
PGODE: Towards High-quality System Dynamics Modeling

Xiao Luo 1 Yiyang Gu 2 Huiyu Jiang 3 Hang Zhou 4 Jinsheng Huang 2 Wei Ju 2

Zhiping Xiao 1 Ming Zhang 2 Yizhou Sun 1

Abstract

This paper studies the problem of modeling multi-

agent dynamical systems, where agents could

interact mutually to influence their behaviors.

Recent research predominantly uses geometric

graphs to depict these mutual interactions, which

are then captured by powerful graph neural net-

works (GNNs). However, predicting interacting

dynamics in challenging scenarios such as out-

of-distribution shift and complicated underlying

rules remains unsolved. In this paper, we propose

a new approach named Prototypical Graph ODE

(PGODE) to address the problem. The core of

PGODE is to incorporate prototype decomposi-

tion from contextual knowledge into a continuous

graph ODE framework. Specifically, PGODE em-

ploys representation disentanglement and system

parameters to extract both object-level and system-

level contexts from historical trajectories, which

allows us to explicitly model their independent

influence and thus enhances the generalization

capability under system changes. Then, we in-

tegrate these disentangled latent representations

into a graph ODE model, which determines a

combination of various interacting prototypes for

enhanced model expressivity. The entire model

is optimized using an end-to-end variational in-

ference framework to maximize the likelihood.

Extensive experiments in both in-distribution and

out-of-distribution settings validate the superiority

of PGODE compared to various baselines.
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1. Introduction

Multi-agent dynamical systems (Huang et al., 2023) are

ubiquitous in the real world where agents can be vehi-

cles (Yıldız et al., 2022) and microcosmic particles (Shao

et al., 2022). These agents could have complicated inter-

actions resulting from behavioral or mechanical influences,

which result in complicated future trajectories of the whole

system. Modeling the interacting dynamics is a crucial

challenge in machine learning with broad applications in

fluid mechanics (Pfaff et al., 2021; Mayr et al., 2023), au-

tonomous driving (Yu et al., 2020; Zhu et al., 2023), and

molecular dynamics (Wu et al., 2024; Xu et al., 2023). Ex-

tensive time-series approaches based on recurrent neural

networks (Weerakody et al., 2021) and Transformers (Zhou

et al., 2021; Chen et al., 2023b; 2024) are generally designed

for single-agent dynamical systems (Fotiadis et al., 2023),

which fall short when it comes to capturing the intricate

relationships among interacting objects. To address this

gap, geometric graphs (Kofinas et al., 2021) are usually em-

ployed to represent the interactions between objects where

nodes represent individual objects, and edges are built when

a connection exists between two nodes. These connections

can be obtained from geographical distances between atoms

in molecular dynamics (Li et al., 2022b) and underlying

equations in mechanical systems (Huang et al., 2020).

In the literature, graph neural networks (GNNs) (Kipf &

Welling, 2017; Xu et al., 2019a; Zheng et al., 2022; Li et al.,

2022a; He et al., 2022) have been increasingly prevailing for

learning from geometric graphs in interacting dynamical sys-

tems (Pfaff et al., 2021; Shao et al., 2022; Sanchez-Gonzalez

et al., 2020; Han et al., 2022; Meirom et al., 2021; Yıldız

et al., 2022). These GNN-based approaches primarily focus

on predicting the future states of dynamic systems with the

message passing mechanism. Specifically, they begin with

encoding the states of trajectories and then iteratively update

each node representation by incorporating information from

its adjacent nodes, which effectively captures the complex

interacting dynamics among the objects in systems.

Despite the significant advancements, GNN-based ap-

proaches often suffer from performance decreasement in

challenging scenarios such as long-term dynamics (Lippe

et al., 2023), complicated governing rules (Gu et al., 2022),
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and out-of-distribution shift (Dendorfer et al., 2021). As a

consequence, developing a high-quality data-driven model

requires us to consider the following critical points: (1)

Capturing Continuous Dynamics. The majority of existing

methods predict the whole trajectories in an autoregres-

sive manner (Pfaff et al., 2021; Shao et al., 2022; Sanchez-

Gonzalez et al., 2020), which iteratively feed next-time

predictions back into the input. These rollouts could lead

to error accumulation and thus fail to capture long-term

dynamics accurately. (2) Expressivity. There are a variety of

interacting dynamical systems governed by complex partial

differential equations (PDEs) in physics and biology (Rao

et al., 2023; Chen et al., 2023a). Therefore, a high-quality

model with strong expressivity is anticipated for sufficient

learning. (3) Generalization. In practical applications, the

distributions of training and test trajectories could differ due

to variations in system parameters (Sanchez-Gonzalez et al.,

2020; Li et al., 2023). Current data-driven models could

perform poorly when confronting system changes during

the inference phase (Goyal & Bengio, 2022).

In this paper, we propose a novel approach named

Prototypical Graph ODE (PGODE) for complicated inter-

acting dynamics modeling. The core of PGODE lies in ex-

ploring disentangled contexts, i.e., object states and system

states, inferred from historical trajectories for graph ODE

with high expressivity and generalization. To begin, we

extract both object-level and system-level contexts via mes-

sage passing and attention mechanisms for subsequent dy-

namics modeling. Object-level contexts refer to individual

attributes such as initial states and local heterophily (Luan

et al., 2022), while system-level contexts refer to shared pa-

rameters such as temperature and viscosity. To improve gen-

eralization under system changes, we focus on two strategies.

First, we enhance the invariance of object-level contexts un-

der system changes through representation disentanglement.

Second, we establish a connection between known system

parameters and system-level latent representations. Fur-

thermore, we incorporate this contextual information into

a graph ODE framework to capture long-term dynamics

through continuous evolution instead of discrete rollouts.

More importantly, we introduce a set of learnable GNN pro-

totypes that can be trained to represent different interaction

patterns. The weights for each object are then derived from

its hierarchical representations to provide individualized

dynamics. Our framework can be illustrated from a mixture-

of-experts perspective, which boosts the expressivity of the

model. Finally, we integrate our method into an end-to-end

variational inference framework to optimize the evidence

lower bound (ELBO) of the likelihood. Comprehensive

experiments in different settings validate the superiority of

PGODE in comparison to state-of-the-art approaches.

The contributions of this paper can be summarized in three

points: (1) New Connection. To the best of our knowledge,

this work is the first to connect context mining with a pro-

totypical graph ODE approach for modeling challenging

interacting dynamics. (2) Methodology. We extract hier-

archical contexts with representation disentanglement and

system parameters, which are then integrated into a graph

ODE model that utilizes prototype decomposition. (3) Su-

perior Performance. Extensive experiments validate the

efficacy of our approach in different challenging settings.

2. Background

Problem Definition. Given a multi-agent dynamical sys-

tem, we characterize the agent states and interaction at the

t-th timestamp as a graph Gt = (V, Et,Xt), where each

node in V is an object, Et comprises all the edges and Xt is

the object attribute matrix. N represents the number of ob-

jects. Given the observations G1:Tobs = {G1, · · · , GTobs},

our goal is to learn a model capable of predicting the future

trajectories XTobs+1:T . Our interacting dynamics system is

governed by a set of equations with time-invariant system

parameters denoted as ξ. Different values of parameters ξ

could influence underlying dynamical principles, leading to

potential shift in trajectory distributions. As a consequence,

it is essential to extract contextual information related to

both system parameters and node states from historical ob-

servations for high-quality future trajectory predictions.

Neural ODEs for Multi-agent Dynamical Systems. Neu-

ral ODEs have been shown effective in modeling vari-

ous dynamical systems (Chen et al., 2018; Huang et al.,

2021; Dupont et al., 2019). For single-agent dynamical

systems, the evolution of latent representations zt can be

expressed via a given ODE dzt

dt = f(zt). Then, the

entire trajectory of the system can be determined using

zT = z0 +
∫ T

t=0
f (zt) dt. For multi-agent dynamical sys-

tems, the formulation can be extended as follows:

zTi = z0
i +

∫ T

t=0

fi
(

zt1, z
t
2 · · · ztN

)

dt, (1)

where zti represents the hidden embedding for the object i at

the timestamp t. fi models the interacting dynamics specifi-

cally for object i. With Eqn. 1, we can calculate zti using

different numerical solvers including Runge-Kutta (Schober

et al., 2019) and Leapfrog (Zhuang et al., 2021), which

produce accurate predictions of future trajectories in the

multi-agent systems using a decoder (Luo et al., 2023).

3. The Proposed Approach

This paper introduces a novel approach PGODE for mod-

eling interacting system dynamics in challenging scenarios

such as out-of-distribution shift and complicated underly-

ing rules. The core of PGODE lies in exploring disen-

tangled contexts for prototype decomposition for a high-
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Figure 1. An overview of the proposed PGODE. Our PGODE first constructs a temporal graph and then utilizes different encoders to

extract object-level and system-level contexts using representation disentanglement and system parameters. These contexts would generate

weights for a prototypical graph ODE framework, which models the evolution of interacting objects. In the end, the latent states of objects

are fed into a decoder to output the trajectories at any timestamp.

quality graph ODE framework. Specifically, we first con-

struct a temporal graph to learn disentangled object-level

and system-level contexts from historical data and system

parameters. These contexts further determine prototype

decomposition, which characterizes distinct interacting pat-

terns in a graph ODE framework for modeling continuous

dynamics. We adopt a decoder to output the trajectories and

the whole model is optimized via an end-to-end variational

inference framework. An overview of PGODE is depicted

in Figure 1, and the details will be presented below.

