Concept of Utilizing Ionic Liquids for the Co-electroreduction of Carbon Dioxide and Nitrogen-containing Compounds

Saudagar Dongare^{a,*}, Oguz Kagan Coskun, Burcu Gurkan^{b,*}

Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio, USA, 44106.

*E-mail: a sbd54@case.edu; b beg23@case.edu

Abstract: Formation of C-N bonds through the electrochemical utilization of CO₂ and nitrogen containing compounds (N-compounds) is appealing for the purpose of converting waste and readily available sources or pollutants into value added chemicals at ambient conditions. Existing research predominantly explores these electrochemical reactions independently, often in aqueous electrolytes, leading to challenges associated with competitive hydrogen evolution reaction (HER), low product selectivity, and yield. Functional electrolytes such as those containing ionic liquids (ILs) present selective solubility to the solute reactants and present unique interactions with the electrode surface that can suppress the undesired side reaction HER while simultaneously co-catalyzing the conversion of CO₂ and N-compounds such as N₂, NO, NO₂, and NO₃. In this concept paper, we discuss how the microenvironment enabled by ILs can be leveraged to stabilize reaction intermediates at the electrode-electrolyte interface, thereby promoting C-N bond formation on an active electrode surface at reduced overpotential, with the case study of CO2 and N-compounds co-catalysis to generate

Introduction

With the global annual production of 184 million metric tons^[1], urea is considered an important nitrogen source for the fertilizer industry. Presently, the production of urea is accomplished by the reaction of N2 and H2 to generate NH3 by the Haber-Bosch process at high temperature and pressure (350-550 °C, 150-350 bar) in the first step, followed by the reaction of NH3 and CO2 under relatively milder reaction conditions (170-200 °C and 200-250 bar) in the second step. These sequential reactions are carried out for several cycles to increase the conversion efficiency since both N2 and CO2 molecules are extremely inert, with high dissociation energies of N=N (941 kJ/mol)[2] and C=O (806 kJ/mol)[3]. Thus, current methods are energy-intensive, with production costs accounting for about 2% of annual global energy.[4] Recently, electrochemical urea synthesis has been reported as an alternative where the co-reduction of greenhouse gas CO2 and naturally abundant N2 under ambient conditions were achieved using a range of electrocatalysts including $monometallics^{[5]}, \ \ bimetallic^{[6]}, \ \ oxides^{[7]}, \ \ and \ \ multi-component$ alloys^[8]. However, the first electron transfer reactions to CO₂ and N₂ involving CO₂ and N₂H species still necessitate high overpotentials of -1.9 V and -1.4 V vs. reversible hydrogen electrode (RHE),[9] respectively. This results in HER side reaction in aqueous media and thereby limiting the urea production efficiency. Another factor contributing to low production rates is the low solubility of CO_2 and N_2 in the aqueous electrolyte. Therefore, the development of both the electrodes and suitable electrolytes simultaneously for the enhanced solubility and coreduction of CO_2 and N_2 remain an unmet need. [10]

Research has shown that other nitrogen sources with lower dissociation energies than N2 can be advantageous to address the high overpotential challenge such as nitrite, NO2- (207 kJ/mol)^[7], nitrate, NO₃⁻ (204 kJ/mol)^[2], and NO (607 kJ/mol)^[5]; these species also demonstrate higher solubility in aqueous electrolytes than N2. Furuya and colleagues[11] reported the electrosynthesis of urea by co-reduction of CO2 and NO3-/NO2using Cu-loaded gas-diffusion electrodes. They observed 37 % current efficiency for urea at -0.75 V vs. standard hydrogen electrode (SHE). Assuming a pH of 7, based on the use of 0.2 M KHCO₃, the reported potential corresponds to -0.33 V vs. RHE. The mechanism they proposed involved the formation of ammonia intermediate from nitrite, which then reacts with the insitu formed CO on the electrode surface. Since this first study, many different strategies such as heteroatom doping,[12] controlling oxygen vacancy defects,^[13] and surface engineering^[14] by nanoalloys have been reported for the formation of C-N bond to selectively produce urea on a heterogenous catalyst as summarized in Table 1. For example, Chen et al.[15] developed PdCu alloy nanoparticles supported on TiO2 nanosheets where they achieved overpotentials as low as - 0.40 V vs. RHE in a flow cell assembly, similar to Furuya and colleagues, despite their utilization of N2.

Most of the aqueous based studies discuss the surface adsorbed *NH2 and *COOH as key intermediates during the coreduction of nitrogenous species and CO₂, respectively. Therefore, it is necessary that these intermediates are coupled at the interface an early stage of the mechanism to achieve an increased urea selectivity compared to the byproducts such as NH₃, CO, or HCOOH.[11] Despite the many advancements in catalyst development aimed at achieving suboptimal binding of key intermediates on various active sites, the process lacks a benchmark in terms of urea yield rate and selectivity for practical applications. Therefore, it is necessary to also engineer the electrolyte side to help stabilize reaction intermediates on the surface for C-N coupling. To this end, ionic liquids (ILs) and specifically those based on imidazolium cation have been reported to induce electric field effects on metal electrodes and act as co-catalysts or promoters for electrochemical reactions, particularly the CO₂ reduction.^[16] Separately, the higher solubility of N2 in ILs (up to 20 times higher), compared to aqueous electrolytes (only 0.66 mmol/L)[17], are reported to be the reason for the enhanced N_2 electro-reduction to ammonia in the IL electrolytes.[18]

This article summarizes key insights from studies showcasing IL-assisted CO_2 and N_2 electrochemical reduction and present the concept of coupling these reactions for the specific case of urea electrosynthesis. Specifically, we hypothesize that the introduction of functional ions to electrolytes can enhance the solubility of nitrogenous compounds and CO_2 from low partial pressure gas streams such as flue gas, thereby

facilitating improved mass transport of reactants and intermediates to active sites within electrode materials. Moreover, the unique microenvironment at the electrode-electrolyte interface created by the IL can be leveraged toward stabilizing reaction intermediates on catalytic active sites for enhanced catalyst efficiency and product selectivity. As ILs behave differently on surfaces, depending on the electrode material, it is also important to synergize the choice of the electrode with the specific IL electrolyte.^[19]

Table 1. Catalysts for electrosynthesis of urea in aqueous electrolytes with a comparison to the only report to date with IL electrolytes for benchmarking in terms of type of reactants, applied potentials (V vs. RHE), current density (CD), yield rate, and Faradaic efficiency (FE). Differently than the aqueous electrolysis studies, the IL electrolyte work followed a sequential 2-stage process where amines were the N-source and O_2 reduction to H_2O_2 was an additional reaction.

