

Note

Can a radiation gauge be horizon-locking?

Leo C Stein

Department of Physics and Astronomy, University of Mississippi, University, MS 38677, United States of America

E-mail: lcstein@olemiss.edu

Received 15 April 2024; revised 20 May 2024

Accepted for publication 10 June 2024

Published 8 July 2024

CrossMark

Abstract

In this short Note, I answer the titular question: yes, a radiation gauge can be horizon-locking. Radiation gauges are very common in black hole perturbation theory. It's also very convenient if a gauge choice is horizon-locking, i.e. the location of the horizon is not moved by a linear metric perturbation. Therefore it is doubly convenient that a radiation gauge can be horizon-locking, when some simple criteria are satisfied. Though the calculation is straightforward, it seemed useful enough to warrant writing this Note. Finally I show an example: the ℓ vector of the Hartle–Hawking tetrad in Kerr satisfies all the conditions for ingoing radiation gauge to keep the future horizon fixed.

Keywords: black hole, perturbation theory, radiation gauge, horizon-locking

The context of this Note is black hole perturbation theory (see [1] for a review). Suppose we have a Lorentzian spacetime (M, \mathring{g}) where \mathring{g} is the background metric, e.g. the Kerr metric (see [2] for a review), which has a future horizon \mathcal{H}^+ (see [3] for a pedagogical introduction). We work to first order in perturbation theory, with a metric

$$g_{ab} = \mathring{g}_{ab} + \varepsilon h_{ab} + \mathcal{O}(\varepsilon^2), \quad (1)$$

where ε is a formal order-counting parameter.

Chrzanowski introduced two ‘radiation gauges’ for perturbations in [4]. These radiation gauges are adapted for algebraically special [5] spacetimes. If ℓ^a is an *outgoing* principal null vector field, then *ingoing* radiation gauge (IRG) is specified by

$$\ell^a h_{ab} = 0, \quad h \equiv \mathring{g}^{ab} h_{ab} = 0 \quad (\text{IRG}). \quad (2)$$

Similarly, if n^a is an ingoing principal null vector field, then outgoing radiation gauge (ORG) is the same but with n replacing ℓ . These gauges at first seem over-specified, with 5 algebraic conditions. Price *et al* [6] showed that one of IRG or ORG is admissible in a Petrov type II metric, whereas in type D, both are admissible.

The event horizon is the defining feature of a black hole [7], and thus it is of great physical interest to locate the horizon, e.g. to study thermodynamics [8] or tides [9], or to compute fluxes down the horizon [10]. In general, locating a horizon is challenging since it is teleological, requiring global knowledge of the entire future development of the spacetime [7]. This challenge is lessened in perturbation theory, but replaced with the new challenge that we are free to make $\mathcal{O}(\varepsilon)$ coordinate transformations. These generate the gauge transformations $h_{ab} \rightarrow h'_{ab} = h_{ab} + \mathcal{L}_\xi \dot{g}_{ab} = h_{ab} + \dot{\nabla}_{(a} \xi_{b)}$ where ξ^a generates the infinitesimal diffeomorphism. We are describing the same physical spacetime, but the horizon moves by $\mathcal{O}(\varepsilon)$ in coordinates.

On the other hand, we can exploit this freedom to make coordinates of the horizon of g_{ab} coincide with the analytically-known horizon of \dot{g}_{ab} . A gauge choice achieving this is called ‘horizon-locking,’ possibly introduced by [11], though the idea is surely older. There is still considerable freedom in achieving a horizon-locking gauge: only components of ξ^a transverse to the horizon are relevant [12]. We can now pose the question asked in the title of this Note: Can a radiation gauge be horizon-locking? Yes.