3.1. Hierarchical Context Discovery with

Disentanglement

A promising solution to formulating the dynamics of in-

teracting systems is the introduction of GNNs into Eqn. 1

where different GNNs are tailored for distinct nodes across

diverse systems. Given the basic dynamical principles, the

interacting dynamics of each object are influenced by both

system-level and object-level contexts. System-level con-

texts include temperature, viscosity, and coefficients in un-

derlying equations (RÈamÈa & SipilÈa, 2017), which are shared

in the whole system. Object-level contexts refer to object

attributes such as initial states, and local heterophily (Luan

et al., 2022), which give rise to distinct interacting patterns

for individual objects. To design GNNs for a variety of

objects and system configurations, it is essential to derive

object-level and system-level latent embeddings from his-

torical trajectories. Additionally, system parameters could

differ between training and test datasets (Kim et al., 2021),

thereby leading to potential distribution shift. To mitigate its

influence, we disentangle object-level and system-level em-

beddings with known system parameters for a more precise

and independent description of complex dynamical systems.

Object-level Contexts. We aim to condense the historical

trajectories into informative object representations. Here,

we conduct the message passing procedure on a temporal

graph for observation representation updating. Then, object

representations are generated by summarizing all the obser-

vations using the attention mechanism (Niu et al., 2021).

In detail, a temporal graph is first constructed where each

node represents an observation (Huang et al., 2021), and

edges represent temporal and spatial relationships. Tempo-

ral edges connect successive observations of the same object,

while spatial edges would be built when observations from

two different objects are connected at the same timestamp.

In formulation, we have NT obs nodes in the temporal graph

Gtem and its adjacency matrix can be written as:

Atem(it, jt
′

) =







wtij t = t′,
1 i = j, t′ = t+ 1,
0 otherwise,

(2)

where it represents the observation of i at timestamp t and

wtij is the edge weight from Gt. Then, we adopt the mes-

sage passing mechanism to learn from the temporal graph.

Denote the representation of it at the l-th layer as h
t,(l)
i , and

the interaction scores can be obtained by comparing rep-

resentations between the query and key spaces as follows:

α(l)(it, jt
′

) =
Atem(it, jt

′

)√
d

(Wqueryĥ
t,(l)
i )T (Wkeyĥ

t′,(l)
j ),

(3)

where d denotes the hidden dimension and ĥ
t,(l)
i = h

t,(l)
i +

TE(t). TE(t) is the temporal embedding with TE(t)[2i] =
sin
(

t
100002i/d

)

and TE(t)[2i+1] = cos
(

t
100002i/d

)

, which

provides the temporal information for our graph convolu-

tion module to capture temporal patterns and dependencies.
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Wquery ∈ R
d×d and Wkey ∈ R

d×d are two weight ma-

trices for feature transformation. Then, we update each

representation using its neighborhood as follows:

h
t,(l+1)
i = h

t,(l)
i +σ





∑

jt′∈S(it)

α(l)(it, jt
′

)Wvalueĥ
t′,(l)
j



 ,

(4)

where Wvalue ∈ R
d×d is to project representations into

values and S(·) collects all the neighboring nodes. In the

end, we summarize all these observation representations

for every object i into a latent representation ui using the

attention mechanism as follows:

qti = h
t,(L)
i +TE(t),ui =

1

Nobs

Nobs
∑

t=1

σ(Wsumqti), (5)

in which Wsum is for feature transformation. In this manner,

we incorporate semantics from both the observed trajecto-

ries and geometric structures into expressive object-level

latent representations, i.e., {ui}Ni=1 for predicting future

complicated interacting dynamics in systems.

System-level Contexts. In real-world applications, system

parameters may vary between training and test datasets,

leading to out-of-distribution shift in trajectories (Mirza

et al., 2022; Ragab et al., 2023). To capture these variations

and enhance model performance, we employ a separate

network to infer system-level contexts from historical trajec-

tories, which are guided by system parameters in the training

data. Moreover, we employ mutual information minimiza-

tion (Sun et al., 2019; Feng et al., 2023) to disentangle

object-level and system-level representations, which allows

for a clear separation of influences and thus enables the

invariance of object-level contexts under system changes.

In particular, we employ the same network architecture but

with different parameters to generate the latent representa-

tion u′
i for object i. Then, a pooling operator is adopted

to summarize all these object-level representations into a

system-level representation g as g =
∑N
i=1 u

′
i. To capture

contexts from system parameters, we maximize the mutual

information between the system-level representation and

known parameters ξ, i.e., I(g; ξ). Meanwhile, to disen-

tangle object-level and system-level latent representation,

we minimize their mutual information, i.e., I(g;ui), which

enables us to better handle the variations introduced by out-

of-distribution system parameters. In our implementation,

we make use of Jensen-Shannon mutual information estima-

tor Tγ(·, ·) (Chen et al., 2019) with parameters γ, and the

loss objective for learning system parameters can be:

Lsys =
1

|P|
∑

(g,ξ)∈P

−sp(−Tγ(g, ξ))

+
1

|P|2
∑

(g,ξ)/∈P

sp(−Tγ(g, ξ)),
(6)

where sp(x) = log(1 + ex) denotes the softplus function,

ξ denotes the system parameters in dynamical systems, and

P collects all the positive pairs from the same system. Simi-

larly, the loss objective for representation disentanglement

is formulated as:

Ldis = maxγ′{ 1

|P ′|
∑

(g,ui)∈P′

sp(−Tγ′(g,ui))

+
1

|P ′||P|
∑

(g,ui)/∈P′

−sp(−Tγ′(g,ui))},
(7)

where Tγ′ is optimization in an adversarial manner and P ′

collects all the positive object-system pairs. Differently, Tγ′

is trained adversarially for precise measurement of mutual

information. On this basis, we establish the connection be-

tween system-level contexts and explicit parameters while

simultaneously minimizing their impact on the object-level

contexts through representation disentanglement. In this

way, our model separates and accurately captures the in-

fluence of these two factors, enhancing the generalization

capacity when system parameters vary during evaluation.

3.2. Prototypical Graph ODE

After extracting context embeddings, we intend to integrate

them into a graph ODE framework for multi-agent dynamic

systems. However, training a separate GNN for each node

would introduce an excessive number of parameters, which

could result in overfitting and a complicated optimization

process (Zhao et al., 2020; Cini et al., 2023; Guo et al.,

2023). To address this, we learn a set of GNN prototypes to

characterize the entire GNN space, and then use prototype

decomposition for each object in the graph ODE. Specifi-

cally, we start by initializing state representations for each

node and then determine the weights for each object based

on both object-level and system-level contexts.

To begin, we utilize object-level contexts with feature trans-

formation for initialization. Here, the initial state representa-

tions are sampled from an approximate posterior distribution

q(z0
i |Gtem), which would be close to a prior distribution

p(z0
i ). The mean and variance are learned from ui as:

q
(

z0
i | Gtem

)

= N (ψm (ui) , ψ
v (ui)) , (8)

where ψm(·) and ψv(·) are two feed-forward networks

(FFNs) to compute the mean and variance. Then, we intro-

duce K GNN prototypes, each with two FFNs ψkr (·) and

ψka(·) for relation learning and feature aggregation, respec-

tively. The updating rule of the k-th prototypes for object i
is formulated as follows:

fki
(

zt1, z
t
2 · · · ztN

)

= ψka(
∑

jt∈S(it)

ψkr ([z
t
i , z

t
j ])), (9)

where jt represents the neighbor of i at timestamp t and the

order of zti and ztj also matters. Then, we take a weighted

4
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combination of these GNN prototypes for each object, and

the prototypical interacting dynamics can be formulated as:

dzti
dt

=

K
∑

k=1

wk
i ψ

k
a(

∑

jt∈S(it)

ψkr ([z
t
i , z

t
j ]))− zti . (10)

The last term indicates natural recovery, which usually ben-

efits semantics learning in practice. To generate the weights

for each object, we merge both object-level and system-level

latent variables and adopt a FFN ρ(·) as follows:

wi = [w1
i , · · · ,wK

i ] = ρ([ui, g]), (11)

where the softmax activation is adopted to ensure
∑K
k=1 w

k
i = 1.

Robustness. In this part, we discuss the robustness of the

proposed PGODE. When K = 1, Eqn. 10 would be de-

graded into a single-prototype system:

dzti
dt

= ψ1
a





∑

jt∈S(it)

ψr([z
t
i , z

t
j ])



− zti , (12)

which shares the GNN function for every node. Then, the

following theorem states that our model enjoys the enhanced

robustness of the proposed model to perturbation (Niu et al.,

2020; Xu et al., 2020) compared with the single-prototype

system as in Eqn. 10. Consider a perturbation δ of small

magnitude ϵ, such that ∥δ∥ = ϵ, applied to an given input

point Z0, where Z0 = (Z0
i , . . . , Z

0
N )⊤, resulting Z̃0 =

Z0 + δ. The following theorem with the proof in Appendix

B demonstrates that the multi-prototype system is more

robust than the single-prototype system.

Theorem 3.1. Assume the prototype function ψka has a

bounded gradient. Moreover, each prototype function ψka
and ψkr are Lipschitz continuous with Lipschitz constant Lka
and Lkr , and ψa and ψr are for single prototype function

with Lipschitz constantLa andLr. For the sake of simplicity,

we omit the last term −zti in Eqn. 10 and Eqn. 12 since it

can be incorporated in the revised GNN prototypes. Denote

Lk = LkaL
k
r and L = LaLr, if E(Lk) < E(L), Var(Lk) <

Var(L) hold for all k = 1, . . . ,K, our multi-prototype

system described in Eqn. 10 will have smaller mean and

variance bounds for the Lyapunov error function ∥et∥2/2
compared to the single-prototype system described in Eqn.

12.

