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A candidate application for quantum computers is to simulate the low-temperature properties of quantum
systems. For this task, there is a well-studied quantum algorithm that performs quantum phase estimation
on an initial trial state that has a non-negligible overlap with a low-energy state. However, it is notoriously
hard to give theoretical guarantees that such a trial state can be prepared efficiently. Moreover, the heuristic
proposals that are currently available, such as with adiabatic state preparation, appear insufficient in
practical cases. This paper shows that, for most random sparse Hamiltonians, the maximally mixed state is a
sufficiently good trial state, and phase estimation efficiently prepares states with energy arbitrarily close to
the ground energy. Furthermore, any low-energy state must have non-negligible quantum circuit
complexity, suggesting that low-energy states are classically nontrivial and phase estimation is the
optimal method for preparing such states (up to polynomial factors). These statements hold for two models
of random Hamiltonians: (i) a sum of random signed Pauli strings and (ii) a random signed d-sparse
Hamiltonian. The main technical argument is based on some new results in nonasymptotic random matrix
theory. In particular, a refined concentration bound for the spectral density is required to obtain complexity

guarantees for these random Hamiltonians.
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I. INTRODUCTION

What are the strengths of quantum computers? The
earliest (and still most compelling) candidates are factoring
[1] and simulation of quantum systems [2—4]. While Shor’s
celebrated quantum algorithm for factoring [1] settles the
quantum complexity of factoring, the complexity of quantum
simulation at low energies has not been resolved. Indeed, we
know from complexity theory that the ground-energy prob-
lem for general local Hamiltonians is QMA-hard in the worst
case [5], so we anticipate that preparing ground states is
generally intractable, even for quantum computers. This
worst-case hardness persists for systems with additional
physical constraints, including nearest-neighbor interaction
in 1D [6] and translation invariance [7]. Although these
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results send a pessimistic signal, they merely indicate that
any proofthat the ground-energy problem is quantumly easy
must further constrain the class of Hamiltonians, or else it can
apply only for typical instances. Indeed, one may construct
random families of Hamiltonians (Sec. I A) in the hope that
their average-case complexity might be more favorable than
the worst case.

Aside from complexity theory, the problem of preparing
low-energy states arises in efforts to apply quantum
computers to computational chemistry (for example, see
Ref. [8]) and to condensed matter physics. To prepare a
state of sufficiently low energy on a quantum computer,
which can be used, e.g., for understanding chemical
reaction pathways, a proposed quantum algorithm simply
runs phase estimation on an initial trial state [9—12]. This
method is efficient if the initial state has a non-negligible
overlap with a low-energy state. Although the phase
estimation part of the algorithm is well understood, we
have an incomplete understanding of the time required
to prepare a good initial state. In fact, recent numerical
tests [13] suggest that, for some chemical systems, easily
preparable initial states may have exponentially small
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(in system size) overlap. Moreover, preparing states with
good overlap using the adiabatic algorithm may take
exponential time, significantly impacting the end-to-end
performance of the proposed quantum algorithm.

The search for tasks that are easy for quantum com-
puters, in quantum chemistry or otherwise, is often implic-
itly a quest for quantum advantage: Quantum computers
can be particularly helpful if the task is also classically
hard. Unfortunately, proving classical hardness is challeng-
ing, and many once-promising candidates for classically
hard problems have now been dequantized. For example,
under certain classical access models, recent progress
eliminates exponential quantum advantage in low-rank
linear algebra tasks [14—17]. Still, hope remains that the
Hamiltonian low-energy problem could provide quantum
advantage [18]. With these thoughts in mind, the guiding
question of this work is the following: Is there a classically
nontrivial Hamiltonian whose low-energy states are prov-
ably easy to prepare?

Our work argues in the affirmative. In particular, we
will show that the textbook phase estimation method
(discussed above) works well for preparing low-energy
states of typical random sparse Hamiltonians. Meanwhile,
the low-energy states must have a large quantum circuit
complexity, so they are plausibly nontrivial for classical
computers to simulate.

The paper is organized as follows. First, we review
relevant classes of Hamiltonians (Sec. I A) before present-
ing the main Hamiltonian model and the main results
(Sec. II). Our proof strategy (Sec. III) exploits tools from
nonasymptotic random matrix theory; Sec. IV contains
further details and context. Last, we discuss the classical
complexity of the low-energy problem, and we lay out
future research directions in the search for quantum
advantage (Sec. V). The remaining part of the work begins
with proofs for the comparison principle (Appendix A),
including the moments and the resolvent. We instantiate the
nonasymptotic properties of GUE in Appendix B. The
comparison results and GUE properties altogether allow us
to calculate the properties of the Pauli string ensemble
(Appendix C). In Appendix D, we prove the circuit-
size lower bounds for the Pauli string ensemble, whose
argument is independent of the comparison principle.
Appendix E contains the missing proofs. Appendix F
contains an argument for why interpolation methods do
not immediately exploit higher matching moments.

A. Related models

Before we give a statement of our main results, let us
discuss how some familiar models fall short of answering
our question. [19] We focus on random ensembles where
quantitative statements are available.

(i) Few-body Pauli models [21]. As a natural generali-

zation of the classical spin glasses (e.g., the
Sherrington-Kirkpatrick (SK) model [22]), one

(i)

(iii)
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replaces classical (commuting) constraints with non-
commuting Pauli operators. An example is the
ensemble of Hamiltonians given by

— X X y _y_y Z el el
H = E g;‘jaiaj + 9,60 + g;;0;03,

i>j
where gi;, g, gi; ~ IID Gaussians, (1)

and 67,067,067

¥,0;,06; denote the Pauli operators on qubit .
Heuristically, this model exhibits spin glass behavior
at low temperatures [23], which suggests that finding
low-energy states could be hard, even for quantum
computers. [24] In the high-temperature regime,
this model becomes classically easy: There exists
an efficient algorithm that outputs a product state
approximating the operator norm of the Hamiltonian
|[H|| to a constant ratio [25]. We do not know
whether there is a temperature range where the state
remains quantumly easy but classically hard, nor do
we know how to tackle this question.
Sachdev-Ye-Kitaev (SYK) models [26,27] with fer-
mionic degrees of freedom. As an example, consider
the four-body Hamiltonian

Hgyy = Z GijkeXiX iX1X ¢

i<j<k<t
where yix; + xixi = 20;;

and  gjjre ~ 1ID Gaussians.

Nonrigorous arguments rooted in physics suggest that
this model remains chaotic (instead of a spin glass) at
very low temperatures [23,28,29]. If true, this is a
strong hint that the SYK model is quantumly easy, and
it gives a partial solution to our problem. [30]
Unfortunately, it is challenging to sharpen the physics
arguments into actual proofs. The only rigorous
statement known to us is the recent work of Hastings
and O’Donnell [33], which showed that a low-energy
state with a constant ratio approximation of ground
energy could be prepared by an efficient quantum
algorithm. An extension of this result to arbitrarily low
energies would also serve our question. Currently, we
do not know of any analytical method suitable for
the low-temperature regime of the SYK model. On
the other hand, we are also unaware of any conclu-
sive mathematical evidence that the low-temperature
regime is classically hard; [34] in fact, finding a low-
energy state with a constant ground-energy approxi-
mation for the sparse SYK model is known to be
classically easy [35].

Wigner’s Gaussian unitary ensemble (GUE) [36]. If
we insist on provable models at low temperatures,
we may consider the GUE with dimension N = 2",
written in the Pauli string basis:
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Hgyg = Zgﬁad where P := {I,6%,6”,6°}®"

ceP

and g, ~IID Gaussians.

This nonlocal and nonsparse Hamiltonian seems
unphysical, but it nevertheless served as a math-
ematical model for heavy nuclei [37]. Together with
other random matrix ensembles (see Ref. [38] for a
textbook introduction), the GUE provides a useful
model for strongly interacting systems and for
quantum information problems, thanks to its well-
established properties [39]. As the Hamiltonian itself
has exponentially many degrees of freedom, by a
counting argument, the computational complexity
(of low-energy state preparation or Hamiltonian
evolution) is exponential e with high probability
for quantum computers; this is, at most, polyno-
mially faster than exact diagonalization.

The ensemble we study in this work shares the properties
of the few-body Pauli and SYK models, as it is sparse and
instances can be efficiently specified. At the same time, like
the GUE ensemble, we can accurately approximate the
minimal energy and the density of states. Moreover, we
show that polynomial-size quantum circuits are necessary
and sufficient to generate low-energy states, up to arbi-
trarily good approximation ratios of the ground-state
energy. The main downside of our ensemble is that, like
the GUE ensemble, it is nonlocal, so it does not closely
resemble the Hamiltonians that readily appear in nature.

II. MAIN RESULTS

Now, let us present the model for which we will establish
average-case quantum complexity for low-energy states.
Consider an independent sum of a few random Pauli strings
with random sign coefficients:

m
r 1D —
Hopg = E \/—%aj where 6j ~ {I,6",6”,6°}®"
=

1D
and r; ~ UNIF{+1,-1}. (2)

The parameter m will be polynomial in the number of
qubits n, rather than exponential as in the GUE model.

Our main technical results show that its low-energy
states enjoy two-sided bounds on circuit complexity.

Theorem I1.1. (Low-energy states have low complexity).
For any accuracy € > 27/1, let Hpg be drawn from the
Pauli string ensemble (2) with

’15
m= |Cy—
64

terms. Then, the following statement holds with probability
of at least 1 — e~ over a random draw Hpg from the

p(E)
2¢
51(63/2)
-2 2 E
FIG. 1. Abundance of low-energy states. The contour illustrates

the density p versus the energy level E for a semicircular
distribution, which is (in the large dimension limit) the spectral
distribution for the GUE. The semicircle spectral density implies
the abundance of states near the ground energy. Performing phase
estimation over the maximally mixed state gives a state with low
energy —2 + 2¢ with a decent probability Q(e*/?).

Pauli string ensemble. We can prepare a low-energy state p
such that

Amin(Hps) < TrlpHps| < (1 — €)Amin (Hps) (3)

using a circuit of size G = Poly(n, e™!). The quantities ¢,
¢,, and ¢ are absolute constants, and A, (Hps ) denotes the
smallest eigenvalue of Hpg (Which is typically negative).

See Appendix C 2 for the proof of Theorem II.1. Here,

we elaborate on the interesting complexity theoretic aspects
of this problem:

(1) Arbitrarily good approximation of the ground energy.
For any polynomially small error € ~ Poly(n~!), there
is a polynomially large choice m = Poly(n) for which
a state with a (1 — e)-ratio approximation of the
ground energy (Fig. 1) can be prepared efficiently
at gate complexity G = Poly(n). We hypothesize that
the order of quantifiers can be exchanged, which
would imply, for large enough m = Poly(n), that the
low-energy states remain easy for any e = Poly(n~!).
For further discussions, see point 2 in Sec. V.

(i1) Phase estimation works. As we will show, the
quantum algorithm that produces the low-energy state
p is very simple. Performing phase estimation over
the maximally mixed state has a decent chance, at least
Q(e3/?), of returning a low-energy state obeying
Eq. (3). A higher success probability is achieved
via repeating the phase estimation step. The Hamil-
tonian simulation costs at most Poly(m, e~!) gates
using off-the-shelf quantum simulation algorithms
(e.g., Trotter [3] or gDRIFT [40]).

(iii) End-to-end complexity. This Hamiltonian problem is
oracle-free and input-state-free, giving a complete
picture. Further, the model description is entirely
classical, and an instance can be generated using
only m(2n + 1)bits of randomness.

(iv) Average case. The statement holds with high proba-
bility over the Hamiltonian ensemble. Indeed, this
model can produce an arbitrary local Hamiltonian in

011014-3
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the worst case, and we have no control over those
instances.