Theorem . *Let (M, \dot{g}) be a stationary, Ricci-flat, Lorentzian spacetime with future horizon \mathcal{H}^+ . Let ℓ^a : (i) be null, (ii) be geodesic, and (iii) generate \mathcal{H}^+ . Let h_{ab} be the perturbation as in equation (1), and let h_{ab} vanish either in the distant past or future. Further let $R_{ab} = \mathcal{O}(\varepsilon^2)$ with R_{ab} the Ricci tensor of g_{ab} . Then the gauge in equation (2) is horizon-locking.*

Proof . First, we follow [12] to see that the event horizon and apparent horizon agree to first order in ε . Consider the Raychaudhuri equation for a geodesic null congruence k^a that generates the horizon, with affine parameter v ,

$$\frac{d\theta}{dv} = -\frac{1}{2}\theta^2 - \sigma_{ab}\sigma^{ab} + \omega_{ab}\omega^{ab} - R_{ab}k^a k^b. \quad (3)$$

Here θ is the expansion scalar, σ_{ab} is the shear, and ω_{ab} is the twist. By assumption, the Ricci term vanishes at zeroth and first order. Since the horizon generator is hypersurface orthogonal, $\dot{\omega}_{ab}|_{\mathcal{H}^+} = 0 = \omega_{ab}|_{\mathcal{H}^+}$.

Expand all quantities as a series in ε , e.g. $\sigma_{ab} = \dot{\sigma}_{ab} + \varepsilon\sigma_{ab}^{(1)} + \mathcal{O}(\varepsilon^2)$. Stationarity of the background then tells us that $d\dot{\theta}/dv|_{\mathcal{H}^+} = 0$, and thus $\dot{\theta}|_{\mathcal{H}^+} = \dot{\sigma}_{ab}|_{\mathcal{H}^+} = 0$. Now study the $\mathcal{O}(\varepsilon^1)$ equation, which says

$$\frac{d\theta^{(1)}}{dv} = -\dot{\theta}\theta^{(1)} - 2\dot{\sigma}^{ab}\sigma_{ab}^{(1)} + 2\dot{\omega}^{ab}\omega_{ab}^{(1)}. \quad (4)$$

Evaluating at the background horizon, all terms on the right-hand side vanish, so $\theta^{(1)}|_{\mathcal{H}^+}$ is constant. Since h_{ab} vanishes in the distant past or future, this constant must be $\theta^{(1)}|_{\mathcal{H}^+} = 0$. Therefore the perturbed event horizon is an apparent horizon to $\mathcal{O}(\varepsilon^1)$, and our job has reduced to locating the apparent horizon at first order.

Now for locating the apparent horizon. First note that in the gauge (2), the vector field ℓ^a is automatically null up to our desired order,

$$g(\ell, \ell) = \dot{g}_{ab}\ell^a\ell^b + \varepsilon h_{ab}\ell^a\ell^b + \mathcal{O}(\varepsilon^2) = 0 + \varepsilon 0 + \mathcal{O}(\varepsilon^2). \quad (5)$$

Correspondingly, lowering ℓ^a with either metric gives the same one-form, $\ell_a \equiv g_{ab}\ell^b = \mathring{g}_{ab}\ell^b + \mathcal{O}(\varepsilon^2)$. Therefore we find no need to expand ℓ^a in a series in ε . Below we need an identity arising from a gradient of the gauge conditions (2),

$$\mathring{\nabla}_a(\ell^c h_{cd}) = 0 \quad \Rightarrow \quad \ell^c \mathring{\nabla}_a h_{cd} = -h_{cd} \mathring{\nabla}_a \ell^c. \quad (6)$$

Here $\mathring{\nabla}$ is the Levi-Civita connection of \mathring{g} .

Now let us check that ℓ^a is geodesic with respect to the perturbed metric, not just the background metric. To do this we need to express the Levi-Civita connection of g , which we call ∇ , in terms of $\mathring{\nabla}$. The two connections are related by

$$\nabla_b v^a - \mathring{\nabla}_b v^a = \varepsilon \dot{C}^a_{bc} v^c + \mathcal{O}(\varepsilon^2), \quad (7)$$

where the linearized difference of connections tensor is [7]

$$\dot{C}^a_{bc} = \frac{1}{2} \mathring{g}^{ad} \left[\mathring{\nabla}_b h_{cd} + \mathring{\nabla}_c h_{bd} - \mathring{\nabla}_d h_{bc} \right]. \quad (8)$$