A Mixture-of-Experts Perspective. We demonstrate that

our graph ODE model can be interpreted through the lens of

the mixture of experts (MoE) (Du et al., 2022; Wang et al.,

2024; Liu et al., 2023). Specifically, each prototype serves

as an ODE expert, while wi acts as the gating weights that

control the contribution of each expert. Through this, we are

the first to get the graph ODE married with MoE, enhancing

the expressivity to capture complex interacting dynamics as

in previous works (Wang & Van Hoof, 2022; Wang et al.,

2020). More importantly, different from previous works

that employ black-box routing functions (Zhou et al., 2022),

the routing function in our PGODE is derived from hierar-

chical contexts with representation disentanglement, which

further equips our model with the generalization capability

to handle potential shift in data distributions. In particular,

given a change in the graph structure or feature distribution,

the multi-prototype system Eqn. 10 can adjust the weights

{wk
i } to accommodate this change, potentially identifying

a new combination of prototypes that better fits the altered

data. This flexibility is quantified by the ability to perform

gradient-based updates on the weights. In contrast, Eqn.

12 may fail to adapt as readily since it relies on a single

function ψa without the benefit of re-weighting different

prototypes.

Existence and Uniqueness. We give a theoretical analysis

about the existence and uniqueness of our proposed graph

ODE to show that it is well-defined under certain conditions.

Lemma 3.2. We first assume that the learnt functions ψkr :
R

2d → R
d, ψka : Rd → R

d have bounded gradients. In

other words, there exists A,R > 0, such that the following

Jacobian matrices have the bounded matrix norms:

Jψk
r
([x,y]) =











∂ψk
r,1

∂x1

· · · ∂ψk
r,1

∂xd

∂ψk
r,1

∂y1
· · · ∂ψk

r,1

∂yd
...

. . .
...

...
. . .

...
∂ψk

r,d

∂x1

· · · ∂ψk
r,d

∂xd

∂ψk
r,d

∂y1
· · · ∂ψk

r,d

∂yd











,

∥Jψk
r
([x,y])∥ ≤ R,

(13)

Jψk
a
(x) =









∂ψk
a,1

∂x1

· · · ∂ψk
a,1

∂xd
,

...
. . .

...
∂ψk

a,d

∂x1

· · · ∂ψk
a,d

∂xd









, ∥Jψk
a
(x)∥ ≤ A.

(14)

Given the initial state (t0, z
t0
1 , · · · , zt0N ,w1, · · · ,wN ), we

claim that there exists ε > 0, such that the ODE system Eqn.

10 has a unique solution in the interval [t0 − ε, t0 + ε].

The proof is shown in Appendix C. Our analysis demon-

strates that based on given observations, future trajectories

are predictable using our graph ODE, which is essential in

dynamics modeling (Chen et al., 2018; Kong et al., 2020).

3.3. Decoder and Optimization

Finally, we introduce a decoder to forecast future trajecto-

ries, along with an end-to-end variational inference frame-

work for the maximization of the likelihood.

In particular, we build a connection between latent states

and trajectories by calculating the likelihood for each obser-

vation p(xti|zti). Following the maximum likelihood estima-
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Table 1. Mean Squared Error (MSE) ×10
−2 on physical dynamics simulations.

Dataset
Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (OOD) 36 (OOD)

Variable q v q v q v q v q v q v

Springs

LSTM 0.287 0.920 0.659 2.659 1.279 5.729 0.474 1.157 0.938 2.656 1.591 5.223

GRU 0.394 0.597 0.748 1.856 1.248 3.446 0.591 0.708 1.093 1.945 1.671 3.423

NODE 0.157 0.564 0.672 2.414 1.608 6.232 0.228 0.791 0.782 2.530 1.832 6.009

LG-ODE 0.077 0.268 0.155 0.513 0.527 2.143 0.088 0.299 0.179 0.562 0.614 2.206

MPNODE 0.076 0.243 0.171 0.456 0.600 1.737 0.094 0.249 0.212 0.474 0.676 1.716

SocialODE 0.069 0.260 0.129 0.510 0.415 2.187 0.079 0.285 0.153 0.570 0.491 2.310

HOPE 0.070 0.176 0.456 0.957 2.475 5.409 0.076 0.221 0.515 1.317 2.310 5.996

PGODE (Ours) 0.035 0.124 0.070 0.262 0.296 1.326 0.047 0.138 0.088 0.291 0.309 1.337

Charged

LSTM 0.795 3.029 2.925 3.734 6.569 4.331 1.127 3.027 3.988 3.640 8.185 4.221

GRU 0.781 2.997 2.805 3.640 5.969 4.147 1.042 3.028 3.747 3.636 7.515 4.101

NODE 0.776 2.770 3.014 3.441 6.668 4.043 1.124 2.844 3.931 3.563 8.497 4.737

LG-ODE 0.759 2.368 2.526 3.314 5.985 5.618 0.932 2.551 3.018 3.589 6.795 6.365

MPNODE 0.740 2.455 2.458 3.664 5.625 6.259 0.994 2.555 2.898 3.835 6.084 6.797

SocialODE 0.662 2.335 2.441 3.252 6.410 4.912 0.894 2.420 2.894 3.402 6.292 6.340

HOPE 0.614 2.316 3.076 3.381 8.567 8.458 0.878 2.475 3.685 3.430 10.953 9.120

PGODE (Ours) 0.578 2.196 2.037 2.648 4.804 3.551 0.802 2.135 2.584 2.663 5.703 3.703

Ground TruthPGODEHOPESocialODE

Figure 2. Visualization of different methods on Springs. Semi-transparent paths denote observed trajectories and solid paths represent our

predictions.

tion of a Gaussian distribution, here we solely produce the

mean of each distribution, i.e., µti = ϕ(zti), where ϕ(·) is an

FFN serving as the decoder implemented. In the variational

inference framework, our model optimizes the evidence

lower bound (ELBO) of the likelihood, which involves the

maximization of the likelihood and the minimization of the

difference between the prior and posterior distributions:

Lelbo = EZ0∼
∏N

i=1
q(z0

i |G
1:Tobs)

[

log p(XTobs+1:T )
]

−KL

[

N
∏

i=1

q(z0
i |G1:Tobs)∥p

(

Z0
)

]

,

(15)

in which p
(

Z0
)

= ΠNi=1p(z
0
i ) and p(z0

i ) is a Normal dis-

tribution N(0, I) (Kingma et al., 2019). Eqn. 15 can be

re-written into the following equation by incorporating the

independence of each node:

Lelbo = −
N
∑

i=1

T
∑

t=Tobs+1

∥xti − µti∥
2

2σ2

−KL

[

N
∏

i=1

q(z0
i |G1:Tobs)∥p

(

Z0
)

]

,

(16)

in which σ2 represents the variance of the prior distribution.

To summarize, the final loss objective for the optimization

is written as follows:

L = Lelbo + Lsys + Ldis, (17)

where the last two loss terms serve as a regularization mech-

anism using mutual information to constrain the model pa-

rameters (Xu et al., 2019b; Rhodes & Lee, 2021). We have

summarized the whole algorithm in Appendix A.

4. Experiment

We conduct experiments on both physical and molecular

dynamical systems. Each sample is split into two parts

including a conditional part for initializing object-level con-

text representations and global-level context representations,

and a prediction part for supervision. Their lengths are

denoted as conditional length and prediction length, respec-

tively. We compared our PGODE with several baselines, i.e.,

LSTM (Hochreiter & Schmidhuber, 1997), GRU (Cho et al.,

2014), NODE (Chen et al., 2018), LG-ODE (Huang et al.,

2020), MPNODE (Chen et al., 2022), SocialODE (Wen

et al., 2022) and HOPE (Luo et al., 2023). The setting

details are in Appendix H.
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Table 2. Mean Squared Error (MSE) ×10
−3 on molecular dynamics simulations.

Dataset
Prediction Length 12 (ID) 24 (ID) 12 (OOD) 24 (OOD)

Variable qx qy qz qx qy qz qx qy qz qx qy qz

5AWL

LSTM 4.178 3.396 3.954 4.358 4.442 3.980 4.785 4.178 4.467 5.152 5.216 4.548

GRU 4.365 2.865 2.833 5.295 3.842 3.996 5.139 3.662 3.789 6.002 4.723 5.358

NODE 3.992 3.291 2.482 4.674 4.333 3.254 4.390 4.135 2.808 5.734 5.388 4.036

LG-ODE 2.825 2.807 2.565 3.725 3.940 3.412 3.358 3.549 3.501 4.611 4.763 4.543

MPNODE 2.631 3.029 2.734 3.587 4.151 3.488 3.061 3.899 3.355 4.271 5.085 4.427

SocialODE 2.481 2.729 2.473 3.320 3.951 3.399 2.987 3.514 3.166 4.248 4.794 4.155

HOPE 2.326 2.572 2.442 3.495 3.816 3.413 2.581 3.528 2.955 4.548 5.047 4.007

PGODE (Ours) 2.098 2.344 2.099 2.910 3.384 2.904 2.217 3.109 2.593 3.374 4.334 3.615

2N5C

LSTM 2.608 2.265 3.975 3.385 2.959 4.295 3.285 2.210 5.247 3.834 2.878 5.076

GRU 2.847 2.968 3.493 3.340 3.394 3.636 3.515 3.685 3.796 4.031 3.938 3.749

NODE 2.211 2.103 2.601 3.074 2.849 3.284 2.912 2.648 2.799 3.669 3.478 3.874

LG-ODE 2.176 1.884 1.928 2.824 2.413 2.689 2.647 2.284 2.326 3.659 3.120 3.403

MPNODE 1.855 1.923 2.235 2.836 2.805 3.416 2.305 2.552 2.373 3.244 3.537 3.220

SocialODE 1.965 1.717 1.817 2.575 2.286 2.412 2.348 2.138 2.169 3.380 2.990 3.057

HOPE 1.842 1.915 2.223 2.656 2.788 3.474 2.562 2.514 2.731 3.343 3.301 3.502

PGODE (Ours) 1.484 1.424 1.575 1.960 2.029 2.119 1.684 1.809 1.912 2.464 2.734 2.727

Ground TruthPGODEHOPESocialODE

12-step ahead

24-step ahead

Figure 3. Visualization of prediction results of different methods on the 5AWL dataset. We can observe that our PGODE can reconstruct

the ground truth accurately.

