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Abstract

This paper studies the problem of modeling multi-
agent dynamical systems, where agents could
interact mutually to influence their behaviors.
Recent research predominantly uses geometric
graphs to depict these mutual interactions, which
are then captured by powerful graph neural net-
works (GNNs). However, predicting interacting
dynamics in challenging scenarios such as out-
of-distribution shift and complicated underlying
rules remains unsolved. In this paper, we propose
a new approach named Prototypical Graph ODE
(PGODE) to address the problem. The core of
PGODE is to incorporate prototype decomposi-
tion from contextual knowledge into a continuous
graph ODE framework. Specifically, PGODE em-
ploys representation disentanglement and system
parameters to extract both object-level and system-
level contexts from historical trajectories, which
allows us to explicitly model their independent
influence and thus enhances the generalization
capability under system changes. Then, we in-
tegrate these disentangled latent representations
into a graph ODE model, which determines a
combination of various interacting prototypes for
enhanced model expressivity. The entire model
is optimized using an end-to-end variational in-
ference framework to maximize the likelihood.
Extensive experiments in both in-distribution and
out-of-distribution settings validate the superiority
of PGODE compared to various baselines.
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1. Introduction

Multi-agent dynamical systems (Huang et al., 2023) are
ubiquitous in the real world where agents can be vehi-
cles (Yildiz et al., 2022) and microcosmic particles (Shao
et al., 2022). These agents could have complicated inter-
actions resulting from behavioral or mechanical influences,
which result in complicated future trajectories of the whole
system. Modeling the interacting dynamics is a crucial
challenge in machine learning with broad applications in
fluid mechanics (Pfaff et al., 2021; Mayr et al., 2023), au-
tonomous driving (Yu et al., 2020; Zhu et al., 2023), and
molecular dynamics (Wu et al., 2024; Xu et al., 2023). Ex-
tensive time-series approaches based on recurrent neural
networks (Weerakody et al., 2021) and Transformers (Zhou
etal.,2021; Chen et al., 2023b; 2024) are generally designed
for single-agent dynamical systems (Fotiadis et al., 2023),
which fall short when it comes to capturing the intricate
relationships among interacting objects. To address this
gap, geometric graphs (Kofinas et al., 2021) are usually em-
ployed to represent the interactions between objects where
nodes represent individual objects, and edges are built when
a connection exists between two nodes. These connections
can be obtained from geographical distances between atoms
in molecular dynamics (Li et al., 2022b) and underlying
equations in mechanical systems (Huang et al., 2020).

In the literature, graph neural networks (GNNs) (Kipf &
Welling, 2017; Xu et al., 2019a; Zheng et al., 2022; Li et al.,
2022a; He et al., 2022) have been increasingly prevailing for
learning from geometric graphs in interacting dynamical sys-
tems (Pfaff et al., 2021; Shao et al., 2022; Sanchez-Gonzalez
et al., 2020; Han et al., 2022; Meirom et al., 2021; Yildiz
et al., 2022). These GNN-based approaches primarily focus
on predicting the future states of dynamic systems with the
message passing mechanism. Specifically, they begin with
encoding the states of trajectories and then iteratively update
each node representation by incorporating information from
its adjacent nodes, which effectively captures the complex
interacting dynamics among the objects in systems.

Despite the significant advancements, GNN-based ap-
proaches often suffer from performance decreasement in
challenging scenarios such as long-term dynamics (Lippe
et al., 2023), complicated governing rules (Gu et al., 2022),
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and out-of-distribution shift (Dendorfer et al., 2021). As a
consequence, developing a high-quality data-driven model
requires us to consider the following critical points: (1)
Capturing Continuous Dynamics. The majority of existing
methods predict the whole trajectories in an autoregres-
sive manner (Pfaff et al., 2021; Shao et al., 2022; Sanchez-
Gonzalez et al., 2020), which iteratively feed next-time
predictions back into the input. These rollouts could lead
to error accumulation and thus fail to capture long-term
dynamics accurately. (2) Expressivity. There are a variety of
interacting dynamical systems governed by complex partial
differential equations (PDEs) in physics and biology (Rao
et al., 2023; Chen et al., 2023a). Therefore, a high-quality
model with strong expressivity is anticipated for sufficient
learning. (3) Generalization. In practical applications, the
distributions of training and test trajectories could differ due
to variations in system parameters (Sanchez-Gonzalez et al.,
2020; Li et al., 2023). Current data-driven models could
perform poorly when confronting system changes during
the inference phase (Goyal & Bengio, 2022).

