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CrossMark
Abstract

In this short Note, I answer the titular question: yes, a radiation gauge can be
horizon-locking. Radiation gauges are very common in black hole perturbation
theory. It’s also very convenient if a gauge choice is horizon-locking, i.e. the
location of the horizon is not moved by a linear metric perturbation. Therefore
it is doubly convenient that a radiation gauge can be horizon-locking, when
some simple criteria are satisfied. Though the calculation is straightforward, it
seemed useful enough to warrant writing this Note. Finally I show an example:
the ¢ vector of the Hartle-Hawking tetrad in Kerr satisfies all the conditions for
ingoing radiation gauge to keep the future horizon fixed.
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The context of this Note is black hole perturbation theory (see [1] for a review). Suppose we
have a Lorentzian spacetime (M, g) where g is the background metric, e.g. the Kerr metric
(see [2] for a review), which has a future horizon H (see [3] for a pedagogical introduction).
We work to first order in perturbation theory, with a metric

Sab = Gab +chay + O (€7) (1

where ¢ is a formal order-counting parameter.

Chrzanowski introduced two ‘radiation gauges’ for perturbations in [4]. These radiation
gauges are adapted for algebraically special [5] spacetimes. If ¢ is an outgoing principal null
vector field, then ingoing radiation gauge (IRG) is specified by

Chy =0, h=§%u;=0  (RG). )
Similarly, if n“ is an ingoing principal null vector field, then outgoing radiation gauge (ORG)
is the same but with n replacing ¢. These gauges at first seem over-specified, with 5 algebraic
conditions. Price et al [6] showed that one of IRG or ORG is admissible in a Petrov type II

metric, whereas in type D, both are admissible.
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The event horizon is the defining feature of a black hole [7], and thus it is of great physical
interest to locate the horizon, e.g. to study thermodynamics [8] or tides [9], or to compute
fluxes down the horizon [10]. In general, locating a horizon is challenging since it is tele-
ological, requiring global knowledge of the entire future development of the spacetime [7].
This challenge is lessened in perturbation theory, but replaced with the new challenge that
we are free to make O(g) coordinate transformations. These generate the gauge transform-
ations hap — hjy, = hap + Le8ap = hap + V (o€ Where £ generates the infinitesimal diffeo-
morphism. We are describing the same physical spacetime, but the horizon moves by O(¢) in
coordinates.

On the other hand, we can exploit this freedom to make coordinates of the horizon of g,
coincide with the analytically-known horizon of g,,. A gauge choice achieving this is called
‘horizon-locking,” possibly introduced by [11], though the idea is surely older. There is still
considerable freedom in achieving a horizon-locking gauge: only components of £ transverse
to the horizon are relevant [12]. We can now pose the question asked in the title of this Note:
Can a radiation gauge be horizon-locking? Yes.

Theorem . Let (M,g) be a stationary, Ricci-flat, Lorentzian spacetime with future horizon
HT. Let £°: (i) be null, (ii) be geodesic, and (iii) generate H*. Let hy, be the perturbation as
in equation (1), and let hy;, vanish either in the distant past or future. Further let R, = 0(52)
with Ry, the Ricci tensor of gap. Then the gauge in equation (2) is horizon-locking.

Proof . First, we follow [12] to see that the event horizon and apparent horizon agree to first
order in €. Consider the Raychaudhuri equation for a geodesic null congruence k“ that gener-
ates the horizon, with affine parameter v,

1
3= 7502 — 0y + wapw™® — Rpkk (3)

Here 0 is the expansion scalar, o, is the shear, and wy, is the twist. By assumption, the Ricci
term vanishes at zeroth and first order. Since the horizon generator is hypersurface orthogonal,
Wap| 1+ =0 = wap|pg+-

Expand all quantities as a series in €, e.g8. o4 = Ogp + 505;7) + O(e?). Stationarity of the
background then tells us that df/dv|z+ = 0, and thus 6|+ = Gap|3+ = 0. Now study the
O(g') equation, which says

dom

__é sab_(1) | e ab, (1)
o =00 —26%0") + 200}, 4)

Evaluating at the background horizon, all terms on the right-hand side vanish, so 8()|,+ is
constant. Since h,;, vanishes in the distant past or future, this constant must be ()|~ = 0.
Therefore the perturbed event horizon is an apparent horizon to O(e!), and our job has reduced
to locating the apparent horizon at first order.