Electrocatalyst	Electrolyte	Reactant	Potential (V vs. RHE)	CD (mA·cm ⁻²)	Yield rate (mmol h ⁻¹ g ⁻¹)	FE _{urea} (%)
Aqueous electrolytes	<u> </u>					
In(OH) ₃ -S ^[20]	0.1 M KNO ₃	NO ₃ ⁻ + CO ₂	-0.6	-2	8.53	53.4
InOOH ^[21]	0.1 M KHCO₃	N ₂ + CO ₂	-0.4	-1.2	9.8	51
Bi ₂ S ₃ /N-RGO ^[22]	0.1 M KHCO ₃	N ₂ + CO ₂	-0.5	-0.75	4.4	7.5
MoP-(101) ^[23]	0.1 M KHCO₃	N ₂ + CO ₂	-0.3	y-	0.2	36.5
ZnMn-N,CI ^[24]	0.1 M KHCO ₃	N ₂ + CO ₂	-0.3	-0.75	4.1	63.5
Zn NBs ^[5]	0.2 M KHCO ₃	NO + CO ₂	-0.9	-40	15.1	11.3
Cu–TiO ₂ –V _o ^[7]	0.2 M KHCO ₃ + 0.02 M KNO ₂	NO ₂ - + CO ₂	-0.4	-8	20.8	43.1
AuCu SANFs ^[25]	0.5 M KHCO ₃ + 0.01 M KNO ₂	NO ₂ ⁻ + CO ₂	-1.5	-20	64.7	24.7
PdCu/CBC ^[6]	0.05 M KNO ₃	NO ₃ ⁻ + CO ₂	-0.5	-2	12.7	69.1
Pd ₄ Cu ₁ –FeNi(OH) ₂ ^[8]	0.1 M KHCO ₃ + 0.1 M KNO ₃	NO ₃ ⁻ + CO ₂	-0.5	-1.5	18.8	76.2
CuWO ₄ ^[26]	0.1 M KNO ₃	NO ₃ ⁻ + CO ₂	-0.2	-1	1.5	70.1
Cu-GS-800 ^[27]	0.1 M KHCO ₃ + 0.1 M KNO ₃	NO ₃ ⁻ + CO ₂	-0.9	-27	-	28
IL electrolytes				<u> </u>	<u> </u>	
Au plate ^[28]	[BMIM][NTf ₂] (1 st) + Cyclohexylamine (2 nd)	CO ₂ + amine + O ₂	-1.6 V <i>vs.</i> Fc ⁺ /Fc	N/A	N/A	88
	[BMPyrr][NTf ₂] (1 st) + Cyclohexylamine (2 nd)	CO ₂ + amine + O ₂	-1.6 V <i>vs.</i> Fc ⁺ /Fc	N/A	N/A	93

Electrocatalytic reduction of N₂ in ILs

There is a body of literature^[29] devoted to understanding the solubility behavior of gases in ILs motivated by their potential applications in gas separations. Stevanovic and Gomes[17] investigated the solubility of CO₂, N₂O, C₂H₆, and N₂ in 1-butyl-1tris(pentafluoroethyl) trifluorophosphate methylpyrrolidinium ([C₄mpyr][eFAP]) and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl) trifluorophosphate ([P66614][eFAP]). Notably, they observed that N2 exhibited a solubility level approximately one order of magnitude lower than other gases but still higher than in pure water. Expanding on this work, Gomes's group^[30] explored ILs with partially fluorinated cations, revealing a positive correlation between the fluorine content in ILs and the solubility of CO₂ and N₂. More recently, MacFarlane and colleagues^[31] examined the electrochemical NH3 production over a nanostructured iron catalyst from N2 in ambient air using the same ILs as electrolytes in comparison to a common IL, 1-hexyl-3bis(trifluoromethylsulfonyl)imide methylimidazolium ([HMIM][NTf₂]. They reported the highest NH₃ selectivity was with [P₆₆₆₁₄][eFAP] with 60% FE at around -0.8 V vs. NHE (equivalent to -1.5 V vs. Fc/Fc+) over a nanostructured iron catalyst under ambient conditions followed by [C₄mpyr][eFAP] (FE=40%) and [HMIM][NTf2] (FE=0.64%). This trend was consistent with the N_2 solubility in these ILs: $0.28 \text{ mg} \cdot \text{g}^{-1}$ ([P₆₆₆₁₄][eFAP]), $0.20 \text{ mg} \cdot \text{g}^{-1}$ ([C₄mpyr][eFAP]), and <0.017 mg·g⁻¹ ([HMIM][NTf₂]) at about 1 bar and 30 °C.[17] These solubilities correspond to Henry's law constants approximately in the range of 100-200 bar.

In a subsequent study, MacFarlane and colleagues^[32] introduced a fluorinated co-solvent, 1H,1H,5H-octafluoropentyl-

1,1,2,2-tetrafluoroethyl ether, to develop aprotic solvent-IL mixture electrolytes to simultaneously achieve high N2 and regulated H⁺ availability on an iron based electrode surface. They achieved 32% FE for NH₃ with a yield of 2.35 × 10⁻¹¹ mol·s⁻¹·cm⁻ ², in comparison to 10⁻¹² mol·s⁻¹·cm⁻² in the neat IL, [C₄mpyr][eFAP]. This study demonstrated the enhanced catalytic activity due to increased N_2 solubility and the improved stabilization of the first reduced *N2H intermediate by the fluorinated IL electrolyte. Further, Lopez and colleagues[33] performed density functional theory (DFT) calculations to gain mechanistic insight on the role of hydrogen bonding interaction for N₂RR at Ru(0001) surface modified by [C₄mpyr][eFAP]. The hydrogen bonding between the fluorous anion (-CF₂) and the N₂H intermediate stabilizes this intermediate on the surface for multielectron transfers, thus increasing catalytic activity and boost selectivity toward NH₃. More recently, Wei et al.[34] studied the behavior of $[C_4mpyr][eFAP]$ IL on P-doped MoS_2 nanospheres. They observed suppression of HER due to hydrophobic IL electrolyte and its stronger interaction with the surface that prevents water approaching to the electrode. They reported 69% FE for NO to NH₃ conversion at -0.6 V vs. RHE.

Separately, in search of stable non-aqueous electrolytes, Hoang-Long et al. [35] demonstrated that a concentrated solution of imide-based lithium salt (2 M Li[NTf2] in tetrahydrofuran, 3.5 ppm H2O) promotes N2RR over a Ni wire electrode for a minimum of 96 hours tested. Consistent NH3 yield rates, reaching 223 nmol/s/cm², with nearly 100% NH3 conversion efficiency, were achieved. This study further highlights the importance of ionic assembly at the electrode surface modulated by Li † with the [NTf2] anion in the presence of the non-aqueous electrolytes, thus preventing electrolyte decomposition while enabling stable N2RR.

Saudagar Dongare received his master's degree from LIT Nagpur, India, in 2016, and his Ph.D. from Thapar Institute, Patiala, India, in 2021. Since then, he has been working as a postdoctoral researcher at Case Western Reserve University, Cleveland, USA, under the supervision of Prof. Burcu Gurkan. His current research interests involve interfacial characterizations of functional solvents in CO2 capture and electrochemical conversion processes.