In this paper, we propose a novel approach named
Prototypical Graph ODE (PGODE) for complicated inter-
acting dynamics modeling. The core of PGODE lies in ex-
ploring disentangled contexts, i.e., object states and system
states, inferred from historical trajectories for graph ODE
with high expressivity and generalization. To begin, we
extract both object-level and system-level contexts via mes-
sage passing and attention mechanisms for subsequent dy-
namics modeling. Object-level contexts refer to individual
attributes such as initial states and local heterophily (Luan
et al., 2022), while system-level contexts refer to shared pa-
rameters such as temperature and viscosity. To improve gen-
eralization under system changes, we focus on two strategies.
First, we enhance the invariance of object-level contexts un-
der system changes through representation disentanglement.
Second, we establish a connection between known system
parameters and system-level latent representations. Fur-
thermore, we incorporate this contextual information into
a graph ODE framework to capture long-term dynamics
through continuous evolution instead of discrete rollouts.
More importantly, we introduce a set of learnable GNN pro-
totypes that can be trained to represent different interaction
patterns. The weights for each object are then derived from
its hierarchical representations to provide individualized
dynamics. Our framework can be illustrated from a mixture-
of-experts perspective, which boosts the expressivity of the
model. Finally, we integrate our method into an end-to-end
variational inference framework to optimize the evidence
lower bound (ELBO) of the likelihood. Comprehensive
experiments in different settings validate the superiority of
PGODE in comparison to state-of-the-art approaches.

The contributions of this paper can be summarized in three
points: (1) New Connection. To the best of our knowledge,

this work is the first to connect context mining with a pro-
totypical graph ODE approach for modeling challenging
interacting dynamics. (2) Methodology. We extract hier-
archical contexts with representation disentanglement and
system parameters, which are then integrated into a graph
ODE model that utilizes prototype decomposition. (3) Su-
perior Performance. Extensive experiments validate the
efficacy of our approach in different challenging settings.

2. Background

Problem Definition. Given a multi-agent dynamical sys-
tem, we characterize the agent states and interaction at the
t-th timestamp as a graph G* = (V, £, X't), where each
node in V is an object, £ comprises all the edges and X is
the object attribute matrix. N represents the number of ob-
jects. Given the observations G1:Tovs = {G1 ...  GTobs},
our goal is to learn a model capable of predicting the future
trajectories X Zovs 1T Qur interacting dynamics system is
governed by a set of equations with time-invariant system
parameters denoted as . Different values of parameters &
could influence underlying dynamical principles, leading to
potential shift in trajectory distributions. As a consequence,
it is essential to extract contextual information related to
both system parameters and node states from historical ob-
servations for high-quality future trajectory predictions.

Neural ODEs for Multi-agent Dynamical Systems. Neu-
ral ODEs have been shown effective in modeling vari-
ous dynamical systems (Chen et al., 2018; Huang et al.,
2021; Dupont et al., 2019). For single-agent dynamical
systems, the evolution of latent representations z! can be
expressed via a given ODE % = f(2'). Then, the
entire trajectory of the system can be determined using
2T =204 ftT=o f (2%) dt. For multi-agent dynamical sys-
tems, the formulation can be extended as follows:

T
ziT :z?—l—/ fi (zi,z§-~-zf\,) dt, (1)
t=0
where z! represents the hidden embedding for the object i at
the timestamp ¢. f; models the interacting dynamics specifi-
cally for object i. With Eqn. 1, we can calculate z! using
different numerical solvers including Runge-Kutta (Schober
et al., 2019) and Leapfrog (Zhuang et al., 2021), which
produce accurate predictions of future trajectories in the
multi-agent systems using a decoder (Luo et al., 2023).

