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Abstract

In this short Note, I answer the titular question: yes, a radiation gauge can be

horizon-locking. Radiation gauges are very common in black hole perturbation

theory. It’s also very convenient if a gauge choice is horizon-locking, i.e. the

location of the horizon is not moved by a linear metric perturbation. Therefore

it is doubly convenient that a radiation gauge can be horizon-locking, when

some simple criteria are satisf㘶ed. Though the calculation is straightforward, it

seemed useful enough to warrant writing this Note. Finally I show an example:

the ℓ vector of the Hartle–Hawking tetrad in Kerr satisf㘶es all the conditions for

ingoing radiation gauge to keep the future horizon f㘶xed.
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The context of this Note is black hole perturbation theory (see [1] for a review). Suppose we

have a Lorentzian spacetime (M, g̊) where g̊ is the background metric, e.g. the Kerr metric

(see [2] for a review), which has a future horizonH+ (see [3] for a pedagogical introduction).

We work to f㘶rst order in perturbation theory, with a metric

gab = g̊ab+ εhab+O
(

ε2
)

, (1)

where ε is a formal order-counting parameter.

Chrzanowski introduced two ‘radiation gauges’ for perturbations in [4]. These radiation

gauges are adapted for algebraically special [5] spacetimes. If ℓa is an outgoing principal null

vector f㘶eld, then ingoing radiation gauge (IRG) is specif㘶ed by

ℓahab = 0 , h≡ g̊abhab = 0 (IRG) . (2)

Similarly, if na is an ingoing principal null vector f㘶eld, then outgoing radiation gauge (ORG)

is the same but with n replacing ℓ. These gauges at f㘶rst seem over-specif㘶ed, with 5 algebraic

conditions. Price et al [6] showed that one of IRG or ORG is admissible in a Petrov type II

metric, whereas in type D, both are admissible.
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The event horizon is the def㘶ning feature of a black hole [7], and thus it is of great physical

interest to locate the horizon, e.g. to study thermodynamics [8] or tides [9], or to compute

f㘶uxes down the horizon [10]. In general, locating a horizon is challenging since it is tele-

ological, requiring global knowledge of the entire future development of the spacetime [7].

This challenge is lessened in perturbation theory, but replaced with the new challenge that

we are free to make O(ε) coordinate transformations. These generate the gauge transform-

ations hab → h ′
ab = hab+Lξg̊ab = hab+ ∇̊(aξb) where ξa generates the inf㘶nitesimal diffeo-

morphism. We are describing the same physical spacetime, but the horizon moves by O(ε) in
coordinates.

On the other hand, we can exploit this freedom to make coordinates of the horizon of gab
coincide with the analytically-known horizon of g̊ab. A gauge choice achieving this is called

‘horizon-locking,’ possibly introduced by [11], though the idea is surely older. There is still

considerable freedom in achieving a horizon-locking gauge: only components of ξa transverse

to the horizon are relevant [12]. We can now pose the question asked in the title of this Note:

Can a radiation gauge be horizon-locking? Yes.

Theorem . Let (M, g̊) be a stationary, Ricci-f㘶at, Lorentzian spacetime with future horizon
H+. Let ℓa: (i) be null, (ii) be geodesic, and (iii) generateH+. Let hab be the perturbation as

in equation (1), and let hab vanish either in the distant past or future. Further let Rab =O(ε2)
with Rab the Ricci tensor of gab. Then the gauge in equation (2) is horizon-locking.

Proof . First, we follow [12] to see that the event horizon and apparent horizon agree to f㘶rst

order in ε. Consider the Raychaudhuri equation for a geodesic null congruence ka that gener-

ates the horizon, with aff㘶ne parameter v,

dθ

dv
=−1

2
θ2 −σabσ

ab+ωabω
ab−Rabk

akb . (3)

Here θ is the expansion scalar, σab is the shear, and ωab is the twist. By assumption, the Ricci

term vanishes at zeroth and f㘶rst order. Since the horizon generator is hypersurface orthogonal,

ω̊ab|H+ = 0= ωab|H+ .