Oguz Kagan Coskun is a Ph.D. student at Case Western Reserve University under the supervision of Prof. Burcu Gurkan. He completed his B.S. in Metallurgical and Materials Engineering and M.Sc. in Materials Science and Engineering at Istanbul Technical University focusing on molten salt electrolysis. His research interests involve electrode–electrolyte interfaces, electrocatalyst materials, ionic liquid electrolytes, and analytical and computational electrochemistry.

Burcu E. Gurkan is a Professor of Chemical and Biomolecular Engineering Department at Case Western Reserve University. Her research focuses on the physical properties and reactivity in deep eutectic solvents and ionic liquids for applications in separations, energy storage, and conversion. She is the Deputy Director of BEES2 (Breakthrough Electrolytes for Energy Storage Systems)—a Department of Energy Frontier Research Center (EFRC) and a Key Researcher in 4C (Center for Closing the Carbon Cycle) EFRC where she leads the effort in developing structured electrolytes for electrochemical processes for flow batteries and CO₂ conversion, respectively.

Electrocatalytic reduction of CO₂ in ILs

The electrochemical CO_2RR in aqueous electrolytes faces challenges due to its energetic inefficiency, necessitating large overpotentials for the initial electron transfer to convert linear CO_2 into bent CO_2^{\bullet} . This high overpotential often leads to competition from HER, reducing the Faradaic efficiency for producing reduced CO_2 products. Additionally, the low solubility of CO_2 in aqueous solutions exacerbates these challenges.

ILs are known for their high CO2 solubility (Henyr's law constants in the orders of 20 to 60 bar);[36] however, beyond increased solubility, ILs offer co-catalytic effects and inhibit parasitic reactions like HER. Among the various types of ILs, imidazolium-based ones have attracted the most interest in CO₂RR. The earliest report by Rosen et al.[16c] using 18 mol% 1ethyl-3-methyl-imidazolium tetrafluoroborate $([EMIM][BF_4])$ aqueous solution reported 96% FE for CO over silver with a lower overpotential (200 mV more positive compared to the aqueous electrolyte without the IL). Besides lowering the energy barrier for reactions, the presence of ILs in non-aqueous electrolytes were also reported to influence the reaction mechanisms; for example, the generation of CO instead of the expected oxalate on Pb surface as reported by Sun et al. [37] Other studies have delved into the performance of alternative catalysts, yielding noteworthy findings. For instance, MoS2 and Nb-doped MoS2 exhibit a higher turnover frequency for CO compared to Ag nanoparticles in an Im-based IL-water mixture. [38] It is important to highlight the role of electrode material in IL-mediated CO₂RR, as demonstrated by Tanner et al.[39], where a series of electrode materials was studied including Ag, Pt, Au, Sn and Pb and the earliest onset potential was observed on Ag electrode. The authors concluded the cocatalytic effect observed through earlier onset potentials to be Ag specific.

Regarding the role of ILs in catalyzing CO₂RR, initial reports focused on [EMIM]+ claimed that the co-catalytic affect is a result of interaction between the cation and the CO2 yielding a complex (i.e., carboxylate).[40] This proposed mechanism later challenged by other researchers in the field who propose that the complex formation is not the origin of co-catalytic effect but the hydrogen bonding interactions^[41] and ordering in the double layer structure of the interface leading to reduced entropy, hence the reduced overpotentials.[42] In fact, various in-situ interface probing techniques, such as sum frequency generation spectroscopy, surface tunnelling microscopy, or surface-enhanced Raman spectroscopy, indicate potential-dependent transitions in the ordering of ILs near the electrode surface. [16a] Consequently, these structural changes, induced mainly by negative potentials during reduction can impact the electric field strength and help stabilize intermediates like CO2 •-. [43]

The range of ILs capable of co-catalyzing the CO_2RR extends beyond imidazolium-based ILs. Pyrazolium-based ILs have also been reported as stable co-catalysts where 500 mV decrease in the overpotential with 100% FE for CO were obtained. Fully substituted pyrazolium cations demonstrate favorable performance in CO_2RR , inhibiting the inactive pyrazolium- CO_2 adduct formation, similar to the carboxylate

formation in the case of imidazolium-ILs, thus increasing CO2 utilization. In another study conducted by Vasilyev et al.[45], guadinium-based ILs were systematically assessed as cocatalysts for the CO₂RR in comparison to imidazolium, pyrrolidinium and pyrazolium based ILs, with an aim to identify the factors influencing their activity. The researchers found that the accessibility of the charge on the IL cation plays a crucial role in facilitating interactions with surface-bound CO2 - species. Moreover, they observed that these interactions are enhanced when the charge distribution on the cation is localized. These identified descriptors were then used to explain the trends observed among various IL co-catalysts in the CO2RR, where imidazolium, pyrrolidinium, and pyrazolium based ILs exhibited quadinium-ILs. comparable activity levels, surpassing Furthermore, non-substituted ILs performed better than the substituted ILs. Based on these findings, the authors conclude that the optimal IL cation should feature a highly localized charge with minimal steric hindrance, promoting efficient interactions with CO2 and resulting in enhanced catalytic activity.

Early investigations of IL-mediated CO2 reduction studies primarily focused on physisorbing ILs, where the CO2 and IL components do not chemically interact. However, emergence of functionalized ILs introduces a more dynamic interface, extending beyond dissolved neutral CO2 to adducts formed between CO2 and the IL components such as carboxylate and carbamate species.[46] The more complex and dynamic interfacial ordering created by these species presents chemical processes like hydrogen transfer to the electrode surface and among IL components in addition to electron transfer reactions between the electrode and the electrolyte.[47] For example, an imidazolium based IL with 2-cyanopyrrolide anion ([2-CNpyr]-) chemisorbs CO₂ (about 5 mmol of CO₂ per gram of IL at 1 bar and 25 °C) and the spontaneous chemical reaction generates native hydrogen bond donor upon proton transfer from imidazolium to the anion in addition to cation-CO2 and anion-CO2 complexes. [46, 48] The formation of the native hydrogen bond donor helps tune the hydrogen bonding network within the double layer and the catalytic activity towards higher value CO₂RR products. [16a]

In summary, ILs are shown to tune the interfacial electric field and create advantageous hydrogen bonding networks besides suppressing HER and promoting selectivity towards certain products by structural design. While the product generation yields remain low for practical solutions, the existing literature findings merit further research in co-electrolysis approaches with ILs for making chemicals and fuels using renewable electricity to adapt to decarbonization efforts for a sustainable future.