3. The Proposed Approach

This paper introduces a novel approach PGODE for mod-
eling interacting system dynamics in challenging scenarios
such as out-of-distribution shift and complicated underly-
ing rules. The core of PGODE lies in exploring disen-
tangled contexts for prototype decomposition for a high-
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Figure 1. An overview of the proposed PGODE. Our PGODE first constructs a temporal graph and then utilizes different encoders to
extract object-level and system-level contexts using representation disentanglement and system parameters. These contexts would generate
weights for a prototypical graph ODE framework, which models the evolution of interacting objects. In the end, the latent states of objects

are fed into a decoder to output the trajectories at any timestamp.

quality graph ODE framework. Specifically, we first con-
struct a temporal graph to learn disentangled object-level
and system-level contexts from historical data and system
parameters. These contexts further determine prototype
decomposition, which characterizes distinct interacting pat-
terns in a graph ODE framework for modeling continuous
dynamics. We adopt a decoder to output the trajectories and
the whole model is optimized via an end-to-end variational
inference framework. An overview of PGODE is depicted
in Figure 1, and the details will be presented below.

3.1. Hierarchical Context Discovery with
Disentanglement

A promising solution to formulating the dynamics of in-
teracting systems is the introduction of GNNs into Eqn. 1
where different GNNS are tailored for distinct nodes across
diverse systems. Given the basic dynamical principles, the
interacting dynamics of each object are influenced by both
system-level and object-level contexts. System-level con-
texts include temperature, viscosity, and coefficients in un-
derlying equations (Rdmi & Sipild, 2017), which are shared
in the whole system. Object-level contexts refer to object
attributes such as initial states, and local heterophily (Luan
et al., 2022), which give rise to distinct interacting patterns
for individual objects. To design GNNs for a variety of
objects and system configurations, it is essential to derive
object-level and system-level latent embeddings from his-
torical trajectories. Additionally, system parameters could
differ between training and test datasets (Kim et al., 2021),
thereby leading to potential distribution shift. To mitigate its
influence, we disentangle object-level and system-level em-
beddings with known system parameters for a more precise
and independent description of complex dynamical systems.

Object-level Contexts. We aim to condense the historical
trajectories into informative object representations. Here,
we conduct the message passing procedure on a temporal
graph for observation representation updating. Then, object
representations are generated by summarizing all the obser-
vations using the attention mechanism (Niu et al., 2021).

In detail, a temporal graph is first constructed where each
node represents an observation (Huang et al., 2021), and
edges represent temporal and spatial relationships. Tempo-
ral edges connect successive observations of the same object,
while spatial edges would be built when observations from
two different objects are connected at the same timestamp.
In formulation, we have N7 nodes in the temporal graph
G*™ and its adjacency matrix can be written as:

wi; t=t,
tem/:t - t'\ _ L Y A
AT 50 ) = 1 i=j4,t'=t+1, 2)
0 otherwise,

where i represents the observation of  at timestamp ¢ and
wj; is the edge weight from G*. Then, we adopt the mes-
sage passing mechanism to learn from the temporal graph.
Denote the representation of i¢ at the I-th layer as hf’(l), and
the interaction scores can be obtained by comparing rep-
resentations between the query and key spaces as follows:

Atem(;t t’ . .
_ (@' 5") LOVE (W 0,

all(it,j") = i Waeryh;
3)

where d denotes the hidden dimension and ﬁf’(l) = hf’(l) +
TE(t). TE(t) is the temporal embedding with TE(¢)[2i] =
sin ({ggogz77 ) and TE(t)[2i+1] = cos (15505277 ) » Which
provides the temporal information for our graph convolu-
tion module to capture temporal patterns and dependencies.
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Wouery € R4*4 and Whiey € R¥*? are two weight ma-
trices for feature transformation. Then, we update each
representation using its neighborhood as follows:

R =h o |3 aO@ i) Woareh!,
Jt'es(it)

“
where W € R?*? is to project representations into
values and S(+) collects all the neighboring nodes. In the
end, we summarize all these observation representations
for every object ¢ into a latent representation w; using the

attention mechanism as follows:

Nobs
1
(L E :
q;? = h,f (L) + TE(t);ui = W U(Wsquf)» 5
t=1

in which W,,,,, is for feature transformation. In this manner,
we incorporate semantics from both the observed trajecto-
ries and geometric structures into expressive object-level
latent representations, i.e., {u;}, for predicting future
complicated interacting dynamics in systems.