Expand all quantities as a series in ε, e.g. σab = σ̊ab+ εσ
(1)
ab +O(ε2). Stationarity of the

background then tells us that dθ̊/dv|H+ = 0, and thus θ̊|H+ = σ̊ab|H+ = 0. Now study the

O(ε1) equation, which says

dθ(1)

dv
=−θ̊θ(1) − 2σ̊abσ

(1)
ab + 2ω̊abω

(1)
ab . (4)

Evaluating at the background horizon, all terms on the right-hand side vanish, so θ(1)|H+ is

constant. Since hab vanishes in the distant past or future, this constant must be θ(1)|H+ = 0.

Therefore the perturbed event horizon is an apparent horizon toO(ε1), and our job has reduced

to locating the apparent horizon at f㘶rst order.

Now for locating the apparent horizon. First note that in the gauge (2), the vector f㘶eld ℓa is

automatically null up to our desired order,

g(ℓ,ℓ) = g̊abℓ
aℓb+ εhabℓ

aℓb+O
(

ε2
)

= 0+ ε0+O
(

ε2
)

. (5)
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Correspondingly, lowering ℓa with either metric gives the same one-form, ℓa ≡ gabℓ
b =

g̊abℓ
b+O(ε2). Therefore we f㘶nd no need to expand ℓa in a series in ε. Below we need an

identity arising from a gradient of the gauge conditions (2),

∇̊a (ℓ
chcd) = 0 ⇒ ℓc∇̊ahcd =−hcd∇̊aℓ

c . (6)

Here ∇̊ is the Levi-Civita connection of g̊.

Now let us check that ℓa is geodesic with respect to the perturbed metric, not just the back-

ground metric. To do this we need to express the Levi-Civita connection of g, which we call

∇, in terms of ∇̊. The two connections are related by

∇bv
a−∇̊bv

a = εĊabcv
c+O

(

ε2
)

, (7)

where the linearized difference of connections tensor is [7]

Ċabc =
1

2
g̊ad

[

∇̊bhcd+ ∇̊chbd−∇̊dhbc

]

. (8)

By assumption, with the background connection we have a geodesic congruence, not aff㘶nely

parameterized,

ℓa∇̊aℓ
b = κ̊ℓb . (9)

Evaluate ∇ℓℓ to see if it is geodesic:

ℓa∇aℓ
b = ℓa∇̊aℓ

b+ εℓaĊbacℓ
c+O

(

ε2
)

, (10)

= κ̊ℓb+ ε
1

2
ℓaℓcg̊bd

[

∇̊ahcd+ ∇̊chad−∇̊dhac

]

+O
(

ε2
)

, (11)

= κ̊ℓb+ ε̊gbd
[

ℓaℓc∇̊ahcd−
1

2
ℓaℓc∇̊dhac

]

+O
(

ε2
)

, (12)

= κ̊ℓb+ ε̊gbd
[

−ℓahcd∇̊aℓ
c+

1

2
ℓahac∇̊dℓ

c

]

+O
(

ε2
)

, (13)

= κ̊ℓb+ ε̊gbd [−hcdκ̊ℓc+ 0] +O
(

ε2
)

, (14)

ℓa∇aℓ
b = κ̊ℓb+O

(

ε2
)

. (15)

Therefore ℓ is also still a null geodesic congruence with respect to g, not just g̊. Furthermore,

the inaff㘶nity has not changed, κ= κ̊+O(ε2), a result we need below.

Next we need to check that ℓa is still hypersurface-orthogonal. From the Frobenius the-

orem, the one-form ℓa is hypersurface-orthogonal when ℓ∧ dℓ= 0. This has implicit depend-

ence on the metric, lowering the vector ℓa into the one-form. As we saw above, the gauge

condition makes gabℓ
b = g̊abℓ

b+O(ε2). Therefore whenever ℓ∧ dℓ vanishes according to the

background metric, it also vanishes according to the perturbed metric, up toO(ε2). Thus ℓa is
hypersurface-orthogonal at H+ with respect to both metrics.