(v) Nonlocal, noncommuting Hamiltonians. Most Pauli
strings {I,6%,67,6°}®" act nontrivially on O(n)
sites, and thus the Hamiltonian is nonlocal. The
Hamiltonian is highly noncommutative since ran-
dom Pauli strings anticommute with each other with
probability % Intuitively, the Pauli string ensemble is
closer to a random matrix than to a local Hamiltonian.

(vi) Sparse matrices. From a linear algebra perspective,
this model is a sparse, high-rank matrix (which has
not been dequantized; see Sec. V). In general, a
sparse matrix may not admit a simple Pauli decom-
position; nevertheless, the same result extends to
signed random d-sparse matrices (see Sec. [V B 1).
However, the quantum easiness then requires access
to a block encoding [41] of the Hamiltonian.

On the other hand, we argue that this problem is “very
quantum” by proving a lower bound on the complexity of
preparing low-energy states. As a disclaimer, we do not
prove classical hardness for state preparation (see Sec. V),
which is an intriguing open problem that we leave for
future work.

Theorem I1.2. (Small circuit gives bad energy) Fix a cir-
cuit architecture with G two-qubit gates (e.g., 1D brick-
work layout) with the initial state |0), and consider the family
of all reachable states Circ(G). For any €; > 0, suppose
m < e% x 2". Then, with high probability over the random
draw of the instance Hpg from the Pauli string ensemble (2),

G = o(e;v/m)

inf H > €1 X EAdpin (Hpg).
A0 (GlHis|6) 2 ey * B (His)

implies

Namely, all possible states |y) € Circ(G) parametrized by
the circuit architecture fail to produce any low-energy state.
The notation 6(-) suppresses log(m) prefactors.

See Appendix D for the proof of Theorem II.2. In other
words, we very often need a large circuit G = Q(e;/n) to
describe the low-energy states; they are very entangled and
far from product states. [42] Further, our circuit-size lower
bound uses a direct counting argument, and it suggests
the circuit should change over different random instances.
Nevertheless, Theorem II.1 states the complementary result:
An appropriate instance-dependent state can be prepared effi-
ciently using the simplest quantum algorithms (Hamiltonian
simulation and phase estimation).

The main caveat for our model is that it is nonlocal,
unlike most physical Hamiltonians, and our argument is not
immediately applicable to local Hamiltonians. Indeed, the
spectral properties of the two types of models are different.
As we will show, the Pauli string ensemble has a (compact)
semicircular spectrum, while local Hamiltonians tend to
have a tail in the spectrum. [45] Performing phase estima-
tion with the maximally mixed state would not be able to

access the low-energy states far in the low probability tail.
Of course, we hope our results ultimately inspire a better
understanding of preparing the low-energy states of local
Hamiltonians. For further discussions, see point 3 in Sec. V.
Regardless, from a linear algebra and algorithm perspec-
tive, random sparse matrices are natural models to study. We
emphasize that the main goal is to give a transparent toy
model showcasing what quantum computers are good at,
especially given recent developments in dequantization.

II1. PROOF IDEAS

Given a general, strongly interacting Hamiltonian, it
seems daunting to control its behavior. However, we can
make an exception in the case of certain random matrix
ensembles where the matrices have predictable spectral
properties. For example, it is well known that GUE
matrices (see Appendix B) have a definite maximal
eigenvalue and a semicircular spectral density p(x):

4 —x?
2r
(up to negligible fluctuation and with high probability).

|Huel 2 and p(x) ~

See Fig. 1. Indeed, this fact alone hints that the low-energy
states have a non-negligible density, independent of the
system size:

/_;Hzgp(x)dx = 0(%?).

In terms of complexity, directly running phase estimation
on the maximally mixed state returns a low-energy state
with decent probability: Q(e*/?). The core of our argument
is that the spectrum of the Pauli string ensemble (2) looks a
lot like the spectrum of a GUE matrix (Fig. 2). As a
consequence, it is also “easy” to find the low-energy states
of the Pauli string ensemble.

How can we prove that the Pauli string ensemble also has
a semicircular spectral density? The entire argument then
boils down to a universality principle: The Pauli string
ensemble, at moderately large m, mimics “smooth” proper-
ties of the GUE ensemble, including the maximum eigen-
value and the coarse-grained spectral density.

The mathematical argument is based on techniques from
nonasymptotic random matrix theory (Sec. IV). Several
novel results are required to address some of the particular
challenges that arise in the quantum information problem.

Our first main result states that the trace polynomial
moments of the Pauli string ensemble almost coincide with
the corresponding moments of the GUE. In particular, by
choosing a large enough moment, we can also compare the
spectral norms of the two matrices. Throughout this work,
we consider the normalized p-norms

011014-4
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FIG. 2. Right panel: what could have gone wrong. For a generic matrix, the phase estimation strategy will not find a low-energy state if
there are spectral outliers or if the spectral density gets too small near the ground energy. Left panel: almost a semicircle. For the Pauli
string ensemble, we control the ground energy by Schatten p-norms and control the spectral density by the resolvent. Both values are
comparable to the GUE, which has a favorable semicircular spectrum. Therefore, enough states remain near the ground energy, and thus

phase estimation efficiently finds them.

|0]|, = (Tr|O?)/? and [|O|l, = (ETr|0|")"/?

where Tr := Tr.

1
Tr[I] “)
We often denote N := Tr[I] =2". We have the under-
standing that [[|O|||, = ess sup||O||.

Theorem IlI.1. (p-norms and operator norm) Let p € 2N
be an even natural number. The random Pauli string
ensemble (2) satisfies the norm bound

) (+3m) o

The symbol < suppresses constant factors. Furthermore,
for 0 < e <1/2and m < 2%", there exist constants c;, ¢, > 0
where

p3/4
IlHpslll,, — “lHGUE”Ip’ < <—m1/4 +

3
m>c n_4 ensures Pr(||Hps|| >2(1+¢€)) <exp(—cyn).
€

See Appendix C 1 for the proof of Theorem III.1. For a
fixed moment p that may depend on the number n of sites,
the right-hand side of Eq. (5) decays with the number m of
terms in the Hamiltonian. Applying Markov’s inequality
for p = Q(log(N)) = Q(n) and choosing m = Poly(n),
we obtain a tail bound for the spectral norm.

Comparing the spectral densities of the two ensembles
requires a more difficult argument. Ideally, we are inter-
ested in projectors to Hamiltonian eigenstates |¢)(¢|.
However, exact eigenstate projectors are tricky to handle.
Instead, we consider the resolvent, which probes the
“coarse-grained” energy projector at energies @ + O().
We define

S — / * eiH-o)-n gy
H-ow+in 0

as a proxy for %ZﬂﬂE((ﬁ) —o| <n} x|p)(d|. (6)
)

Rm.n (H)

where 1 is the indicator function. We often suppress
parameter dependencies by writing R :=R,,,(H). For

intuition, the resolvent is diagonal in the Hamiltonian basis
and spikes at energy @ with width O(r). See Fig. 3.

However, if we are especially interested in the states near
certain energy , the resolvent is not localized enough
because the filter £+ 1/|E — w| decays too slowly as a
function of the energy. [47] Instead, we can take the trace of
resolvent powers so that the tail decays at the faster rate of
about |E — w|™". In other words,

P 1 P
n—Tr|R\” :_2”7'
N N |E - o +in|?

n

X —= ’

NG
where the energy #/,/p is roughly the window where the
weight |[R|Pn” remains large, Q(1).

Theorem II1.2. (Comparing the resolvent moments). Let
p €2N be an even natural number. The resolvent (6) of
the random Pauli string ensemble (2), written Rpg, can be
compared with the resolvent Rgyg of the GUE:

as a proxy for

p(w)

4 3 3
14 14 14
el ~ Rcuell | < <W+ns—m> (1 +ﬁ>. )

The symbol < suppresses absolute constants.

| E-wP

E

FIG. 3. Probing the spectrum by resolvents. The resolvent
(black curve) centered at energy w with resolution parameter 5
filters out energies distant from w. Taking powers of the resolvent
(red curve) focuses the filter on a narrower region around .
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See Appendix A2 for the proof of Theorem IIL.2 in a
more general setting. For moderately large m (depending
on the distance # from the real line and the power p), the
formula (7) controls the expected spectral density, filtered
by the resolvent:

[ETr|RPS|” ~ |ETI'|RGUE|p.

Since we want to make a statement that holds with high
probability over realizations of the Pauli string ensemble,
we also need to prove that the quantity Tr|R|? is concen-
trated near its expectation ETr|R|? (i.e., the spectral density
does not fluctuate too much); see Theorem A.l. Last,
since individual resolvents probe the local density, we may
probe the integrated spectral density by placing consecu-
tive resolvents. The abundance of low-energy states then
implies that phase estimation has a decent chance of
succeeding.

IV. NEW RESULTS IN NONASYMPTOTIC
RANDOM MATRIX THEORY

Our results for the Pauli string ensemble fall into the
category of nonasymptotic universality laws for random
matrices. This section provides some context for these
results, as well as some details about the argument.

Asymptotic universality laws are among the celebrated
classical achievements of random matrix theory (RMT).
For example, Wigner showed that the semicircle law is the
limiting spectral distribution of a (standardized) symmetric
matrix with independent identically distributed (IID)
Rademacher entries above the diagonal. The universality
law for the Wigner matrix states that the detailed distribu-
tion of the entries does not affect the limiting spectral
distribution, provided the first four moments are bounded.
Subsequently, researchers obtained nonasymptotic compar-
isons between the spectrum of a Wigner-type matrix and
the semicircle distribution. For surveys, see the mono-
graphs [48,49].

Our approach depends on a nonasymptotic comparison
between the spectrum of the Pauli string ensemble (2) and a
GUE matrix, whose spectral distribution approximately
follows a semicircle law. This type of result does not fall
within the scope of classical universality laws because the
Pauli string ensemble barely has any randomness, let
alone independent entries. To implement our program,
we first observe that the low-order moments of the Pauli
string ensemble match the low-order moments of a GUE
matrix:

E[Hps] = E[Hgue] = 0;

1
E[Hps ® Hps] = E[Hgug ® Heug) ZWZ"@”;

cEP

E[Hps ® Hps ® Hps) = E[Hgug ® Hgue ® Hgue) = 0.

For a smooth statistic f of the random matrices, we can take
advantage of this coincidence by means of Lindeberg’s
exchange principle. Each of the random matrix models can
be expressed as a sum of IID random matrices, and we can
interpolate between the two models by swapping one
summand at a time. At each step, we can control the
change between the two models by expanding f as a Taylor
series to expose the polynomial moments. The terms in
these expansions cancel through the third order, leaving a
fourth-order error. Our argument is quite different from
recent applications [50,51] of the Lindeberg principle
in RMT.

In more detail, we consider two random Hermitian
matrices H and H that can be written as sums of
independent, centered random matrices (all of the same
dimension):

H= iA,- and H= Zm:fii. (8)
i=1 i=1

Although less familiar than the classical random matrix
ensembles, the independent sum model is much more
flexible and has a wide scope of applicability; see
Ref. [52] for examples. Suppose that the low-order poly-
nomial moments of the summands match. In other words,

FA; =0 and EA®" =EA®* fork=1,....t
and i=1,...,m. 9)

For example, the first three moments of a random Pauli
string match the first three moments of a GUE matrix. More
generally, constructive models in quantum information
theory can match an arbitrary number # of moments, similar
to the case of a unitary 7-design. Our work shows how to
compare the spectral properties of models with many
matching moments.

Our first universality result compares the trace poly-
nomial moments of the two random matrices. These results
allow us to control the spectral norm of the random
matrices.

Theorem 1V. 1. (Universality for moments). Consider two
families (A;) and (A;) of independent, random, Hermitian
matrices whose moments match Eq. (9) up to order ¢ > 2,
and introduce the sums H and H as in Eq. (8). Define the
statistics

3

1/k

L fork>1 and p>2;

A Ik
{ (AN, + A1)
i=1

m

p.k

ot =) (IEA7| +[IEAZ).

