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The closed-form solution of the 1.5 post-Newtonian (PN) accurate binary black hole (BBH) Hamiltonian

system has proven to be evasive for a long time since the introduction of the system in 1966. Solutions of the

PN BBH systems with arbitrary parameters (masses, spins, eccentricity) are required for modeling the

gravitational waves emitted by them. Accurate models of gravitational waves are crucial for their detection by

LIGO/Virgo and LISA. Only recently, two solution methods for solving the BBH dynamics were proposed in

Ref. [G. Cho and H.M. Lee, Phys. Rev. D 100, 044046 (2019)] (without using action-angle variables), and

Refs. [S. Tanay et al., Phys. Rev. D 103, 064066 (2021), S. Tanay et al., Phys. Rev. D 107, 103040 (2023)]

(action-angle based). This paper combines the ideas laid out in the above articles, fills the missing gaps and

compiles the two solutions which are fully 1.5PN accurate. We also present a public Mathematica package

BBHPNTOOLKIT which implements these two solutions and compares them with the result of numerical

integration of the evolution equations. The level of agreement between these solutions provides a numerical

verification for all the five action variables constructed in Refs. [S. Tanay et al., Phys. Rev. D 103, 064066

(2021), S. Tanay et al., Phys. Rev. D 107, 103040 (2023)]. This paper hence serves as a stepping stone for

pushing the action-angle-based solution to 2PN order via canonical perturbation theory.

DOI: 10.1103/PhysRevD.108.124039

I. INTRODUCTION

Construction of accurate gravitational wave (GW) tem-
plates (or models) has been crucial to the GW detections
that have taken place so far since 2015 [1–3]. This is so
because the method of matched filtering for GW detection
requires as one of the inputs, the theoretical templates of the
GW signal to be detected. Post-Newtonian (PN) theory
serves as a useful framework within which GWs from
binary black holes (BBHs) are modeled when the system is
in its initial and longest-lived inspiral stage [4]. At this stage,
the two black holes (BHs) of the BBH are far apart and
move slowly around a common center. This is also referred
to as the PN regime. In the PN framework, quantities of
interest are presented in a PN power series in the small PN
paramter (ratio of the typical speed of the system and that of
light). As is typical of power series, higher-order corrections
are of smaller magnitudes and carry higher PN orders. Since
GWs from a BBH are functions of the positions momenta of
the source, modeling the positions momenta of the BBH
system is crucial for constructing the GW templates. This

paper deals with the construction of 1.5PN accurate closed-
form solutions of the BBH system.
Since we restrict ourselves to 1.5PN order, the dissipative

effects on the BBH dynamics due to GW emission do not

enter the picture; they show up at 2.5PN. The conservative

dynamics of the system can be described with the PN

Hamiltonian framework, wherein the system possesses a

Hamiltonian that is a function of the system’s canonical

coordinates [5]. The leading PN order effect is simply that

of two point masses moving under mutual Newtonian

gravitational attraction whose Hamiltonian treatment is a

textbook subject matter. Such systems, move on a closed

ellipse if they are bound. The next level of sophistication is

at 1PN order wherein 1PN effects are added to the above

Newtonian system. At this level, spin effects are ignored

(they enter at 1.5PN). Reference [6] provided the quasi-

Keplerian parametric solution for this system; the trajectory

is no longer a closed ellipse and the system features the

advance of periastron. The orbit still remains confined in a

plane due to the constancy of the angular momentum vector.
Moving further up the PN ladder, we encounter the 1.5PN

system whose Hamiltonian was proposed in Ref. [7]. At
1.5PN order, spin effects come into play for the first time via
a spin-orbit interaction (linear in spin), while the spin-spin*
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interaction terms enter at 2PN. Via numerical integration of
the resulting equations of motion (EOMs), it is seen that the
orbital plane precesses; the orbital angular momentum is
constant only in magnitude, but not in direction. This
system displays the rich interplay of nonzero BH spins,
periastron precession, along with spin and orbital-plane
precession. We concern ourselves with this system in
this paper.
Over the past decades, solutions to the dynamics of the

spinning BBH system (at 1.5PN order or higher) have been
constructed by many groups [8–16], but most of them
worked under some simplifying specialization like only
one BH spinning, equal masses, small eccentricity, orbit-
averaging, etc. Two recent breakthroughs have occurred on
the front of finding solutions to the most general 1.5PN
BBH system without any simplifying assumptions where
the qualifier “most general” indicates a system with
arbitrary values of masses, spins, and eccentricity, while
still falling under the PN regime.

1
The first breakthrough

was made by Cho and Lee in Ref. [17] where they
succeeded in integrating the EOMs of the system; the
1PN term in the Hamiltonian was ignored throughout for
simplicity. The second breakthrough came in the form of
Refs. [18,19], where the authors evaluated all the action
variables [actions as in action-angle (AA) variables] and
laid out a scheme on how to construct the AA-based
solution of the system.

2
Against this backdrop, this paper

aims to target the following objectives
(1) Represent the solution of Ref. [17] but with the 1PN

terms included. We will call it the standard solution.
(2) Present a systematic procedure to construct the

AA-based solution. As we will see later, the con-
struction of the AA-based solution requires the
standard solution as one of the inputs.

(3) Make available BBHPNTOOLKIT, a public Mathema-

tica package [21] that (1) implements the standard
solution, the AA-based solution, and the numerical
solution (2) gives the numerical values of all five
frequencies (rate of increase of the angle variables)
of a given BBH system, (3) computes the Poisson
brackets (PBs) between any two functions of the
phase-space variables.

Let us mention that the AA-based solution provides a
significant advantage over the standard solution. This is so
because while extending the standard solution to 2PN
appears quite difficult, the AA-based solution should be
extendable to 2PN via canonical perturbation theory. This
paper assembles the ideas put forth in Refs. [18,19,22], and
provides a solid platform from where one can springboard

to push the 1.5PN solutions to 2PN order using canonical
perturbation theory.
The organization of the paper is as follows. In Sec. II, we

introduce the phase space, the Hamiltonian, the EOMs of
the system as well as the concept of AA variables. In
Sec. III, we represent the solution of Ref. [22] with the
1PN terms included (standard solution). In Sec. IV, we lay
out an in a step-by-step fashion, the strategy to construct
the alternative AA-based solution. In Sec. V, we introduce
the Mathematica package BBHPNTOOLKIT that we release
with this paper. We also make comparisons of our
analytical solutions with the numerical one, before sum-
marizing in Sec. VI.

