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ABSTRACT: Multimaterial aerosol jet printing offers a unique
capability to freely mix inks with different chemical compositions in
the aerosol phase, enabling one-step digital fabrication with tailored
compositions or functionally graded structures, including in the x-y
plane. Here, in situ mixing of two carbon nanomaterial inks with
distinct electrical properties is demonstrated. By tailoring the
mixing ratio of the constituent inks, electrical conductivity is
modulated by 130×, and sheet resistance values for a single pass
span approximately 2 orders of magnitude. The ability to
manufacture components with tailored electrical properties offers
significant value for hybrid and flexible electronic device
applications, such as microelectronics packaging. Moreover, grading
properties within a part provides a new dimension of design
freedom for complex assemblies.
KEYWORDS: printed electronics, multimaterial printing, functionally graded materials, advanced manufacturing, hybrid electronics

■ INTRODUCTION
Functionally graded materials (FGMs) are characterized by
spatially inhomogeneous chemical composition, which yields
properties distinct from those of the pure constituents and thus
supports advanced applications of customizable parts. Because
of these advantages, FGMs have been the subject of numerous
studies for applications in the areas of aerospace,1 structural
design,2 biomedical devices,3 and electronics.4−8 Specifically,
within the electronics industry, the growing complexity of
devices, which involves the meticulous integration of various
materials and interfaces, places substantial demands on both
design and manufacturing processes.9 For example, these
requirements can include engineering tolerance for thermal
expansion,10 mitigating stresses at interfaces,11 grading
dielectric properties to engineer antennas and RF response,6

and engineering lithiophilicity in batteries to prevent dendrite-
induced shorting.7 Although several techniques exist for
processing different classes of graded materials, such as vapor
deposition,12 powder metallurgy,13 and wet methods,14

additive manufacturing offers unique advantages with precise
digital control of composition and integration with lateral
patterning.6,15 In particular, multimaterial aerosol jet printing
(AJP) allows the fabrication of high-resolution composite
traces by mixing multiple aerosol streams in situ during
deposition.6,8,15−17 In contrast to liquid-phase AM methods,
mixing in the aerosol phase involves a low volume of active
material within the mixing chamber, allowing the ratio to be

modulated within a single printing cycle with a limited delay.
This is particularly important in instances where in-plane
material grading is needed, as more traditional methods only
support compositional grading through a film thickness via
multilayer stacking7,18 or diffusion-driven processes.19 Nascent
demonstrations of multimaterial AJP establish it as a viable
framework for combinatorial patterning and on-demand
material property tuning,16,20 but development of matched
inks for high-quality mixing, smooth grading, and a better
understanding of patterning behavior and limitations remains a
challenge with broad application potential.
In the present work, we demonstrate spatial tailoring of

electrical properties in carbon nanomaterial prints using
multimaterial AJP. Two distinct carbon nanomaterials, namely,
graphene and carbon nano-onions (CNOs), are formulated
into inks and mixed in the aerosol phase during patterning.
Although these nanomaterials both nominally possess carbon
and share similarities in their surface chemistry, they exhibit
distinct electrical properties and morphology.21,22 The
similarity in surface chemistry supports a matched solvent
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and binder system, which mitigates enthalpic effects that could
prevent effective blending.23 Following benchmark evaluation
of the individual inks, a series of composite inks are formulated
with a controlled ratio of graphene and CNOs to evaluate
modulation of electrical properties. Subsequent multimaterial
AJP experiments investigate in situ mixing of the aerosol
species at fixed aerosol carrier gas flow rates, demonstrating the
ability to tailor electrical properties within a statically mixed
material. Finally, a graded sample was fabricated in which the
flow rates of individual inks were varied in small increments
during deposition with Raman spectroscopy and electrical
characterization, showing different composition signatures and
electrical properties as a function of position. The reported
results demonstrate a one-step fabrication platform to
manufacture complex 2D components, with potential
applications in RF engineering6,8 and biomedical sensing,24,25

among others.26,27

■ MATERIALS AND METHODS
Materials. Ink solvents (diglyme, isobutyl acetate, and dihydro-

levoglucosenone, hereafter termed Cyrene), along with the dispersant
ethyl cellulose (EC, 4 cP), were purchased from Millipore Sigma (St.
Louis, MO). Nitrocellulose (NC) was obtained from Scientific
Polymer Products (Ontario, NY), and glycerol was purchased from
Fisher Scientific (Waltham, MA). Graphene powders coated with
ethyl cellulose, in which graphene comprises 30 wt % of the total
powder, were prepared via liquid-phase exfoliation in a pilot-scale
shear mixer in the presence of ethyl cellulose. This results in an
average flake thickness of ∼2 nm, as described in previous work.28,29