1

1
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Then, for each even natural number p € 2N, we have the
bounds

A, — el

- {Zp’/(’“) XL, +2pxL,,

2pt/(t+l) X (GZLg.loo)l/(Hl) +2p x Lp,p. (19)
The p-norm is defined in Eq. (4).

The proof of Theorem IV.1 appears in Appendix A 1.
Theorem III.1 follows when we instantiate this result for the
Pauli string ensemble (2) and the GUE.

We can obtain simpler versions of this result if we pass to
the uniform bound L, ., = max, {4l ,. |||Ai|||p} on the
summands. For example,

WA, — WA ,| < (1 + (m/p)) ) x pL, .

Here, the symbol < suppresses absolute constants only.
Heuristically, we should consider p <« m, so there are
reductions in the error from matching more moments
(i.e., increasing ?).

Our second universality result provides a comparison for
powers of the resolvents of independent sums. Define

R:=(H-w+iy)~" and R:=(H-w+in)™"
where w€eR and 75> 0. (11)

The random matrices H and H are defined in Eq. (8).

Theorem 1V.2. (Universality for resolvent moments).
Instate the assumptions and notation of Theorem IV.1.
For each even natural number p €2N, the polynomial
moments of the resolvent (11) are related by

1+ (m/p) " (psz,oo> i+1
n n

IR, = NIRII, | <

The symbol < suppresses constants depending only on t.

See Appendix A2 for the proof of Theorem IV.2. We
obtain Theorem II1.2 by instantiating the result for the Pauli
string ensemble and the GUE.

The resolvent moment comparison (Theorem IV.2) is not
sufficient to guarantee that a random realization Hpg of
the Pauli string ensemble places significant density on the
low-energy states. To achieve this goal, we must also
show that [[|[Rpgl|, is concentrated near its expected value.
This claim requires a separate argument (Theorem A.1).
The results on the concentration of trace moments of the
resolvent are new.

A. Related work

The field of RMT has historically focused on asymp-
totic limit laws for the spectral density of matrices from

the classical ensembles (Wigner, Wishart, Jacobi, etc.). In
this setting, there has also been a significant amount of
research on rates of convergence, and some of these
results can be interpreted as nonasymptotic universality
laws. For example, see Bai and Silverstein (Chap. 8
in Ref. [48]).

In the last few years, researchers have recognized that
the scope of the universality phenomenon extends well
beyond the classical matrix ensembles. In particular, we
have started to develop a deeper understanding of the
independent sum model. Tropp obtained the first general
result of this type [53]. His theory covers a sum of
independent Gaussian random matrices, and it provides
conditions under which the polynomial moments approxi-
mate the moments of the semicircle distribution. Building
on Tropp’s work, Bandeira et al. [54] developed a
method for comparing a sum of independent Gaussian
random matrices with a free probability model, which can
capture a wider range of spectral distributions. With some
effort, the techniques from these two papers can likely be
applied to the Gaussian variant of the Pauli string
ensemble (2) to obtain results similar to our main
theorems.

The most immediate precedent for our work is a recent
preprint by Brailovskaya and van Handel [55]. Their paper
compares an independent sum H of random matrices
with an independent sum G of Gaussian random matrices,
where corresponding summands share the same mean and
covariance:

A; and G=) A; where E[A;] =E[A]]
i=1 i=1

and E[A; ®A;] =E[A; ® 4,]. (12)

H =

m

The main result of the paper [55] provides conditions
to guarantee that the two random matrix models have
similar polynomial moments and polynomial resolvent
moments.

Theorem IV.3. (Universality of moments and resolvent
moments [55] ). Consider two random matrix models as in
Eq. (12). Define the statistics

m

S

i=1

v = and L, :=max;||4;].

Then, for every even natural number p €2N, the poly-
nomial moments and resolvents satisfy the bounds

I, = G, | < (P*0Le)' + pLes

IR, = lIRGll, | < (13)

p*vLy, + pPLY,
n* '
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The p-norm is defined in Eq. (4), and the symbol <
suppresses absolute constants.

The proof of this result uses a version of Stein’s method,
inspired by Ref. [56]. The basic technique is to interpolate
smoothly between the two random matrix models, pre-
serving the second moments along the interpolation path.
To control the derivative of a spectral function along the
path, the authors use a cumulant expansion along with
bounds on the higher derivatives of the function.

It is fruitful to compare the bounds (IV.1) and (IV.3).
The variance parameter v in Theorem IV.3 is never larger
than the variance parameter 62 in Theorem IV.1 because the
norm is inside the sum in ». The two quantities > and v
coincide for IID sums, but they can differ by a factor as
large as the ambient dimension N, in general. The dif-
ferences between the tail parameters (L, ,, L o, and L)
are not an essential feature of the analysis; we have stated
the simplest versions of the results, rather than the optimal
versions.

On the other hand, the approach in Theorem IV.3 cannot
provide more refined comparisons for random matrix models
that match beyond the second moment (except perhaps when
the third moments are identically zero). There are intrinsic
reasons that continuous interpolation does not seem to extend
beyond second moments (Appendix F). In contrast, the
method based on Lindeberg exchange gracefully handles
matching moments of any order.

As we will see (Sec. IV B), there are some natural
settings where higher-order moments coincide. The result-
ing higher-order error bounds improve over the second-
order bounds. In the setting of quantum information, we
often need to take the moment parameter p ~ log N ~ n, so
this improvement is significant.

In addition, our argument is conceptually and technically
simpler than the approach based on Stein’s method and
cumulant expansions. As a consequence, it may be easier to
extend to other settings, and it may have a different scope of
application. Altogether, our work contributes to the emerg-
ing toolkit for nonasymptotic RMT.

B. Further examples

Our universality results apply to many different families
of random matrix models, including examples that may not
resemble the Gaussian models that are central to the
comparison in Ref. [55]. For quantum computing applica-
tions, these families could potentially capture realistic
sparse matrices better than random Pauli string sums.
However, they generally require access to an additional
block encoding, which we do not discuss in this work.

1. Comparing sparse matrices with GUE

In addition to the random Pauli string ensemble, we can
describe another family of sparse random matrices that also

matches the low moments of GUE. Therefore, the univer-
sality results (Theorems IV.1 and IV.2) show that these
models nearly follow a semicircular distribution.

Definition 1V.1. (Permutations with complex signs). A
random complex signed permutation matrix is the product
of a uniformly random permutation matrix P and a diagonal
matrix D with complex signs:

r,+ir
:=DP where D, = 6,,———=
Q b b \/i

Proposition 1V.1. (Complex signed permutations).
Consider random matrices A and A that take the form

and r,, 7, < {1,-1}.

+

A = 0+9Q where @ is a complex signed permutation,
V2

A‘~ ~ H GUE-

For these models, the first three moments match:
E[A®¥] = E[A®*] for each k = 1,2,3.

See Appendix E 1 for the calculation. One may also
consider random, real, signed permutations, [57] which
match the first three moments of the Gaussian orthogonal
ensemble (GOE).

2. Higher-moment matching

Even though higher-moment matching examples are less
common, we can describe several pairs of models that
match up to arbitrarily high moments. The first example
considers conjugating a fixed matrix by random unitaries:

~ 1 -~ - -
A;:=——=U,6U where U; ~ Haar;

vm

1 .
A= ﬁ U,cU; where U, ~ unitary r-design.

Indeed, if we take the unitaries U; to be the Clifford circuits
(exact 3-design) and o to be a fixed Pauli string, we nearly
obtain the Pauli string ensemble (up to the identity element
that cannot be produced by conjugation). However, beyond
Clifford circuits, we do not know other examples where the
matrices A; remain sparse.

If we insist on sparse matrices, another example is

i = 0:,+0;
' V2m

complex signed permutations;

0,+0]
V2m

t-wise independent complex signed permutations.

where Q, ~ IID

A; = where Q; ~ 11D
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In this context, #-wise independent permutation is exactly
the #th moment matching condition EQ®" = EQ®'. Exact
and approximate constructions for both t-designs [58,59]
and #-wise independent permutations [60] are available in
the literature. We leave a careful analysis of the approxi-
mate case, where very few random bits are needed, for
future work.

V. COMMENTS ON DEQUANTIZATION
AND QUANTUM ADVANTAGE

In this section, we comment on the classical complexity
for the low-energy problem. The flavor differs from local
Hamiltonian problems because our model is highly non-
local and has a semicircular spectrum.

(1) How far does dequantization go? As we mentioned,
recent developments in dequantization show that
many linear algebra tasks can be efficiently solved
assuming certain classical access to a quantum
state. In particular, existing results consider low-
rank matrices for various tasks [14,16,17,61] or
high-rank matrices but with constant accuracy [18].

In the setting of Theorem II.1, we provide an
efficient classical witness for the optimum if the
accuracy € >0 is an arbitrarily fixed constant
(with polynomially large m). The idea is a simple
polynomial approximation. However, the cost of
manipulating the witness is exp(Q(1/4/€)), which
scales poorly with the constant €.

Proposition V.1. (Efficient classical witness at arbitrary
constant accuracy). For any e and large enough m =
Q(Poly(n,e™!)), there is a degree d = O(1/+/€) polyno-
mial p,(x) such that the associated ansatz state has low
energy,

p «x py(H)? such that TrlpH| < (1 — €)Apn (H).
Further, this can be efficiently verified classically in
runtime

O((dm)?*nd).

Proof of Proposition V.I. Using power-series appro-
ximation (i.e., Taylor expansion) for the Gibbs state
gives a suboptimal degree d = O(1/¢€). A better degree
d=0O(1/+/e) can be achieved using a Chebyshev-
polynomial approximation of the Gibbs state. The veri-
fication algorithm simply evaluates all the (dm)>? terms
in the ansatz state p. Each of the (dm)*? terms re-
quires 2d multiplications of Pauli strings, each with
cost O(n). ]

This indicates that eigenstates “far from the ground
state” have polynomial classical complexity, which is

reminiscent of the cost of dequantization methods [18] in
the context of ground-energy estimation given good trial
states. Still, the above classical polynomial witness gets stuck
at a constant approximation ratio, while the quantum
algorithm has no problem moving to better and better
accuracy [62].
(2) What is a decision problem? To discuss quantum
advantage, ideally one needs a problem with classical
inputs and outputs, especially a decision problem. A
candidate problem is to compute an approximation to
the ground energy of our model. However, since our
problem has randomness, we expect the spectrum to
be concentrated around the semicircle. If the spectrum
were exactly the semicircle, a classical algorithm
could simply output the deterministic value. There-
fore, the classical hardness, if it exists, must originate
from the instance-to-instance fluctuation of the spec-
trum away from the semicircle density, and that is why
we need the accuracy € = 1/Poly(n) to be small
while the number of terms m = Poly(n) is not too
large (otherwise the fluctuation becomes too small
and predictable).

Acknowledging the above, a candidate problem for
quantum advantage is deciding the density of states to
a high precision. It also converts to a binary decision
problem by setting a threshold.

Question V.0.1. (Task: Deciding the density of states).
Given a Hamiltonian sampled from the Pauli string
ensemble and a small parameter €, output the number of
states at a small energy interval,

[-6,8] € [-2,2] up to a multiplicative error €.
Is it classically hard for some m = Poly(n), e = Poly(n)~!,
5 = Poly(n)™!?