By assumption, with the background connection we have a geodesic congruence, not affinely parameterized,

$$\ell^a \mathring{\nabla}_a \ell^b = \mathring{\kappa} \ell^b. \quad (9)$$

Evaluate $\nabla_\ell \ell$ to see if it is geodesic:

$$\ell^a \nabla_a \ell^b = \ell^a \mathring{\nabla}_a \ell^b + \varepsilon \ell^a \dot{C}^b_{ac} \ell^c + \mathcal{O}(\varepsilon^2), \quad (10)$$

$$= \mathring{\kappa} \ell^b + \varepsilon \frac{1}{2} \ell^a \ell^c \mathring{g}^{bd} \left[\mathring{\nabla}_a h_{cd} + \mathring{\nabla}_c h_{ad} - \mathring{\nabla}_d h_{ac} \right] + \mathcal{O}(\varepsilon^2), \quad (11)$$

$$= \mathring{\kappa} \ell^b + \varepsilon \mathring{g}^{bd} \left[\ell^a \ell^c \mathring{\nabla}_a h_{cd} - \frac{1}{2} \ell^a \ell^c \mathring{\nabla}_d h_{ac} \right] + \mathcal{O}(\varepsilon^2), \quad (12)$$

$$= \mathring{\kappa} \ell^b + \varepsilon \mathring{g}^{bd} \left[-\ell^a h_{cd} \mathring{\nabla}_a \ell^c + \frac{1}{2} \ell^a h_{ac} \mathring{\nabla}_d \ell^c \right] + \mathcal{O}(\varepsilon^2), \quad (13)$$

$$= \mathring{\kappa} \ell^b + \varepsilon \mathring{g}^{bd} [-h_{cd} \mathring{\kappa} \ell^c + 0] + \mathcal{O}(\varepsilon^2), \quad (14)$$

$$\ell^a \nabla_a \ell^b = \mathring{\kappa} \ell^b + \mathcal{O}(\varepsilon^2). \quad (15)$$

Therefore ℓ is also still a null geodesic congruence with respect to g , not just \mathring{g} . Furthermore, the inaffinity has not changed, $\kappa = \mathring{\kappa} + \mathcal{O}(\varepsilon^2)$, a result we need below.

Next we need to check that ℓ^a is still hypersurface-orthogonal. From the Frobenius theorem, the one-form ℓ_a is hypersurface-orthogonal when $\ell \wedge d\ell = 0$. This has implicit dependence on the metric, lowering the vector ℓ^a into the one-form. As we saw above, the gauge condition makes $g_{ab}\ell^b = \mathring{g}_{ab}\ell^b + \mathcal{O}(\varepsilon^2)$. Therefore whenever $\ell \wedge d\ell$ vanishes according to the background metric, it also vanishes according to the perturbed metric, up to $\mathcal{O}(\varepsilon^2)$. Thus ℓ_a is hypersurface-orthogonal at \mathcal{H}^+ with respect to both metrics.

Finally we want to check that the congruence ℓ^a has vanishing expansion—as measured with g_{ab} —at the unperturbed horizon. To find the expansion, we proceed as usual [3] by studying $B_{ab} \equiv \nabla_b \ell_a$. Specifically we will need to take an orthogonal projection with the aid of an auxiliary null vector n_a , satisfying $n_a \ell^a = -1$ (we work in signature $-+++$). Next construct the orthogonal projector $\gamma_{ab} = g_{ab} + \ell_a n_b + n_a \ell_b$, and use it to project out $\hat{B}_{ab} = \gamma_a^c \gamma_b^d B_{cd}$. The expansion scalar is the trace,

$$\theta = \gamma^{ab} \hat{B}_{ab} = \gamma^{ab} B_{ab} = g^{ab} \nabla_b \ell_a + \ell^a n^b \nabla_b \ell_a + n^a \ell^b \nabla_b \ell_a, \quad (16)$$

$$\theta = \nabla_a \ell^a + n^b \nabla_b \left(\frac{1}{2} \ell^a \ell_a \right) + n^a \kappa \ell_a = \nabla_a \ell^a - \kappa. \quad (17)$$