Bioderived CNO powders were synthesized from softwood organo-
solv lignin (OL) by precarbonization followed by Joule heating.
Specifically, the OL was purified by washing with deionized water for
4 h at 90 °C and then precarbonized at 700 °C under N2. The
precarbonized OL was milled at 30 Hz for 3 min in a cryo-mill
(Retsch) and then mixed with 5% carbon black. The mixture was
placed in a quartz tube reactor with copper electrodes for Joule
heating with a direct electric current of 4A for 10 min.
Ink Preparation. The graphene ink was prepared by dispersing 10

mg mL−1 of the dry graphene/EC powder and 5 mg mL−1 of NC in
one of two solvent mixtures: 9:9:2 isobutyl acetate/diglyme/Cyrene
or 4:4:1:1 isobutyl acetate/diglyme/Cyrene/glycerol. The ink
components were added to a vial and ultrasonically agitated
overnight.21 The CNO ink contained 11.25 mg mL−1 of CNO

powder, 5 mg mL−1 of NC, and 5 mg mL−1 of EC in the same solvent
mixtures. Premixed composite inks were prepared with different
overall solid loadings, using 11.25 mg mL−1 CNOs and the
appropriate amount of graphene/EC powder based on the sample
mixing ratio, which were added to 5 mg mL−1 NC and 5 mg mL−1 EC
and dispersed via ultrasonic agitation in the 4:4:1:1 solvent mixture.

Printing, Post-Processing, and Characterization Instrumen-
tation. All AJP experiments were performed on a custom printing
system with a 200 μm tapered nozzle tip (Nordson, Westlake, OH), a
print bed heated to 60 °C, and ink cartridges coupled to a 20 °C
cooling circuit. The printer contained three linear motion stages, three
mass flow controllers, and two ultrasonic atomizers, along with a
custom printhead. The printhead contained an internal helical static
mixer to promote aerosol-phase mixing, as described elsewhere.23,30

All samples were printed onto glass slides. Printed samples were cured
in a Lindberg Blue M furnace (Thermo Fisher Scientific, Waltham,
MA) using a procedure with a 15 min dwell at 70 °C, a 2 °C min−1

ramp to 325 °C, a dwell at 325 °C for 60 min, and natural cooling
based on prior work to decompose polymer dispersants and ensure
effective compaction during solvent and polymer removal.31

Deposition rate was determined using data collected with a Zygo
NewView 9000 optical profilometer (Zygo, Middlefield, CT) and
processed using Gwyddion and MATLAB. For this, the deposition
rate was determined as the product of the single-pass cross-sectional
area and the print speed. Electrical characterization data was collected
using a Keithley 2450 source meter in a four-point probe
configuration (Keithley, Cleveland, OH). Raman characterization
was performed using a Horiba iHR550 (Kyoto, Japan) system
equipped with a 532 nm laser operated at 10 mW and a spot size <20
μm when operated at 50×. Scanning electron microscopy images were
obtained using a FEI Quanta 250 FE-SEM (FEI Company, Hillsboro,
OR). The Raman data is processed by applying a moving average
filter and subtracting a linear baseline. Spectra are normalized to a
maximum intensity of 1; the D-peak intensity is taken as the
maximum value from 1250−1400 cm−1, and the G peak intensity is
taken as the maximum from 1500−1700 cm−1. Raman fitting for
carbon nanomaterials can use much more sophisticated methods for
better quantitative analysis and physical interpretation of materials.32

However, due to the complexity of the materials here (containing
graphene, CNOs, and polymer residue) and the focus of the results on
electrical functionality rather than Raman characteristics, the
interpretation of Raman data is limited to this light analysis.

Figure 1. (a) Print characteristics of the individual graphene and CNO inks deposited separately. (b) Deposition rate and (c) conductivity data for
graphene and carbon nano-onion inks printed at different carrier gas flow rates and a focusing ratio of 5, with the data standard deviation plotted as
the shaded area between each data point. (d) SEM images of representative graphene and (e) carbon nano-onion samples printed on glass. Scale
bar: 2 μm for both images.
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■ RESULTS AND DISCUSSION
Materials Benchmarking via Single Ink Printing with