There is a quantum algorithm that succeeds with gate
complexity Poly(e~!, 57!, m): Our concentration argument
for a low-energy density of states [Eq. (C3) in the proof of
Theorem II.1] also implies that for each 6, there is a
polynomially large m = Poly(6~!, n) such that the local
density [—6,8] is at least half of that of the semicircle.
Therefore, phase estimation samples from this interval with
Q(57") success probability. Repeated trials [63] give a
high-confidence estimate of the density of states to an error
e with Poly(1/e) algorithmic cost. Why consider the
problem of approximating the density of states and not
approximating the ground-state energy? Currently, we do
not have control over the spectrum very close to the
extreme eigenvalues; for fixed m, n, our current results
do not rule out the possibility of a small spectral gap
Q(m~"4n>/*); while we believe the spectral gap is expo-
nentially small, the proof will require further developments
in nonasymptotic random matrix theory.
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Proving classical hardness for the density-of-states
problem, e.g., by using a problem already known to be
hard, is more elusive. A general proof might be unrealistic
since it would give a computational quantum advantage for
an oracle-free average-case decision problem, something
for which no other examples are known. Still, it would be
interesting to provide arguments for it. A concrete step is to
prove that the spectrum has a large enough instance-to-
instance fluctuation away from the semicircle distribution
such that the classical algorithm cannot succeed simply by
always outputting the average value. We believe this to be
true, and it would be interesting to test it numerically.
However, a proof would require further developments in
nonasymptotic random matrix theory.

(3) Quantum chaos and quantum advantage. Our work
fits into the broader question of whether quantum
chaos could be a source of quantumly easy problems
and perhaps a quantum computational advantage. As
we mentioned, Hastings and O’Donnell [33] made
concrete progress on the SYK model, a prominent
toy model of quantum chaos, by providing a low-
energy state where Gaussian states are known to fail.
Their results would serve the question at hand even
better if the classical hardness argument can be
improved or if the Hamiltonian remains provably
easy near the ground state. The latter seems plausible
on physical grounds as it remains “chaotic” near the
ground energy. Indeed, if one were to formally
assume quantum chaos in terms of the eigenstate
thermalization hypothesis (ETH), one may prove
that preparing low-energy states is quantumly easy
because Gibbs sampling at low temperatures is
efficient on a quantum computer [31].

Our work made progress in capturing quantum chaos
and its consequences by studying random matrix models
where nonasymptotic treatment of spectral properties is
possible even near the ground energy. Still, we acknowl-
edge that our model is nonlocal and perhaps deviates
from local Hamiltonian problems in some aspects: The
quantum easiness stems from the semicircular spectrum
and does not directly explain why the low-energy problem
of chaotic local Hamiltonians (whose spectral density has a
tail instead) should also be easy. Nevertheless, we expect
the following findings to extrapolate to local chaotic
Hamiltonians: Random matrix behavior can emerge from
very few bits of randomness, and the spectrum is smooth
and free of outliers (Fig. 2).

Still, there is a wealth of quantum chaos phenomenology
that requires formal treatment for quantum advantage
implications. One direction is to show ETH (e.g., for the
SYK models), which roughly means that nearby energy
eigenstates are well connected to each other. We believe
this can be formalized for the GUE, which should also

extend to our Pauli string ensemble by the universality
principle. Another direction is to reduce the locality of the
Pauli string ensemble. In fact, our circuit complexity lower-
bound argument remains nontrivial even when the locality
k of each Hamiltonian term is reduced from k = @(n) to
k = log(n), which at least gives a hint of classical hardness.
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APPENDIX A: CALCULATIONS
FOR THE LINDEBERG PRINCIPLE

In this appendix, we apply a version of the Lindeberg
exchange principle for the pth moments and the resolvent
moments. The main assumption we use is that two sums of
independent matrices share the same lower-order moments.
The main technical argument is readily illustrated in the
moment calculation. The resolvent calculation is more
involved because the resolvent is nonconvex. We also have
to establish concentration for a random realization of the
resolvent moment around its expected value.

1. Moments

We recapitulate the statement for moments.

Theorem IV.1. (Universality for moments). Consider two
families (A;) and (A;) of independent, random, Hermitian
matrices whose moments match Eq. (9) up to order ¢ > 2,
and introduce the sums H and H as in Eq. (8). Define the

statistics

|:n

> (EA? | +[|EAZ]).

i=1

D AN + A

1

m 1/k
fork>1 and p2>2;

Lp.k:
o

Then, for each even natural number p € 2N, we have the
bounds
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A, — |

- { 2pH/ (1) Ly +2pxL,,
—L2p I < (L)Y £ 2p X Ly .

The p-norm is defined in Eq. (4).

Our proof of Theorem IV.1 is based on the Lindeberg
exchange principle. Roughly, we interpolate between the
two sums by replacing one argument at each step. Since the
low moments of the summands match, each replacement
only changes the p-norm slightly, with an error on the order
(t 4+ 1). The calculation is straightforward, but it implicitly
exploits noncommutativity properties of the random matri-
ces in the moment matching. The error is a noncommu-
tative polynomial of matrices, which we treat by a strict
application of Holder’s inequality, entirely ignoring non-
commutativity. Once we have replaced all the summands,
we tie the estimates together using a self-bounding argu-
ment. To execute this step, we must solve a difference
equation by passing to a continuous differential equation.

Lindeberg’s method has recently been applied to RMT in
Refs. [50,51,64]. Some of the other ideas and methods in
this argument are from Refs. [53-55,65].

The basic argument relies on a general form of Holder’s
inequality for Schatten norms. As we will see, we can
introduce more refined moment inequalities to obtain some
improvements.

Fact A.1. (Multivariate Holder for random matrices).
For any family (X,,...,X}) of square random matrices,
possibly statistically dependent, the product satisfies the
trace inequality

k

[1x

i=1

k
SH”lX,-IIIpi whenever
1=l

and p; >0.

Proof sketch. In the deterministic setting, with two
matrices, the result appears in Corollary 4.2.6 in Ref. [66].
Use induction to extend the bound to more than two
deterministic matrices. To incorporate the normalized trace,
note that the weighted geometric mean (py,..., p,s) >

¢ | a? is homogeneous for fixed a; > 0. To incorporate
the expectation, recall that the weighted geometric mean is
concave, and invoke Jensen’s inequality. [

Proof of Theorem 1V.1: Two matching moments. To
illustrate the concept behind the argument, we carefully
establish the first bound for the r = 2 case. Afterward, we
describe the modifications required to extend the bound to
t > 2 and to introduce the variance parameter o>.

Fix an even natural number p €2N. Our goal is to
compare the pth moment [||-[|I} of the two independent

sums S = > A; and § = > | A,. The main idea is to

update one summand at a time from A; to A j» controlling
the change in the p-norm at each step.

In detail, for each index j = 0, 1,2, ..., m, we can define
the hybrid matrix

J m
SJ = Zfil + Z Ai where S() =S and Sm = S
i=1 i=j+1

Express the difference between the pth moments of § and §
as a telescoping sum:

m

— (I~ P —
[ETr(ZA,-) —[ETr(ZA,-) = (ETrS! —ETrS? ).
i=1 =1

* (A1)

For even p, we can express the p-norm [67] in terms of a
trace power: [||S||, = ETrS”. To bound the telescoping
sum, we first analyze the single update error and then solve
a recursion.

Step I: Single update error. Fix an index j =1,...,m.
Let us give a bound for the change in the p-norm when
we update A4; to Aj. Define the unchanged part of the
sum §; by

j=Sj-1 = A

We can control the change in the polynomial moment by
performing a Taylor expansion of the polynomial moment
at the unchanged part S_.

When expanding powers of a sum of matrices, keep in
mind the scalar binomial expansion:

(x+y)P = zp: <IIZ> xPkyk,

k=0

For matrices, the expansion takes the form

(S_+4,)r = ZS—"'AjS—"'AjS—"’AjS—"'

words

P
= ZM" where ‘[Eﬁ‘MkH
k=0

p —k
< (s (42)

Likewise, (S_ + A ;)P = 1 M; with analogous bounds
for the summands.

The bound in Eq. (A2) follows from Holder’s inequality
(Fact A.1), applied for all possible relative positions of S_
and A; with all parameters p; = p. Note that this general
bound ignores the noncommutativity of the matrices. The

binomial coefficients (?) are exactly the number of relative
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positions of the k appearances of A; among the p —k
appearances of S_.
To proceed, since the order parameter ¢ = 2, the first and

second moments of the random matrices A; and A; match
for each index i. As a consequence,

ETr[A,B] = ETr[A,B];
ETr[A;BA,C] = ETr[A,BA,C] for arbitrary B,C
independent of ALA,.

Crucially, this implies that subtracting the expected
moments completely cancels the first-order terms M

and M, and the second-order terms M, and M,. Thus,

ETrS! —ETiS”, ‘ - ‘[Eﬁ(S_ +A,)P —ETr(S_+A,)?

P
= Z(Mk -M;)
k=3
)4
<Y PSSl AN + (A4, A))
k=3

1 -3
SZ|||SJ‘—1 (54 (21’|||Aj|||,,)3
1 -
+Z(2p|”Aj“|p)p +(4;—~A4;). (A3)

The notation (A; A ;) denotes a replica of the first term
with A ; replaced by A j- To reach the second line, we collect
the higher-order terms Ms, ...,M,, and M3, M,, we
bound the binomial coefficient (?) < p*, and we use the
convexity of the p-norm [IS_[ll, = [IIS_ + [E[Aj]lllp <
IS +Aj|||p = |||Sj_1|||p. The last inequality bounds the
geometric series using the elementary numerical inequality

for x > 0.

Yo=Y 20 <5 (20 + (29)

We have successfully established a comparison between the
quantities |||Sj|||§ and |||Sj_,|||§.

Step II: Solving the recursion. We have expressed the
difference between the moments of S and S as a telescoping
sum (A1) of moments of hybrid matrices S;. The first part
of the argument yields a bound on the change in moments
at each step in terms of a smaller moment of the hybrid
matrices. We can use these results to develop coupled
difference inequalities, which we must solve.

Define the scalar quantities

Xj = [EﬁSf for j =0,1,2,...,m.

The boundary values of the sequence (x;) are the moments
of the original independent sums that we seek to compare:

x,, = ETr8” and x, = ETrS?”. To bound the differences of
this sequence, we introduce the notation

(2P)3 YORIIES
aj==— (A + MASNIE) - and
2p)P -
b; ==( 4) (A D + A P) - and @ = bo = 0.

Using the inequality (A1) for the jth step of the exchange,
we arrive at the coupled difference inequalities:

lx; — x| < a xxﬁ’_’f)/p—l—bj for each j =1, ..., m.

(A4)

Our task is to produce bounds for the terminal value x,, in
terms of the initial value x, and the coefficients a; and b;.

To do so, we pass to a differential equation. The proof
appears at the end of this section.

Lemma A.I. (From differences to derivatives). Define
coefficient functions

a(s)=ag;) and b(s) = by for s€[0,m].

For a fixed integer 1 < k < p, consider the differential
inequality

s €0, m]

{x’(s) > a(s) x x(s)P=R/P 4 p(s) (AS)

x(0) = x.

Then, each solution x(s) to the differential inequality
overestimates the solution (x;) to the coupled difference
inequalities (A4) in the sense that

x(j) 2 x; 20 foreach j=0,....,m.

The following ansatz provides a solution to the differ-
ential inequality (AS5). The proof of this lemma appears at
the end of the section.

Lemma A.2. (Ansatz for differential inequality). Fix an
integer 1 < k < p. Consider the function

ﬂ@=%@W+§Awmm+<[mmmyq”k

for s €0, m].

Then, y solves the differential inequality (A.1).

We are now prepared to solve the coupled difference
inequalities. Instantiate Lemmas A.1 and A.2 with param-
eters s = m and k = 3 to arrive at the one-sided inequality

3 3 3 m m 3/p
x}n/pﬁy(m)wp:xb/p—l—;Zaj—l—<ij) .
Jj=1 J=1
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This inequality provides an upper bound for the difference
Xy — xg/ P where we recall that x,, and x, are the pth
moments of the two independent sums. Taking the third
root and bounding the #; norm by the #; norm, we also

have the estimate

. . 3 1/3 m 1/p
W< (33 )+ (Xn)
j=1

J=1

This statement is slightly weaker, but it may be easier to
interpret and apply.