Co-catalysis of CO₂ and N-compounds with IL electrolytes

The overall urea electrosynthesis reaction from co-catalysis of CO_2 and N-compounds (reactions 1-4 below) involves simultaneous multi-proton coupling and multi-electron transfer processes with various reaction intermediates, as shown in **Figure 1**.

$$N_2 + CO_2 + 6H^+ + 6e^- = CO(NH_2)_2 + H_2O$$
 (1) $2NO_2^- + CO_2 + 14H^+ + 12e^- = CO(NH_2)_2 + 5H_2O$ (3) $2NO_3^- + CO_2 + 18H^+ + 16e^- = CO(NH_2)_2 + 7H_2O$ (2) $2NO + CO_2 + 10H^+ + 10e^- = CO(NH_2)_2 + 3H_2O$ (4)

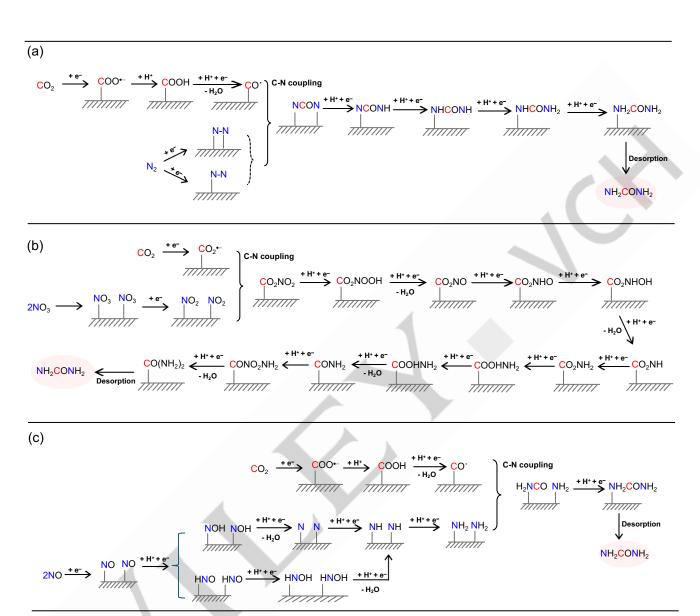


Figure 1. The possible reaction pathway of urea synthesis from co-reduction of CO_2 and $N_2(a)$ and $NO_3^-(b)$, and NO (c). The reduction of NO_2^- follows a similar reaction pathway as shown in panel (b).

The reactions of interest to the co-reduction of CO₂ and N-compounds (eqns. 1-4) typically involve three steps. First step is the co-activation step that is followed by adsorption on catalytic active sites to form intermediates. Second step is the coupling of the reduction intermediates to form C–N bonds. Finally, the third step is the hydrogenation of key reaction intermediates to generate urea.^[23] Current research has been confined to only a few theoretical calculations^[49] and in situ spectroscopic investigations, including synchrotron radiation-Fourier transform infrared spectroscopy (SR- FTIR)^[13a], sum frequency generation spectroscopy (SFG)^[49a], and, Raman spectroscopy^[50], especially in aqueous electrolytes, where various key intermediates were detected. In the case of N₂ as the N source, the C–N coupling

reaction proceeds through the interactions between the surface adsorbed *N=N* and *CO to form *NHCONH followed by additional protonation step to form *NHCONH2 intermediate, $^{[51]}$ as illustrated in **Figure 1a**. However, in the case of CO2 and NOx coelectrolysis, coupling proceeds through *NO2 and *CO2 or *NH2 and *CO intermediates to form *CO2NO2 $^{[13]}$ and *CONH2 $^{[7]}$ as shown in **Figures 1b** and **1c**, respectively. The type of electrode material, its morphology, and composition greatly influence the reaction pathways. It has been reported that the C-N coupling steps and protonation of key reaction intermediates during the coelectrolysis reactions are thermodynamically unfavorable (ΔG >0.40 eV), $^{[52]}$ leading to poor urea synthesis specifically on Cu surface. It is also possible that other undesired hydrogenation

reactions occur with these reaction intermediates in a similar reaction environment, including the hydrogenation of *NH₂ to form NH₃ and the hydrogenation of *CONH₂ to produce formamide.^[53] Furthermore, adsorbed HCHO* (CO2RR intermediate) quickly undergoes nucleophilic attack by NH2OH (N2RR intermediate), yielding formaldoxime, which is further electrochemically reduced to n-methylhydroxylamine and then to methylamine^[54] and ethylamine^[55] on cobalt β-tetraaminophthalocyanine/carbon nanotubes (CoPc-NH₂/CNT) and CuO nanoparticles/carbon fiber, respectively. The occurrence of these undesired side reactions decreases urea selectivity. Therefore, it is necessary to control the hydron bonding network at the interface to mitigate such undesired reactions. Other problems include the low solubility of CO₂ and N-containing compounds, low diffusion rates of reactants to the electrode surface, HER, low urea yield rate, and separation of products. [10c] Therefore, based on our understanding of the field and the current literature, we propose that utilizing IL as an electrolyte could improve the urea selectivity and yield rates as further rationalized in the consecutive sections.

a. Solubility of CO₂ and N-compounds in ILs

The solubility of CO₂ and nitrogen oxides (NO_x), including N₂O, NO, and NO₂, is limited in conventional solvents, and sometimes they react with solvents (as is the case with amines), causing electrolyte degradation after repeated use and long exposure during the conversion process.^[56] Further, limited solubility of reactants will induce mass transfer limitations during electrolysis at higher current densities. Researchers have utilized membrane electrode assembly and gas diffusion electrodes in flow cells with a gas phase CO2 feed to overcome solubility limits, as these setups create a triple-phase boundary where gaseous reactants is in contact with an electrolyte close to the electrocatalytic surface. However, these types of electrodes are known to become less hydrophobic during electrolysis at highly negative potentials because of electrowetting of carbon sites under an applied field,[57] chemical degradation,[58] electrical and precipitation.[59] Such configurations also require the use of pure gas streams coupled with high surface area electrocatalysts to achieve the desired product selectivity and current densities, [60] thereby adding to the cost burden of catalyst synthesis, gas separation, and compression.

In recent years, ILs have been proposed as an alternative for the capture and separation of CO_2 and NO_x compounds because of their stability and high capacities. Generally, NOx are polar molecules, which can potentially be absorbed by polar solvents according to the law of similarity and miscibility. ILs are generally considered as 'very polar' solvents due to the presence of charged ions in their structure. [61] For example, Anthony et al. [29b] reported the first solubility data of N2O in 1-butyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf₂N]) at three temperatures (283.15 K, 298.15 K, and 323.15 K) and pressures up to 1.3 MPa. They showed that the solubilities of N2O and CO2 are essentially the same (on a mole fraction basis) in [BMIM][Tf2N] and have significantly higher solubility than other hydrocarbons (C2H4, C2H6) and oxygen. Further, imidazolium^[30] and phosphonium^[62]-based ILs with highly fluorinated anions were reported to have remarkable N_2 solubility. It has been reported that adding fluorinated functional groups to either the cation or the anion increases N_2 and CO_2 solubility, which can be explained by the rigidity of the fluorinated chains leading to a larger free volume. [62-63] Similarly, functionalizing ILs with amino, carboxylate, alkoxide, phenolate, azolate functional group enables chemisorption with high CO_2 uptake capacities even at low CO_2 partial pressure. Some example structures of ILs that demonstrated high CO_2 and N_2/NO_x uptake capacity are shown in **Figure 2**.