Individual Nanomaterials and Premixed Blends. Printing
characteristics and electrical properties of the graphene and
CNO materials, along with discrete blends, were characterized
prior to any in situ mixing experiments and graded patterning
(Figure 1a). In particular, the deposition rate and electrical
properties are key process and performance characteristics, and
both were evaluated using a standard toolpath with a resistance
test feature (Figure S1). Samples were printed with the 4:4:1:1
inks using carrier gas flow rates ranging from 10−15 sccm to
modulate the deposition rate. Following curing, the sample
cross section was measured and combined with toolpath
information to calculate the deposition rate, corresponding to
the volume of film deposited per unit time (Figure 1b).
Conductivity values were calculated from the cross-sectional
area measurement, sample geometry, and electrical resistance
(Figure 1c).
As shown in Figure 1b, both inks exhibit a near-linear

increase in deposition rate with carrier gas flow rate (CGFR)
above a certain “threshold” flow rate, a relationship commonly
observed for AJP.33 While graphene exhibits a slightly higher
deposition rate for a given CGFR, both inks have a similar
slope and are well matched. This matching is important for
downstream efforts to blend the two inks to avoid a significant
imbalance of the constituents. As shown in Figure 1c, graphene
exhibits a higher electrical conductivity by ∼2 orders of
magnitude, owing to the high-quality sp2 carbon bonding and
the 2D morphology that supports efficient packing and flake-
to-flake overlap for electrical transport. This desirable
morphology is confirmed by SEM, showing printed graphene

traces with a continuous and dense microstructure (Figure 1d).
In contrast, the CNOs form films composed of particles
featuring more void space and inferior particle−particle
contact (Figure 1e).
Following this benchmark characterization of the individual

materials, the efficacy of tailoring electrical properties by
blending graphene and CNOs was investigated by preparing
multiple carbon inks with discrete mixing ratios, which were
deposited and analyzed individually. This experimental design
allowed the evaluation of conductivity variation between the
two end points, approximately 2 × 104 and 102 S m−1 for
graphene and CNOs, respectively. All inks here were prepared
with a 4:4:1:1 solvent ratio of isobutyl acetate, diglyme,
Cyrene, and glycerol. For sample notation (Figure 2a), the
mixing ratio is defined as the mass percentage of graphene
relative to the total mass of graphene and CNOs in the ink.
The experimental results reported in Figure 2a and Table 1

demonstrate the efficacy of mixing carbon nanomaterials to

Figure 2. (a) Conductivity data for premixed graphene/CNO inks, including the two individual inks, with graphene conductivity shown as a
dashed line. (b) Normalized Raman spectra of a subset of inks with different mixing ratios. (c) Plan view and (d) cross-sectional SEM images of a
sample printed on glass obtained from the premixed ink with a mixing ratio of 0.12. Scale bar: 2 μm.

Table 1. Summary of Discrete Blended Samples, Including
ID/IG Peak Ratios and Average Conductivity

mixing ratio ID/IG average conductivity (S m−1)

0.00 0.45 110
0.03 0.28 326
0.06 0.15 926
0.09 0.13 1120
0.12 0.14 1560
0.17 0.10 1830
0.25 0.08 5890
1.00 0.07 20,300
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modulate the electrical properties. For these samples, the
conductivity approaches that of pure graphene for mixing
ratios exceeding ∼0.30. Analysis of these same samples using
Raman spectroscopy was performed to evaluate a signature of
the chemical composition. The D-to-G peak intensity ratio
(ID/IG) is a well-established metric to evaluate quality and
chemical bonding structure for carbon nanomaterials.19 Here, a
lower ID/IG is expected for graphene-rich samples because the
G band is an indicator of the in-plane vibration mode for a
hexagonal network of carbon atoms, whereas the D signal is
related to disruptions in the sp2 carbon network and is thus
expected to be higher for CNO-rich samples.19,34 This
qualitative behavior is observed, as shown in the Raman data
in Figure 2b, with a broad background and high D-peak
intensity associated with the CNOs. SEM images correspond-
ing to the mixing ratio of 0.12, including a plan view (Figure
2c) and a cross section (Figure 2d), reveal spherical CNOs
randomly dispersed among the graphene flakes, with no clear
evidence of material segregation along the sample thickness.
We note that the combination of graphene and CNOs is
selected for chemical similarity and parallel application utility.
As a result, quantitative characterization of mixing is not
straightforward, but prior work has evaluated the in-line mixing
printhead with more distinct materials to validate the aerosol-
phase mixing mechanism.23

