditions. We therefore use the dynam-

ical quantities of the perturbed system to make this process faster. We obtain the fundamental
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frequencies of the signal by considering the evolved phase coordinates as functions of time,

and taking the slope of a linear f㘶t. Intuitively, this is quite similar to taking

f
pert
i =

α
pert
if㘶nal −α

pert
i initial

∆t
, (31)

where f
pert
i is the ith fundamental frequency and α

pert
i is the ith phase angle. We found this

frequency extraction technique to perform better than a Fourier-based approach (as the one

presented in, for instance, [19]). We then f㘶nd approximately best-f㘶tting constants of motion

by requiring the fundamental frequencies f
unpert
i to be the same as f

pert
i , and, as mentioned in

section 2, we have analytic expressions for the frequencies5. We do not perform any search on

the phase angles (φ,χ,ψ), instead simply using the same initial phase angles.

For any waveform generated from a perturbed system, we can now generate a nearby unper-

turbed waveform. If using an unperturbed system is a good approximation, then the match

between the two waveforms should be quite high (or equivalently the mismatch quite low).

Given two waveforms h1 and h2, we use the f㘶tting factor for match [51]:

FF(h1,h2) :=
⟨h1|h2⟩

√

⟨h1|h1⟩⟨h2|h2⟩
, (32)

where the inner product is def㘶ned by

⟨h1|h2⟩ := 4R

ˆ

h̃1 ( f) h̃
∗
2 ( f)

Sn ( f)
df , (33)

where the asterisk is a complex conjugate, h̃ is the Fourier transform of h, and Sn is the noise

power spectral density of the detector (which we take to be the sky-averaged LISA noise).

To simulate the evolving match found as observation time grows, only the f㘶rst t units of

time of h1 and h2 are considered. In this way, we are able to make the above f㘶tting factor

a function of observation time. In f㘶gure 5, we show a comparison for this mismatch when at

resonance and when not at resonance. To put these values in context,M= 106M⊙ corresponds

to GM/c3 ∼ 5 seconds, so in resonance, a perturbation of ε= 10−8 can produce a mismatch

of 10−1 in about two days. Per the KAM theorem, when off-resonance, the effect of the per-

turbation can almost be absorbed into shifting of fundamental frequencies (since the tori are

then only deformed). This conf㘶rms our understanding that these tidal perturbations need not

be modeled for EMRI systems when off-resonance, given the planned sensitivity of LISA.

6.3. Radiation reaction characteristic time

An exact functional form of the characteristic time of radiation reaction in resonance is still

not known. Assuming that the phase of the tidal force changes slowly during a resonance, the

resonant self-force dephase time scales as [15, 52]

τrad ∼
√

4π
−→n · −̇→ω

∼
√

1

nω̇r+ kω̇θ

. (34)

This expression, however, requires to know the rate of change of the orbital frequencies at res-

onance. Thus, to obtain an order of magnitude estimate, we instead choose to use a result for

5 Notably, frequencies inMino timewill not do here. It is possible to f㘶nd a systemwhich agrees in all three frequencies

in Mino time but which has a different average value for dt/dλ and therefore have different true frequencies.
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Figure 5. Dephasing between perturbed and unperturbed orbits when in a nonlinear

resonance and when far from resonance with ε= 10−8. For illustration purposes, the

vertical axis has a linear scale near zero (in the f㘶nely segmented region up to 4× 10−6)

and a log scale elsewhere. Note that the off-resonance mismatch does not exceed 10−5.

circular Keplerian orbits, i.e. we make the further approximation−→n · −̇→ω ∼ ω̇Kepler. By expand-

ing the derivative as ω̇Kepler ≈ Ḣ(dω/dH)Kepler, we reach to the following (rough) estimate for

the characteristic time of the resonance due to radiation reaction:

τrad ∼
√

5

24q
p15/4|H|. (35)

Here we use p (as def㘶ned in equation (8)) in place of a, and for the initial energy we use

the Hamiltonian per unit mass for the system, i.e. E= qH. For order of magnitude estimates,

which is what we are after in this work, the most important property of this scaling is that

τrad ∝ 1/
√
q.