System-level Contexts. In real-world applications, system
parameters may vary between training and test datasets,
leading to out-of-distribution shift in trajectories (Mirza
et al., 2022; Ragab et al., 2023). To capture these variations
and enhance model performance, we employ a separate
network to infer system-level contexts from historical trajec-
tories, which are guided by system parameters in the training
data. Moreover, we employ mutual information minimiza-
tion (Sun et al., 2019; Feng et al., 2023) to disentangle
object-level and system-level representations, which allows
for a clear separation of influences and thus enables the
invariance of object-level contexts under system changes.

In particular, we employ the same network architecture but
with different parameters to generate the latent representa-
tion u} for object i. Then, a pooling operator is adopted
to summarize all these object-level representations into a
system-level representation g as g = Zfil u}. To capture
contexts from system parameters, we maximize the mutual
information between the system-level representation and
known parameters &, i.e., I(g;€). Meanwhile, to disen-
tangle object-level and system-level latent representation,
we minimize their mutual information, i.e., I(g; u;), which
enables us to better handle the variations introduced by out-
of-distribution system parameters. In our implementation,
we make use of Jensen-Shannon mutual information estima-
tor 7., (-, -) (Chen et al., 2019) with parameters +y, and the
loss objective for learning system parameters can be:

1

Love = 1] > —sp(=T(g,8))
(g.§)eP
1 (0)
+W Z sp(—T5(g,€)),

(9.8)¢P

where sp(x) = log(1 + €®) denotes the softplus function,
& denotes the system parameters in dynamical systems, and
‘P collects all the positive pairs from the same system. Simi-
larly, the loss objective for representation disentanglement
is formulated as:

Z sp(_T’Y'(gaui))

1
Lais = mazy{ ==

Pl
(g,u;)EP’
. ’ 0
+ 1P| Z —sp(=T% (g, ui)) },
(g:u;)¢P’

where T’/ is optimization in an adversarial manner and P’
collects all the positive object-system pairs. Differently, T,
is trained adversarially for precise measurement of mutual
information. On this basis, we establish the connection be-
tween system-level contexts and explicit parameters while
simultaneously minimizing their impact on the object-level
contexts through representation disentanglement. In this
way, our model separates and accurately captures the in-
fluence of these two factors, enhancing the generalization
capacity when system parameters vary during evaluation.

3.2. Prototypical Graph ODE

After extracting context embeddings, we intend to integrate
them into a graph ODE framework for multi-agent dynamic
systems. However, training a separate GNN for each node
would introduce an excessive number of parameters, which
could result in overfitting and a complicated optimization
process (Zhao et al., 2020; Cini et al., 2023; Guo et al.,
2023). To address this, we learn a set of GNN prototypes to
characterize the entire GNN space, and then use prototype
decomposition for each object in the graph ODE. Specifi-
cally, we start by initializing state representations for each
node and then determine the weights for each object based
on both object-level and system-level contexts.