The Raman data line up with the material resistivity and
reflect the shift from the more disordered, less conductive
CNO to high-quality graphene. Specifically, CNO-rich samples
exhibit poorly resolved spectra with high ID/IG values (Figure
2b, bottom spectrum), which decrease as more graphene is
introduced into the film.
Multimaterial Printing. Following characterization of

discrete inks containing well-defined mixtures of the carbon
nanomaterials, multimaterial printing was performed by

loading both single-component inks into the printer, atomizing
them concurrently, and mixing the generated aerosol droplets
from each ink within the printhead during deposition. Mixing
aerosols during printing is promoted by a helical static mixer
within the printhead (Figure 3a), as shown in previous
studies.23 For these experiments, the 9:9:2 solvent mixture was
used, as it results in decreased sensitivity to the deposition rate
and in-line drying. This multimaterial printing setup is of
particular interest for the additive manufacturing of function-
ally graded materials since it allows composite patterning with
a spectrum of compositions using only two base inks
formulated with individual carbon materials. This approach
reduces excessive materials waste and time required for
evaluating compositions with mixtures formulated up front
and provides a versatile capability to tailor composition, and
thus properties, during fabrication.6

First, a series of samples with unique compositions was
prepared by varying the CGFR for each specimen, similar to
previous research efforts.20 Specifically, five flow rates of 3, 6, 9,
12, and 15 sccm were used for each ink, resulting in 25
different samples (sheath gas flow rate values in Figure S2). As
shown in Figure 3b, this method is effective at modulating the
electrical properties. For the CNO-rich sample (15 sccm
CNO/3 sccm graphene), the conductivity of 145 S m−1 is a
factor of ∼130 lower than that for the graphene-rich sample (3
sccm CNO/15 sccm graphene), with the overall conductivity
decreasing along the matrix diagonal. When moving along the
diagonal from bottom-left to top-right, the conductivity
remains more consistent (Figure 3b), reflecting a more
consistent chemical composition, with the primary difference
being the amount of material deposited, as shown by the
deposition rate data (Figure S2a). The combination of
conductivity and thickness (related to the deposition rate)
leads to the sheet resistance for each sample. Therefore, by

Figure 3. (a) Schematic representation of the multimaterial aerosol jet printing setup, with complete experimental parameters reported in Figure
S2c. (b) Heatmap showing conductivity for samples printed with in situ mixing of graphene and CNO inks. White squares are used for samples
lacking measurable electrical conductivity. (c) Normalized Raman data for samples printed with a CNO CGFR of 12 sccm and the full range of
graphene CGFRs studied.
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changing both conductivity and thickness, the sheet resistance
can span nearly 2 orders of magnitude from 54 to 4580 Ω □−1

(Figure S2b). Notably, to achieve this same span with just
graphene would require samples with thicknesses of 912 to
10.8 nm, which would present challenges for uniformity of
more resistive samples. For the CNO ink, samples with
thicknesses ranging from 168 to 1.98 μm would be required to
target the same sheet resistance range, with the thicker films
more susceptible to mechanical failure and processing
challenges (i.e., cracking, adhesion). This illustrates why
grading material properties, rather than just thickness, is
important, and extending this to more diverse functionality
(i.e., semiconductors) can support unique properties that
cannot be re-created with a single material.
Raman spectra for samples deposited using a CNO CGFR of

12 sccm and all 5 CGFRs for graphene show a decreasing ID/
IG ratio with an increasing graphene CGFR (Table 2). This

validates the assumption that the CGFR ratio of graphene/
CNO alters the material composition and aligns with the data
analyzed for premixed inks (Figure 2c).19 The correspondence
between Raman signals and electrical conductivity for
premixed inks matches that for in-line mixing (Figure S2d),
and the morphology of samples prepared with in-line mixing
(Figure S3) matches that of Figure 2c, confirming the
functional similarity between premixed and in-line mixed
materials.
In addition to individual samples with tunable but uniform

compositions, the same multimaterial AJP setup was applied to
fabricate a sample with graded composition by changing the
CGFRs of both CNOs and graphene in small increments
during manufacturing. Specifically, a 6 mm × 40 mm specimen
was manufactured with the CNO CGFR ranging from 15 to 3
sccm while the graphene CGFR varied from 3 to 15 sccm. The
toolpath used for this is illustrated in Figure S4 and includes a
CGFR variation of 0.03 sccm for every other infill step (50 μm
for each step, thus every 100 μm), so that the combined CGFR
remained constant at 18 sccm, while the sheath gas flow rate
was kept at 30 sccm during the print. With these operational
parameters, the sample was deposited on glass using a feed rate
of 5 mm s−1 and postprocessed using the previously described
procedure. The resulting specimen, shown in Figure 4a, was
characterized by optical profilometry and current−voltage
measurements to evaluate the sample thickness and electrical
resistance, respectively.
Thickness data, shown in Figure 4b, are reported as the

average height measured for a 1 mm wide sample slice, and
resistance data (Figure 4c) were measured every mm using an
in-line four-point probe measurement with 1 mm probe
spacing (Figure S5). These measurements allowed the
calculation of an estimated conductivity using the following

equation applicable to a sample with uniform thickness and
composition

= V
I

t
ln (2)