In this final expression we see that all references to B_{ab} and the auxiliary n^a have disappeared, so we do not have to worry about their perturbations; we just need this last expression along with $\dot{\theta} = \mathring{\nabla}_a \ell^a - \dot{\kappa}$. The perturbed expansion is

$$\theta = \nabla_a \ell^a - \kappa = \mathring{\nabla}_a \ell^a + \varepsilon \dot{C}_{ab}^a \ell^b - \dot{\kappa} + \mathcal{O}(\varepsilon^2) \quad (18)$$

$$= \dot{\theta} + \varepsilon \ell^b \frac{1}{2} \mathring{g}^{ad} \left[\mathring{\nabla}_a h_{bd} + \mathring{\nabla}_b h_{ad} - \mathring{\nabla}_d h_{ab} \right] + \mathcal{O}(\varepsilon^2), \quad (19)$$

$$\theta = \dot{\theta} + \varepsilon \ell^b \frac{1}{2} \left[\mathring{\nabla}_a h_b^a + \mathring{\nabla}_b h - \mathring{\nabla}_d h^d_b \right] + \mathcal{O}(\varepsilon^2) = \dot{\theta} + \mathcal{O}(\varepsilon^2). \quad (20)$$

The first and third term in parentheses cancel, and the middle term vanishes from the gauge condition for vanishing trace $h = 0$. Thus we have shown that the perturbed expansion is the same as the background expansion up to $\mathcal{O}(\varepsilon^2)$. In particular, θ (as measured by ∇_a) vanishes at the unperturbed horizon \mathcal{H}^+ , thus locating the perturbed apparent horizon; which we saw above is the same as the perturbed event horizon. \square

Remark 1. Notice that the conditions for the theorem are weaker than what is usually done in black hole perturbation theory: ℓ^a does not need to be a principal null direction.

Remark 2. The condition $R_{ab} = \mathcal{O}(\varepsilon^2)$ is satisfied if h_{ab} solves the linearized Einstein equations with vanishing first-order source T_{ab} . For example, in the EMRI problem we have a point-particle source, so $R_{ab} = \mathcal{O}(\varepsilon^2)$ everywhere except the location of the particle. Horizon-locking can be achieved at all times except when the particle passes through the horizon.

Remark 3. The condition $R_{ab} = \mathcal{O}(\varepsilon^2)$ can be generalized to the weaker condition $R_{ab} \ell^a \ell^b = \mathcal{O}(\varepsilon^2)$.

Remark 4. Throughout the derivation, we only needed the gauge condition (2) and its first derivative evaluated along \mathcal{H}^+ . Therefore, the theorem still holds replacing the global gauge condition with just the horizon boundary condition

$$\ell^a h_{ab} \Big|_{\mathcal{H}^+} = 0, \quad h \Big|_{\mathcal{H}^+} = 0, \quad \mathring{\nabla}_c (\ell^a h_{ab}) \Big|_{\mathcal{H}^+} = 0, \quad \mathring{\nabla}_a h \Big|_{\mathcal{H}^+} = 0. \quad (21)$$

Remark 5. Using n^a and its ingoing expansion in place of ℓ^a and its outgoing expansion, and using \mathcal{H}^- in place of \mathcal{H}^+ , the theorem also applies to ORG being compatible with fixing the past horizon.