II. THE SETUP

This paper is the culmination of the research initiated in
Refs. [17–19]. Since the notations and conventions used in
the first article differs from those in the other two articles,
the notations and conventions of this paper are a mix of the
two types.
The system in consideration is a BBH system in the PN

approximation. It consists of two BHs of masses m1 and
m2 such that the relative separation vector of the first BH

from the second one is R⃗. We choose to work in the center-
of-mass frame throughout wherein the momenta of the first
BH is equal to the negative of the other and is represented

by P⃗. The total angular momenta of the BBH system is

J⃗ ¼ L⃗þ S⃗1 þ S⃗2, where L⃗≡ R⃗ × P⃗, and S⃗1 and S⃗2 are the
spin angular momenta of the two BHs. We also define the
total massM ¼ m1 þm2, the reduced mass μ≡m1m2=M,
the symmetric mass ratio ν≡ μ=M, and σ1 ≡ 1þ
3m2=4m1 and σ2 ≡ 1þ 3m1=4m2, along with

S⃗eff ≡ σ1S⃗1 þ σ2S⃗2: ð1Þ

As usual, G and c denote the gravitational constant and the
speed of light, respectively. Finally, note that we represent
the physical time with t0, whereas t≡ t0=ðGMÞ is reserved
for the scaled time. Dots represent a derivative taken with
respect to t. The norm of any 3D vector will be denoted by
the same letter as the vector but without the arrow, i.e.,

V ≡ jV⃗j. The unit vector V⃗=V corresponding to a vector V⃗

is denoted by the use of a hat V̂ ≡ V⃗=V.
We now present the 1.5PN Hamiltonian of the system

using scaled variables r⃗≡ R⃗=ðGMÞ, p⃗≡ P⃗=μ,

H ¼ HN þH1PN þH1.5PN þOðc−4Þ; ð2Þ

where the various PN components are

HN ¼ μ

�

p2

2
−
1

r

�

; ð3Þ

1
In the PN approximation, the spin magnitude of a maximally

spinning BH is 0.5PN order smaller than the BH’s orbital angular
momentum.

2
See Ref. [20] for a pedagogical introduction to the action-

angle method of solution.
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H1PN ¼ μ

c2 {
1

8
ð3ν − 1Þp4 þ 1

2r2
ð4Þ

−
1

2r
½ð3þ νÞp2 þ νðr̂ · p⃗Þ2�

�

; ð5Þ

H1.5PN ¼ 2G

c2R3
S⃗eff · L⃗: ð6Þ

The evolution of any function g is given by its Poisson
bracket (PB) with H

dg

dt0
¼ fg;Hg: ð7Þ

A few basic rules are needed to evaluate the PB between
any two functions of the phase space variables R⃗; P⃗; S⃗1, and

S⃗2, the first one being the PB between the phase space
variables. The only nonvanishing PBs between the phase-
space variables are given by

fRi; Pjg ¼ δij; and fSia; Sjbg ¼ δabϵ
ij
k S

k
a; ð8Þ

and those related by the property of antisymmetry of the
PBs

ff; gg ¼ −fg; fg: ð9Þ

a, b have been used to label the BHs, whereas i, j, k label

the components of the vectors. ϵ
ij
k is the usual Levi-Civita

symbol in three dimensions. This is despite the appearance
of lower index k, whose sole purpose is to implement
Einstein summation. The second rule is the so-called chain
rule (with vls standing for the phase-space variables)

ff; gðvlÞg ¼ ff; vlg
∂g

∂vl
: ð10Þ

Finally, with the aid of Eqs. (8), (9), and (10), we can
evaluate the PB between any two quantities. This also lets
us evaluate the time derivative of any quantity via Eq. (7).
Two quantities f and g are said to commute or be

in involution if ff; gg ¼ 0. A system with Hamiltonian

H in 2n canonical momenta-positions coordinates ðP⃗; Q⃗Þ is
said to be integrable if there exists a canonical trans-

formation to new momenta-positions coordinates ðJ⃗ ; θ⃗Þ
such thatH is a function of only theJ s, and that all the P⃗ and

Q⃗ are 2π-periodic functions of the angle variables θ⃗ [23]. An
integrable system possesses n mutually commuting con-
stants, including the Hamiltonian (Liouville-Arnold theo-
rem). Another equivalent but practically more useful
definition of actions is given via [23,24]

J k ¼
1

2π

I

Ck

Θ ¼ 1

2π

I

Ck

PidQ
i; ð11Þ

where Ck is any loop in the kth homotopy class on the n
torus defined by the constant values of the n commuting
constants.

Before ending this section, we will touch upon the

concept of flows under a function f of the phase-space

variables and the associated vector fields. fðP⃗; Q⃗Þ defines
a vector field as f·; fg ¼ ∂=∂λ, and its action on another

function gðP⃗; Q⃗Þ is ∂g=∂λ ¼ fg; fg [25]. The integral

curves of the vector field is referred to as the flow of

the field. With this, it is easy to see that the equation

governing the real-time evolution of a Hamiltonian system

dg=dt0 ¼ fg;Hg is basically the flow equation under

the Hamiltonian where the flow parameter λ is to be

taken as time t0. The next two sections deal with two

equivalent ways of constructing the solution of 1.5PN

BBH system.

III. THE STANDARD SOLUTION

The standard solution is constructed by integrating

the flow equations under the 1.5PN Hamiltonian.

Reference [17] constructed the solution of the 1.5PN

BBH system but omitted the 1PN term of the Hamiltonian

entirely in their analysis as it was deemed by the authors to

be simple to deal with. Here we include the 1PN terms too.

Most of the derivation in Ref. [17] goes through, even after

including the 1PN terms. So, we closely follow their

approach and do not present the entire derivation. We

provide derivation details only for those segments where

the derivation presented in Ref. [17] has to be significantly

modified due to the inclusion of the 1PN terms. Needless

to say, we refer the reader to Ref. [17] for the derivation of

many of the results that we present in this section.

Reference [17] also has some typos that we fix in this

paper.

A. Angles between the L⃗, S⃗1, and S⃗2

We introduce scaled variables via ⃗l≡ L⃗=ðμGMÞ,
h≡H=μ, and s⃗a ≡ S⃗a=ðμGMÞ, where a ¼ 1, 2 serve to

distinguish the two BHs. Let κ1, κ2, and γ denote the angle

between the vector pairs ðL⃗; S⃗1Þ, ðL⃗; S⃗2Þ, and ðS⃗1; S⃗2Þ.
Without loss of generality, we assume thatm1 > m2. Under

the 1.5PN Hamiltonian, L, S1, and S2 remain constant in

time as their PB with the Hamiltonian vanishes.