To begin, we utilize object-level contexts with feature trans-
formation for initialization. Here, the initial state representa-
tions are sampled from an approximate posterior distribution
q(2|G*™), which would be close to a prior distribution
p(2?). The mean and variance are learned from w; as:

q (22| G*™) = N (™ (wi) , 0" (ws)), (8

where 9" (-) and ¢"(-) are two feed-forward networks
(FFNs) to compute the mean and variance. Then, we intro-
duce K GNN prototypes, each with two FFNs 9% () and
¥ (-) for relation learning and feature aggregation, respec-
tively. The updating rule of the k-th prototypes for object ¢
is formulated as follows:

fE(z 2 2h) =0h (Y ekl 2), @
Jtes(it)

where 5 represents the neighbor of i at timestamp ¢ and the
order of z! and z§ also matters. Then, we take a weighted
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combination of these GNN prototypes for each object, and
the prototypical interacting dynamics can be formulated as:

K

t
%:wad)s( > wk(zhz]) -2 10)

k=1 jtes(it)

The last term indicates natural recovery, which usually ben-
efits semantics learning in practice. To generate the weights
for each object, we merge both object-level and system-level
latent variables and adopt a FFN p(+) as follows:

w; = [w}, -, w] = p([us,g)), (11)

7

where the softmax activation is adopted to ensure
ZK wk=1

k=1 "+ — +
Robustness. In this part, we discuss the robustness of the

proposed PGODE. When K = 1, Eqn. 10 would be de-
graded into a single-prototype system:

dz! 1
7 (o

ST w22 | -2 (12

Jres(it)

which shares the GNN function for every node. Then, the
following theorem states that our model enjoys the enhanced
robustness of the proposed model to perturbation (Niu et al.,
2020; Xu et al., 2020) compared with the single-prototype
system as in Eqn. 10. Consider a perturbation § of small
magnitude ¢, such that ||| = ¢, applied to an given input
point Z°, where Z° = (Z9,...,2%)7, resulting Z° =
Z° + 6. The following theorem with the proof in Appendix
B demonstrates that the multi-prototype system is more
robust than the single-prototype system.

Theorem 3.1. Assume the prototype function ¥* has a
bounded gradient. Moreover, each prototype function %
and 1)¥ are Lipschitz continuous with Lipschitz constant L*
and L¥, and 1, and 1), are for single prototype function
with Lipschitz constant L, and L,. For the sake of simplicity,
we omit the last term —z! in Eqn. 10 and Eqn. 12 since it
can be incorporated in the revised GNN prototypes. Denote
LF=LrFLrand L = L, L,, ifE(L*) < E(L), Var(L*) <
Var(L) hold for all k = 1,..., K, our multi-prototype
system described in Eqn. 10 will have smaller mean and
variance bounds for the Lyapunov error function ||et||? /2
compared to the single-prototype system described in Eqn.
12.

A Mixture-of-Experts Perspective. We demonstrate that
our graph ODE model can be interpreted through the lens of
the mixture of experts (MoE) (Du et al., 2022; Wang et al.,
2024; Liu et al., 2023). Specifically, each prototype serves
as an ODE expert, while w; acts as the gating weights that
control the contribution of each expert. Through this, we are
the first to get the graph ODE married with MoE, enhancing

the expressivity to capture complex interacting dynamics as
in previous works (Wang & Van Hoof, 2022; Wang et al.,
2020). More importantly, different from previous works
that employ black-box routing functions (Zhou et al., 2022),
the routing function in our PGODE is derived from hierar-
chical contexts with representation disentanglement, which
further equips our model with the generalization capability
to handle potential shift in data distributions. In particular,
given a change in the graph structure or feature distribution,
the multi-prototype system Eqn. 10 can adjust the weights
{wk} to accommodate this change, potentially identifying
a new combination of prototypes that better fits the altered
data. This flexibility is quantified by the ability to perform
gradient-based updates on the weights. In contrast, Eqn.
12 may fail to adapt as readily since it relies on a single
function v, without the benefit of re-weighting different
prototypes.

Existence and Uniqueness. We give a theoretical analysis
about the existence and uniqueness of our proposed graph
ODE to show that it is well-defined under certain conditions.