Example: Hartle–Hawking tetrad for the Kerr metric

Here we show that the ℓ vector of the Hartle–Hawking tetrad for the Kerr metric satisfies the conditions for the above theorem. Our metric is compactly represented by specifying our tetrad. We use ingoing coordinates $(v, r, \theta, \tilde{\phi})$ to give the Hartle–Hawking tetrad components [10, 13, 14],

$$\ell^a = \left(1, \frac{1}{2} \frac{\Delta}{r^2 + a^2}, 0, \frac{a}{r^2 + a^2} \right), \quad (22)$$

$$n^a = \left(0, -\frac{r^2 + a^2}{\Sigma}, 0, 0 \right), \quad (23)$$

$$m^a = \frac{1}{2(r + ia\cos\theta)} \left(ia\sin\theta, 0, 1, \frac{i}{\sin\theta} \right), \quad (24)$$

where as is typical in Kerr, $\Delta = r^2 - 2Mr + a^2 = (r - r_+)(r - r_-)$, and $\Sigma = r^2 + a^2\cos^2\theta$. The roots $r_{\pm} = M \pm \sqrt{M^2 - a^2}$ are the locations of the outer and inner horizons. This tetrad is clearly regular at the future horizon, where ℓ^a coincides with the horizon generator, which in terms of the Killing vectors ∂_v and $\partial_{\tilde{\phi}}$ and angular velocity of the horizon Ω_H is

$$\ell^a \Big|_{\mathcal{H}^+} = \frac{\partial}{\partial v} + \Omega_H \frac{\partial}{\partial \tilde{\phi}}, \quad \Omega_H = \frac{a}{2Mr_+}. \quad (25)$$

The coordinate v here should not be confused with the affine parameter in equation (3). This tetrad is related to the very common Kinnersley tetrad [15], which is not regular at \mathcal{H}^+ , by the boost $\ell_{\text{HH}} = \lambda \bar{\lambda} \ell_K$ and $n_{\text{HH}} = \lambda^{-1} \bar{\lambda}^{-1} n_K$ where $\lambda^{-2} = 2(r^2 + a^2)/\Delta$. Therefore ℓ and n are both geodesic principal null congruences. From the tetrad we can assemble the inverse metric

$$g^{ab} = -\ell^a n^b - n^a \ell^b + m^a \bar{m}^b + \bar{m}^a m^b, \quad (26)$$

or invert for the more common form [2],

$$\begin{aligned} ds^2 = & - \left(1 - \frac{2Mr}{\Sigma} \right) \left(dv - a\sin^2\theta d\tilde{\phi} \right)^2 \\ & + 2 \left(dv - a\sin^2\theta d\tilde{\phi} \right) \left(dr - a\sin^2\theta d\tilde{\phi} \right) + \Sigma \left(d\theta^2 + \sin^2\theta d\tilde{\phi}^2 \right). \end{aligned} \quad (27)$$

It's interesting to inspect a few of the Newman–Penrose (NP) spin coefficients [16] $\rho, \sigma_{\text{NP}}, \epsilon_{\text{NP}}$. We can find ρ and σ_{NP} from the boost transformations $\rho_{\text{HH}} = \lambda^1 \bar{\lambda}^1 \rho_K$ and $\sigma_{\text{HH}} = \lambda^3 \bar{\lambda}^{-1} \sigma_K$ (where $\{1, 1\}$ and $\{3, -1\}$ are the GHP weights [17] for the spin coefficients ρ and σ_{NP}),

$$\rho = -m^b \bar{m}^c \nabla_c \ell_b = \frac{-1}{r - ia\cos\theta} \frac{\Delta}{2(r^2 + a^2)}, \quad (28)$$

$$\sigma_{\text{NP}} = -m^b m^c \nabla_c \ell_b = 0, \quad (29)$$

$$\epsilon_{\text{NP}} = -\frac{1}{2} (n^b \ell^c \nabla_c \ell_b - \bar{m}^b \ell^c \nabla_c m_b) = \frac{M(r^2 - a^2)}{2(r^2 + a^2)^2}. \quad (30)$$

These are not the only non-vanishing spin coefficients, but the only ones needed below. The inaffinity κ (not to be confused with the NP coefficient κ_{NP}) and the tensor \hat{B}_{ab} associated to the congruence ℓ^a can be expressed in terms of the above spin coefficients. Notice that we can get the inaffinity from

$$\epsilon_{\text{NP}} + \bar{\epsilon}_{\text{NP}} = -n^b \ell^c \nabla_c \ell_b = \kappa. \quad (31)$$