We may repeat the same argument by switching the roles
of A; and A j» noting that coefficients a; and b; remain the

J
same. This yields the desired two-sided estimate:

= I 3/ 3/ 3¢
A xmp—xop‘s— a;

3
P
m 3/p
+ (Z bj> .
=1

m

Sa)

i=1

3
p

Similarly,
Ai - Ai ‘:‘xmp—xop‘s <— aj)
i=1 p W=l » Pi=

m 1/
+ (Z bj> "
=1

Introduce the values of a; and b; and evaluate the numerical
constants to complete the proof of the theorem for random
matrix models with matching second moments ( = 2). =

Proof of Theorem 1V.1: More matching moments. Using
an analogous argument, we can obtain related results
comparing random matrix models where the moments
match. Fix ¢ > 2. Suppose that each pair A; and A; of
summands has matching moments up to order ¢ In this
case, the terms M, ..., M, cancel with M, ...,M,, so the
error depends only on the higher-order terms M, and M,
for k>1t+ 1.

Pursuing this observation, we arrive at the bound

m m_ r+1 m 1/(t+1)
E::‘ ZAl - ZAZ < (—Zaj>
i=1 p i=1 p p =1
m 1/p
(xn) "
j=1
where
2p t+1 ~
a; = ( 2), (A + AN and
2p)P ~
b, =20 g + WA ).

Using the notation L, ; from the statement of the theorem,
we reach the estimate

ESQ2(t+ 1)V x pt/ D s, 4217/ x pX L, ,.

For 2 <t < p, each of the leading constants is bounded
above by 2. This completes the argument. [

Proof of Theorem 1IV.1: Refined statistics. Finally, we
establish the result with more precise statistics of the
random summands. To do so, we simply replace
Holder’s inequality (Fact A.1) by a more refined moment
inequality. We require the following statement, which
specializes Prop. 4.1 in Ref. [55].

Fact A.2. (Trace inequality for random matrices). Let A
and Y be random Hermitian matrices that are statistically
independent. Consider a product with k copies of A and
(p — k) copies of Y in any order, where p > k > 2. Then,

ETr[AY? - AYP] < [[|[EA?|| x [IAII&2] = Y15~

In this expression, p; +---+4 py = p —k is an integer
partition.

We invoke this result with ¥ = S§_ and with A = A; or
A=A j- We can also take the minimum of this bound with
the bound via Holder’s inequality to see that the tail
parameter L, , does not get worse. The rest of the proof
is the same. L]

Finally, we complete the proofs of the two lemmas that
were required in the argument.

Proof of Lemma A.1. By assumption, x(0) > x, = 0. For
an induction, assume that x(j—1) > x;_; for an index
j > 1. Then,

x(j) —x(j—1)

_ /,jl ¥ (s)ds > /le (als) x x()7 + b(s) ) ds

> / (ali) % (G = T + () )ds 2 2, = ..

To reach the second line, note that the function x(s) is
increasing because the right-hand side of the differential
inequality is positive. Then, observe that the coefficients
a(s) =a([s]) and b(s) = b([s]) are constant on the
domain of integration. By induction, we obtain

x(j) = x;

for each j =0, ..., m.

This is the stated result. [
Proof of Lemma A.2. To verify that the ansatz satisfies

the differential inequality, first note the initial condition

v(0) = x(0). Using this fact, we take the derivative
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P
= a(s)y(s)"~/7 + b(s).

The inequality depends on the fact that (k/p) — 1 <0 and

(fb(”)d”) e [y((’)k/p +I]§ [ atwau+ ( / Sb(u)du>k/ ”} o,

This is a direct calculation using the fact that all the terms
are positive. Therefore, the ansatz solves the differential
inequality. [

2. Resolvent

The comparison principle extends to other functions
besides polynomial moments. In this section, we study
moments of the resolvent:

1 - 1

=—— and R:=——"—.
H-ow+in H-o-+in

R:
As usual, H and H are defined in Eq. (8). The parameters
w€R and > 0.

Theorem 1V.2. (Universality for resolvent moments).
Instate the assumptions and notation of Theorem IV.1.
For each even natural number p €2N, the polynomial
moments of the resolvent (11) are related by

IRIl, — IR, | <

Lt lp) (Plapa)
n n

The symbol < suppresses constants depending only on ¢.

Whenever the right-hand side is small [« (pn)~'], we
may take the pth power to obtain the expected density of
states (filtered by the resolvent) up to a multiplicative error.
For our Pauli string ensemble, we can achieve this outcome
because L3, o, = 1/ v/m, and the number m of summands
is chosen sufficiently large.

As compared with the polynomial moments, universality
for the resolvent involves some additional technical chal-
lenges. They stem from the fact that the resolvent has an
infinite Taylor series, and it is a nonconvex function of the
random matrix. To address the first concern, we follow
Ref. [55] and truncate the Taylor series at a carefully chosen
order. To that end, let us recall the statement of Taylor’s
theorem with an integral remainder.

Fact A.3. (Taylor with integral remainder). If the
function f:[0,1] - R is K times continuously differen-
tiable, then

K=l (k)
f() = Zf k!(0)+ (Ki 1! |:/01f<K)(S)(1 —s)flds|.

k=0

The Taylor expansion of the resolvent has a rather
involved expression. Fortunately, we merely need bounds
for the higher-order terms.

Proposition A.1. (Expanding the resolvent). For
Hermitian matrices S and A of the same order, consider
the matrix Z = S + inl, where n € R. Then, for each even
natural number p € 2N,

1

3p
m = ZMk where |ETI'|Mk|
k=0

< @p)

< Z=" 15~ AN, for k =0,....3p.

(A6)

The term M, is a noncommutative polynomial of degree k in

the variable A and degree p + k in the variables Z~! and Z~7,

where ~ refers to the conjugate transpose of the inverse.
Proof of Proposition A.l. First, we expand

1 1 1
ZAT T ZvAyR (@A)

(o] o]
_ Z(_Z—lA)flz—l . Z (_Z—lA)f,,/zz—l
£1=0 =0
x 3 (-27A)ZT N (~2TA) ez
=0 £ =0

1 P2

(A7)

The first line depends on the fact that Z +A and ZT + A
commute. The second line uses the expansion (Z +A)~! =
Y2o(=27'A)'Z

Next, to the matrix M, we add all terms with total power
k on the matrix A and total power p -+ k on the matrix Z~!
or Z=". For 0 < k < 3p, there are (P*{~") < (4p)* such

011014-14



SPARSE RANDOM HAMILTONIANS ARE QUANTUMLY EASY

PHYS. REV. X 14, 011014 (2024)

terms. Then, we apply Holder’s inequality (Fact A.1) to
each term contributing to M. This step yields

3p
3p—k

ETr[M| < (4p)* < WZ7' 15 WA, for ¢y =

3p
d =—=.
and g, =—

To bring the bounds into the same form, note that
WZ="M,, <WZ7M, for g, < p and [IA,ll < llAlll;, for
g, < 3p. To treat additional powers of Z~!, use a uniform
bound for the resolvent: [|Z~!|[[3/° < ||Z~"|[*/3 < y=*k/3,
We reach the desired bound for terms of order 0 < k < 3p.
For the remainder term in the Taylor expansion
(K =3p), we may compute the Kth derivative using
Eq. (A7) and invoke the same method to obtain a bound:

P NANRY
ET < (3p)! 4p)3p x — 2L
a5 E iz | S BP)x @p)T =g

for s €0, 1].

We have applied the uniform bound ||(Z + sA)~!|| < n7L.
Introduce the last display equation into the integral
remainder term in the Taylor expansion (A.3). We reach
the required estimate for K = 3p. ]

Proof of Theorem IV.2. To obtain a comparison of the
resolvents, we apply Lindeberg’s method again. For clarity
|

of argument, we will assume that there are = 2 matching
moments; the general case is similar. Define hybrid
matrices and their resolvents:

i=— forj=0,...,m.
ITH —w+ip "

Consider the telescoping sum

ETrR)” — ETAR|? = > (ETHR |7 — ETER; -, |").
j=1

We must bound each of the terms in the telescope.
Step I: Single update error. Fix an index j =1, ..., m.

The jth update replaces the summand A; with A j- Define
the unchanged part of the matrix and its resolvent:

H_ =:Hj—z‘ij =H;, |—A; and R_:==H_-w+in)™".

Since the moments of A; and A ;j match up to second order
and these matrices are independent of H_, the terms M,
M,, M, cancel the terms My, M, ,M, in the Taylor
expansion of the resolvent powers (Proposition A.1). Thus,

[ETT|R;|P — ETHR,_,|?| = [ETT|(H_ — @ + in) + A;| 7 — ETr|(H_ —  + in) + A, 7|

g -
1 L BPRIANE, 1 (8p)*PIIAIS -
< Z|||R-|||5 —2+ 1 7 L+ (A~ A))
1 1 (8pej)?  1(8pc))*” . <
<5 RN, 114" += 774; (setting ¢; = max{[ll4,lll; . l4,lll;,})
_, 8pc;)*  3(8pc;)*”
< IR lll7 : ’74J +§ 774; . (A8)

The first inequality bounds the geometric series of the error terms (A6):

FNU

3p
E xk <
k=3

4p ) .
3 3 o /3
((2x)* + (2x)°7)  for x = ’74/3 x [IIR_III |||Aj|||3p.

The second inequality combines the bounds for the two different summands A; and A i
The third inequality requires some comment. By another Taylor expansion, we may control the moments of R_ using the

moments of R;_;:

rYE il

3p 4
= = P -
ETr[R_|? < ETr[R;_, " (Z y") where v += 7 - IRl 114

k=0

Bounding the geometric series as >3 y* < 2(1 + ((2y)*)?/(?=1)) and noting that |4

jllls, < ¢, we find that

_ _ 8pc.)3r
ETHR_|” < 2<[ETr|Rj_1 [ %)

n*?
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Lastly, raise both sides to the (p — 1)/ p power, and use the
numerical inequality (a + b)P~1/P < P=D/r 4 p(r=1/p
for a, b > 0 to reach Eq. (A8). A similar bound holds when
t > 2 moments match.

Step 1I: Solving the recursion. The recursion is similar to
the proof of Theorem IV.1. We will present this argument
for a general choice of r > 2. First, introduce the scalar
variables

x]' = Eﬁ|RJ|p fOerO,...,m.
Define the coefficients ag := by := 0 and

L (2t +2)pe)™!

T R and
b i (2(t + 2)pcj)(t+1)17
JT o n([«}»z)p

The updates (A2) can then be written as a scalar recursion,
i—xi| <a; - xP7VP 4 b foreach j=1,...m
JT X S a5 Xy j J =L m

Repeating the same arguments as before (via Lemmas A.1
and A.2), we obtain control on the endpoints of the
sequence:

1 m m 1/p
1/ 1/
|xm1’ — X P| S;Zaj—i— <zl:bj)
J= J=

p[((l‘ + 2)L3p,oo)r+l
”t+2

(3N QU+ 2Py )
2 2(1—2)/[1}7t+2

((t =+ 2)pL3p,oo)r+l
l,lt+2 :

<8m

< (2"*2 4+ 10m/p)

The second inequality uses the uniform bound c¢; =
max{lllﬁj|||3p,|||Aj|||3p} <L;,. To reach the last line,

note that (3/2)'/? <2, drop the denominator 2(=2/7 > 1,
and apply Young’s inequality to determine that m'/? <
1+ m/p. m

3. Concentration for resolvent trace

In this section, we study the gth moments of the
resolvent trace, which, by Markov’s inequality, gives the
concentration of the local density of states needed for
Theorem II.1. The concentration fundamentally differs
from the calculation for the expectation and does not
explicitly refer to an ideal random matrix ensemble (e.g.,
the GUE). It suffices to introduce an independent copy by
the convexity of the g-norm,

|Tr|R|P — [Eﬁ|R|”|q < |Tr|R|? —ﬂ|R’|”\q where

[l = (E|x]9) /9,

which allows us to utilize a powerful concentration inequal-
ity for martingales. The estimate depends on an expected
moment |Tr|R|?|,, which we bound independently in
Appendix A3 a.