The solution for cos κ1 and its method of derivation is the

same as that presented in Sec. III A of Ref. [17], which was

done without including the 1PN term in the Hamiltonian.

Here we directly present that solution. It reads

cos κ1ðtÞ ¼ x1 þ ðx2 − x1Þsn2ðϒðtÞ; βÞ: ð12Þ
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The quantities used in the above equation are defined

below. x1, x2, x3 are the roots of the following cubic

equation (in the order x1 < x2 < x3
3
)

− 2δ1LS1ðδ1 − δ2Þx3 − ½L2ðδ1 − δ2Þ2 þ 2δ2LΣ2S2ðδ2 − δ1Þ
þ δ2

1
S2
1
þ 2δ1δ2Σ1S1S2 þ δ2

2
S2
2
�x2 þ 2δ2S2½LΣ1ðδ2 − δ1Þ

þΣ2ðδ1S1 þ δ2Σ1S2Þ�x− δ2
2
S2
2
ðΣ2

1
þΣ

2

2
− 1Þ ¼ 0: ð13Þ

Σ1, Σ2, δ1, and δ2 are constant quantities defined as

Σ1 ≡
S⃗1 · S⃗2

S1S2
−

L

S2

δ1 − δ2

δ2

L⃗ · S⃗1

LS1
; ð14Þ

Σ2 ≡
L⃗ · S⃗2

LS2
þ δ1S1

δ2S2

L⃗ · S⃗1

LS1
; ð15Þ

δa ≡ 2νσa; ða ¼ 1; 2Þ: ð16Þ

It is easy to rewrite Σs in terms of other constants of motion

as [see Eqs. (A8) and (A9) of Ref. [19] ]

Σ1 ¼
σ2ðJ2 − L2 − S2

1
− S2

2
Þ − 2Seff · L

2σ2S1S2
; ð17Þ

Σ2 ¼
Seff · L

σ2LS2
; ð18Þ

which goes on to show that the Σs are also constants of

motion. We still need more description to fully explicate the

solution given in Eq. (12).

ϒðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðx3 − x1Þ
p

2

�

αþ vþ e sin v

c2l3

�

; ð19Þ

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − x1

x3 − x1

r

; ð20Þ

α¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðx3 − x1Þ
p F

 

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosκ1ðt¼ 0Þ− x1

x2 − x1

s

;β

!

; ð21Þ

A ¼ 2ls1δ1ðδ2 − δ1Þ; ð22Þ

v ¼ 2 arctan

�

ffiffiffiffiffiffiffiffiffiffiffi

1þ e

1 − e

r

tan
u

2

�

; or ð23Þ

¼ uþ 2 arctan

�

βe sin u

1 − βe cos u

�

; ð24Þ

βe ¼
e

1þ ð1 − e2Þ1=2 ; ð25Þ

nðt − t0Þ ¼ u − e sin u; ð26Þ

n ¼ ð−2hÞ3=2; ð27Þ

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2hl2
p

; ð28Þ

Fðϕp; kÞ≡
Z

ϕp

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2 sin2 θ
p ; ð29Þ

snðF; kÞ≡ sinðamðF; kÞÞ≡ sinϕp: ð30Þ

Note that Eqs. (23), (26), (27), and (28) give the true

anomaly, Kepler equation, mean motion and the eccentric-

ity, respectively, all at the Newtonian level. Also, it is

important to mention that Eq. (24) is preferred over Eq. (23)

because its rhs does not have the discontinuity due to

arctan, the way the rhs of Eq. (23) has. This renders the

latter not so useful beyond the timespan of one orbital

period. In Eqs. (29) and (30), F is the incomplete elliptic

integral of the first kind, whereas sn and am are the Jacobi

sin and amplitude functions, respectively. Finally, the þ
sign in Eq. (21) is chosen if d cos κ1=dt > 0 at initial time,

otherwise we choose the − sign.
The cosine of the other two remaining angles κ2 and γ

between the various angular momenta can be easily had
from the solution for cos κ1 [given in Eq. (12)], supple-
mented by Eqs. (14) and (15). This finally leads to

cos γ ¼ Σ1 þ
L

S2

δ1 − δ2

δ2
cos κ1; ð31Þ

cos κ2 ¼ Σ2 −
δ1S1

δ2S2
cos κ1: ð32Þ

FIG. 1. The noninertial ði0j0k0Þ frame (centered around

L̂≡ L⃗=L) is displayed along with the inertial ðijkÞ frame

(centered around Ĵ ≡ J⃗=J).

3
Reference [17] uses a different ordering of the roots

x2 < x3 < x1.
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B. Solution for L⃗

For the solution of L⃗, we will use an inertial frame (call it IF), whose z axis is aligned with J⃗; see Fig. 1. In this frame, L⃗
has a polar angle θL and an azimuthal angle ϕL. Because dL=dt ¼ 0, we need to determine only these two angles to

determine L⃗. Since

cos θL ¼ L⃗ · J⃗

LJ
¼ L2 þ LS1 cos κ1 þ LS2 cos κ2

LJ
; ð33Þ

this means that we can construct cos θL as a function of time from our already-constructed solutions for the cosines of κ1, κ2,
and γ in Sec. III A.
The solution for the azimuthal angle ϕL of L⃗ in the IF and its method of derivation closely follows Sec. III B of Ref. [17].

So without presenting the derivation, we again directly present the solution which reads

ϕLðtÞ − ϕL0
¼ F ðtÞ; ð34Þ

where the function F ðtÞ is

F ðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðx3 − x1Þ
p

 

β1Πðx1−x2α1þx1
; amðϒ; βÞ; βÞ

α1 þ x1
−
β2Πðx1−x2α2þx1

; amðϒ; βÞ; βÞ
α2 þ x1

!