1i
k
jjjj

y
{
zzzz

with t being the sample thickness, I the current, and ΔV the
voltage difference. We note that these extracted conductivities
are simply an estimate, since the sample geometry varies from
the traditional 4-point probe specimen. Moreover, nonuniform
thickness and composition complicate one-to-one mapping of
electrical characteristics. Nevertheless, using this approximate
relationship, the conductivity starts initially at ∼150 S m−1 and
sharply increases for the first 10 mm of the sample. This trend
aligns with the rapid increase in conductivity as graphene is
introduced from the fixed-composition control samples (Figure
2a). Beyond this point, the rate at which the estimated
conductivity changes decreases, with the maximum measured
value being ∼17,000 S m−1 at x = 39 mm. This value is likely
lower than the value for a graphene-only film due to the
significant deviation of the test geometry from a uniform thin
film with infinite expanse. The reduced rate in conductivity
increase observed for x > 10 mm suggests the material is
reaching mixing ratios close to ∼0.2, a value where graphene
tends to dominate electrical characteristics over the contribu-
tion from CNOs, as observed in Figure 2a. Finally, Raman
spectroscopy at 1 mm increments was performed, revealing an
evolution in ID/IG that is well correlated with the change in
electrical properties, in agreement with Figures 2b and 3c. In
general, the Raman signature exhibits greater variability than
electrical, which is attributed to the localized nature of the
measurement, the polydispersity in the chemical signature of
the CNO material itself, and analysis of the Raman data. As the
graphene content increases, this variance is reduced, reflecting
the higher purity and more consistent quality of the
nanomaterial.
The validation of this capability to smoothly grade

properties has broad implications for electronics printing.
Carbon nanomaterials were selected for this work due to their
applicability in electrochemical systems,35 for which spatially
tailoring electrical, chemical, and mass transfer characteristics
provides improved design freedom for advanced configura-
tions. Moreover, graded materials offer utility for tailoring
interactions with electromagnetic radiation. Just as grading
effective refractive index can support advanced optics design
(i.e., antireflection functionality), spatially controlling electrical
and dielectric properties can modulate interaction with radio
frequency electromagnetic waves.36 Extending this capability to
a more diverse suite of materials will support broad
applications for which the precision and control of additive
methods provide unique advantages.

■ CONCLUSIONS
This work demonstrates the fabrication of functionally graded
carbon nanomaterial patterns using a multimaterial AJP
technology. To broadly modulate electrical properties during
fabrication, two carbon allotropes, namely, graphene and
CNOs, were selected as candidate materials due to their
combination of similar surface/colloid chemistry and distinct
electrical conductivity. Following parallel ink formulation for
the two constituent materials, the ability to modulate the
electrical properties was evaluated. Different mass ratios of
carbon nanomaterials were blended in discrete composite inks

Table 2. ID/IG Ratio from the Raman Spectra Shown in
Figure 3c and the Electrical Conductivity of the
Corresponding Films

graphene CGFR (sccm) ID/IG ratio conductivity (S m−1)

3 0.44 167 ± 2
6 0.17 1038 ± 11
9 0.10 3253 ± 27
12 0.08 5554 ± 60
15 0.08 7137 ± 79
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and printed, revealing conductivity values varying continuously
between ∼100 and ∼20,000 S m−1. Then, multimaterial
printing was demonstrated for manufacturing of composite
samples via in situ mixing, allowing the composition, and thus
properties, to be tailored over a wide range from only two
precursor inks. Finally, more complex printing control with
varying flow rates allowed the fabrication of laterally graded
films. The resulting sample exhibits spatially varying electrical
properties, establishing a viable method to tune electronic
functionality not possible in a single material by exploiting the
precision and digital control of printed electronics technolo-
gies. This fabrication platform, applied to electronic devices,
expands design freedom for applications benefiting from
properties not accessible via conventional methods, such as
electromagnetic shielding, electrochemical systems, biointe-
grated materials, and mechanical interfaces.
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