4.1. Performance on Physical Dynamics Simulations

Datasets. We employ two physics simulation datasets to

evaluate our PGODE, i.e., Springs and Charged (Kipf et al.,

2018). Each sample in these two simulated datasets contains

10 particles in a 2D box that has potential collisions without

exterior forces. We aim to predict the future position infor-

mation and the future velocity values of these interacting

particles, i.e., q and v. More details of the two datasets can

be found in Appendix G.

Performance Comparison. The compared results with

respect to different prediction lengths are collected in Ta-

ble 1. From the results, we have two observations. Firstly,

ODE-based methods generally outperform discrete meth-

ods, which validates that continuous methods can naturally

capture system dynamics and relieve the influence of poten-

tial error accumulation. Secondly, our proposed PGODE

achieves the best performance among all the methods. In

particular, the average MSE reduction of our PGODE over

HOPE is 47.40% for ID and 48.57% for OOD settings on

these two datasets. The superior performance stems from

two reasons: (1) Introduction of context discovery. PGODE

generates disentangled object-level and system-level embed-

dings, which would increase the generalization capability of

the model to handle system changes, especially in OOD set-

tings. (2) Introduction of prototype decomposition. PGODE

combines a set of GNN prototypes to characterize the in-

teracting patterns, which increases the expressivity of the

model for complex dynamics. More compared results can

be found in Sec. I.1.

Visualization. Figure 2 shows the visualization of three

compared methods and the ground truth on Springs. Here,

semi-transparent paths denote the observed trajectories

while solid paths denote the predicted ones. From the re-

sults, we can observe that our proposed PGODE can gener-

ate reliable trajectories close to the ground truth for all the

timestamps while both baselines SocialODE and HOPE fail,
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Table 3. Ablation study on Springs, Charged (MSE ×10
−2) and 5AWL (MSE ×10

−3) with a prediction length of 24.

Dataset Springs (ID) Springs (OOD) Charged (ID) Charged (OOD) 5AWL (ID) 5AWL (OOD)

Variable q v q v q v q v qx qy qz qx qy qz

PGODE w/o O 0.106 0.326 0.127 0.339 2.282 3.013 2.590 2.943 2.995 3.532 2.932 3.649 4.469 3.639

PGODE w/o ϵ 0.089 0.397 0.124 0.417 2.308 2.994 2.990 2.911 2.935 3.612 3.034 3.538 4.541 3.741

PGODE w/o F 0.164 0.517 0.202 0.577 2.497 3.298 2.882 3.197 3.157 3.629 3.326 3.634 4.604 3.917

PGODE w/o D 0.073 0.296 0.091 0.348 2.179 2.842 2.616 3.076 3.077 3.453 2.961 3.684 4.399 3.623

PGODE 0.070 0.262 0.088 0.291 2.037 2.648 2.584 2.663 2.910 3.384 2.904 3.374 4.334 3.615

(a) (b) (c) (d)
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Figure 4. (a), (b) Performance with respect to varying condition lengths on Springs and 5AWL. (c) (d) Performance and running time with

respect to different numbers of prototypes.

which validates the superiority of the proposed PGODE.

4.2. Performance on Molecular Dynamics Simulations

Datasets. We construct two molecular dynamics datasets us-

ing two proteins, i.e., 5AWL, 2N5C, and our approach is eval-

uated on the two datasets. Each sample in both datasets com-

prises a trajectory of molecular dynamics simulation, where

the motions of each atom are governed by the Langevin

dynamics equation in a specific solvent environment. The

graph is constructed by comparing pairwise distance with

a threshold, which would be updated at set intervals. The

system parameters of the solvent are varied among different

simulation samples. We target at predicting the position of

every atom in three coordinates, i.e., qx, qy and qz . More

details can be found in Appendix G.

Performance Comparison. We demonstrate the perfor-

mance with respect to varying prediction lengths in Table

2. Based on the results, it can be seen that our proposed

PGODE can achieve the best performance on two datasets

in both ID and OOD settings. Note that molecular dynamics

involves hundreds of atoms with complicated interacting

rules. As a consequence, the performance further demon-

strates the strong expressivity of our proposed PGODE for

modeling challenging underlying rules.

Visualization. In addition, we provide the visualization

of the two baselines and our PGODE compared with the

ground truth with different prediction lengths in Figure 3.

We can observe that our PGODE is capable of exploring

more accurate dynamical patterns compared with the ground

truth. More importantly, our proposed PGODE can almost

recover the position patterns when the prediction length is

24, which validates the capability of the proposed PGODE

to handle complicated scenarios.

4.3. Further Analysis

Ablation Study. To evaluate different components in

PGODE, we introduce four model variants as follows: (1)

PGODE w/o O, which removes the object-level contexts

and only utilizes system-level contexts for wi; (2) PGODE

w/o ϵ, which removes the system-level contexts and only uti-

lizes object-level contexts for wi; (3) PGODE w/o F, which

merely adopts one prototype for graph ODE. (4) PGODE

w/o D, which remove the disentanglement loss. We com-

pared these model variants with the full model in different

settings. The results are recorded in Table 3 and more re-

sults on 2N5C can be found in Sec. I.2. From the results,

we can have several observations. Firstly, removing either

object-level or system-level contexts would obtain worse

performance, which validates that both contexts are crucial

to determining the interacting patterns. Secondly, our full

model achieves better performance compared with PGODE

w/o F, which validates that different prototypes can increase

the representation capacity for modeling complicated dy-

namics. Thirdly, in comparison to PGODE w/o D and the

full model, we can infer that representation disentanglement

greatly enhances the performance under system changes.

Parameter Sensitivity. We first analyze the influence of

different conditional lengths and prediction lengths by vary-

ing them in {3, 6, 9, 12, 15} and {12, 24}, respectively. As

shown in Figure 4 (a) and (b), we can find that the er-

ror would decrease till saturation as the condition length

rises since more historical information is provided. In ad-

dition, PGODE can always perform better than HOPE in
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every setting. Then, we vary the number of prototypes in

{2, 3, 4, 5, 6} in Figure 4 (c) and observe that more proto-

types would bring in better results before saturation.

Efficiency. Although more prototypes tend to benefit the

performance, they can also bring in high computational cost.

We show the computational time with respect to different

numbers of prototypes in Figure 4 (d) and observe that

the computational complexity would increase with more

prototypes. Due to the trade-off between effectiveness and

efficiency, we would set the number to 5 as default.

5. Related Work

5.1. Interacting Dynamics Modeling

Recent years have witnessed a surge of interest in modeling

interacting dynamical systems across a variety of fields in-

cluding molecular biology and computational physics (Lan

et al., 2022; Li et al., 2022b; Bishnoi et al., 2022; Sun et al.,

2023; Yu et al., 2024; Schaefer et al., 2021; Abeyruwan

et al., 2023; Schlichtkrull et al., 2018). While convolutional

neural networks (CNNs) have been successfully employed

to learn from regular data such as grids and frames (Peng

et al., 2020), emerging research is increasingly utilizing

geometric graphs to represent more complex systems (Wu

et al., 2023; Deng et al., 2023). Graph neural networks

(GNNs) have thus become increasingly prevailing for mod-

eling these intricate dynamics. AgentFormer (Yuan et al.,

2021) jointly models both time and social dimensions with

semantic information preserved. R-SSM (Yang et al., 2020)

models the dynamics of interacting objects using GNNs

and includes auxiliary contrastive prediction tasks to en-

hance discriminative learning. Equivariance is a crucial

property in physical simulation to guarantee the symmetry

of the physical laws and a range of previous works have

been proposed (Satorras et al., 2021; Wu et al., 2024). For

example, EqMotion (Xu et al., 2023) incorporates equiv-

ariant geometric feature learning for efficient multi-agent

motion prediction. ESTAG (Wu et al., 2024) includes the

equivariant discrete Fourier transform to learn from periodic

patterns. Despite their popularity, current methods often

fall short in modeling challenging scenarios such as out-of-

distribution shift and long-term dynamics (Yu et al., 2021).

To address these limitations, our work leverages contextual

knowledge to incorporate prototype decomposition into a

graph ODE framework.

5.2. Neural Ordinary Differential Equations

Motivated by the approximation of residual networks (Chen

et al., 2018), neural ordinary differential equations (ODEs)

have been introduced to model continuous-time dynamics

using parameterized derivatives in hidden spaces. These

neural ODEs have found widespread use in time-series fore-

casting due to their effectiveness (Dupont et al., 2019; Xia

et al., 2021; Jin et al., 2022; Schirmer et al., 2022). Incor-

porated with the message passing mechanism, they have

been integrated with GNNs, which can mitigate the issue of

oversmoothing and enhance model interpretability (Xhon-

neux et al., 2020; Zhang et al., 2022; Poli et al., 2019).