; ð35Þ

with

α1 ¼ −
δ2ðjþ lþ s2σ2Þ

s1ðδ1 − δ2Þ
; ð36Þ

α2 ¼ −
δ2ð−jþ lþ s2σ2Þ

s1ðδ1 − δ2Þ
; ð37Þ

β1 ¼ −δ2
l2δ1 þ j2δ2 þ s1ðδ1 − δ2Þðs1 þ s2σ1Þ þ ls2δ1σ2 þ j½lðδ1 þ δ2Þ þ s2σ2δ2�

2s1ðδ1 − δ2Þ
; ð38Þ

β2 ¼ −δ2
l2δ1 þ j2δ2 þ s1ðδ1 − δ2Þðs1 þ s2σ1Þ þ ls2δ1σ2 − j½lðδ1 þ δ2Þ þ s2σ2δ2�

2s1ðδ1 − δ2Þ
: ð39Þ

ϕL0
is an integration constant to be determined by sub-

stituting t ¼ 0 in Eq. (34).
4

C. Solution for S⃗1 and S⃗2

In Ref. [17], the full solution of S⃗1 was not presented in

the same way as for L⃗. However, we can construct the

solution for S⃗1 in a way that parallels very closely the
method that Ref. [17] adopted to construct the solution of

L⃗.
5
So, again we merely present the solution without

derivation.
Just like L⃗, S⃗1 is described by its polar and azimuthal

angles (θS1 and ϕS1, respectively) because its magnitude is
fixed. For the polar angle, we have just like before

cos θS1 ¼
S⃗1 · J⃗

S1J
¼ S2

1
þ L⃗ · S⃗1 þ S⃗1 · S⃗2

S1J
;

¼ S2
1
þ LS1 cos κ1 þ S1S2 cos γ

S1J
; ð40Þ

which means that cos θS1 can be had from our previously
constructed solutions of cosines of κ1, κ2, and γ.
The solution for the azimuthal angle ϕS1ðtÞ of S⃗1 in the

IF is given by

ϕS1
ðtÞ − ϕS10

¼ GðtÞ; ð41Þ

where the function GðtÞ is

4
The corresponding equations in Ref. [17] [Eqs. (3.28)] have typos.

5
L⃗ solution was constructed in Ref. [17] by introducing an “L⃗-centered” noninertial frame, whose z axis was aligned with L⃗. To

construct the S⃗1 solution using this method, we need to introduce an “S⃗1-centered” noninertial frame whose z axis is aligned with S⃗1.
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GðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðx3 − x1Þ
p

 

β1s1Πð x1−x2
α1s1þx1

; amðϒ; βÞ; βÞ
α1s1 þ x1

−
β2s1Πð x1−x2

α2s1þx1
; amðϒ; βÞ; βÞ

α2s1 þ x1

!

þ vþ e sin v

c2l3
jδ2; ð42Þ

with

α1s1 ¼
δ2ð−jþ s1 þ s2σ1Þ

lδ1
; ð43Þ

α2s1 ¼
δ2ðjþ s1 þ s2σ1Þ

lδ1
; ð44Þ

β1s1 ¼ −δ2
l2δ1 þ ðs1ðδ1 − δ2Þ þ jδ2Þð−jþ s1 þ s2σ1Þ þ ls2δ1σ2

2lδ1
; ð45Þ

β2s1 ¼ δ2
−l2δ1 þ ð−s1δ1 þ ðjþ s1Þδ2Þðjþ s1 þ s2σ1Þ − ls2δ1σ2

2lδ1
: ð46Þ

ϕS10
is an integration constant to be determined by

substituting t ¼ 0 in Eq. (41). This completes the solution

for S⃗1. Now S⃗2 can also be easily had from

S⃗2 ¼ J⃗ − L⃗ − S⃗1: ð47Þ

D. Solution for R⃗

Specification of R⃗ can be broken down into its magni-
tude R and its azimuthal angle (phase) ϕ in a precessing

plane that is perpendicular to L⃗. The solution for R⃗
proceeds along the same lines as in Ref. [17], but is
somewhat modified due to the inclusion of the 1PN term in
the Hamiltonian. So, unlike previous subsections, we will
present the derivation of the solution for ϕ. Since the

magnitude of R⃗ has already been worked out in the
literature, we will simply state the relevant results without
presenting the derivation.
Let us first focus on the magnitude r of the scaled

position vector r⃗ ¼ R⃗=ðGMÞ. The 1PN and 2PN contribu-
tions (without spins) can be found in Ref. [6], whereas the
1.5PN contribution (with the 1PN effects ignored) can be
found in Ref. [26]. Combining these results together, we
have up to 1.5PN order the following quasi-Keplerian
parametric solution for r

r ¼ arð1 − er cos uÞ;
l0 ≡ nðt − t0Þ ¼ u − et sin u; ð48Þ

with u and l0 standing for the eccentric and the mean
anomalies, respectively. The other constants that comprise
the above solution are

ar ¼ −
1

2h

�

1 −
1

2
ðν − 7Þ h

c2
− 2

seff · l

l2
h

c2

�

; ð49Þ

e2r ¼ 1þ 2hl2 − 2ð6 − νÞ h
c2

− 5ð3 − νÞ h
2l2

c2

þ 8ð1þ hl2Þ seff · l
l2

h

c2
; ð50Þ

n ¼ ð−2hÞ3=2
�

1þ 2h

8c2
ð15 − νÞ

�

; ð51Þ

e2t ¼ 1þ 2hl2 þ 4ð1 − νÞ h
c2

þ ð17 − 7νÞ h
2l2

c2

þ 4
seff · l

l2
h

c2
; ð52Þ

where the following definitions have been used

s⃗eff ≡ δ1s⃗1 þ δ2s⃗2; ð53Þ

seff · l≡ s⃗eff · ⃗l: ð54Þ

Recall that seff · l is a constant since its PB withH vanishes.
This definition, along with Eq. (1) implies the following
relation

s⃗eff ≡
2

GM2
S⃗eff : ð55Þ

With the magnitude of r⃗ being taken care of, we can now
move on to determine its phase in a plane perpendicular to
⃗l. The scaled-time derivative (with respect to t) of the scaled
position vector r⃗ is

dr⃗

dt
¼ fr⃗; Hg; ð56Þ

¼ p⃗þ 1

2c2r3
ð−2νðp⃗ · r⃗Þr⃗ − ð6þ 2νÞr2p⃗

þð3ν − 1Þp2r3p⃗ − 2r⃗ × s⃗effÞ; ð57Þ
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which when solved perturbatively gives the following
expression for p⃗

p⃗ ¼ dr⃗

dt
þ 1

c2

�

r⃗ × s⃗eff þ νðp⃗ · r⃗Þr⃗
r3

þ dr⃗

dt

�

p2

2
−
3p2ν

2
þ 3þ ν

r

��

: ð58Þ

At this point, we introduce a noninertial frame (call it
NIF) whose x, y, and z axes are along J⃗ × L⃗, L⃗ × ðJ⃗ × L⃗Þ,
and L⃗, respectively. The Euler matrix which when multi-
plied with a column consisting of a vector’s components in
the IF, gives its components in the NIF is