Evaluating at the horizon, we get the surface gravity of the Kerr black hole,

$$\kappa_+ = \frac{r_+ - M}{2Mr_+}. \quad (32)$$

When constructing \hat{B}_{ab} , the projector in NP language becomes $\gamma_{ab} = m_a \bar{m}_b + \bar{m}_a m_b$. Assembling the expansion, shear, and twist, we get the NP translations

$$\theta = \gamma^{ab} B_{ab} = -(\rho + \bar{\rho}), \quad (33)$$

$$\omega_{ab} = \hat{B}_{[ab]} = \frac{1}{2} (\rho - \bar{\rho}) (m_a \bar{m}_b - \bar{m}_a m_b), \quad (34)$$

$$\sigma_{ab} = \hat{B}_{\langle ab \rangle} = -m_a m_b \bar{\sigma}_{\text{NP}} - \bar{m}_a \bar{m}_b \sigma_{\text{NP}}. \quad (35)$$

Since $\sigma_{\text{NP}} = 0$, indeed ℓ^a is shear-free. Noting that $\rho \propto \Delta$, we see that $\rho|_{\mathcal{H}^+} = 0$, so both the expansion and twist vanish at the future horizon, as they must for ℓ to be the horizon generator. [Contrast this with the Kinnersley tetrad, where $\rho_K = -(r - ia \cos \theta)^{-1}$, $\rho_K|_{\mathcal{H}^+} \neq 0$; and so ℓ_K has non-zero expansion and twist at the horizon.] Since ℓ_{HH} is a null geodesic that generates \mathcal{H}^+ , we can satisfy the conditions of the theorem with a perturbation h_{ab} which vanishes in the distant past or future, and which is Ricci-flat to first order, $R_{ab} = \mathcal{O}(\varepsilon^2)$. Then the ingoing radiation gauge $\ell_{\text{HH}}^a h_{ab} = 0 = h$ will be horizon-locking.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

I would like to thank Alex Lupsasca and Eric Poisson for valuable discussions. This work was supported by NSF CAREER Award PHY-2047382 and a Sloan Foundation Research Fellowship.

ORCID iD

Leo C Stein <https://orcid.org/0000-0001-7559-9597>

References

- [1] Pound A and Wardell B 2021 arXiv:[2101.04592](https://arxiv.org/abs/2101.04592)
- [2] Teukolsky S A 2015 *Class. Quantum Grav.* **32** 124006
- [3] Poisson E 2004 *A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics* (Cambridge University Press)
- [4] Chrzanowski P L 1975 *Phys. Rev. D* **11** 2042–62
- [5] Stewart J M 1991 *Advanced General Relativity* (Cambridge Monographs on Mathematical Physics) (Cambridge University Press)
- [6] Price L R, Shankar K and Whiting B F 2007 *Class. Quantum Grav.* **24** 2367–88
- [7] Wald R M 1984 *General Relativity* (Chicago University Press)
- [8] Hollands S, Wald R M and Zhang V G 2024 arXiv:[2402.00818](https://arxiv.org/abs/2402.00818)
- [9] O'Sullivan S and Hughes S A 2016 *Phys. Rev. D* **94** 044057
- [10] Hawking S W and Hartle J B 1972 *Commun. Math. Phys.* **27** 283–90
- [11] Seidel E and Suen W-M 1992 *Phys. Rev. Lett.* **69** 1845–8
- [12] Poisson E 2004 *Phys. Rev. D* **70** 084044
- [13] Teukolsky S A 1973 *Astrophys. J.* **185** 635–47
- [14] Teukolsky S A and Press W H 1974 *Astrophys. J.* **193** 443–61
- [15] Kinnersley W 1969 *J. Math. Phys.* **10** 1195–203
- [16] Newman E and Penrose R 1962 *J. Math. Phys.* **3** 566–78
- [17] Geroch R P, Held A and Penrose R 1973 *J. Math. Phys.* **14** 874–81