Theorem A.I. (Concentration for resolvent trace). For
independent centered matrices A, ..., A,,, consider identical
copies Aj- of A;. Then, the resolvent trace is concentrated as

B

Vap?
2

[TrIR|” — TeR|7], < [TFIRI7],
n

q ~

m
> lAslil,
=1

ig*(Aj)z
=1

qp mn 1/q
+= (D llAllg, ,
n \=

where
0. (A)?:=  sup Eu|(ulA|v)]?.
=10} =1

Crucially, the estimate depends on a variance-like
quantity ¢2(A) that more fully reflects the randomness
of the random matrix A. For the Pauli string ensemble, this
quantity is significantly smaller than the ordinary matrix
variance: 62(A) = (mN)™' < m™" = E|||A;|||*. The quan-
tity 62(A) arises from the following bound.

Fact A.4. Consider a random matrix A and a fixed matrix
B with compatible dimensions. Then,

Ea|Tr[AB]* < o3(A) - Tr(|B|]*.

Proof of Fact A.4. Consider the singular value decom-
position B =} |v;)s;(u;|. Then,

E,Tr[AB]Tr[ATB] = [EAZ<MJ.|A|v,>sj2<vj|AT|uj>sj
J J
< suply | (u;|A[v;) [ (u;|Av;)]
],l

- Tr[| B[] Tr[|B]]

< sup Egl{ulAlv)?

=l =1
- Tr[| B[] Tr[|B]].

The first inequality pushes the expectation inside the
sum, and it applies Holder’s inequality to the sum. The
second inequality is the Cauchy-Schwarz one. This is
the desired result. L]

In addition, the proof of Theorem A.1 employs a refined
scalar martingale inequality as follows. (For an introduction
to martingales, see Ref. [68].)
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Theorem A.2. (Ref. [69]). For the scalar martingales difference sequence d; (i.e., E;_id;:=E[d;|d;_;,....d;]=0), we
have that

max
k<n

+q‘max |d|j‘ )
q

1<j<n

k n 1/2
> = (va] X Eraa,
=t 1, j=1 g

Significantly, the conditional expectation [ ;_; appears inside the norm, which then allows us to exploit the second-moment
properties of A; via Fact A.4. Otherwise, applying a crude martingale inequality, such as uniform smoothness, gives a looser
bound in terms of E|||4;|||* instead of 67(A). The weaker bound does not properly reflect the randomness in A .

Proof of Theorem A.1. As usual, we write the telescoping sum

m
— — — — 1
Tr|R'|? — Tr|R|? = Tr|R;|? — Tr|R,_,|? ith Rji=———— d H;: Al A;.
el =i ;( TR~ TR ) Wit Ry ™ Z +]z+1:
By construction, the updates compose a martingale difference sequence:
[Tr|R | —Tr|Rj 1|P|A] LA ALA =0, (A9)

This point is evident because we can swap the random variables A ; and A} without changing the distribution. To analyze the
martingale, we expand the difference using the algebraic identity for a difference of powers:

Tr|R;|” — TrR; | = Tr[R}R; R, |P P=R R R[]
=Tr((R} -R_)-R; 1|R P24
=Tr[R}(H;., —H;)R]_, - j—1|Rj—1|p_2] T

;
J

= Tr[R}(A; — A} R[] +

The second equality is a telescoping sum. For the moment, we have suppressed other telescoping terms, such as

ﬁ[R;(R i —R;_;)-|R;_;|P7*]. The third equality uses the matrix identity A~' —B~' = B~'(B —A)A~'. The last line
regroups into three types of terms:

a; = TURIA R, |7 + TR[RPA R, R 172 + - = > Tr[RVA R,
by = Tr[R_,A}|R;,|] + Trl[RZ_ AR\ [R;- P72 + - = Y Tr[RY, AR,
r+s=p+1

¢; = TARA,(R,_1|7 = |R;|7)] = TR{(R} — R} )AYIR,_,[7] +
= > TR AR, - R - Tel(R) - R AR,

risxl1

using the identities for each r and s,

TrRARY) = TrRVARY ] + TrRVA,R)Y, - RV,
TrR ARV = Tr[R AR, | + Tr[(RY - RV))A/RY |

To simplify the expression above, we defined

. {Rj.|Rj|r—1oer|Rj|f—1 if ris odd
j =

IR|7 if r is even.

011014-17



CHEN, DALZELL, BERTA, BRANDAO, and TROPP

PHYS. REV. X 14, 011014 (2024)

When r is odd, we overload the same symbol for the above
two possible types of expressions, both of which fit into the
same argument since we eventually take norms everywhere.
Note that [R|’"'R} = R}|R|'™" since they can be simulta-
neously diagonalized in the eigenbasis of H ;.
It remains to study the concentration for each sequence
aj, bj, ¢;. The main observation is that each sequence forms
a mamngale difference sequence,

[E[aj,b] CJ|A ,A/I,AI]ZO

J- A
Indeed, the sequence a; gives a martingale difference
sequence since A; is 1ndependent of R; (similarly for
the sequence b;). Though complicated, the sequence c;

J
|

leil, < D (m[RY)Aj(R;S—)l =R, + Tr((R)

rts=p+1,
rs>l1

< Y ([RVARY (4 -A)R

r+r+tt>pl+2
< 3 (la0a; - A, IR, 17 R,
e
+ [llajll[laj —A; ||||R,||
1 2
2 s

D1, + [TrlR

also gives a martingale difference sequence since c; =
(Tr|R;|? —Tr|R;_|?) — a; — b; and Eq. (A9). Intuitively,
the sequences a;, b; have concentration controlled by the
second moments, which fully exploits randomness in the
random matrix A; via Fact A.4. The sequence c; is higher
order in A; and A}, and we simply use crude inequalities.

By uniform smoothness, the martingale difference
sequence c; satisfies

m 2
E:Cj
q

J=1

<> (g- Dl

We evaluate the individual g-norms,
~RUDARY )
V- AR AR )

LR,

7R IR - 11, )

The second inequality further expands the resolvent difference. The third inequality uses Holder’s inequality for the trace.
The last inequality uses Holder’s inequality, counts the combination of 7, s, ¢ by (” ;r') assumes that A and A’ have the same
distributions, and assumes that R;, R;_; have the same distribution as R.

For the sequence b;, we apply the scalar martingale inequality (Theorem A.2). We calculate the predictable quadratic

variation

*
1]

ZTr

Jj=

bil < >

r4s=p+1,
2 rs>1

m
< p? Z sup

j=1 [l lI=lwll=1

e

q

Ea, [(ulAj|0)* - Tr[|R;_i[P+1]?

RIS

’% Te[|R|7] 2 - Zo*

using Fact A.4 and the uniform bound on resolvent ||R|| <7~

!. We calculate the maximum by

(o LAl e —

q J= J1loco P

o ol < (§ Ib)| ) p TERI7),-

The bound for a; is completely analogous. Combine the above estimates to obtain the desired result. [

a. Expected moments

To make use of Theorem A.1, we also need to estimate the expected moments via the comparison argument.
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Theorem A.3. (Expected resolvent moments). For independent centered matrices A;, suppose the moments match that of
idealized matrices A;,

FA;, =0 and [EA;@":[EA?" foreachk=1,....,t and i=1,...,m.

Then,

|[Tx|R|? [1/" - |ﬁ|1~{|13|;/p‘ < 1 +m/pq (pqL

r+1 -
p p ) where L = max(llA;llspg. 1A:ll3pq)-

The symbol < suppresses constants depending only on 1.
Proof. We begin with a telescoping sum,

m

e — — 1
TrR|? — Tr|R|? = > (Tr|R;|P —Tr|R,|?)=:d; with R;:=————— and H, ZA + ZA
Jj=1 Hj -t j+1

We move on to control the moments of trace |Tr|R|? |4, which uses a similar argument as Theorems IV.1 and IV.2. We
present the calculation for ¢t = 2, but the general case is analogous.
Step I: Single update error. We again start with the telescoping sum

E(TER|")7 — E(TAR|?)? = > E(TRR]?)? — E(TRR]L, ).

Jj=0

The Taylor expansions satisty the bound from Fact A.1:

14,15,
ROEE

Tr|R;|” = Tr|R_ |P+ZTer where [TrtM,| < (4p)¥||R_|[57"/3

— — L — 14,15
(Tr|R;[?)? = (Tr|R_|P)7 + ) fi  where |f,| < (4gp)*(Tr|R_|?)? (IlR Ip”3#) .
k=1

The first inequality is analogous to the calculation (A6). Recall that the p-norms are normalized as [|O||, = (Tr|O|?)!/7.

The second inequality proceeds with an additional ¥ factor. We then bound the expected increments by canceling the first-
and second-order terms f; and f»,

4,1
oo I 3 1/3 3 i
[E(TERI?) — E(TAIRIZ )7 < EY (4gp)TrR_ |ﬂ|q(|R 17" 7) + (4, 4))
k=3

1 v (SaPIASN, N 1 (8apllA; Iy, 3 )
< TR P (== g ) g () A Ay

1 8qpl\3 1 (8qpl;\3r
q=1/p J J
5\Tr|R 1714 ( 7 ) +§ g

— 8qpt;\3 3 [8qpl;\3p
—1 J J
< [TelR|P[a~/7 (,74/3) T3 R )

The second inequality uses Holder’s inequality with respect to the expectation, sums the geometric series, and uses the
convenient estimate |||A j||3p|3p - lll4,lll;,,,- The third inequality sets £ ; == max (||A A The last inequality

establishes a self-bounding argument by

M WAL, ).
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Tr = 8qplliAjlll;,,\ e
E(THR_|7)? < 2<E(Tr|Rj|P)q + <W> )
n

in a similar vein as Eq. (AS8).

Step II: Solving the recursion. Again, we simplify the
recursion by defining scalar variables (and we also consider
matching moments up to order f),

1 (2(t42)gpt;)™!

x;j = E(Tr[R;|")9, 4j =52 2 ;
3 2+ 2)qpfj)(’“>‘1”
and b;:= = =

and ag := by := 0. The updates in Eq. (A8) can then be
written as a scalar recursion

qp—

1
qp ; —
|xj—xj_1|§aj-xj_1+bj foreach j=1,...,m

which, in fact, takes the exact same form as Theorem IV.2
up to p — gp. Regardless, we write down the remaining
calculation for completeness. As before, the arguments
(Lemmas A.1 and A.2) give the bound for the endpoints,

m m €L
1/ 1/ 1 a
e 7 = x| SEE 4+ <§ :bj)
J=1 J=1

<8m (qp)’((;:f)L)’“

3\ Var (2(t+2)gpL)™!
+ <§> (1+m/qp) 2(,_1)/qp;1,+2

(1-+2)qpL)*"

< (22 +10m/qp) e

The second inequality uses the uniform bound 7; =

max(|||f§j|||3p, |||Aj|||3p) < L. The last inequality drops the
denominator 2(-1)/47 > 1 and uses Young’s inequality for

m'/% <14 m/qp. This is the second desired result. m

APPENDIX B: PROPERTIES OF THE GUE

In this section, we instantiate the properties of
GUE matrices in the nonasymptotic regime. For our
purposes, most of the quantities highly concentrate [up
O(1/Poly(N)) deviations] and can be practically regarded
as constants.

Definition B.1. (GUE ensemble). The N-by-N Gaussian
unitary ensemble is a family of complex Hermitian random
matrices specified by

9 Tigy ...
HU:W lf]>l,
Gii
Hii:\/lj'lv’7

where g;;, g;. 9; ; are independent standard Gaussians.

1. pth moments

First, we given explicit bounds for the moments of the
GUE ensemble. This kind of result is a consequence of
classical explicit formulas for the moments of the GUE; for
example, see Lemma 3.3.1 in Ref. [70]. It also follows from
more recent work on nonasymptotic random matrix theory,
such as Ref. [53]. For our purposes, it is convenient to
derive the statement as a consequence of the main results
(Theorem 2.7 in Ref. [54]), applied to a GUE matrix.