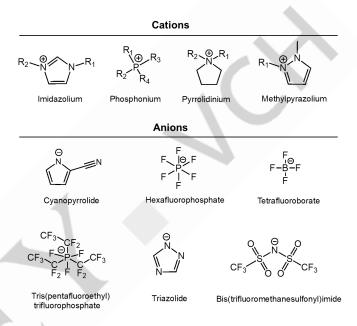


Figure 2. Common cation and anion structures of IL those were reported for high CO_2 and N_2/NO_x uptake capacity.

These ILs can be utilized as functional electrolytes solubilizing large quantities of reactants during the co-electrolysis process, which can further eliminate the need of complex reactor configuration and reactant separation and further purifications. In electrosynthesis using ILs as the reaction media or the co-catalyst, a special attention should be paid to ensure IL itself is stable and not contributing to side reactions. To confirm the source of carbon and nitrogen in C-N coupling reactions, particularly with ILs containing N- and C- based ions, isotope labeling of reactants (15N and ¹³C) would be helpful. It is important to ensure IL is stable under the conversion reaction conditions and that the observed products are not derived from the degradation of the IL or the electrolyte itself, especially under high reduction overpotentials. Another concern may arise regarding the conversion of the captured reactants as it may require additional energy to break the covalent bonds, if formed, between the IL and the solutes at the electrode surface. Further research is needed to understand the solute-solvent interactions in parallel to those of soluteelectrode in chemically complexing systems undergoing electron transfer reactions such as the case of simultaneous CO2RR and N_2RR .

b. Hydrophobicity at the interface

In the practical applications, flue gas typically contains 8% to 20% moisture along with other impurities. The presence of moisture and undesired impurities (e.g., halides) in the electrolyte can cause side reactions such as hydrogenation of intermediates in competition to the urea electrosynthesis. To address this issue, hydrophobic ILs such as those containing fluoro moieties and long chain alkyl substituents can be utilized to control the water activity at the electrode surface. Studies by Seddon et al. [65] and Cao et al. [66], have examined the impact of IL structural components on water sorption from the atmosphere. They found that the hydrophobicity of IL is decreased with increasing alkyl chain length of the cation. Further, they reported that the anion of the IL plays a more significant role in tuning hydrophobicity compared to the cation. The water sorption capacity among the imidazolium ILs with varied anions followed the order of acetate([Ac]-) > trifluoroacetate ([TFA]-) nitrate $([NO_3]^-)$ > trifluorometahnesulphonate ([TFO]-) > tetrafluoroborate ([BF4]-) > bis(trifluoromethylsulfonyl)imide ($[Tf_2N]^-$) > cholate ($[CHO]^-$) > hexafluorophosphate ([PF₆]⁻).[66]

ILs with functional amines and aprotic heterocyclic compounds are also shown to enhance CO2 solubility[67] and reactivity at the electrode-electrolyte interface for CO₂RR.^[16a, 47] As an example, Feng et al.[64] reported hydrophobic with functionalized aprotic heterocylic amine. trihexyltetradecylphosphonium 1,2,4 triazolide ([P₆₆₆₁₄][124-Trz]) coated on Ni foam and used as free-standing electrocatalyst during CO₂RR. The [P₆₆₆₁₄][124-Trz] itself has very high CO₂ uptake capacity of 0.91 mol CO2/mol IL versus 0.0006 mol CO₂/mol H₂O at atmospheric temperature and pressure. They reported that coating [P66614][124-Trz] on Ni foam helped to offer high CO₂ concentration around the electrode/electrolyte interface and suppress the HER, achieving 63% FE for CO in 0.5 M KHCO₃ electrolyte. Further, tuning the interfacial hydrophobicity using fluorinated IL is also reported to be effective strategy to increase the N₂ solubility and achieve high NH₃ selectivity during N₂RR.^[62]

c. Stabilization of reaction intermediates

Key reaction intermediates shown in Figure 1 need to be stabilized on the surface to facilitate C-N bond formation and improve the current density and selectivity for urea production. The modification of the interfacial electric field is recognized as an efficient strategy to stabilize the reaction intermediates. This can be achieved by either morphology-induced^[68] or cation-induced^[69] interfacial electric field effects. The cation-induced electric field can be achieved more effectively by utilizing IL electrolytes, which can change the concentration as a proxy for altering ionic correlations under applied potentials, thereby impacting the magnitude of electric fields at interfaces. For example, presence of [EMIM][BF4] at intermediate concentrations (0.125-0.9 M) facilitate thin double layers^[16b] with an ordered structure of [EMIM] cations.[42] As a result, the local electric field at the interface is enhanced to further stabilize the critical reaction intermediates for multi-proton/electron transfers to achieve desired product. Ummireddi et al. [70] studied series of pyrazolium and imidazolium ILs to examine the IL-induced electric field on stabilizing the CO2*-intermediate. Based on their Bader charge analysis by DFT, they reported that 1-butyl-3-methylimidazolium ([BMIM]) cation with a higher electron donating ability (-1.17e on N) than 1-butyl-2-methylpyrazolium ([BMPyra]) cation (-0.75e on N) better stabilizes CO2*- on the electrode surface during CO2RR. More recently, the CO2 reactive IL 1-ethyl-3-methylimidazolium pyrrole-2-carbonitrile ([EMIM][2-CNpyr]) is also reported to modulate the interaction between the intermediates and the Cu electrode surface, thereby creating a unique microenvironment at the electrode-electrolyte interface for multi-carbon products. [16a]

d. Rational design of electrocatalyst

The advances in the electrolyte design and formulation, especially with ILs including mostly organic ions cannot be a disconnected effort from the heterogenous catalyst and the electrode design. To date, significant progress has been made in design and construction of active sites on catalyst surface/subsurface including the regulation of surface morphology, [5, 25] heteroatom doping,[22] and, composition[26] to improve and maintain urea selectivity. For example, developing catalyst materials with multiple adjacent active sites at an appropriate distance showed increased C-N coupling efficiency as reported by Zhao et al. [26]. They synthesized Cu-W bimetallic oxide (CuWO₄) electrocatalyst for the co-electrolysis of NO₃⁻ and CO₂, where Cu site is active for CO₂ reduction and the neighboring W site promotes the activation of nitrogenous species, which favors the coupling step. Through in-situ Raman, Differential Electrochemical Mass Spectrometry, and computational analysis, they confirmed that the high adsorption ability of *CO and *NO2 intermediates on the alternating bimetallic W/Cu sites in CuWO₄ enhances the C-N coupling and reduces the potential barrier, resulting in 70% FE for urea at -0.2 V vs. RHE. In addition, several emerging classes of catalysts, such as dual single-atom catalysts, [71] enzymemimicking electrocatalysts,[72] and metal-organic frameworks,[73] also deserve attention and are potential candidates for C-N coupling reactions.