Finally we want to check that the congruence ℓa has vanishing expansion—as measured

with gab—at the unperturbed horizon. To f㘶nd the expansion, we proceed as usual [3] by study-

ing Bab ≡∇bℓa. Specif㘶cally we will need to take an orthogonal projection with the aid of an

auxiliary null vector na, satisfying naℓ
a =−1 (we work in signature −+++). Next construct

the orthogonal projector γab = gab+ ℓanb+ naℓb, and use it to project out B̂ab = γa
cγb

dBcd.

The expansion scalar is the trace,

θ = γabB̂ab = γabBab = gab∇bℓa+ ℓanb∇bℓa+ naℓb∇bℓa , (16)

3
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θ =∇aℓ
a+ nb∇b

(

1
2
ℓaℓa

)

+ naκℓa =∇aℓ
a−κ . (17)

In this f㘶nal expression we see that all references to Bab and the auxiliary na have disappeared,

so we do not have to worry about their perturbations; we just need this last expression along

with θ̊ = ∇̊aℓ
a− κ̊. The perturbed expansion is

θ =∇aℓ
a−κ= ∇̊aℓ

a+ εĊaabℓ
b− κ̊+O

(

ε2
)

(18)

= θ̊+ εℓb
1

2
g̊ad

[

∇̊ahbd+ ∇̊bhad−∇̊dhab

]

+O
(

ε2
)

, (19)

θ = θ̊+ εℓb
1

2

[

∇̊ahb
a+ ∇̊bh−∇̊dh

d
b

]

+O
(

ε2
)

= θ̊+O
(

ε2
)

. (20)

The f㘶rst and third term in parentheses cancel, and the middle term vanishes from the gauge

condition for vanishing trace h= 0. Thus we have shown that the perturbed expansion is the

same as the background expansion up toO(ε2). In particular, θ (as measured by∇a) vanishes

at the unperturbed horizon H+, thus locating the perturbed apparent horizon; which we saw

above is the same as the perturbed event horizon.

Remark 1. Notice that the conditions for the theorem are weaker than what is usually done in

black hole perturbation theory: ℓa does not need to be a principal null direction.

Remark 2. The condition Rab =O(ε2) is satisf㘶ed if hab solves the linearized Einstein

equations with vanishing f㘶rst-order source Tab. For example, in the EMRI problem we have a

point-particle source, so Rab =O(ε2) everywhere except the location of the particle. Horizon-

locking can be achieved at all times except when the particle passes through the horizon.

Remark 3. The condition Rab =O(ε2) can be generalized to the weaker condition Rabℓ
aℓb =

O(ε2).

Remark 4. Throughout the derivation, we only needed the gauge condition (2) and its f㘶rst

derivative evaluated along H+. Therefore, the theorem still holds replacing the global gauge

condition with just the horizon boundary condition

ℓahab

∣

∣

∣

H+
= 0 , h

∣

∣

∣

H+
= 0 , ∇̊c (ℓ

ahab)
∣

∣

∣

H+
= 0 , ∇̊ah

∣

∣

∣

H+
= 0 . (21)

Remark 5. Using na and its ingoing expansion in place of ℓa and its outgoing expansion, and

using H− in place of H+, the theorem also applies to ORG being compatible with f㘶xing the

past horizon.

Example: Hartle–Hawking tetrad for the Kerr metric

Here we show that the ℓ vector of the Hartle–Hawking tetrad for the Kerr metric satisf㘶es

the conditions for the above theorem. Our metric is compactly represented by specifying our

tetrad. We use ingoing coordinates (v,r,θ, φ̃) to give the Hartle–Hawking tetrad components

[10, 13, 14],

ℓa =

(

1,
1

2

∆

r2 + a2
,0,

a

r2 + a2

)

, (22)

na =

(

0,− r2 + a2

Σ
,0,0

)

, (23)

4



Class. Quantum Grav. 41 (2024) 157001 Note

ma =
1

2(r+ iacosθ)

(

iasinθ,0,1,
i

sinθ

)

, (24)

where as is typical in Kerr, ∆= r2 − 2Mr+ a2 = (r− r+)(r− r−), and Σ= r2 + a2 cos2 θ.