EL ¼

0

B

@

− sinϕL cosϕL 0

−cosθL cosϕL −cosθL sinϕL sinθL

cosϕL sinθL sinθL sinϕL cosθL

1

C

A
: ð59Þ

In the NIF, the various vector components are

⃗l ¼

2

6

4

0

0

l

3

7

5

n

; ð60Þ

s⃗1 ¼ s1

2

6

4

sin κ1 cos ξ

sin κ1 sin ξ

cos κ1

3

7

5

n

; ð61Þ

s⃗2 ¼ s2

2

6

4

sin κ2 cos ðξþ ψÞ
sin κ2 sin ðξþ ψÞ

cos κ2

3

7

5

n

; ð62Þ

r⃗ ¼

2

6

4

r cosϕ

r sinϕ

0

3

7

5

n

: ð63Þ

Note that with the aid of Eqs. (61) and (62), we have
actually defined the angles ξ and ψ , that is to say, ξ and
ξþ ψ are azimuthal angles of s⃗1 and s⃗2 in the NIF. Implicit
in Eq. (63) is the definition that ϕ is the azimuthal angle of r⃗
in the NIF. Also, the subscript “n” after the above columns
denotes that the components have been written in the NIF.
Being cognizant of the fact that the time derivative of a

vector changes (as a geometrical object) with a change of
the frame in which it is viewed (see Sec. 4.9 of Ref. [27]),
we mention here that all time derivatives of vectors in this
paper are to be viewed in the IF. With that, we now wish to
express the components of dr⃗=dt in the NIF. We do so by
first writing the r⃗ components in the IF [using Eq. (63) and
the inverse of EL of Eq. (59)], taking derivatives of the
components with respect to t, and then transforming the
components of this time derivative to the NIF (using EL).
The end result is

˙r⃗ ¼

2

6

4

ṙ cosϕ − r sinϕðϕ̇L cos θL þ ϕ̇Þ
ṙ sinϕþ r cosϕðϕ̇L cos θL þ ϕ̇Þ
rð−ϕ̇L sin θL cosϕþ θ̇L sinϕÞ

3

7

5

n

: ð64Þ

Now we want to express ⃗l ¼ r⃗ × p⃗ in component form in

the NIF. The components of ⃗l and r⃗ in the NIF are already
given by Eqs. (60) and (63). For p⃗, we start with Eq. (58),
where we use Eqs. (61) and (62) for expressing s⃗eff , and
Eq. (64) for dr⃗=dt. With all this, the third component of the

relation ⃗l ¼ r⃗ × p⃗when written out gives us (with ϵ≡ 1=c2

and h≡H=μ)

dϕ

dt
¼ −

2ðϵs1δ1 cos κ1 þ ϵs2δ2 cos κ2 þ lrÞ
r2ð−2ϵð3þ νÞ þ ð−2þ ϵð−1þ 3νÞððp⃗ · r̂Þ2 þ l2

r2
ÞÞrÞ

− cos θL
dϕL

dt
: ð65Þ

We mention that to arrive at Eq. (65) we eliminated p2 in favor of p⃗ · r̂ (or p⃗ · r⃗) with the aid of

p2 ¼ ðp⃗ · r̂Þ2 þ l2

r2
; ð66Þ

where p⃗ · r̂ is given by [see Eq. (36) of Ref. [18] ]

p⃗ · r̂ ¼
�

ð2h − ϵð3ν − 1Þh2Þ þ 2ð1þ ϵð4 − νÞhÞ
r

þ ð−l2 þ ϵð6þ νÞÞ
r2

þ −ϵνðl2 þ 2seff · l=νÞ
r3

�

1=2

: ð67Þ

We want to rewrite Eq. (65) so that the only time-varying quantities on the rhs are cos κ1 and r. Therefore, we need to
eliminate p⃗ · r̂; dϕL=dt, cos θL, and cos κ2. To do so, we make use of Eqs. (32), (67) and the relations

L⃗ · J⃗ ¼ JL cos θL ¼ L⃗ · ðL⃗þ S⃗1 þ S⃗2Þ ¼ L2 þ LS1 cos κ1 þ LS2 cos κ2; ð68Þ
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dϕL

dt
¼ 1

c2r3

�

β1

cos κ1 þ α1
−

β2

cos κ1 þ α2

�

: ð69Þ

Equation (69) has already been derived in Ref. [17], see its Eq. (3.27). Finally, Eq. (65) becomes

dϕ

dt
¼ ϵ

r3

�

β1

cosκ1þ α1
þ β2

cosκ1 þ α2

�

−
lϵ2ð−1þ 3νÞð2seff · lþ l2νÞ

2r5
þ lϵ2ð−6þ 17νþ 3ν2Þ

2r4

þ lð2− h2ϵ2ð1− 3νÞ2 þ 2hϵð−1þ 3νÞÞ
2r2

−
ϵð−seff · lþ l2ð4þ 4hϵ− 2ν− 13hϵνþ 3hϵν2þ δ1 þ δ2Þþ ls2δ2Σ2Þ

lr3
; ð70Þ

≡
ϵ

r3

�

β1

cos κ1 þ α1
þ β2

cos κ1 þ α2

�

þ A5

r5
þ A4

r4
þ A3

r3
þ A2

r2
; ð71Þ

which when integrated gives

ϕ − ϕ0 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðx3 − x1Þ
p

 

β1Πðx1−x2α1þx1
; amðϒ; βÞ; βÞ

α1 þ x1

þ
β2Πðx1−x2α2þx1

; amðϒ; βÞ; βÞ
α2 þ x1

!

þ A5R5

þ A4R4 þ A3R3 þ A2R2; ð72Þ

where ϕ0 is an integration constant to be determined by
substituting t ¼ 0 in the above equation. Note that Eq. (71)
defines A2, A3, A4, and A5. Also, Rj is the indefinite

integral of r−j with respect to t. For brevity, we do not write
out Rjs explicitly but they can be easily had from the

Newtonian-accurate expressions

r ¼ að1 − e cos uÞ; ð73Þ

l0 ≡ nðt − t0Þ ¼ u − e sin u: ð74Þ

n and e are given in Eqs. (28) and (27), respectively. a is the
Newtonian version of the rhs of Eq. (49). Note that we have
kept more than necessary PN accuracy in Eq. (70) and by
extension, Eq. (72) just for the purposes of illustration; any
additive term containing ϵq with q ≥ 2 can be dropped.