In complement to catalyst design, pulsed-potential electrolysis technique^[74] is reported to facilitate mass transport of reactants and catalyst reconstruction, thereby revealing more active facets to leverage C-N bond formation. Recently, Gerke et al.^[75] reported the pulsed-potential electrolysis to mediate nitrate transport during co-reduction of CO_2 and NO_3 . They reported that the anodic and cathodic pulsing control adsorption of interfacial species, achieving 42% FE for urea at cathodic potentials of -0.4 V vs. RHE (t_c = 1 s) and anodic potential of 0.2 V vs. RHE (t_a = 0.2 s) over polycrystalline Au electrode and CO_2 saturated aqueous electrolyte (0.1 M KNO₃ + 0.1 M KHCO).

Several review articles have been published on covering catalyst design strategies for urea electrosynthesis with high selectivity and stability. For practical applications, it is also necessary to maintain long-term stability of such electrocatalysts; IL microenvironment could help to achieve this goal because of its formation of unique microenvironment. While ILs compare favorably compared to aqueous electrolytes in terms of their electrochemical stability window, their potential surface

interactions and possible side reactions need to be understood in detail.

Summary and Outlook

The electrochemical co-reduction of CO₂ and N-compounds, including N2, NO, NO2-, and, NO3-for urea synthesis has attracted significant attention owing to its environment friendliness. Although electrosynthesis of urea is an active research area, the practical application is still a long way to go due to some significant obstacles, such as a relatively low solubility of CO2 and N-compounds in traditional solvents, poor urea selectivity, competitive side reactions, and ambiguous C-N coupling reaction mechanisms. To some extent, the introduction of ILs in the electrolyte media has been demonstrated to be a viable strategy to improve the selectivity of CO₂RR and N-compound reduction reactions when studied separately. Here, we discuss the concept of co-electrolysis of CO2 and N-compounds in IL based electrolytes with potential advantageous of high solubilities, better stabilization of key reaction intermediates, and suppression of the side reactions like HER, for promoting the desired product selectivity. Designing ILs with increased hydrophobicity and regulated hydrogen bonding network can promote C-N bond formation when combined with bimetallic electrodes. However, optimizing IL structure for maximized solubility of reactants or specific electric field or hydrogen bonding effects may not be sufficient for achieving industrially relevant selectivity and high yields of urea. Further research is needed to understand the mechanism and energetics of different C-N coupling reactions in ILs, including two-gas molecular reaction (CO₂+N₂ and CO₂+NO) and gas-liquid co-reaction (CO2+NO2 and CO2+NO3). Further, it is critical to understand the specific IL-electrode interactions with spectroscopic studies as well as the hydrodynamic and kinetic conditions in the electrochemical cell in order to develop appropriate pulsing techniques or cell arrangements for electrochemical synthesis.

Acknowledgements

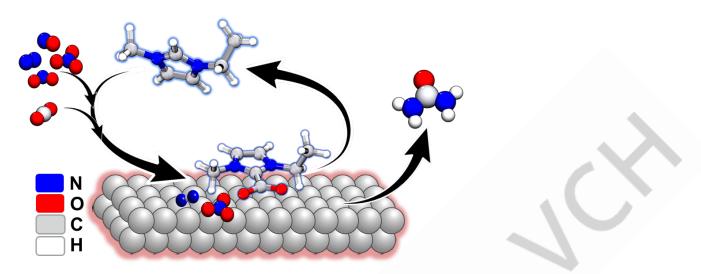
This study was funded by an NSF CAREER award (no. 2045111) from the Division of Chemical, Bioengineering, Environmental and Transport Systems (CBET), Interfacial Engineering, and Electrochemical System.

Conflict of interest

The authors declare no conflict of interest.

Keywords: • Electrocatalytic C-N coupling • Electrolysis • Environmental chemistry • Ionic liquid • Urea

- [1] International Fertilizer Industry Association. (February 13, Production of urea worldwide from 2009 to 2022 (in million metric tons) [Graph]. In Statista. Retrieved June 04, 2024, from https://www.statista.com/statistics/1287028/qlobal-urea-production/.
- [2] H. Xu, Y. Ma, J. Chen, W.-x. Zhang, J. Yang, Chemical Society Reviews 2022, 51, 2710-2758.
- [3] S. Zhang, Q. Fan, R. Xia, T. J. Meyer, Accounts of Chemical Research 2020, 53, 255-264.
- [4] Q. Wu, C. Dai, F. Meng, Y. Jiao, Z. J. Xu, Nature Communications 2024, 15, 1095.
- [5] Y. Huang, R. Yang, C. Wang, N. Meng, Y. Shi, Y. Yu, B. Zhang, ACS Energy Letters 2022, 7, 284-291.
- [6] S. Zhang, J. Geng, Z. Zhao, M. Jin, W. Li, Y. Ye, K. Li, G. Wang, Y. Zhang, H. Yin, H. Zhang, H. Zhao, *EES Catalysis* 2023, 1, 45-53.
- [7] N. Cao, Y. Quan, A. Guan, C. Yang, Y. Ji, L. Zhang, G. Zheng, Journal of Colloid and Interface Science 2020, 577, 109-114.
- [8] M. Xu, F. Wu, Y. Zhang, Y. Yao, G. Zhu, X. Li, L. Chen, G. Jia, X. Wu, Y. Huang, P. Gao, W. Ye, Nature Communications 2023, 14, 6994.
- [9] E. Tayyebi, Y. Abghoui, E. Skúlason, ACS Catalysis 2019, 9, 11137-11145.
- [10] aC. Chen, N. He, S. Wang, Small Science 2021, 1, 2100070; bY. Wang, D. Chen, C. Chen, S. Wang, Accounts of Chemical Research 2024, 57, 247-256; cC. Yang, Z. Li, J. Xu, Y. Jiang, W. Zhu, Green Chemistry 2024, 26, 4908-4933.
- [11] M. Shibata, K. Yoshida, N. Furuya, Journal of Electroanalytical Chemistry 1995, 387, 143-145.
- [12] X. Liu, P. V. Kumar, Q. Chen, L. Zhao, F. Ye, X. Ma, D. Liu, X. Chen, L. Dai, C. Hu, Applied Catalysis B: Environmental 2022, 316, 121618.
- [13] aC. Lv, C. Lee, L. Zhong, H. Liu, J. Liu, L. Yang, C. Yan, W. Yu, H. H. Hng, Z. Qi, L. Song, S. Li, K. P. Loh, Q. Yan, G. Yu, ACS Nano 2022, 16, 8213-8222; bN. Meng, Y. Huang, Y. Liu, Y. Yu, B. Zhang, Cell Reports Physical Science 2021, 2, 100697.
- [14] H. Wang, Y. Jiang, S. Li, F. Gou, X. Liu, Y. Jiang, W. Luo, W. Shen, R. He, M. Li, Applied Catalysis B: Environmental 2022, 318, 121819.
- [15] C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li, S. Wang, Nature Chemistry 2020, 12, 717-724.
- [16] aO. K. Coskun, S. Dongare, B. Doherty, A. Klemm, M. Tuckerman, B. Gurkan, Angewandte Chemie International Edition 2024, 63, e202312163; bB. Liu, W. Guo, M. A. Gebbie, ACS Catalysis 2022, 12, 9706-9716; cB. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. A. Kenis, R. I. Masel, Science 2011, 334, 643-644.
- [17] S. Stevanovic, M. F. Costa Gomes, The Journal of Chemical Thermodynamics 2013, 59, 65-71.
- [18] Y. Tian, Y. Liu, H. Wang, L. Liu, W. Hu, ACS Sustainable Chemistry & Engineering 2022, 10, 4345-4358.
- [19] aO. K. Coskun, M. Muñoz, S. Dongare, W. Dean, B. E. Gurkan, Langmuir 2024, 40, 3283-3300; bS. Dongare, O. K. Coskun, E. Cagli, J. S. Stanley, A. Q. Mir, R. S. Brower, J. M. Velázquez, J. Y. Yang, R. L. Sacci, B. Gurkan, Langmuir 2024, 40, 9426-9438; cW. Dean, D. Penley, Y.-Y. Lee, R. Ghahremani, S. Dongare, B. Gurkan, The Journal of Physical Chemistry C 2022, 126, 14598-14610; dW. Dean, J. Klein, B. Gurkan, Journal of The Electrochemical Society 2021, 168, 026503.
- [20] C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan, G. Yu, *Nature Sustainability* 2021, 4, 868-876.