Theorem B.1. (Moment bounds). For even p and a
random GUE matrix with dimension N,

(p/2)% 4)
)

The number 2 is exactly the maximal eigenvalue of the
semicircular distribution with unit variance.
Proof. We can compare the following random matrices:

1H Guelll, < 2<1 +

J|+|J>< | D= 16D
HGUE*X ;( +§/ij m )

~ ngAk
k
Xfree = ZAk ® Sk
k

where (g;;, gi;, gi) are independent standard normal vari-

ables and (s;) is a free semicircular family. The result
(Theorem 2.7 in Ref. [54]) states that

XN, = [ Xeeell | < 2(p/2)%*, | sup Z|Tr M2

Tr|M>=1
1
=2(p/2)* < sup Y Myl
NTr|M\2:1 i
D1/ 34
N
Recall the unconditional bound || X..|| < 2||EX?|| = 2 to
conclude the proof (p. 208 in Ref. [71]). [

2. Resolvent moments

We calculate the resolvent moments for GUE matrices.
Recall that

1
"H-w+in

Fact B.1. (Consequence of Corollary 11.4 in Ref. [72]).
For a random instance H gy of the GUE with dimension N,
define the empirical spectral density
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| &
p(E) = N Z 8(E - 2i(Hgug))-
i=1
Then, there is an absolute constant ¢ such that we have

C
S_

TN (B1)

sup
EER

/_ F(E) = oo (E))dE

(5]

with probability of at least 1 — (1/N).

Proof. In the setting of Corollary 11.4 in Ref. [72]), set
D = 1 and ¢ = 1/2. The range |E| < 10 extends to infinity
since the semicircle density p;. is supported on [-2, 2] and
the error must be decreasing for |E| > 2. ]

Corollary B.1. (Resolvent moments for the GUE). There
is an absolute constant ¢ such that for each w, n, we have

_ c
ETr|R,,,(H P=Spynpl £—FH=
| | .r/( GUE)| ,n,p' ﬂp\/ﬁ
24— x? 1
where S, , = / a —dx.
" o 2 |x—w+ig|?

Proof. Let f(E) = |E — w + in|~". Then,
ETFRousl” - 51|
< [E\ | 1@ pane) —psc<E>>dE\

| [ 1®) [ poue() - @ aEaE

1 c o 1
<(1-7) 77 (D ir@nee) + 5 2pgircen
< 2¢ n 2

“yPV/N n'N’

The first inequality uses integration by parts and the
boundary value [*_(pgug(E’) — psc(E'))dE" = 0. The third
line uses Fact B.1 to handle the high probability event (B1).
To reach the last line, we compute the integral using the
fact that the resolvent power f(E)=|E—w +in|™?,
increasing for £ < w and decreasing for £ > w, so the
integral equals 2f(w) = 2177 To bound the maximum, note
that 0 < f(E) <n?. Finally, increase the constant ¢ as
needed to combine the terms. n
Proposition B.1. (GUE: Concentration for resolvent
moments). For a matrix with jointly Gaussian entries

H:= ZgiAi where g; ~ N (0, 1)

and even p, the spectral density (probed by resolvent
powers) is concentrated as

p
anrl O

where o, = \/ sup Z |<V|Ai|w>|2'
wll=[lvll=1 "

| Tr|R|” — ETr|R|”|, < v/q

For a GUE matrix, we have o, = N~/2,

Proof of Proposition B.1. This is a standard application
of Gaussian concentration inequalities. We cannot find the
particular function of interest elsewhere, so we include a
derivation adapted from Ref. [55]. Some of the estimates
could be loose, in general, but suffice for our purposes.
Consider the function

-P

flx) =Tt

Z xiA i — + 17’]
We bound the Lipschitz constant

|[f(x) = ()| =Tr|Ry |7 — Tr|R,|”|
= |Tr[RIR, R, "2 — RIR,|R.["~2] + - - |

< [TY(RY(H, — HORR'Re|"] + -
p
< W HHx _HyH'

The second equality is a telescoping sum. The first
inequality uses the identity A~ =B~ = B-'(B - A)A~..
The last inequality uses the triangle inequality, the uniform
bound that ||R|| < !, and the coarse bound [|A]|; < [|A]|,
which holds because we are using normalized Schatten
norms. Lastly, we relate the operator norm to the Euclidean
norm of the coefficients,

1H, ~H,| —HZ( VA,

12
< (sup T |<v|A,-|w>|2) =yl

=0, [x =yl

= S»FF ZM(X,' —Vi)A;|w)

The inequality is the Cauchy-Schwarz one. To conclude
the proof, recall that an L-Lipschitz function of a standard
Gaussian vector is L2?-sub-Gaussian (Theorem 5.6 in
Ref. [73]). m
The preceding concentration argument also allows us to
bound
\ﬁ|l~{|1’|q < ETr|R|? + |Tr|R|? - [Eﬁ|1ﬂp|q.
GUE matrices have strong concentration properties, so the
right-hand side of the previous display is always dominated
by the expectation term in our applications.
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APPENDIX C: PROPERTIES OF THE PAULI
STRING ENSEMBLE

In this section, we compare the properties of the Pauli
string ensemble with the GUE. Recall that

m
m 1
Hpg = A; where Aj~ —- +{I,6%,6”,6°}%".
; ; =

We will compare the Pauli string ensemble with the GUE
Hamiltonian,

Hgup =) A,
j=1

Comparing the pth moments controls the spectral norm,
while the resolvent moments control the spectral density.

~m 1
here A~ —Hyg.
wher J \/}’l_’l GUE

1. Moments and the spectral norm

We use the pth moments to bound the spectral norm.

Theorem II1.1. (p-norms and operator norm). Let p € 2N
be an even natural number. The random Pauli string
ensemble (2) satisfies the norm bound

3/4

3/4
p P p
EEpsll, = H Gl | < (W - ﬁ) (1 + ﬁ)

The symbol < suppresses constant factors. Furthermore,
for0<e<1/2andm < 227 there exist constants c1,c >0
where

3
m>c n_4 ensures Pr(||[Hps|| >2(1+€)) <exp(—cyn).
€

To obtain a smaller multiplicative error e, note that the
parameters p and m only need to increase at a polynomial
rate (as a function of the number n of sites and the
parameter €).

Proof of Theorem IIl.I1. The p-norm estimates use
Theorem IV.1. To obtain the desired tail bounds, recall
the p-norm for GUE matrices,

)

H <2-(1+
lHuell, ( N

By Markov’s inequality,

Pr (||Hps|| > 1)

ElHws |7 _ s
- P tP

log(N)/p 3/4 3/4 14
< (< 2ro(l—+ 2 L
: NN

setting 1 = 2(1 + ¢).

The second inequality converts the operator norm to the pth
moments by ||H||” < TrH”, and the third inequality keeps
the leading-order terms via the notation (). The third line
uses m < N? and chooses appropriate parameters p =
clog(N)/e and m = ¢,[p*/ log(N)] so that the numerator
is bounded by 2(1 + €/2). The last inequality uses the
elementary estimate [(1 +€/2)/1 +¢] < e ¢/*fore < 1/2.
Note that N = 2" to obtain the desired result. [

2. Abundance of low-energy states and success
of phase estimation

In this section, we combine the bounds on the minimal
eigenvalue (Theorem III.1) and the density of states
(Theorem A.l1) to estimate the number of states with
approximately the ground energy. This immediately
implies that applying phase estimation on the maximally
mixed state returns a low-energy state as a witness with a
non-negligible success probability.

Theorem I1.1. (Low-energy states have low complexity).
For any accuracy e > 27"/¢1, let Hpg be drawn from the
Pauli string ensemble (2) with

nS
m= |Cy—
64

terms. Then, the following statement holds with probability

of at least 1 —e""" over a random draw Hpg from the
Pauli string ensemble. We can prepare a low-energy state p
such that

Amin(Hps) < TrlpHps| < (1 — €)Amin (Hps)

using a circuit of size G = Poly(n, e7!). The quantities c,,
¢,, and c; are absolute constants, and A,,,;, (Hps) denotes the
smallest eigenvalue of Hpg (Which is typically negative).

Proof of Theorem II.1. We are interested in controlling
the integrated density of states in an energy window just
above the ground state,

#{|E):E < E,)

N where Ey = Apin (Hps) + O(€).

This relative number of states guarantees the success
probability that phase estimation returns a state p within
this energy range (up to the phase estimation precision).
The idea is to construct a proxy for the low-energy
projector by consecutive local resolvents, which are essen-
tially local energy subspace projectors (Fig. 4). Consider

oy

2<fw<E,

IRl =) _|E)(Elqg, (E)

=:0(E,)
X Z|E><E|“(E < Ep)

as a proxy for the projector
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at low energy E,:=—(1—¢/3)-2. The resolvents are
spaced appropriately,

1 €
R/)P =———— forfez, @ =2,
| f_,"ll |H_fw+”7|l7 \/ﬁ
n= £.2, and p = |cilog(N)].

3
We will calculate ETrQ(E,) for GUE, show that
TrQ(E,) for the Pauli string ensemble takes com-

parable values, and then extract the low-energy density
of state.

GUE values. Recall the GUE resolvent values
(Corollary B.1)
Tt Ryyl? 2 $3/22 —/2— (7 = Do —=
n? VP

where S,z , , is an integral over the semicircle defined in
Corollary B.1. The second inequality uses the GUE
estimate (Corollary B.l1) and imposes the simplifying

2 E

FIG. 4. Probing the low-energy states E < E, via consecutive
resolvent powers.

constraint N > const/e* such that Sy;, ,/2 > constN~!/?
even near the spectral edge. The third inequality evalu-
ates S¢q . p-

Apply a crude Riemann sum over the semicircular
density near the edge and drop constants to obtain bounds
on the expected value,

2

ETr Q(E,) = Z nPETr|R 5,7 = Q(ev/e) using /\/)_cdx = gx\/)_c (C1)

2</W<E,

Pauli’s string ensemble values. Taking a crude union bound over the local resolvents, we ensure all of them are at least
half of the GUE expectation with high probability,

_ 1 . _ |
Pr (TrQ(EO) < E[ETrQ(EO)> <) pr <Tr|Rﬁ,,,7\P < 5[ETr|Rm,7|P>

f<E,

< /pe e <« 1 (Claim). (C2)

Extracting the density of states. Assuming the claim holds, it remains to extract the spectral density from the low-energy
subspace proxy Q(E,). We crudely estimate the function g, (E) by splitting the spectrum by a step function

TRQ(E)) = 1>, (EVIE < Eg 1) + i, (EVV(E 2 By + 1)

1
SNEE:H(E <Ey+n)+ e 1(E > E, + 7).

The second inequality uses that gz (E) < 1 and that g (E) = e 2P for E > E, + 1. Rearrange to bound the number of
low-energy states,

#{|E):E < —(1-2¢/3)-2} Z11(E <Ey+n)
N & N

ev/e — e ¥e))  [with high probability (C2)]

eve [setting log(N) > const log(1/€)].