E. Solution for P⃗

We present the determination of P⃗ ¼ μp⃗ in a step-by-
step algorithmic fashion
(1) From Eqs. (66) and (67), determine p2 or p, which

takes care of the magnitude of p⃗. With this, we also
have in our hands the value of p⃗ · r̂, which will be
used in the next step. What now remains is to
determine the azimuthal angle of p⃗ in the NIF.

(2) Next we compute the angle ϕoffset, which is
defined as

ϕoffset ¼ arcsin
LðtÞ

rðtÞpðtÞ if p⃗ · r̂ > 0;

ϕoffset ¼ π − arcsin
LðtÞ

rðtÞpðtÞ if p⃗ · r̂ < 0: ð75Þ

(3) Now it is a simple matter to see that the azimuthal
angle that p⃗ makes with the x axis of the NIF is
ϕþ ϕoffset, where ϕ is the azimuthal angle of r⃗ in the
NIF and ϕoffset is the relative azimuthal angle between

r⃗ and p⃗. This completes the specification of P⃗.

IV. ACTION-ANGLE BASED SOLUTION

We devote this section to explaining our construction of
an alternate AA-based solution to the 1.5PN BBH system.
We will present in a step-by-step algorithmic fashion.
(1) The phase space of the 1.5PN system is

10-dimensional (since spin magnitudes are constants)
and has five mutually commuting constants, resulting
in an integrable system. These constants are

C⃗ ¼ fJ; Jz; L;H; Seff · Lg. We thus have five action

variables J⃗ ¼ fJ 1 ¼ J;J 2 ¼ Jz;J 3 ¼ L;J 4;J 5g,
which can be found in Refs. [18,19]; their notations
and definitions are somewhat different from those in
this paper.

6

(2) Under the real-time evolution of the BBH system,
the angles change as Δθi ¼ ωit

0, t0 ¼ tGM being
the physical time; ωis are naturally called the
frequencies of the system and are constants since
they are functions of the action variables, which are
themselves constants. Section VI A of Ref. [19]

6
J 4 was obtained by using Damour and Schäfer’s PN

extension of the Sommerfeld radial action complex contour
integral [28], whereas J 5 was obtained using the method of
fictitious phase-space variables [19].
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shows how to compute the five frequencies. The
process mainly consists of constructing the Jacobian
matrix of the actions with respect to the commuting
constants, inverting this Jacobian matrix, and the
row corresponding to the Hamiltonian (one of the
commuting constants) contains the five frequencies.

(3) Let all the phase space variables be collectively

denoted by V⃗ ¼ fR⃗; P⃗; S⃗1; S⃗2g with their initial

values being V⃗0 ≡ V⃗ðt0 ¼ 0Þ. Suppose that V⃗0

represents the state of the system at t0 ¼ 0, and

we want to obtain V⃗ðt0Þ at any nonzero time t0.
(4) At t0 ¼ 0, assign all the angle variables of the system

to have the value equal to 0: θ⃗ðt0 ¼ 0Þ ¼ 0⃗. Then at
the final time t0, the angles of the system would have

become θ⃗ ¼ ω⃗ × t0. The problem of finding the state
of the system at t0 now becomes that of increasing all
the angle variables by ω⃗ × t0.

(5) As shown in Sec. VI B of Ref. [19], the angle θi
can be increased by a certain amount if we flow
under the corresponding action J i by the same
amount. Therefore the problem becomes that of
flowing under the actions J i by amounts ωit

0

(starting from the V⃗0 configuration). The order of
flows does not matter because just like all the

members of C⃗, all the actions mutually commute
among themselves too.

(6) Because the flow equation under the actions reads

dV⃗

dλ
¼ fV⃗;J iðC⃗Þg ¼ fV⃗; Cjg

∂J i

∂Cj

; ð76Þ

a flow under an action J i by Δλi can be achieved
by flowing under all the commuting constants Cjs

by respective amounts ð∂J i=∂CjÞΔλi. Again, we
can flow under the commuting constants Cjs in any

order, since they all mutually commute. This finally
breaks down our problem to that of flowing under
all five Cjs by certain amounts, whose closed-form

solution is discussed in Appendix A.
Now it should be clear as to why one of the inputs to the

AA-based solution is the standard solution that was
presented in Sec. III. This is so because one of the
commuting constants is the Hamiltonian itself and in
Sec. III, we presented the solution of the flow under this
commuting constant. This also happens to be the solution
of the system since the system’s evolution equations are
same as the equations governing the flow under the
Hamiltonian. Nevertheless, the AA-based solutions
appears to have the advantage to be pushed to 2PN using
canonical perturbation theory, which is a perturbation
technique designed around the action-angle frame-
work [27].

V. SOFTWARE PACKAGE AND COMPARISON

OF THE SOLUTIONS

With this article, we are releasing a public Mathematica

package BBHPNTOOLKIT, which accomplishes the following
objectives [21]:
(1) Implements the standard solution of Sec. III ob-

tained by integrating the flow under the Hamil-
tonian.

(2) Implements the action-angle-based solution of
Sec. IV.

(3) Provides the numerical solution of the system by
numerically integrating the EOMs.

(4) Provides numerical values of all five frequencies of
the system, wherein by frequency we refer to the
rates of change of the five angles (as in action-angle
variables) of the system.

For the reference of the future users of our Mathematica

package, we mention herein that we have retained some
unnecessary high PN terms in the coded expressions which
implement the two analytical solutions in the package. The
full account is given in Appendix B. We devote this section
to investigating the PN accuracy of the two analytical
solutions with respect to the one got by direct numerical
integration of the EOMs. In this section, we will refer to
both these two analytical solutions collectively as just
“analytical solutions,” for these two analytical solutions
agree with each much better than they do with the
numerical one.
We first begin by displaying the plots of the analytical

solutions along with the numerical one in Fig. 2. Plots
corresponding to the two analytical solutions (standard and
AA-based solutions) cannot be distinguished visually. But
they are collectively distinguishable from the numerical
solution at late times. As displayed in the caption of this
figure, the parameters taken for these plots do not corre-
spond to astrophysically relevant systems. But this is not a
cause of concern because our focus in this section is to
explore the mathematical accuracy of our solutions that are
valid for a wide set of parameters and not just those which
correspond to real astrophysical scenarios. Later in this
section, we will see that it is actually helpful to study these
solutions under nonphysical scenarios (such as changing
the value of ϵ≡ 1=c2), to determine the PN accuracy of our
solutions (via the method of linear fit between the error and
the PN parameter).
Let us now switch to a more technical task of determin-