Now for locating the apparent horizon. First note that in the gauge (2), the vector field ¢ is
automatically null up to our desired order,

8(£,0) = gapl®t” + chp 0" + O (%) =0+20+ O (£7) . Q)
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Correspondingly, lowering ¢¢ with either metric gives the same one-form, ¢, = g, /* =
&ar!” + O(£?). Therefore we find no need to expand /“ in a series in €. Below we need an
identity arising from a gradient of the gauge conditions (2),

o

Va(leheg) =0 = 0N gheg = —hegV b6 . (6)

Here V is the Levi-Civita connection of 8.

Now let us check that ¢4 is geodesic with respect to the perturbed metric, not just the back-
ground metric. To do this we need to express the Levi-Civita connection of g, which we call
V, in terms of V. The two connections are related by

Vv — Vit = eC% + O (%), (7
where the linearized difference of connections tensor is [7]

) 1. (e . .

Che = 58 [Vohea+ Vehna = Vahie] ®)

By assumption, with the background connection we have a geodesic congruence, not affinely
parameterized,

v 9)

Evaluate V,/ to see if it is geodesic:

V0 = 0OV L0 4 el0C b+ O (£7) (10)
= il + s%eaecgbd [ﬁahcd + Vehaa — %hac] +0 (%), (11
= il? g™ [ewﬁahcd - ;K"E“@dhac} +0 (%), (12)
= ilh + g [—eahcﬁaec + ;z“haﬁw] +0 (%), (13)
= il? + g™ [—heakil + 0] + O (%) , (14)
OV =R+ 0O (7). (15)

Therefore ¢ is also still a null geodesic congruence with respect to g, not just g. Furthermore,
the inaffinity has not changed, x = & + O(g?), a result we need below.

Next we need to check that ¢ is still hypersurface-orthogonal. From the Frobenius the-
orem, the one-form ¢, is hypersurface-orthogonal when ¢ A d¢ = 0. This has implicit depend-
ence on the metric, lowering the vector ¢ into the one-form. As we saw above, the gauge
condition makes g,,” = gu¢” + O(£?). Therefore whenever £ A df vanishes according to the
background metric, it also vanishes according to the perturbed metric, up to O(g?). Thus 4, is
hypersurface-orthogonal at Ht with respect to both metrics.

Finally we want to check that the congruence ¢* has vanishing expansion—as measured
with g,,—at the unperturbed horizon. To find the expansion, we proceed as usual [3] by study-
ing B,y = V,{,. Specifically we will need to take an orthogonal projection with the aid of an
auxiliary null vector n,, satisfying n,¢* = —1 (we work in signature —+++). Next construct
the orthogonal projector ., = gap + Latty + nalp, and use it to project out Bab = *yacfy;,dBCd.
The expansion scalar is the trace,

0 =~"Bg, = y"Bay = gV ply + 40V 0, + nPV 0, (16)
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0=Vl +n"V, (300,) +n'kly = Vol — k. (17)

In this final expression we see that all references to B, and the auxiliary n® have disappeared,
so we do not have to worry about their perturbations; we just need this last expression along
with § = V,£* — k. The perturbed expansion is

0=Vl — 5=Vl +eC 0t — i+ 0O () (18)
o 1 o o o

=0+ Eﬁbiéad [Vahbd + Vihaa — thab} +0 (52) ) (19)

0= 90 + €Eb% {%ahba + ﬁbh — %dhdb} +O (52) = é +O (62) . (20)

The first and third term in parentheses cancel, and the middle term vanishes from the gauge
condition for vanishing trace 7 =0. Thus we have shown that the perturbed expansion is the
same as the background expansion up to O(£?). In particular, 6 (as measured by V) vanishes
at the unperturbed horizon H ™, thus locating the perturbed apparent horizon; which we saw
above is the same as the perturbed event horizon. O

Remark 1. Notice that the conditions for the theorem are weaker than what is usually done in
black hole perturbation theory: ¢* does not need to be a principal null direction.

Remark 2. The condition R,, = O(¢?) is satisfied if A, solves the linearized Einstein
equations with vanishing first-order source T;. For example, in the EMRI problem we have a
point-particle source, so R, = O(e?) everywhere except the location of the particle. Horizon-
locking can be achieved at all times except when the particle passes through the horizon.

Remark 3. The condition R,;, = O(g?) can be generalized to the weaker condition R, (" =

O(e?).