6.4. Dephase time

To quantify the necessity of modeling tidal effects in our system, we will be comparing the

above characteristic time to a dephase time. For our approximate analysis, this is a much

simpler calculation than e.g. computing the phase jump accumulated when crossing a reson-

ance [17]. Instead, we use a 95%match threshold to mark when the perturbed and unperturbed

systems have ‘dephased’ [51, 53, 54]. We take this value of the mismatch as a weak criterion,

bearing in mind the limited accuracy of our simple approximate model, whose ingredients are

only qualitatively correct [54]. Denote this dephase time as τ dephase. Failing to properly model

perturbations at resonance may lead to inaccuracies in phase and detectable differences in

waveforms. Therefore we are interested in the region of parameter space where τrad > τdephase.

This dephase time, however, requires some further consideration. This is because the exact

time to reach the 95% threshold depends on the exact initial conditions within the resonance.

This is made evident in f㘶gure 6, where signif㘶cantly different dephase times can be found for

the same magnitude of perturbation. Most notably, we can f㘶nd arbitrarily long dephase times

very near the hyperbolic points and near the elliptic points. We have observed consistent deph-

ase times roughly halfway inside the elliptic region, and so we take this to be a characteristic

dephase time of the resonance.
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Figure 6. Match comparison inside and outside of the elliptic region with a perturbation

amplitude of ε= 10−7.5. We present the same values for ∆ψ = ψi −ψ0 and ∆r∗ =
ri − r0 shown in f㘶gure 4. As expected, little dephasing is seen near the elliptic f㘶xed
point (dotted green line in top f㘶gure) or near the hyperbolic f㘶xed point (dashed blue line
in bottom f㘶gure). The most representative region of initial conditions (based on several
more cases not shown here) is about half way inside the elliptic region (represented by
the red line in the top f㘶gure).

6.5. Comparison

In the top panel of f㘶gure 7, we show dephase times found at several magnitudes of perturbation.

However, most levels of perturbation were not thoroughly analyzed throughout the elliptic

region. Most importantly, the dephase times were not taken consistently at a point midway

into the elliptic region, and so there is more variance than would be desired. We nevertheless

f㘶nd a consistent trend of dephase times following a O(1/
√
ε) power law, in agreement with

analytical scaling arguments [42, 55, 56]. Since we are conf㘶dent in the power law relation,

we elect to place a f㘶t line based on ε= 10−7.5 only. We performed a more thorough search of

the elliptic region at this ε, and it is where we found consistent dephase times midway into the

elliptic region.

17



Class. Quantum Grav. 40 (2023) 215015 D Bronicki et al

Figure 7. Top: dephasing time vs. perturbation level inside the elliptic region for a
2:3 resonance. Estimated characteristic times for various mass ratios are displayed as
horizontal lines. Red crosses are from individual simulations. The blue triangle for

ε= 10−7.5 was tuned to be half way inside the elliptic region, while all other crosses
were taken just outside of the elliptic region near the hyperbolic point. Bottom: the crit-
ical curve where the effects of resonance become dominant. A full modeling scheme
will be needed for perturbations at resonance for systems above the critical curve (with
larger perturbation or more extreme mass ratios).

We estimate the characteristic times for various mass ratios using equation (35) and the res-

ults are presented in the top panel of f㘶gure 7. We see that at any given magnitude of perturb-

ation, there is a critical mass ratio beyond which the system will dephase due to the tidal per-

turbation within the characteristic time of the resonance under radiation reaction. This region

is taken as an estimate for when tidal perturbations will need to be modeled, as shown in the

bottom panel of f㘶gure 7. This f㘶gure shows the critical mass ratio as a function of perturba-

tion strength, highlighting the fact that perturbations must be modeled for more extreme mass

ratios and serving as an estimate for where such modeling will be needed.