The roots r± =M±
√
M2 − a2 are the locations of the outer and inner horizons. This tetrad is

clearly regular at the future horizon, where ℓa coincides with the horizon generator, which in

terms of the Killing vectors ∂v and ∂φ̃ and angular velocity of the horizon ΩH is

ℓa
∣

∣

∣

H+
=

∂

∂v
+ΩH

∂

∂φ̃
, ΩH =

a

2Mr+
. (25)

The coordinate v here should not be confused with the aff㘶ne parameter in equation (3). This

tetrad is related to the very common Kinnersley tetrad [15], which is not regular atH+, by the

boost ℓHH = λλ̄ℓK and nHH = λ−1λ̄−1nK where λ−2 = 2(r2 + a2)/∆. Therefore ℓ and n are

both geodesic principal null congruences. From the tetrad we can assemble the inverse metric

gab =−ℓanb− naℓb+mam̄b+ m̄amb , (26)

or invert for the more common form [2],

ds2 = −
(

1− 2Mr

Σ

)

(

dv− asin2 θdφ̃
)2

+ 2
(

dv− asin2 θdφ̃
) (

dr− asin2 θdφ̃
)

+Σ

(

dθ2 + sin2 θdφ̃2
)

.

(27)

It’s interesting to inspect a few of the Newman–Penrose (NP) spin coeff㘶cients [16] ρ,σNP,ϵNP.

We can f㘶nd ρ and σNP from the boost transformations ρHH = λ1λ̄1ρK and σHH = λ3λ̄−1σK
(where {1,1} and {3,−1} are the GHP weights [17] for the spin coeff㘶cients ρ and σNP),

ρ=−mbm̄c∇cℓb =
−1

r− iacosθ

∆

2(r2 + a2)
, (28)

σNP =−mbmc∇cℓb = 0 , (29)

ϵNP =−1

2

(

nbℓc∇cℓb− m̄bℓc∇cmb

)

=
M
(

r2 − a2
)

2(r2 + a2)
2
. (30)

These are not the only non-vanishing spin coeff㘶cients, but the only ones needed below. The

inaff㘶nity κ (not to be confused with the NP coeff㘶cient κNP) and the tensor B̂ab associated to

the congruence ℓa can be expressed in terms of the above spin coeff㘶cients. Notice that we can

get the inaff㘶nity from

ϵNP + ϵ̄NP =−nbℓc∇cℓb = κ . (31)

Evaluating at the horizon, we get the surface gravity of the Kerr black hole,

κ+ =
r+ −M

2Mr+
. (32)

When constructing B̂ab, the projector in NP language becomes γab = mam̄b+ m̄amb.

Assembling the expansion, shear, and twist, we get the NP translations

θ = γabBab =−(ρ+ ρ̄) , (33)

5
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ωab = B̂[ab] =
1

2
(ρ− ρ̄)(mam̄b− m̄amb) , (34)

σab = B̂⟨ab⟩ =−mambσ̄NP − m̄am̄bσNP . (35)

Since σNP = 0, indeed ℓa is shear-free. Noting that ρ∝∆, we see that ρ|H+ = 0, so both the

expansion and twist vanish at the future horizon, as they must for ℓ to be the horizon generator.

[Contrast this with the Kinnersley tetrad, where ρK =−(r− iacosθ)−1, ρK|H+ ̸= 0; and so ℓK
has non-zero expansion and twist at the horizon.] Since ℓHH is a null geodesic that generates

H+, we can satisfy the conditions of the theorem with a perturbation hab which vanishes in

the distant past or future, and which is Ricci-f㘶at to f㘶rst order, Rab =O(ε2). Then the ingoing

radiation gauge ℓaHHhab = 0= h will be horizon-locking.
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