Lemma 3.2. We first assume that the learnt functions ¥ :
R24 — R4 ¢k . RY — RY have bounded gradients. In
other words, there exists A, R > 0, such that the following
Jacobian matrices have the bounded matrix norms:

v ovr,  Ovr, vy,
Ox1 e Oxq oy T 9Ya
Jype([z,y]) =] : : :
81/’5@ 81/”&1 3‘1”;@ 3#’&@
0z Y Oxq 0y1 o 9Ya
(| Jyr ([, 9]l < R,
1
81/’:,1 81/’2,1 ( 3)
Oxq T Oxg
Jyr() = .t ()] < A
oE 4 Oy a
axl e 614
(14)
Given the initial state (1, zfo, e ,zf\‘}, wy, -, WN), We

claim that there exists € > 0, such that the ODE system Eqn.
10 has a unique solution in the interval [ty — €, to + €.

The proof is shown in Appendix C. Our analysis demon-
strates that based on given observations, future trajectories
are predictable using our graph ODE, which is essential in
dynamics modeling (Chen et al., 2018; Kong et al., 2020).

3.3. Decoder and Optimization

Finally, we introduce a decoder to forecast future trajecto-
ries, along with an end-to-end variational inference frame-
work for the maximization of the likelihood.

In particular, we build a connection between latent states
and trajectories by calculating the likelihood for each obser-
vation p(zf|z!). Following the maximum likelihood estima-
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Table 1. Mean Squared Error (MSE) x 10~2 on physical dynamics simulations.

Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (O0D) 36 (O0D)
Dataset .

Variable q v q v q v q v q v q v

LSTM 0.287 0.920 | 0.659 2.659 | 1.279 5729 | 0474 1.157 | 0938 2.656 1.591 5.223

GRU 0.394 0.597 | 0.748 1.856 | 1.248 3446 | 0.591 0.708 | 1.093 1.945 1.671 3.423

NODE 0.157 0.564 | 0.672 2414 | 1.608 6.232 | 0.228 0.791 | 0.782 2.530 1.832  6.009
Springs LG-ODE 0.077 0.268 | 0.155 0.513 | 0.527 2.143 | 0.088 0.299 | 0.179 0.562 | 0.614 2.206

MPNODE 0.076  0.243 | 0.171 0456 | 0.600 1.737 | 0.094 0.249 | 0.212 0.474 | 0.676 1.716

Social ODE 0.069 0.260 | 0.129 0.510 | 0.415 2.187 | 0.079 0.285 | 0.153 0.570 | 0.491 2.310

HOPE 0.070 0.176 | 0.456 0957 | 2475 5409 | 0.076 0.221 | 0.515 1.317 | 2.310 5.996

PGODE (Ours) 0.035 0.124 | 0.070 0.262 | 0.296 1.326 | 0.047 0.138 | 0.088 0.291 0.309 1.337

LSTM 0.795 3.029 | 2.925 3.734 | 6.569 4.331 | 1.127 3.027 | 3.988 3.640 | 8.185 4.221

GRU 0.781 2.997 | 2.805 3.640 | 5969 4.147 | 1.042 3.028 | 3.747 3.636 | 7.515 4.101

NODE 0.776  2.770 | 3.014 3441 | 6.668 4.043 | 1.124 2.844 | 3931 3.563 8.497  4.737
Charged LG-ODE 0.759 2.368 | 2.526 3.314 | 5985 5.618 | 0.932 2551 | 3.018 3.589 | 6.795 6.365

MPNODE 0.740 2455 | 2458 3.664 | 5.625 6.259 | 0994 2555 | 2.898 3.835 6.084 6.797

Social ODE 0.662 2.335 | 2.441 3.252 | 6.410 4912 | 0.894 2420 | 2.894 3402 | 6.292 6.340

HOPE 0.614 2316 | 3.076 3.381 | 8.567 8.458 | 0.878 2.475 | 3.685 3.430 | 10953 9.120

PGODE (Ours) 0.578 2.196 | 2.037 2.648 | 4.804 3.551 | 0.802 2.135 | 2.584 2.663 | 5.703 3.703

¢ P 7’
.("' -I / £~ & -:""~- \:‘ \”"« \ .
I~ H = { \\ (\. §
Pas T S~ /"\
SocialODE HOPE PGODE Ground Truth

Figure 2. Visualization of different methods on Springs. Semi-transparent paths denote observed trajectories and solid paths represent our

predictions.