I-GPODE (Yıldız et al., 2022) estimates the uncertainty of

trajectory predictions using the Gaussian process, which fa-

cilitates effective long-term predictions. HOPE (Luo et al.,

2023) incorporates second-order graph ODE in evolution

modeling. In contrast, we not only introduce context discov-

ery with disentanglement, which disentangles object-level

and system-level embeddings with known system parame-

ters, but also introduce prototypical graph ODE, which incor-

porates the object-level and system-level embeddings into

prototypical graph ODE framework following the mixture-

of-experts (MoE) principle.

6. Conclusion

In this work, we investigate a long-standing problem of mod-

eling interacting dynamical systems and develop a novel ap-

proach named PGODE, which infers prototype decomposi-

tion from contextual discovery for a graph ODE framework.

In particular, PGODE extracts disentangled object-level and

system-level contexts from historical trajectories, which

can enhance the capability of generalization under system

changes. In addition, we present a graph ODE framework

that determines a combination of multiple interacting pro-

totypes for increased model expressivity. Extensive experi-

ments demonstrate the superiority of our PGODE in differ-

ent settings compared with various competing approaches.

Impact Statement

This work introduces a data-driven framework for modeling

interacting dynamical systems in different settings, which

can be applied to facilitate research in physics and molecular

biology. In addition, our work proposes new datasets and

benchmarks on physical and molecular dynamics simula-

tions in different settings, which can also benefit research in

scientific machine learning. Our PGODE model can also be

applied to traffic flow prediction and stock price prediction,

where we can model the continuous interaction between

different vehicles or stocks. In future work, we will ex-

tend PGODE to these practical problems and more scientific

applications, e.g., rigid dynamics and single-cell dynamics.
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A. Algorithm

We summarize the learning algorithm of our PGODE in Algorithm 1.

Algorithm 1 Training Algorithm of PGODE

Input: The observations G1:T = {G1, · · · , GT }.

Output: The parameters in the model.

1: Initialize model parameters;

2: while not convergence do

3: for each training sequence do

4: Partition the sequence into two parts;

5: Construct the temporal graph with Eqn. 2;

6: Generate object-level contexts using Eqn. 5;

7: Generate system-level contexts with summarization;

8: Solve our prototypical graph ODE in Eqn. 10;

9: Output the trajectories using the decoder;

10: Compute the final objective, i.e., Eqn. 17;

11: Update τ ′ in our PGODE with gradient ascent;

12: Update other parameters in our PGODE using gradient descent;

13: end for

14: end while

B. Proof of Theorem 3.1

Theorem 3.1. Assume the prototype function ψka has a bounded gradient. Moreover, each prototype function ψka and

ψkr are Lipschitz continuous with Lipschitz constant Lka and Lkr , and ψa and ψr are for single prototype function with

Lipschitz constant La and Lr. For the sake of simplicity, we omit the last term −zti in Eqn. 10 and Eqn. 12 since it can be

incorporated in the revised GNN prototypes. Denote Lk = LkaL
k
r and L = LaLr, if E(Lk) < E(L), Var(Lk) < Var(L)

hold for all k = 1, . . . ,K, our multi-prototype system described in Eqn. 10 will have smaller mean and variance bounds for

the Lyapunov error function ∥et∥2/2 compared to the single-prototype system described in Eqn. 12.

Proof. To show that the multi-prototype system Eqn. 10 is better in terms of robustness compared to the single-prototype

system Eqn. 12, we consider a perturbation δ of small magnitude ϵ, with ∥δ∥ = ϵ, applied to an input point Z0. For the

multi-prototype system, we assume the perturbed solution of the ODE at time t is Z̃t. After omitting the last term in Eqn.

10, the difference between the perturbed and unperturbed states is:

[

d(Z̃t −Zt)

dt

]

i

=

K
∑

k=1

wki



ψka





∑

j∈S(it)

ψkr ([Z̃
t
i , Z̃

t
j ])



− ψka





∑

j∈S(it)

ψkr ([Z
t
i , Z

t
j ])







 ,

where [a]i denotes the ith element of the vector a. For the single-prototype system Eqn. 12, the difference between the

perturbed and unperturbed states is:

[

d(Z̃t −Zt)

dt

]

i

= ψ1
a





∑

j∈S(it)

ψr([Z̃
t
i , Z̃

t
j ])



− ψ1
a





∑

j∈S(it)

ψr([Z
t
i , Z

t
j ])



 .

Consider the error et = Z̃t −Zt and analyze its growth over time. For the multi-prototype system, the combined effect of

multiple prototypes with weights wki tends to average out the perturbation, potentially leading to a slower growth of ∥et∥.

This can be quantified by:

[

det

dt

]

i

=

K
∑

k=1

wki



ψka





∑

j∈S(it)

ψkr ([Z̃
t
i , Z̃

t
j ])



− ψka





∑

j∈S(it)

ψkr ([Z
t
i , Z

t
j ])







 . (18)
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For the single-prototype system, the error propagation is:

[

det

dt

]

i

= ψ1
a





∑

j∈S(it)

ψr([Z̃
t
i , Z̃

t
j ])



− ψ1
a





∑

j∈S(it)

ψr([Z
t
i , Z

t
j ])



 . (19)

We use Lyapunov functions to quantify the stability. A Lyapunov function V (x) is a scalar function that maps the state of

the system to a non-negative real number. In this case, we define a Lyapunov function as:

V (et) =
1

2
∥et∥2.

The time derivative of V is then given by:

dV

dt
=

d

dt

(

1

2
∥et∥2

)

= (et)⊤ · de
t

dt
.

Plugging in Eqn. 18 and Eqn. 19 into the above derivative, we get:

dV

dt
=

N
∑

i=1

[et]i ·
[

det

dt

]

i

=

N
∑

i=1

[et]i ·





K
∑

k=1

wki



ψka





∑

j∈S(it)

ψkr ([Z̃
t
i , Z̃

t
j ])



− ψka





∑

j∈S(it)

ψkr ([Z
t
i , Z

t
j ])











 (20)

and

dV

dt
=

N
∑

i=1

[et]i ·
[

det

dt

]

i

=

N
∑

i=1

[et]i ·



ψ1
a





∑

j∈S(it)

ψr([Z̃
t
i , Z̃

t
j ])



− ψ1
a





∑

j∈S(it)

ψr([Z
t
i , Z

t
j ])







 . (21)

Assume ψa and ψr are Lipschitz continuous with Lipschitz constants La and Lr, respectively. Eqn. 20 and Eqn. 21 can be

approximated by:

∣

∣

∣

∣

dV

dt

∣

∣

∣

∣

≤
N
∑

i=1

|[et]i| ·
(

K
∑

k=1

wki L
k
aL

k
r∥et∥

)

≤ ∥et∥2
√

√

√

√

N
∑

i=1

(

K
∑

k=1

wki L
k
aL

k
r

)2

and
∣

∣

∣

∣

dV

dt

∣

∣

∣

∣

2

≤
(

N
∑

i=1

|[et]i|LaLk∥et∥
)2

≤ ∥et∥2
√
NLaLr

Under the assumptions in Theorem 3.1, we have Lk = LkaL
k
r , LaLr = L, and:

E

(

K
∑

k=1

wki L
k

)

< E

(

K
∑

k=1

wki L

)

= E(L), (22)

and

Var

(

K
∑

k=1

wki L
k

)

=

K
∑

k=1

(wki )
2 Var(Lk) <

K
∑

k=1

(wki )
2 Var(L) ≤ Var(L), (23)

where the last equality holds iff there exists k∗ such that wk
∗

i = 1 and wki = 0 for all k ̸= k∗. This shows that the

multi-prototype system has a distributed effect that reduces the impact of perturbations, leading to slower growth in dV
dt

compared to the single-prototype system, which has a concentrated effect. This means that the multi-prototype system is

more robust.
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C. Proof of Lemma 3.2

Lemma 3.2. We first assume that the learnt functions ψkr : R
2d → R

d, ψka : Rd → R
d have bounded gradients. In other

words, there exists A,R > 0, such that the following Jacobian matrices have bounded matrix norm:

Jψk
r
([x,y]) =











∂ψk
r,1

∂x1

· · · ∂ψk
r,1

∂xd

∂ψk
r,1

∂y1
· · · ∂ψk

r,1

∂yd
...

. . .
...

...
. . .

...
∂ψk

r,d

∂x1

· · · ∂ψk
r,d

∂xd

∂ψk
r,d

∂y1
· · · ∂ψk

r,d

∂yd











, ∥Jψk
r
([x,y])∥ ≤ R, (24)

Jψk
a
(x) =









∂ψk
a,1

∂x1

· · · ∂ψk
a,1

∂xd
,

...
. . .

...
∂ψk

a,d

∂x1

· · · ∂ψk
a,d

∂xd









, ∥Jψk
a
(x)∥ ≤ A. (25)

Then, given the initial state (t0, z
t0
1 , · · · , zt0N ,w1, · · · ,wN ), we claim that there exists ε > 0, such that the ODE system

Eqn. 10 has a unique solution in the interval [t0 − ε, t0 + ε].

We first introduce the Picard±Lindelöf Theorem as below.

Theorem C.1. (Picard±Lindelöf Theorem (Coddington et al., 1956)) Let D ⊆ R × R
n be a closed rectangle with

(t0, y0) ∈ D. Let f : D → R
n be a function which is continuous in t and Lipschitz continuous in y. In this case, there exists

some ε > 0 such that the initial value problem:

y′(t) = f(t, y(t)), y (t0) = y0. (26)

has a unique solution y(t) on the interval [t0 − ε, t0 + ε] .

Then, we prove the following lemma.

Lemma C.2. Suppose we have a series of L-Lipschitz continuous functions {fi : Rm → R
n}Ni=1, and then their linear

combination is also L-Lipschitz continuous, i.e., ∀{a1, · · · aN} ∈ [0, 1]N , satisfying
∑N
i=1 ai = 1, we have

∑N
i=1 aifi is

also L-Lipschitz continuous.