Remark 4. Throughout the derivation, we only needed the gauge condition (2) and its first
derivative evaluated along H ™. Therefore, the theorem still holds replacing the global gauge
condition with just the horizon boundary condition

o

_ _ a _ v _
o, h‘w_o, Ve(tha)| =0, Vih| =0. @D

Lhgp

H+

Remark 5. Using n* and its ingoing expansion in place of ¢ and its outgoing expansion, and
using H~ in place of H T, the theorem also applies to ORG being compatible with fixing the
past horizon.

Example: Hartle-Hawking tetrad for the Kerr metric

Here we show that the ¢ vector of the Hartle-Hawking tetrad for the Kerr metric satisfies
the conditions for the above theorem. Our metric is compactly represented by specifying our
tetrad. We use ingoing coordinates (v, r,6,¢) to give the Hartle-Hawking tetrad components

[10, 13, 14],
1 A a
ga:<l’2r2+a2707r2+a2) N (22)

2
"= (0,'2;“,070> : (23)
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1 i
= [(ijasinf,0,1,— 24
" 2(r+iacosf) (zasm o 7sin9> ’ 24)
where as is typical in Kerr, A =7 —2Mr+a®> = (r—ry)(r—r_), and ¥ = r* + a*cos?f.
The roots 4 = M 4= +/M? — a? are the locations of the outer and inner horizons. This tetrad is
clearly regular at the future horizon, where ¢“ coincides with the horizon generator, which in
terms of the Killing vectors 0, and 0 3 and angular velocity of the horizon Qp is

_Q_I_Q 2 e a
H+ Oy Ha(;s’ = 2Mr,

g(l

(25)

The coordinate v here should not be confused with the affine parameter in equation (3). This
tetrad is related to the very common Kinnersley tetrad [15], which is not regular at H, by the
boost Ly = Ak and nuy = A~ A" 'ng where A2 = 2(r?> +a?) /A. Therefore £ and n are
both geodesic principal null congruences. From the tetrad we can assemble the inverse metric

gab _ _ganb _ naﬁb 4 mamb 4 mamb’ (26)
or invert for the more common form [2],
2M -\ 2
ds? = — <l — Er) (dv—asin29d¢>

+2 (dv — asin® 6‘dgz~3) (dr — asin® 9dq§) +3 (d92 + sin? edq”sz) .

27)

It’s interesting to inspect a few of the Newman—Penrose (NP) spin cgefﬁcients [16] p, ONP; ENP-
We can find p and onp from the boost transformations puy = M A pg and opy = M3 A 1ok
(where {1,1} and {3,—1} are the GHP weights [17] for the spin coefficients p and oxp),

-1 A
— _mbac Cg — 2
p=—mm Vel r—iacosf2(r* +a2)’ 28)
onp = —m'm°Vl, =0, %
_ 1 b pc — b pc — M(rz—a2)
ENP = —5 (n 14 chb —m’/ chb) = m (30)

These are not the only non-vanishing spin coefficients, but the only ones needed below. The
inaffinity x (not to be confused with the NP coefficient kxp) and the tensor Bab associated to
the congruence ¢“ can be expressed in terms of the above spin coefficients. Notice that we can
get the inaffinity from

enp + éxp = =1V by = K. (31)
Evaluating at the horizon, we get the surface gravity of the Kerr black hole,

}"_;,_*M
Ry = .
+ 2MV+

(32)

When constructing Bab, the projector in NP language becomes ~,, = mymy + mymyp.
Assembling the expansion, shear, and twist, we get the NP translations

0 =7"Buy=—(p+p), (33)
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1
5 (p— p) (mgmy, — mgmy) , (34)

Oab = Biapy = —mMampONp — MaiMpONp - (35)

wap =B [ab] =

Since onxp = 0, indeed ¢* is shear-free. Noting that p x A, we see that p|y+ = 0, so both the
expansion and twist vanish at the future horizon, as they must for ¢ to be the horizon generator.
[Contrast this with the Kinnersley tetrad, where px = —(r — iacos )", px|+ # 0; and so £x
has non-zero expansion and twist at the horizon.] Since ¢yy is a null geodesic that generates
Ht, we can satisfy the conditions of the theorem with a perturbation %, which vanishes in
the distant past or future, and which is Ricci-flat to first order, R, = O(¢?). Then the ingoing
radiation gauge £{yyh1a, = 0 = h will be horizon-locking.
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