ing the PN accuracy of our analytical solutions against the
numerical one. We explain our comparison method with
the aid of Fig. 3. Starting from t0 ¼ t0 ¼ 0, we evolve the

system numerically up to a certain time t0 ¼ t1, such that R⃗n

(R⃗ got via numerical integration) differs by a small amount

from R⃗a (R⃗ got from the analytical solution). By “small
amount,” we mean an opening angle (ζ3 in Fig. 3) of ∼0.5°

to 1° between R⃗a and R⃗n. The dashed circle in the figure
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denotes the plane perpendicular to L⃗n (L⃗ got via numerical

integration at t0 ¼ t1). R⃗ak is the projection of R⃗a on this

plane. The difference between R⃗n and R⃗a is greatly
exaggerated in this figure for the purposes of illustration.
Now, even if we ignore the numerical roundoff errors, we

expect R⃗a ≠ R⃗n because of the PN truncation errors that
crept in while deriving the analytical solutions. For this
section, we force the roundoff errors to be much smaller
than the truncation errors by keeping sufficient numerical
precision while constructing the numerical solution.
Now, the R⃗a − R⃗n can be broken down into two

components: an in-plane component R⃗ak − R⃗n, and an

out-of-plane component R⃗a − R⃗ak. The in-plane difference

is brought about by an in-plane (perpendicular to L⃗)

dephasing which occurs due to the difference between
the numerical and the analytical values of the mean motion
n (a kind of frequency). The out-of-plane difference is

brought about by the difference L⃗a − L⃗n, where L⃗a is the

analytical L⃗.
For comparison purposes, it is convenient to think of the

in-plane and out-of-plane differences as in-plane and out-
of-plane dephasings happening due to a difference in some
angular velocities dωk and dω⊥ in the two directions, with
the former being essentially the difference between the
analytical and numerical mean motions. As is suggested
from Eq. (51), these frequencies are often expressible as a
PN series. Hence, we schematically write the difference
between the numerical and analytical frequencies as a PN
series along the two directions as

FIG. 3. Difference between the numerical and analytical position vector R⃗ being split in two perpendicular components.

FIG. 2. Comparison of the analytical solutions with the numerical one. For a system with ðm1; m2Þ ¼ ð5=2; 1Þ and the initial values of
the phase-space variables being R⃗ ¼ ð2; 2; 2Þ, P⃗ ¼ ð1=2;−1=2; 1=3Þ, S1

!¼ ffiffiffi

ϵ
p

(0, 1, 1), S⃗2 ¼
ffiffiffi

ϵ
p

(1;−3=10; 0). Panels (a) and (b) show

evolution of x component of R⃗ and S⃗1, respectively. We choose ϵ ¼ 0.003 for (a) and ϵ ¼ 0.01 for (b). All this results in a Newtonian-
orbital time period of TN ∼ 29 for both (a) and (b), and the PN parameter ∼0.0036 for (a) ∼0.012 for (b), respectively. Throughout we
keep G ¼ 1.
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dωk ¼ ξpdωkp þ ξpþ1dωkpþ1 þOðξpþ2Þ; ð77Þ

dω⊥ ¼ ξqdω⊥q þ ξqþ1dω⊥qþ1 þOðξqþ2Þ; ð78Þ

with ξ standing for the PN parameter GM=ðc2RÞ. The
above equations indicate that the differences in the frequen-
cies along the two directions occurs at PN orders p and q.
Note that, unlike earlier sections, p does not stand for the
magnitude of the scaled momentum but is rather a PN
power-counting index. It then follows that

jR⃗ak − R⃗nj ¼ ξpRndωkpt1; ð79Þ

jR⃗ak − R⃗aj ¼ ξqRndω⊥qt1; ð80Þ

where the lhs is the small arc length that subtends an angle
ξpdωkpt1 or ξpdω⊥pt1 a distance Rn away. Adding the

vectors R⃗n − R⃗ak and R⃗ak − R⃗a and taking the modulus of

the sum, with the aid of the above two equations gives us at
leading order

jR⃗n − R⃗aj ¼ ξrt1Rndωkr if p ≠ q; ð81Þ

¼ ξrt1Rnðdω2

kp þ dω2

⊥pÞ1=2 if p ¼ q; ð82Þ

where r ¼ minðp; qÞ,7 which is not to be confused with
r≡ jr⃗j. This finally leads to

log

 

jR⃗n − R⃗aj
t1Rn

!

¼ r log ξþ constant: ð83Þ

In Eq. (82), use has been made of Pythagoras theorem since

R⃗n − R⃗ak is perpendicular to R⃗ak − R⃗a and R⃗n − R⃗a forms

the hypotenuse.
Equation (83) is the key to testing the PN accuracy of our

analytical solutions against the numerical one. It says that a
linear fit between the two logarithms has a slope equal to
the integer r. From Eqs. (77) and (78), we know that r is
also the PN order at which our analytical solution starts to
diverge from the numerical one, if one focuses their
attention on the frequencies associated with the dephash-
ings. In our numerical experiments with a handful of cases,
we find r ¼ 2� 2.5%, which indicates that the analytical
solutions (both kinds) deviate from the numerical one at
2PN order, as far as the combined (in-plane and out-of-
plane) dephasing effect goes. To perform the linear fit
associated with Eq. (83), we needed the values of the PN

parameter ξ. We simply used ξ ¼ GM=ðc2hRiÞ, where hRi
is the numerical orbit-averaged value of R.