Proof. ∀x,y ∈ R
m, we have:

∥
N
∑

i=1

aifi(x)−
N
∑

i=1

aifi(y)∥ ≤
N
∑

i=1

ai∥fi(x)− fi(y)∥ (27)

≤
N
∑

i=1

aiL∥x− y∥ (28)

= L∥x− y∥. (29)

Next, we show the proof of Lemma 3.2.

Proof. First, we can rewrite the ODE system Eqn. 10 as:

dZt

dt
=

K
∑

k=1

W kfk(Zt)−Zt, (30)

where W k ∈ R
Nd×Nd is a diagonal matrix. It is evident that the right hand side is continuous with respect to t since it does

not depend on t directly.
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Then, for any continuous function f : Rn → R
m, with the Mean Value Theorem, we have ∀x,y ∈ R

n, ∥f(x)− f(y)∥ =
∥Jf (p)∥ ∗ ∥x− y∥, where p is a point in the segment connecting x and y. Also, denote

Jψk
r ,x

([x,y]) =









∂ψk
r,1

∂x1

· · · ∂ψk
r,1

∂xd

...
. . .

...
∂ψk

r,d

∂x1

· · · ∂ψk
r,d

∂xd









, Jψk
r ,y

([x,y]) =











∂ψk
r,1

∂y1
· · · ∂ψk

r,1

∂yd
...

. . .
...

∂ψk
r,d

∂y1
· · · ∂ψk

r,d

∂yd











. (31)

By assumption, we have

∥Jψk
r ,x

([x,y])∥, ∥Jψk
r ,y

([x,y])∥ ≤ ∥Jψk
r
([x,y])∥ ≤ R. (32)

Now, denote A(i, j) ∈ R
2d×dN . For the indices from (1, idN+1) to (d, (i+1)dN), and from (d+1, jdN+1) to (2d, (j+1)dN),

the matrix value is 1; the others are 0. By introducing A(i, j), for all X =







x1

...

xN






,Y =







y1

...

yN






∈ R

dN , we have:

∥ψkr (A(i, j)X)− ψkr (A(i, j)Y )∥ ≤ ∥ψkr ([xi,xj ])− ψkr ([yi,xj ])∥+ ∥ψkr ([yi,xj ])− ψkr ([yi,yj ])∥ (33)

= ∥Jψk
r ,x

([pi,xj ])∥ ∗ ∥xi − yi∥+ ∥Jψk
r ,y

([yi,pj ])∥ ∗ ∥xj − yj∥ (MV T ) (34)

≤ R∥xi − yi∥+R∥xj − yj∥ (35)

≤ R∥X − Y ∥, (36)

where pi is a point in the segment connecting xi and yi, and a similar definition is for pj . Note that we have ψkr is

R-Lipschitz continuous. Therefore, by Lemma C.2, the following linear combination is also R-Lipschitz continuous:

lk(Zt) =
∑

jt∈S(it)

ψkr ([A(i
t, jt)Zt]). (37)

Thus, for all X,Y ∈ R
dN , we have:

∥fk(X)− fk(Y )∥ = ∥ψka(lk(X))− ψka(l
k(Y ))∥ (38)

≤ A∥lk(X)− lk(Y )∥ (39)

≤ ARN∥X − Y ∥. (40)

Again, we have each fk is ARN-Lipschitz continuous, so their linear combination
∑K
k=1 W

kfk will also be Lipschitz

continuous. Finally, we have

∥[
K
∑

k=1

W kfk(X)−X]− [
K
∑

k=1

W kfk(Y )− Y ]∥ ≤ ∥
K
∑

k=1

W kfk(X)−
K
∑

k=1

W kfk(Y )∥ (41)

+ ∥X − Y ∥ (42)

≤ (ARNK + 1)∥X − Y ∥. (43)

Thus, the right hand side will be (ARNK+1)-Lipschitz continuous. According to the Theorem C.1, we prove the uniqueness

of the solution to Eqn. 10.

D. More Related Work

D.1. Graph Neural Networks

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Xu et al., 2019a; VeličkoviÂc et al., 2018; Feng et al., 2023; Ju

et al., 2024; Lienen et al., 2024; Steeven et al., 2024) have shown remarkable efficacy in handling a range of graph-based

machine learning tasks such as node classification (Yang et al., 2021) and graph classification (Liu et al., 2022). Typically,

they adopt the message passing mechanism, where each node aggregates messages from its adjacent nodes for updated
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node representations. Recently, researchers have started to focus more on realistic graphs that do not obey the homophily

assumption and developed several GNN approaches to tackle heterophily (Zhu et al., 2021; Li et al., 2022a; Zhu et al., 2020).

These approaches typically leverage new graph structures (Zhu et al., 2020; Suresh et al., 2021) and modify the message

passing procedures (Chien et al., 2021; Yan et al., 2022) to mitigate the influence of potential heterophily. In our PGODE,

we focus on interacting dynamics systems instead. In particular, due to the local heterophily, different objects should have

different interacting patterns, and therefore we infer object-level contexts from historical data.

E. Limitation

One limitation of our PGODE is that it does not consider the symmetry of physics, which is an important property in physical

simulations (Satorras et al., 2021; Xu et al., 2023; Wu et al., 2024). In future works, we will incorporate the symmetry of

physics to further enhance the expressivity of our method, which builds high-quality equivariant graph ODE models for

dynamical system modeling.

F. Detail of Baselines

The proposed method is compared with these competing baselines as follows:

• LSTM (Hochreiter & Schmidhuber, 1997) has been broadly utilized for sequence prediction tasks. Compared with

classic RNNs, LSTM incorporates three critical gates, i.e., the forget gate, the input gate, and the output gate, which can

effectively understand and retain important long-term dependencies within the data sequences.

• GRU (Cho et al., 2014) is another popular RNN architecture, which employs the gating mechanism to control the

information flow during propagation. GRU has an improved computational efficiency compared LSTM.

• NODE (Chen et al., 2018) is the first method to introduce a continuous neural network based on the residual connection.

It has been shown effective in time-series forecasting.

• LG-ODE (Huang et al., 2020) incorporates graph neural networks with neural ODE, which can capture continuous

interacting dynamics in irregularly-sampled partial observations.

• MP-NODE (Gupta et al., 2022) integrate the message passing mechanism into neural ODEs, which can capture sub-system

relationships during the evolution of homogeneous systems.

• SocialODE (Wen et al., 2022) simulates the evolution of agent states and their interactions using a neural ODE architecture,

which shows remarkable performance in multi-agent trajectory forecasting.

• HOPE (Luo et al., 2023) is a recently proposed graph ODE method, which leverages a twin encoder to learn hidden

representations. These representations are fed into a high-order graph ODE to learn long-term correlations from

complicated dynamical systems.

• EGNN (Satorras et al., 2021) is a graph neural network architecture, which promises the equivalence to E(3) transforma-

tions. It shows superior performance for learning from physical simulations.

• EqMotion (Xu et al., 2023) is an efficient model, which includes both an equivariant geometric feature learning module

and an invariant pattern feature for comprehensive motion prediction.

G. Dataset Details

We use four simulation datasets to evaluate our proposed PGODE, including physical and molecular dynamic systems. We

will introduce the details of these four datasets in this part.

• Springs & Charged. The two physical dynamic simulation datasets Springs and Charged are commonly used in the

field of machine learning for simulating physical systems. The Springs dataset simulates a system of interconnected

springs governed by Hooke’s law. Each spring has inherent properties such as elasticity coefficients and initial positions,

representing a dynamic mechanical system. Each sample in the Springs dataset contains 10 interacting springs with

information about the current state, i.e., velocity and acceleration, and additional properties, i.e., mass and damping
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Table 4. Datasets and distributions of system parameters. For the OOD test set, there is at least one of the system parameters outside the

range utilized for training. α: box size, β: initial velocity norm,γ: interaction strength, δ: spring/charged probability. t: temperature, p:

pressure, µ: frictional coefficient.

Springs Charged 5AWL/2N5C

Parameters α, β, γ, δ α, β, γ, δ t, p, µ

Train/Val/Test

A = {α ∈ [4.9, 5.1]}
B = {β ∈ [0.49, 0.51]}
C = {γ ∈ [0.09, 0.11]}
D = {δ ∈ [0.49, 0.51]}

Ωtrain = (A×B × C ×D)

A = {α ∈ [4.9, 5.1]}
B = {β ∈ [0.49, 0.51]}
C = {γ ∈ [0.9, 1.1]}
D = {δ ∈ [0.49, 0.51]}

Ωtrain = (A×B × C ×D)

T = {t ∈ [290, 310]}
P = {p ∈ [0.9, 1.1]}
M = {µ ∈ [0.9, 1.1]}
Ωtrain = (T × P ×M)

OOD Test Set

A = {α ∈ [4.8, 5.2]}
B = {β ∈ [0.48, 0.52]}
C = {γ ∈ [0.08, 0.12]}
D = {δ ∈ [0.48, 0.52]}

ΩOOD =
(A×B × C ×D) \ Ωtrain

.

A = {α ∈ [4.8, 5.2]}
B = {β ∈ [0.48, 0.52]}
C = {γ ∈ [0.8, 1.2]}
D = {δ ∈ [0.48, 0.52]}

ΩOOD =
(A×B × C ×D) \ Ωtrain

.

T = {t ∈ [280, 320]}
P = {p ∈ [0.8, 1.2]}
M = {µ ∈ [0.8, 1.2]}

ΩOOD =
(T × P ×M) \ Ωtrain

.