> nPTrQ(E,) — e
Z
z

The second inequality uses concentration (C2) and plugs in the GUE value ETr Q(E,) [Eq. (C1)], which is approximately
the semicircle integral. The third inequality imposes additional constraints log(N) > constlog(1/¢), which can be
combined with N > const/e* by N > ¢~¢! for some constant ¢;. Combine this with the tail bound (Theorem III.1) for the
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operator norm ||Hpg|| for ¢ = €/6 [using that A, (Hps) > —||Hps|| and that (1 —2/3¢/1 4 €/6) > 1-5¢/6] to find that
there are many low-energy states,

#{|E> ‘E< (1 - 56/6)’1111111(HPS)} >0

v > Q(e¥2)  with high probability 1 — e=®(log™)"),

drawing from the Hamiltonian ensemble. Consequently, performing phase estimation with energy resolution O(e) on the
maximally mixed state prepares a low-energy state p such that

Tr|pHps] < (1 = 5¢/6)Amin(Hps)  with success probability Q(e3/?),

which costs Poly(m, 1/¢) using any off-the-shelf quantum simulation algorithm such as Trotter [3], Qubitization [74], or
qDrift [40] for Hamiltonian simulation within phase estimation. We may amplify the success probability to 1 — e/ (61/m)
using O(e73/?log(+/m/¢)) repeats. When all repetitions fail, we output the maximally mixed state, which, even in the worst
case, has energy upper bounded by /m. The resulting output state uses gate complexity

1
G = (number of repeats) - (QPE cost) = Q (Poly (m —) )
€

and the energy of the output state [75] is at most (1 — €)A;,(Hps), Which is the desired result.
Proof of Claim. It remains to prove the claim (C2); this is where we invoke concentration for the resolvent (Theorem
A.1). To reiterate, for each R = R, ,, we want to show

_ 1 .
WTS) Pr(TrR,,,|7 <-ETt|R,,, |’ ) < e ®W0e™")  for each £, C3
N 2 7

for parameters 7 = (¢/3) -2, p = | ¢, log(N)], and
q = 6(log(N)).
- a(20)

€

For each 7, @, we use the shorthand R = R, and rearrange
_ 1 - — — | R — —
Pr <Tr|R|1’ < 5[ETr|R|P> <Pr (|Tr|R|P — ETr|R|?| > E[ETr|R|P — |ETr|R|? — [ETr|R|P|>

o (o Y

LETr|R|? — |ETr|R|P — ETr|R|”

The last inequality is Markov’s. We proceed in bounding the denominator

! TR Bl _ - RIIP
—FETr|R|? — |ETr|R|? — ETr|R|?| = = |IR|II} (1 _ 2'1 _ l ~|||§’>
: 2 IR,
1 -
2 §|||R|||§(1 — O(eQ/Tog(N)) _ 1)),

The inequality uses |1 — (1 + x)?| < |1 —elIP| for

oo | TIRI, 1’ _ IR, = WRI,| _ p* + p*/m (1 L p3/4) _ ( 1 )
IR, em, = myt N/ plog(N)

which compares resolvent moments (Theorem IV.1), [|[Hguelll, <2 - [1 + (p/2)**/v/N], IRIll, > 1/2n, and the values of
the parameters g, p, m, .
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For the numerator, we evaluate Theorem A.1,

ITr|R|P - Tr|R'|"|, < [Tr|R|"],

<\/_p /N n

ml/q 1
fp+qp

P+ plqt/m

)

< (mmw’ +0( 5
mn

(+25))) - (o)

2

€

- 1 1+1/6
S ([ETr|R|1’ + (9( og(N) )) R—
n"*'VN ) ) log(N)*Y

The first inequality evaluates the second-moment quantity

1
oA =—  sup

M) ll=I10) =1

i

Ea, [(ulAi[v)]? = —

_ 1
sup  (u|Tr[[v)(v]]|u) = —.
M| 1) | =] [} =1 mN

The second inequality compares |Tr|R|?|}/” with |Tr|R|” /7 (Theorem A.3). The last inequality plugs in the values

of g,

p, 17 in terms of N, € and uses concentration for the Gaussian resolvent |Tr|R|?

|, < ETTR|? + [TTR|? — ETTR|?|, <

ETr[R|? + O(\/gp/n"*'V/N) (Proposition B.1). We obtain the desired result (C3),

Y1+1/6

_ . (ETTR|” + O(E5 ) g l
Pr <Tr|R|1’ < %[ETr|R|P> < ( VN 7 logN)TH ) —Q(log(V)')

2l

The second inequality uses ETr|R|P = ETr|R, |7 2

3
Vel Z \Je/\/log(N) so that the base is smaller

than 1 for large enough N. The last inequality intro-
duces an explicit constant. This concludes the proof of
Claim (C2). (]

APPENDIX D: CIRCUIT-SIZE LOWER BOUNDS
FOR LOW-ENERGY STATES

The GUE is unitarily invariant; thus, any subspace of
low-energy eigenvectors will be Haar random. Conse-
quently, preparing a low-energy state of the GUE neces-
sarily requires large circuit complexity. Does enough of this
randomness carry over to sparse Hamiltonian ensembles
such that a similar statement can be made? In this section,
we prove that, with high probability over the ensemble, any
circuit that prepares a low-energy state necessarily has a
large circuit size. To show Theorem II.2, we split this
into the following two statements. We first calculate the
expected norm.

Proposition D. 1. For the Pauli string ensemble given in
Eq. (2), lE)’mm(HPS) _1/2

Proof. By symmetry of the ensemble,

2[E|)“min(HPS)| = [E|/1min(HPS)| + [E|’?'max<HPS)|
> E|Hps|| > E|Hpsll, = 1.

IR, (1~

O(eO1/TogN)) _ 1)).

< e_C3n1/3

|
The last inequality holds for the normalized Schatten
p-norms, defined in Eq. (4). m
Lemma D.I. (Small circuit fails to give low-energy
states). Fix a circuit architecture of two-qubit gates with
size G with the initial state |0) and consider the family of all
reachable states Circ(G). Suppose m < ¢*N?; then, there
are constants ¢, ¢, such that

G < ciey/mlog=! (m)

Pr [ inf  (y|Hps|y) < —e} < exp (—crev/m).
|w) € Circ(G)

implies

Proof. The proof uses concentration inequality for any
nonrandom state and bootstraps for an epsilon net by the
union bound. Consider the random variable associated with
a fixed pure state,

m

<HPS>y/ = Zai where <HPS>V/ = (w[Hops|y)
i=1
1
and a; = —,_m <Ai>1//'

We use the symmetry of the Pauli string ensemble Hpg ~
—Hopg to consider the more intuitive maximization problem.
We also drop the subscript H = Hpg for simplicity.
Variance of a Pauli string. First, we calculate the
variance of a random Pauli string with arbitrary fixed input
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[EA,-|<A1'>1//|2 = [EA,- <W‘Ai|’//> <U/|Ai|ll’>

= W) Wil = < 1.

The second equality evaluates the second moment of
the Pauli string ensemble. Notice that the variance is
exponentially smaller than the maximal value of the
random variable. In other words, a fixed input state is
very unlikely to “align” with the random Pauli string A;.
Intuitively, the random Pauli strings are very noncommu-
tative and thus cannot be simultaneously diagonalized on a
preferred basis.

Variance of the total energy. From the variance of the
individual terms, we may obtain a tail bound for the sum
via Bernstein’s inequality,

_2
Pr[(H), > 1] <exp (#L/tz/'})

1

wherev:=Z[E[a,2]:— and a; <L:=1/\/m.

N
(D1)

In other words, any deterministic input state (that does not
correlate with the Hamiltonian) is very likely to have small
energies.

Union bound over an epsilon net. By a union bound,
good concentration implies that the energies must be
simultaneously small for a large family of deterministic
input states, specifically, the input states drawn from an
epsilon net over a small circuit. For a circuit consisting of G
gates, there exists an

(m) net{|y;)} for Circ(G) with cardinality
#{lyi)} < exp (O(Glog(Gv/m/e))).

which is justified as follows. Any circuit with G two-qubit
gates is equivalently given by a product of fixed CNOT
gates interspersed with KG single-parameter single-qubit
rotation gates by certain angles, with K = O(1). If we cast
a (¢/(2y/mKG)) net over the interval [0, 2x] for each of
these KG rotation angles, the set of circuits we generate
will form an e/(2+/m) net over states in Circ(G), and the
cardinality of the set is at (47/mKG/e)X%. One of the
elements of this net is guaranteed to approximate the state
ly) € Circ(G) that achieves the supremum of (H), up to
error €/(2y/m), and since ||H| <+/m holds, we have
that sup, (H), < max;(H), + ¢/2. Therefore, we have
reduced the supremum over the state on a size-G circuit to
the maximum over the (e¢/(2y/m)) net, where the union
bound applies [Eq. (D1)],

Pr [ sup
|w) € Circ(G)

=

<Pr [max (H),
i 1

[NSNRY

—e2
<#{lyi)} - exp <W>
<#{ly;)} - exp (— min(8e\/m/8.e’N/8)).

Therefore, there exist constants ¢, ¢, such that

G < c¢; min(ey/m, €’N) - log™! (m)

implies Pr[ sup (H) >€}
|w) € Circ(G)

< exp ( — ¢, min(ey/m, €N)).

Plug in the assumption that m < €?N? to obtain the
desired result. [

We suspect the true circuit complexity to be Q(m), but
the current union bound argument can only give Q(y/m).
The concentration inequality needs to handle the event
when the same Pauli string occurs Q(+/m) times.

Still, we obtain a growing circuit-size lower bound
Q(y/m) by an elementary argument. In retrospect, it
crucially depends on the noncommutativity of Pauli strings:
The variance is suppressed by dimension. In contrast, the
argument only gives Q(n) circuit-size lower bounds (which
is useless) for random, complete, k-local Hamiltonians for
fixed k. Concretely, let P; be the set of Pauli strings of
weight k and consider the ensemble H =) p 740,
where r, are uniform random signs. Then, as in the proof
of Lemma D.1, define a, =rs(H,),, and compute
[viewing k = O(1)]

7&d

v= Elaz] = O(|Py]) = ©(n")

ceP;

and aq,<L=1.

Here, the variance is much larger, and the optimum is
roughly ||H|| = ©(y/vn). Plugging this into the union
bound yields

Pr {sn;p(H)l,,i Zg Wl] < #{lwi)}

—e?vn/8

o (0 T oriars) )~

The union bound only supports size-O(n) circuits, roughly
the circuit size of product states.

APPENDIX E: MISSING PROOFS

In this appendix, we collect missing proofs.
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1. Proof of Fact IV.1

Proof. The first and third moments vanish for both sets of
matrices A; and A;. We calculate the second moment

1 . .
E[A; ®A;] = %[E(DP%-PTD') ® (DP + P'DY).
1
=3 EDP ® P'D' + P'D" @ DP
m
= E[Hgue @ Hgug)-

The first equality uses E[D ® D] =0. The second
inequality is

E[DP ® P'D'] = Z[E|i)<i|P Q Pi|i) (il
=SS @ i

which is proportional to the GUE value. This is the desired
result. (]

APPENDIX F: DIFFICULTY CANCELING
HIGHER MOMENTS VIA INTERPOLATION

In this appendix, we give a heuristic reason why it
seems difficult for interpolation-based methods to utilize
|

f()’EA, @ A; + g(1)’EA; ® A; = const => f(1)* + g(

higher-moment matching. Again, consider a set of inde-
pendent matrices A; whose low moments match those of

some idealized matrices A;,

FA; =0 and EA® =EA®* foreachk=1,....1

and i=1,...,m.
Suppose we construct an interpolation path

S0 = fOY A+ 90> A (F)

Then, consider the expected pth moment and expand in
powers of A,

P =E(f(DA; +g(DA;) - (f(DA; + g(DAy) - --
+E(f(DA; + g(DA;) - (f(DA; + g(DA,) - -
x (f(A; + g(HA}) + .

ES(1)

Suppose the second and third moments do not vanish. If we
want the time derivative to vanish, then we generally need

=
o

I
—_

f(1PEA, @ A, ® A, +g(1)’EA; ® A, ® A; = const => f(1)> + g(1)® = 1.

There are only discrete solutions to both algebraic equa-
tions, and no continuous path can be established between
f=0and f = 1. Indeed, the standard interpolant f(¢) =
V1 —t,g(t) =/t only cancels out the second moments.
Therefore, if we want interpolation methods to capture
higher-moments matching conditions, we need to go
beyond the form of Eq. (F1). On the contrary, the Lindeberg
principle appears more natural for this task.
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