7. Discussion and conclusions

Using a Newtonian analogue of a Kerr black hole, we performed a preliminary analysis of

the effect of an external tidal f㘶eld on EMRI systems. While such effects have been pre-
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viously studied, the impact tidal perturbations have when a system is at resonance has not

been thoroughly explored. We qualitatively explored some issues in the case of perturbing the

fθ : fr = 2 : 3 resonance, such as the impact of the entry point into that resonance, and we found

an approximate threshold for which further modeling will be necessary. Our results should be

taken as indicative; a genuine relativistic implementation of our method with the inclusion

of gravitational self-force is needed to fully explore the interplay of tidal perturbations with

self-force effects.

In our analysis, we used two measures to study this effect: the f㘶tting factor between wave-

forms from the perturbed and unperturbed systems and the evolution of the resonance angle

for the perturbed system. Both approaches proved valuable in understanding how detection

of EMRI systems will be impacted by tidal perturbations. The analysis of dephasing times

reveals a broad region of parameter space for which the characteristic timescale of the tidal

perturbation at resonance (the dephasing time) is shorter than the estimated characteristic time

for the analogue model. This criteria serves as a proxy for when proper modeling of the tidal

perturbation will be necessary to accurately model the waveform. As an example, this region

of parameter space is shown in f㘶gure 7 for a 2:3 resonance in the analogue model, and follows

the heuristic

ε! 70q , (36)

where q= m/M≪ 1 is the mass ratio and ε is a dimensionless scalar quantity indicating the

strength of the tidal force. For an external perturber of massM∗ at a distance d, ε∼M2M∗/d
3.

The above scaling shows that the phase accumulated in crossing a single resonance should

be negligible for small tidal perturbations, such as the astrophysically realistic regions of the

parameter space.

To improve our understanding of these systems, future work is needed which simultan-

eously uses the Kerr spacetime, includes the gravitational self-force, and a tidal perturbation.

With such a model, the region of parameter space for which tidal perturbations are important

could be faithfully captured and account for more parameters, e.g. different orbital resonances

(beyond the 2:3 resonance studied here), eccentricity and inclination, and alignment of the tidal

force. Such work could help in constructing a robust model for traversing resonances [17], able

to account for the changes to phase space due to an arbitrary tidal force.

In addition to an estimated range for which the tidal resonance effects are relevant, we also

found that different entry points into resonance can produce substantially different dynamics.

This can be best seen in f㘶gure 4. If entering near the hyperbolic point, the resonance angle

can evolve arbitrarily slowly. This is in contrast to entering between hyperbolic points where

the resonance angle varies most quickly. This observation aligns with the sensitivity to initial

conditions found in [15]. A dependence between the entry point and the dynamics of the system

was also reported when studying a non-Kerr solution [19] in the adiabatic approximation.

We found that this Newtonian analogue is a good compromise between a system complex

enough to exhibit resonant effects, and still simple enough to be numerically and analytically

tractable. In particular, using a Newtonian system allowed us to incorporate a tidal perturbation

by simply adding a tidal potential to the Hamiltonian. In contrast, any future work in Kerr

spacetimewill need to utilizemore sophisticated techniques, i.e. black hole perturbation theory

and metric reconstruction, to include tidal effects [57]. Our results present another example

(e.g. see [58–60]) where the use of an analogue provides insight and motivates targeted studies

in the full system.

The LISA mission’s capacity to probe strong gravity with EMRIs depends on the ongoing

endeavors to build precise GW models for these systems. Extending the breadth of this study
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to the morphology and characteristic of these prolonged resonances could reveal when gen-

eral resonant phenomena must be included to properly model EMRIs. If these effects are not

accounted for, they could lead to incorrect parameter estimation or fundamental biases when

studying general relativity.
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