Number of samples

Train/Val/Test 1000/200/200 200/50/50

OOD Test Set 200 50

coefficients. Similar to the Springs dataset, Charged is another popular physical dynamic simulation dataset that simulates

electromagnetic phenomena. The objects in Charged are replaced by the electronics. We use the box size α, the initial

velocity β, the interaction strength γ, and springcharged probability δ as the system parameters in the experiments. It is

noteworthy that the objects attract or repel with equal probability in the Charged system but unequal probability in the

spring system. Both systems have a given graph indicating fixed interactions from real springs or electric charge effects.

• 5AWL & 2N5C. To evaluate our approach on modeling molecular dynamic systems, we construct two datasets from two

proteins, 5AWL and 2N5C, which can be accessed from the RCSB1. First, we repair missing residues, non-standard residues,

missing atoms, and hydrogen atoms in the selected protein. Additionally, we adjust the size of the periodic boundary box

to ensure that it is sufficiently large, thus avoiding truncation effects and abnormal behavior of the simulation system

during the data simulation process. Then, we perform simulations on the irregular molecular motions within the protein

using Langevin Dynamics (GarcÂıa-Palacios & LÂazaro, 1998) under the NPT (isothermal-isobaric ensemble) conditions,

with parameters sampled from the specified range, and we extract a frame every 0.2 ps to record the protein structure,

which constitutes the dataset used for supervised learning. In the two constructed datasets, we use the temperature t,
pressure value p, and frictional coefficient µ as the dynamic system parameters. Langevin Dynamics is a mathematical

model used to simulate the flow dynamics of molecular systems (Bussi & Parrinello, 2007). It can simplify complex

systems by replacing some degrees of freedom of the molecules with stochastic differential equations. For a dynamic

system containing N particles of mass m, with coordinates given by X = X(t), the Langevin equation of it can be

formulated as follows:

m
d2X

dt2
= −∆U(X)− µ

dX

dt
+
√

2µkbTR(t), (44)

where µ represents the frictional coefficient, ∆U(X) is the interaction potential between particles, ∆ is the gradient

operator, T is the temperature, kb is Boltzmann constant and R(t) denotes the delta-correlated stationary Gaussian process.

H. Implementation Details

In our experiments, we employ a rigorous data split strategy to ensure the accuracy of our results. Specifically, we split the

whole datasets into four different parts, including the normal three sets, i.e., training, validating and in-distribution (ID) test

1https://www.rcsb.org
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Table 5. Performance comparison with NRI, AgentFormer, and I-GPODE on physical dynamics simulations (MSE ×10
−2). NRI,

AgentFormer, and I-GPODE are out of memory on molecular dynamics simulations.

Dataset
Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (OOD) 36 (OOD)

Variable q v q v q v q v q v q v

Springs

NRI 0.103 0.425 0.210 0.681 0.693 2.263 0.119 0.472 0.246 0.770 0.807 2.406

AgentFormer 0.115 0.163 0.202 0.517 1.656 1.691 0.157 0.195 0.243 0.505 1.875 1.913

I-GPODE 0.159 0.479 0.746 3.002 1.701 7.433 0.173 0.498 0.796 3.193 1.818 7.322

PGODE (Ours) 0.035 0.124 0.070 0.262 0.296 1.326 0.047 0.138 0.088 0.291 0.309 1.337

Charged

NRI 0.901 2.702 3.225 3.346 7.770 4.543 1.303 2.726 3.678 3.548 8.055 4.752

AgentFormer 1.076 2.476 3.631 3.044 7.513 3.944 1.384 2.514 4.224 3.199 8.985 4.002

I-GPODE 1.044 2.818 3.407 3.751 7.292 4.570 1.322 2.715 3.805 3.521 8.011 4.056

PGODE (Ours) 0.578 2.196 2.037 2.648 4.804 3.551 0.802 2.135 2.584 2.663 5.703 3.703

Table 6. Mean Squared Error (MSE) ×10
−2 on Springs.

Distribution
Prediction Length 12 24 36

Variable qx qy vx vy qx qy vx vy qx qy vx vy

ID

LSTM 0.324 0.250 0.909 0.931 0.679 0.638 2.695 2.623 1.253 1.304 5.023 6.434

GRU 0.496 0.291 0.565 0.628 0.873 0.623 1.711 2.001 1.368 1.128 2.980 3.912

NODE 0.165 0.148 0.649 0.479 0.722 0.621 2.534 2.293 1.683 1.534 6.323 6.142

LG-ODE 0.077 0.077 0.264 0.272 0.174 0.135 0.449 0.576 0.613 0.441 1.757 2.528

MPNODE 0.080 0.072 0.222 0.263 0.237 0.105 0.407 0.506 0.866 0.335 1.469 2.006

SocialODE 0.069 0.068 0.205 0.315 0.138 0.120 0.391 0.630 0.429 0.400 1.751 2.624

HOPE 0.087 0.053 0.152 0.200 0.571 0.342 0.707 1.206 2.775 2.175 4.412 6.405

PGODE (Ours) 0.033 0.037 0.122 0.127 0.074 0.066 0.239 0.286 0.318 0.273 1.186 1.466

OOD

LSTM 0.499 0.449 1.086 1.227 1.019 0.857 2.847 2.466 1.768 1.415 5.154 5.293

GRU 0.714 0.469 0.713 0.703 1.280 0.905 1.795 2.096 1.844 1.497 2.852 3.994

NODE 0.246 0.209 0.997 0.585 0.876 0.687 2.790 2.269 2.002 1.663 6.349 5.670

LG-ODE 0.093 0.083 0.272 0.327 0.185 0.172 0.463 0.661 0.684 0.545 1.767 2.645

MPNODE 0.107 0.081 0.230 0.268 0.299 0.126 0.420 0.528 0.967 0.386 1.464 1.969

SocialODE 0.082 0.076 0.221 0.350 0.151 0.156 0.414 0.726 0.488 0.495 1.793 2.826

HOPE 0.094 0.058 0.178 0.264 0.506 0.523 1.031 1.603 2.369 2.251 3.701 8.291

PGODE (Ours) 0.046 0.048 0.133 0.144 0.094 0.081 0.286 0.297 0.336 0.281 1.360 1.313

sets and an out-of-distribution (OOD) test set. For the physical dynamic datasets, we generate 1200 samples for training and

validating, 200 samples for ID testing and 200 samples for OOD testing. For the molecular dynamic datasets, we construct

200 samples for training, 50 samples for validating, 50 samples for ID testing and 50 samples for testing in OOD settings.

Each sample in the datasets has a group of distinct system parameters as shown in Table 4. For training, validation and ID

test samples, we randomly sample system parameters in the space of Ωtrain. For OOD samples, the system parameters

come from ΩOOD randomly, which indicates the distribution shift compared with the training domain. In our experiments,

we set the conditional length to 12, and we used three different prediction lengths, i.e., 12, 24, and 36.

We leverage PyTorch (Paszke et al., 2017) and torchdiffeq package (Kidger et al., 2021) to implement all the compared

approaches and our PGODE. All these experiments in this work are performed on a single NVIDIA A40 GPU. The

fourth-order Runge-Kutta method from torchdiffeq is adopted as the ODE solver. We employ a set of one-layer GNN

prototypes with a hidden dimension of 128 for graph ODE. The number of prototypes is set to 5 as default. For optimization,

we utilize an Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.0005. The batch size is set to 256

for the physical dynamic simulation datasets and 64 for the molecular dynamic simulation datasets. In some real-world

applications, we could face region-level contexts, which influence the dynamics of a group of objects. The potential solution

is to learn the embedding of region-level contexts and then incorporate them into prototypical graph ODE, i.e., replacing

ωi = ρ([ui, gi]) with ωi = ρ([ui, ri, gi]) where ri denotes the region-level embedding.
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Table 7. Mean Squared Error (MSE) ×10
−2 on Charged.

Distribution
Prediction Length 12 24 36

Variable qx qy vx vy qx qy vx vy qx qy vx vy

ID

LSTM 0.743 0.846 2.913 3.145 2.797 3.052 3.605 3.863 6.477 6.660 4.240 4.423

GRU 0.764 0.799 2.931 3.063 2.709 2.901 3.572 3.709 5.657 6.281 4.068 4.227

NODE 0.743 0.808 2.764 2.777 2.913 3.114 3.432 3.451 6.468 6.868 3.997 4.089

LG-ODE 0.736 0.783 2.322 2.414 2.320 2.731 3.361 3.268 5.188 6.782 6.194 5.043

MPNODE 0.720 0.759 2.414 2.496 2.379 2.536 3.589 3.738 5.636 5.614 5.472 7.046

SocialODE 0.630 0.695 2.311 2.358 2.252 2.631 3.509 2.995 5.743 7.076 5.701 4.122

HOPE 0.593 0.635 2.295 2.337 3.214 2.938 3.279 3.482 9.289 7.845 8.406 8.511

PGODE (Ours) 0.555 0.600 2.164 2.228 1.940 2.134 2.624 2.673 4.449 5.159 3.778 3.324

OOD

LSTM 1.130 1.123 3.062 2.992 4.026 3.950 3.768 3.512 7.934 8.435 4.517 3.925

GRU 1.072 1.012 3.108 2.948 3.893 3.602 3.844 3.428 6.970 8.061 4.485 3.718

NODE 1.185 1.062 2.956 2.732 4.057 3.804 3.645 3.480 8.622 8.372 5.097 4.376

LG-ODE 0.999 0.866 2.581 2.521 2.797 3.239 4.200 2.978 5.996 7.593 8.422 4.309

MPNODE 1.092 0.897 2.487 2.623 2.967 2.828 3.670 4.001 6.051 6.118 6.029 7.566

SocialODE 0.865 0.924 2.481 2.359 2.610 3.177 3.968 2.836 5.482 7.102 8.530 4.150

HOPE 0.839 0.918 2.466 2.484 3.586 3.783 3.417 3.442 11.254 10.652 10.133 8.107

PGODE (Ours) 0.739 0.865 2.159 2.110 2.524 2.643 2.704 2.623 5.748 5.659 4.017 3.389

I. More Experiment Results

I.1. Performance Comparison

To begin, we compare with our PGODE with more baselines, i.e., AgentFormer (Yuan et al., 2021), NRI (Kipf et al., 2018)

and I-GPODE (Yıldız et al., 2022) in our performance comparison. We also compared our PGODE with two equivalence-

based methods, i.e., EGNN (Satorras et al., 2021) and EqMotion (Xu et al., 2023). The results of these comparisons

are presented in Table 5 and our method outperforms the compared methods. In addition, we show the performance of

the compared methods in two different coordinates of positions and velocities, i.e., qx, qy, vx and vy. The compared

results on Springs and Charged are shown in Table 6 and Table 7, respectively. The compared results of our methods and

equivalence-based methods are shown in Table 8. From the results, we can observe the superiority of the proposed PGODE

in capturing complicated interacting patterns under both ID and OOD settings. In particular, compared with EGNN, our

method can model continuous and complicated dynamics with better performance.