- [21] M. Yuan, H. Zhang, Y. Xu, R. Liu, R. Wang, T. Zhao, J. Zhang, Z. Liu, H. He, C. Yang, S. Zhang, G. Zhang, Chem Catalysis 2022, 2, 309-320.
- [22] P. Xing, S. Wei, Y. Zhang, X. Chen, L. Dai, Y. Wang, ACS Applied Materials & Interfaces 2023, 15, 22101-22111.
- [23] D. Jiao, Y. Dong, X. Cui, Q. Cai, C. R. Cabrera, J. Zhao, Z. Chen, Journal of Materials Chemistry A 2023, 11, 232-240.
- [24] X. Zhang, X. Zhu, S. Bo, C. Chen, K. Cheng, J. Zheng, S. Li, X. Tu, W. Chen, C. Xie, X. Wei, D. Wang, Y. Liu, P. Chen, S. P. Jiang, Y. Li, Q. Liu, C. Li, S. Wang, Angewandte Chemie International Edition 2023, 62, e202305447.
- [25] S. Liu, S. Yin, Z. Wang, Y. Xu, X. Li, L. Wang, H. Wang, Cell Reports Physical Science 2022, 3, 100869.
- [26] Y. Zhao, Y. Ding, W. Li, C. Liu, Y. Li, Z. Zhao, Y. Shan, F. Li, L. Sun, F. Li, Nature Communications 2023, 14, 4491.
- [27] J. Leverett, T. Tran-Phu, J. A. Yuwono, P. Kumar, C. Kim, Q. Zhai, C. Han, J. Qu, J. Cairney, A. N. Simonov, R. K. Hocking, L. Dai, R. Daiyan, R. Amal, Advanced Energy Materials 2022, 12, 2201500.
- [28] E. Witherspoon, P. Ling, W. Winchester, Q. Zhao, A. Ibrahim, K. E. Riley, Z. Wang, ACS Omega 2022, 7, 42828-42834.
- [29] aJ. L. Anderson, J. K. Dixon, J. F. Brennecke, Accounts of Chemical Research 2007, 40, 1208-1216; bJ. L. Anthony, J. L. Anderson, E. J. Maginn, J. F. Brennecke, The Journal of Physical Chemistry B 2005, 109, 6366-6374.
- [30] D. Almantariotis, A. S. Pensado, H. Q. N. Gunaratne, C. Hardacre, A. A.
 H. Pádua, J. Y. Coxam, M. F. Costa Gomes, *The Journal of Physical Chemistry B* 2017, 121, 426-436.
- [31] F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D. R. MacFarlane, *Energy & Environmental Science* 2017, 10, 2516-2520.
- [32] B. H. R. Suryanto, C. S. M. Kang, D. Wang, C. Xiao, F. Zhou, L. M. Azofra, L. Cavallo, X. Zhang, D. R. MacFarlane, ACS Energy Letters 2018, 3, 1219-1224.
- [33] M. A. Ortuño, O. Hollóczki, B. Kirchner, N. López, The Journal of Physical Chemistry Letters 2019, 10, 513-517.
- [34] T. Wei, H. Bao, X. Wang, S. Zhang, Q. Liu, J. Luo, X. Liu, ChemCatChem 2023, 15, e202201411.
- [35] H.-L. Du, M. Chatti, R. Y. Hodgetts, P. V. Cherepanov, C. K. Nguyen, K. Matuszek, D. R. MacFarlane, A. N. Simonov, *Nature* 2022, 609, 722-727.
- [36] C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn, *Journal of the American Chemical Society* 2004, 126, 5300-5308
- [37] L. Sun, G. K. Ramesha, P. V. Kamat, J. F. Brennecke, *Langmuir* 2014, 30, 6302-6308.
- [38] P. Abbasi, M. Asadi, C. Liu, S. Sharifi-Asl, B. Sayahpour, A. Behranginia, P. Zapol, R. Shahbazian-Yassar, L. A. Curtiss, A. Salehi-Khojin, ACS Nano 2017, 11, 453-460.
- [39] E. E. L. Tanner, C. Batchelor-McAuley, R. G. Compton, The Journal of Physical Chemistry C 2016, 120, 26442-26447.
- [40] B. A. Rosen, J. L. Haan, P. Mukherjee, B. Braunschweig, W. Zhu, A. Salehi-Khojin, D. D. Dlott, R. I. Masel, *The Journal of Physical Chemistry C* 2012, 116, 15307-15312.
- [41] G. P. S. Lau, M. Schreier, D. Vasilyev, R. Scopelliti, M. Grätzel, P. J. Dyson, *Journal of the American Chemical Society* 2016, 138, 7820-7823.
- [42] S. Noh, Y. J. Cho, G. Zhang, M. Schreier, Journal of the American Chemical Society 2023, 145, 27657-27663.
- [43] L. D. Chen, M. Urushihara, K. Chan, J. K. Nørskov, ACS Catalysis 2016, 6, 7133-7139.