Another way to compare the analytical solutions with
the numerical one is to compare the timescale TN of
variation of the Newtonian orbit against timescale TD at

which R⃗n − R⃗a varies. Assuming a relation of the form

TN ¼ ξrTD; ð84Þ

our objective is to determine r. The above equation gives

logTD ¼ −r log ξþ logTN : ð85Þ

A linear fit between logTD and log ξ gives us a slope of −r.
For the purposes of linear fitting, we can approximate TD as

TD ¼ 2πt1

arccos R̂n · R̂a

; ð86Þ

and ξ is to be approximated the same way as before. This
linear fit again gave us r ¼ 2� 2.5%, which means that the
analytical and the numerical solutions differ at 2PN order.
We finally mention that the verification of the solutions
presented here also serves as a verification for the five
action variables constructed in Refs. [18,19].
There is a subtle aspect of the above procedure of

determining the PN accuracy of the analytical solutions,
which needs further elaboration. A question arises: how to
vary the PN parameter ξ≡GM=ðc2RÞ to prepare the data
for linear-fitting as per Eqs. (83) and (85)? We put forth two
options: (1) Vary the average value of R (physically

sensible) (2) Vary ϵ ¼ 1=c2 (unphysical). We will argue
below that the latter option, though unphysical, is the
mathematically sound option and the former is not.
The multiplicative factors attached to powers of ξ in

Eqs. (77) and (78) are assumed to depend on quantities like
energy, mass ratio etc. This comes from our previous
experience of the PN literature; for example see the
expression of the mean motion in Eqs. (51) or (28b) of
Ref. [29]. So this means that care must be taken while
selecting the sample BBH systems for performing the above
linear fits so that all the systems which are supposed to fall
on a straight line have almost the same energy and mass
ratio. One way to achieve this is to vary c, while keeping
other parameters like m1, m2, and average R almost
constant. Doing so does vary ξ. Another way to vary ξ

would be to vary the masses or the average R. Doing so
would also change the energy and the mass ratio in general,
which is something wewant to avoid. The unphysical aspect
of varying the speed of light is of no concern to us as far as
checking the PN accuracy of the analytical solutions is
concerned. This is so because our solutions to the BBH
system are valid for any arbitrary positive speeds of light,
provided ξ ≪ 1.7

Here minðp; qÞ≡ p if p < q, and minðp; qÞ≡ p if p ¼ q.
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VI. SUMMARY

With this paper, we conclude the old problem of
solving the dynamics of the 1.5PN BBH system, whose
Hamiltonian was introduced in Ref. [7]. This is done for
arbitrary masses, spins and eccentricity, and without any
averaging. First we re-presented the solution of Ref. [22] but
for completeness, unlike Ref. [22], we included the 1PN
effects too. Then we show how to construct the alternative
AA-based solution in an algorithmic style. The construction
of the latter solution requires former solution as one of the
inputs. But the AA-based solution is superior in the sense
that it can be extended to 2PN order via canonical
perturbation theory, with relative ease. We finally introduce
BBHPNTOOLKIT, aMathematica package, which implements
our solutions for practical use. We finally make comparison
of the two analytical solutions against the numerical one
employing linear regression, and the analytical solutions
indeed appear to be 1.5PN accurate.
The theoretical ideas that form the foundations of

the two analytical solutions have been presented in
Refs. [18,19,22]. Here we have assembled them, filled in
the gaps (missing 1PN effects in Ref. [22]), implemented
the solutions in a public Mathematica package, thereby
establishing a platform (both in theoretical and practical-
implementation sense) from where we can aim to push
these solutions to 2PN. Moreover, the agreement between
the numerical and AA-based solution serves as a nontrivial
check of all the five actions constructed in Refs. [18,19].
The next natural line of action would be to extend our

AA-based solution to 2PN order using canonical perturba-
tion theory. On a parallel track, one can try to construct
GWs for these systems now that their dynamics have been
solved. Adding the 2.5PN dissipative effects due to
radiation reaction to our analytic solution will also be an
interesting endeavor for the future.
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APPENDIX A: SOLUTION FOR FLOW UNDER

COMMUTING CONSTANTS

1. Solution for flow under H

The solution of flow under H has been constructed in
Sec. III. It is mainly contained in Eqs. (12), (34), (41), (47),
(72), and (75).

2. Solution for flow under Seff · L

The solution of flow under Seff · L has been constructed

in Ref. [19]; it is mainly contained in Eqs. (A39), (A66),

(A76), and (A102) of that article. These four equations

seem to determine only R⃗, L⃗, and S⃗1, and not S⃗2 and P⃗. But

once we have R⃗, L⃗, and S⃗1, determining S⃗2 and P⃗ is quite

easy. The former is found via S⃗2 ¼ J⃗ − L⃗ − S⃗2, and the

latter is determined by making the following observations

(i) P is a constant under the Seff · L flow. So all we need to

care about is the orientation of P⃗, which is dealt with in the

next two bullet points. (ii) L⃗ ¼ R⃗ × P⃗; hence L⃗ is

perpendicular to R⃗ and P⃗. (iii) under the Seff · L flow,

the azimuthal angle of P⃗ (around L⃗) changes by the same

amount as that of R⃗. Bullets (ii) and (iii) let us determine the

orientation of P⃗ using the orientation of R⃗. Note that the

definitions and conventions of Ref. [19] do not totally align

with those followed in this paper; so care has to be taken

when merging the results of the two papers.

3. Solution for flow under J

As arrived at in Sec. VI B of Ref. [19], the effect of a
flow under J by an amount Δλ is increasing the azimuthal

angles of R⃗; P⃗; S⃗1, and S⃗2 in the IF by an amount Δλ.

4. Solution for flow under L

As also arrived at in Sec. VI B of Ref. [19], the effect of a
flow under L by an amount Δλ is increasing the azimuthal

angles of R⃗ and P⃗ in the NIF by an amount Δλ.

5. Solution for flow under Jz

As seen in Sec. VI B of Ref. [19], the effect of a flow
under Jz by an amount Δλ is increasing the azimuthal

angles of R⃗; P⃗; S⃗1, and S⃗2 by an amount Δλ, around the z
axis of any inertial frame. IF is a special inertial frame

whose z axis coincides with J⃗.

APPENDIX B: THE BBHPNTOOLKIT PACKAGE

Here we give the details on some coded expressions in

our BBHPNTOOLKIT package containing unnecessary higher

PN order terms. Doing so does not increase the actual PN

accuracy of our solutions since we never make use of the

2PN terms of the Hamiltonian. However doing so may

bring the analytical solutions closer to the numerical

solution (got by numerically integrating the 1.5PN EOMs):
(1) As mentioned already at the end of Sec. III D, we

have kept more than necessary PN accuracy in
Eq. (70) and by extension, Eq. (72). All the terms
containing ϵq with q ≥ 2 in Eq. (70) are unnecessary.
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(2) The derivation of the solution Eqs. (12)–(30) of
the mutual angles between the angular momenta for
a flow under the Hamiltonian depends on the
integration

R

dt=r3; see Eq. (3.6) of Ref. [17].
Here Newtonian r is enough for the desired
level of accuracy, and Eqs. (12)–(30) have been

derived using Newtonian r in
R

dt=r3. But in our

BBHPNTOOLKIT, we have coded the results got by

integrating 1.5PN accurate 1=r3. Equation (48)
gives the 1.5PN-accurate r.
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