Besides, we triple the number of agents in physical dynamics simulations. The compared results are shown in Table 9. We

can observe that our proposed PGODE surpasses the performance of baseline models, highlighting the superiority of the

proposed method. The compared performance on COVID-19 (Luo et al., 2023) can be seen in Table 10. From the results,

we can further validate the superiority of the proposed PGODE in real-world datasets.

Table 8. Performance comparison with EGNN, EqMotion, and PGODE on physical dynamics simulations (MSE ×10
−2).

Dataset Springs Charged

Prediction Length 12 (ID) 12 (OOD) 12 (ID) 12 (OOD)

Variable qx qy qx qy qx qy qx qy

EGNN 0.140 0.147 0.150 0.149 2.092 2.227 2.139 2.244

EqMotion 0.077 0.080 0.084 0.080 0.807 0.893 0.867 0.936

PGODE (Ours) 0.033 0.037 0.046 0.048 0.555 0.600 0.739 0.865

Table 9. Performance comparison on Springs (MSE ×10
−2) with triple number of objects.

Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (OOD) 36 (OOD)

Variable q v q v q v q v q v q v

SocialODE 0.152 0.364 0.521 0.950 2.438 3.785 0.275 0.584 0.687 1.044 2.544 3.981

HOPE 0.070 0.195 0.734 1.892 3.571 5.766 0.241 0.592 0.893 1.840 3.972 5.841

PGODE (Ours) 0.059 0.126 0.179 0.471 1.150 2.041 0.224 0.415 0.464 0.886 1.686 2.145
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Table 10. Performance comparison on COVID-19.

Method
1-week-ahead 2-week-ahead 3-week-ahead

MAE RMSE MAE RMSE MAE RMSE

MPNODE 152.7 237.5 272.0 549.4 248.7 385.8

HOPE 85.64 146.0 180.9 275.2 243.1 373.3

PGODE (Ours) 82.99 129.2 165.2 250.6 220.6 325.4

Table 11. Ablation study on 2N5C (MSE ×10
−3) with a prediction length of 24.

Dataset 2N5C (ID) 2N5C (OOD)

Variable qx qy qz qx qy qz

PGODE w/o O 2.076 2.130 2.215 2.582 2.800 2.833

PGODE w/o ϵ 2.040 2.046 2.227 2.559 2.791 2.854

PGODE w/o F 2.424 2.208 2.465 2.970 2.868 3.118

PGODE w/o D 2.119 2.083 2.171 2.785 2.759 2.829

PGODE 1.960 2.029 2.119 2.464 2.734 2.727

Table 12. Further ablation study on Springs (MSE ×10
−2) and 5AWL (MSE ×10

−3) with a prediction length of 24.

Dataset Springs (ID) Springs (OOD) 5AWL (ID) 5AWL (OOD)

Variable q v q v qx qy qz qx qy qz

PGODE w. Single 0.208 0.434 0.248 0.481 3.010 3.741 3.143 3.523 4.691 3.839

PGODE w. MLP 0.152 0.454 0.179 0.514 2.997 3.638 3.240 3.605 4.492 3.908

PGODE 0.070 0.262 0.088 0.291 2.910 3.384 2.904 3.374 4.334 3.615

Table 13. Performance comparison with a model variant, i.e., PGODE-S on Springs (MSE ×10
−2).

Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (OOD) 36 (OOD)

Variable q v q v q v q v q v q v

SocialODE 0.069 0.260 0.129 0.510 0.415 2.187 0.079 0.285 0.153 0.570 0.491 2.310

HOPE 0.070 0.176 0.456 0.957 2.475 5.409 0.076 0.221 0.515 1.317 2.310 5.996

PGODE 0.035 0.124 0.070 0.262 0.296 1.326 0.047 0.138 0.088 0.291 0.309 1.337

PGODE-S 0.038 0.129 0.095 0.298 0.406 1.416 0.051 0.148 0.114 0.319 0.423 1.411

I.2. Ablation Study

We show more ablation studies on Charged and 2N5C to make our analysis complete. In particular, the compared

performance of different model variants are shown in Table 11. From the results, we can observe that our full model can

outperform all the model variance in all cases, which validates the effectiveness of each component in our PGODE again.

In addition, we introduce two model variants: (1) PGODE w. MLP, which combines a GNN with an MLP to learn the

individualized dynamics; (2) PGODE w. Single, which takes the node representation and the global representation as

input with a single message passing function. The compared performance of different model variants is shown in Table 12.

From the results, we can observe that our full model can outperform all the model variance in all cases. Compared with

these variants, our prototype decomposition can involve different GNN bases, which model diverse evolving patterns to

jointly determine the individualized dynamics. This strategy can enhance the model expressivity, allowing for more accurate

representation learning of hierarchical structures from a mixture-of-experts perspective.

To enhance the practical utility of our method in real-world settings, we propose a model variant PGODE-S, which utilizes

the top-k GNN prototypes instead of all the prototypes to enhance the efficiency. The compared performance can be found

in Table 13. We can observe that although PGODE-S includes fewer parameters, its performance is still competitive, which

enhances the practical utility of our model.
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Figure 5. (a),(b),(c),(d) Performance on the OOD test set of Springs, Charged, 5AWL, and 2N5C with respect to four different numbers of

prototypes. (e),(f) Performance with respect to different condition lengths on the ID test set of Springs and 5AWL.

Table 14. Performance comparison with different types of GNNs on 5AWL (MSE ×10
−3).

Prediction Length 12 (ID) 24 (ID) 12 (OOD) 24 (OOD)

Variable qx qy qz qx qy qz qx qy qz qx qy qz

PGODE w. GIN 2.126 2.426 2.216 2.968 3.496 3.003 2.327 3.173 2.614 3.573 4.395 3.618

PGODE w. GraphSAGE 2.136 2.399 2.154 2.935 3.488 3.014 2.294 3.158 2.591 3.536 4.442 3.620

PGODE w. GCN (Ours) 2.098 2.344 2.099 2.910 3.384 2.904 2.217 3.109 2.593 3.374 4.334 3.615

I.3. Performance with Different Backbone Architectures

In this part, we explore different types of GNNs, e.g., GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019a) and Graph-

SAGE (Hamilton et al., 2017). The results are shown in Table 14. From the results, we can find that GCN is slightly better

than other types, which helps us make the choice. Therefore, we use GCN as the default backbone for 5AWL.

I.4. Performance with Different Number of Prototypes

Figure 5 (a) (b) (c) and (d) record the performance with respect to different numbers of prototypes on different datasets.

From the results, we can find that more prototypes would bring in better results before saturation. In practice, we can use the

maximum number of prototypes in our device initially and then consider reducing it if it will not influence the performance

seriously.

I.5. Performance with Different Condition Lengths

We analyze the influence of different conditional lengths by varying them in {3, 6, 9, 12, 15}, respectively. As shown in

Figure 5 (e) and (f), we can observe that our PGODE can always outperform the latest baseline HOPE, which validates the

superiority of the proposed PGODE.
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I.6. Efficiency Comparison

We have conducted a comparison of computation cost. The results are shown in Table 15 and we can observe that our method

has a competitive computation cost. In particular, the performance of HOPE is much worse than ours (the increasement

of ours is over 47% compared with HOPE), while our computational burden only increases a little. Moreover, both the

performance and efficiency of I-GPODE are worse than ours.

Table 15. Comparison of training cost per epoch (s).

Method LSTM GRU NODE LG-ODE MPNODE SocialODE I-GPODE HOPE PGODE (Ours)

Springs 1.53 1.04 2.21 17.39 23.33 21.02 267.08 23.86 37.03

Charged 1.33 1.02 2.06 16.59 22.26 19.93 250.23 20.43 33.88

I.7. Visualization

Ground TruthPGODEHOPESocialODE

ID Sample 1

ID Sample 2

OOD Sample 1

OOD Sample 2

Figure 6. Visualization of different methods on Springs. Semi-transparent paths denote observed trajectories and solid paths represent our

predictions.

Lastly, we present more visualization of the proposed PGODE and two baselines, i.e., SocialODE and HOPE. We have

offered visualization of the predicted trajectory of a sample in Figure 2 and now we visualize four extra test instances (two

ID samples and two OOD samples) in Figure 6. From the results, we can observe that the proposed PGODE is capable of

generating more reliable trajectories in comparison to the baselines. For instance, our PGODE can discover the correct

direction of the orange particle while the others fail in the second OOD instance.
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