- [44] D. Vasilyev, E. Shirzadi, A. V. Rudnev, P. Broekmann, P. J. Dyson, ACS Applied Energy Materials 2018, 1, 5124-5128.
- [45] D. V. Vasilyev, S. Shyshkanov, E. Shirzadi, S. A. Katsyuba, M. K. Nazeeruddin, P. J. Dyson, ACS Applied Energy Materials 2020, 3, 4690-4698
- [46] Y.-Y. Lee, D. Penley, A. Klemm, W. Dean, B. Gurkan, ACS Sustainable Chemistry & Engineering 2021, 9, 1090-1098.
- [47] S. Dongare, O. K. Coskun, E. Cagli, K. Y. C. Lee, G. Rao, R. D. Britt, L. A. Berben, B. Gurkan, ACS Catalysis 2023, 13, 7812-7821.
- [48] Y.-Y. Lee, K. Edgehouse, A. Klemm, H. Mao, E. Pentzer, B. Gurkan, ACS Applied Materials & Interfaces 2020, 12, 19184-19193.
- [49] aX. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X.-Z. Fu, S. Wang, Journal of the American Chemical Society 2022, 144, 11530-11535; bX. Zhu, X. Zhou, Y. Jing, Y. Li, Nature Communications 2021, 12, 4080.
- [50] P. M. Krzywda, A. Paradelo Rodríguez, N. E. Benes, B. T. Mei, G. Mul, Applied Catalysis B: Environmental 2022, 316, 121512.
- [51] M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Wang, S. Li, H. He, G. Zhang, Angewandte Chemie International Edition 2021, 60, 10910-10918.
- [52] Y. Zhang, Y. Zhao, M. G. Sendeku, F. Li, J. Fang, Y. Wang, Z. Zhuang, Y. Kuang, B. Liu, X. Sun, Small Methods 2024, 8, 2300811.
- [53] J. Li, N. Kornienko, Chemical Science 2022, 13, 3957-3964.
- [54] Y. Wu, Z. Jiang, Z. Lin, Y. Liang, H. Wang, *Nature Sustainability* 2021, 4, 725-730.
- [55] Z. Tao, Y. Wu, Z. Wu, B. Shang, C. Rooney, H. Wang, *Journal of Energy Chemistry* 2022, 65, 367-370.
- [56] T. Supap, C. Saiwan, R. Idem, P. P. T. Tontiwachwuthikul, Carbon Management 2011, 2, 551-566.
- [57] M. Li, M. N. Idros, Y. Wu, T. Burdyny, S. Garg, X. S. Zhao, G. Wang, T. E. Rufford, *Journal of Materials Chemistry A* 2021, 9, 19369-19409.
- [58] K. Yang, R. Kas, W. A. Smith, T. Burdyny, ACS Energy Letters 2021, 6, 33-40.
- [59] E. R. Cofell, U. O. Nwabara, S. S. Bhargava, D. E. Henckel, P. J. A. Kenis, ACS Applied Materials & Interfaces 2021, 13, 15132-15142.
- [60] S. Subramanian, J. Middelkoop, T. Burdyny, Sustainable Energy & Fuels 2021, 5, 6040-6048.
- [61] X. Wang, S. Zhang, J. Yao, H. Li, Industrial & Engineering Chemistry Research 2019, 58, 7352-7361.
- [62] C. S. M. Kang, X. Zhang, D. R. MacFarlane, The Journal of Physical Chemistry C 2018, 122, 24550-24558.
- [63] L. M. Galán Sánchez, G. W. Meindersma, A. B. de Haan, Chemical Engineering Research and Design 2007, 85, 31-39.
- [64] J. Feng, K. Zhou, C. Liu, Q. Hu, H. Fang, H. Yang, C. He, ACS Applied Materials & Interfaces 2022, 14, 38717-38726.
- [65] K. R. Seddon, A. Stark, M.-J. Torres, Pure and Applied Chemistry 2000, 72, 2275-2287.
- [66] Y. Cao, Y. Chen, X. Sun, Z. Zhang, T. Mu, *Physical Chemistry Chemical Physics* 2012, 14, 12252-12262.
- [67] S. Seo, M. Quiroz-Guzman, M. A. DeSilva, T. B. Lee, Y. Huang, B. F. Goodrich, W. F. Schneider, J. F. Brennecke, *The Journal of Physical Chemistry B* 2014, 118, 5740-5751.
- [68] M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C. T. Dinh, F. Fan, C. Cao, F. P. G. de Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelley, E. H. Sargent, *Nature* 2016, 537, 382-386.
- [69] S. Ringe, E. L. Clark, J. Resasco, A. Walton, B. Seger, A. T. Bell, K. Chan, Energy & Environmental Science 2019, 12, 3001-3014.

- [70] A. K. Ummireddi, S. K. Sharma, R. G. S. Pala, Catalysis Science & Technology 2022, 12, 519-529.
- [71] P. Zhan, J. Zhuang, S. Yang, X. Li, X. Chen, T. Wen, L. Lu, P. Qin, B. Han, Angewandte Chemie International Edition, n/a, e202409019.
- [72] Y. Zhao, H. Zhou, X. Zhu, Y. Qu, C. Xiong, Z. Xue, Q. Zhang, X. Liu, F. Zhou, X. Mou, W. Wang, M. Chen, Y. Xiong, X. Lin, Y. Lin, W. Chen, H.-J. Wang, Z. Jiang, L. Zheng, T. Yao, J. Dong, S. Wei, W. Huang, L. Gu, J. Luo, Y. Li, Y. Wu, Nature Catalysis 2021, 4, 134-143.
- [73] Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang, X. Wang, J. Yao, *Nano-Micro Letters* 2023, 15, 158.
- [74] aW. Qiu, S. Qin, Y. Li, N. Cao, W. Cui, Z. Zhang, Z. Zhuang, D. Wang, Y. Zhang, Angewandte Chemie International Edition 2024, 63, e202402684; bR. Casebolt, K. Levine, J. Suntivich, T. Hanrath, Joule 2021, 5, 1987-2026.
- [75] C. S. Gerke, M. Klenk, P. Zapol, V. S. Thoi, ACS Catalysis 2023, 13, 14540-14547.

Entry for the Table of Contents

Formation of C-N bonds through co-electrolysis of CO_2 and nitrogen-containing compounds is a promising method for converting waste and readily available sources into valuable products such as urea – a nitrogen fertilizer. This paper presents the concept of utilizing ionic liquids (ILs) as electrolytes to leverage IL-enabled microenvironments to stabilize reaction intermediates at the electrode-electrolyte interface, thus promoting efficient C-N bond formation at reduced overpotentials.

Institute and/or researcher Twitter usernames: @saudagardongare; @CaseEngineer; @CWRU