tion of a Gaussian distribution, here we solely produce the
mean of each distribution, i.e., p! = ¢(2!), where ¢(-) is an
FFN serving as the decoder implemented. In the variational
inference framework, our model optimizes the evidence
lower bound (ELBO) of the likelihood, which involves the
maximization of the likelihood and the minimization of the
difference between the prior and posterior distributions:
['elbo — EZONHﬁ\’Zl q(z?|G1fTobs) [logp(XTostrl:T)]

N
— KL [T a(z21G" ")

i=1

p(2°)],

15)
in which p (Z°) = I p(2Y) and p(2?) is a Normal dis-
tribution N (0, I) (Kingma et al., 2019). Eqn. 15 can be
re-written into the following equation by incorporating the
independence of each node:

N et )
Lao==3 >, oot
i=1 t=Tops+1
N (16)
— KL |[J a(z01G" ") p (2°) |,
i=1

in which o2 represents the variance of the prior distribution.

To summarize, the final loss objective for the optimization
is written as follows:

L= Eelbo + Esys + Edisv an

where the last two loss terms serve as a regularization mech-
anism using mutual information to constrain the model pa-
rameters (Xu et al., 2019b; Rhodes & Lee, 2021). We have
summarized the whole algorithm in Appendix A.

4. Experiment

We conduct experiments on both physical and molecular
dynamical systems. Each sample is split into two parts
including a conditional part for initializing object-level con-
text representations and global-level context representations,
and a prediction part for supervision. Their lengths are
denoted as conditional length and prediction length, respec-
tively. We compared our PGODE with several baselines, i.e.,
LSTM (Hochreiter & Schmidhuber, 1997), GRU (Cho et al.,
2014), NODE (Chen et al., 2018), LG-ODE (Huang et al.,
2020), MPNODE (Chen et al., 2022), SocialODE (Wen
et al., 2022) and HOPE (Luo et al., 2023). The setting
details are in Appendix H.
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Table 2. Mean Squared Error (MSE) x 10~* on molecular dynamics simulations.

Prediction Length 12 (ID) 24 (ID) 12 (OOD) 24 (O0D)
Dataset .
Variable [ qy q: o qy q: qx qy 4z qx qy qs
LSTM 4178 3396 3954 | 4358 4442 3980 | 4785 4.178 4.467 | 5.152 5216 4.548
GRU 4365 2.865 2.833 | 5295 3.842 3.996 | 5.139 3.662 3.789 | 6.002 4.723 5.358
NODE 3.992 3291 2482 | 4674 4333 3254 | 4390 4.135 2.808 | 5.734 5.388 4.036
SAWL LG-ODE 2.825 2807 2.565 | 37725 3.940 3412 | 3358 3.549 3.501 | 4.611 4763 4.543
MPNODE 2.631 3.029 2.734 | 3.587 4.151 3488 | 3.061 3.899 3.355 | 4271 5.085 4.427
SocialODE 2481 2729 2473 | 3320 3.951 3.399 | 2987 3.514 3.166 | 4248 4.794 4.155
HOPE 2326 2572 2442 | 3495 3.816 3413 | 2.581 3.528 2.955 | 4548 5.047 4.007
PGODE (Ours) 2.098 2344 2.099 | 2910 3.384 2904 | 2.217 3.109 2.593 | 3.374 4.334 3.615
LSTM 2.608 2265 3975 | 3.385 2959 4295 | 3285 2210 5.247 | 3.834 2.878 5.076
GRU 2.847 2968 3.493 | 3.340 3.394 3.636 | 3.515 3.685 3.796 | 4.031 3938 3.749
NODE 2211 2.103 2.601 | 3.074 2.849 3284 | 2912 2.648 2.799 | 3.669 3478 3.874
INSC LG-ODE 2.176  1.884 1928 | 2.824 2.413 2.689 | 2.647 2284 2.326 | 3.659 3.120 3.403
MPNODE 1.855 1.923 2235 | 2.836 2.805 3.416 | 2.305 2.552 2373 | 3.244 3.537 3.220
SocialODE 1.965 1.717 1817 | 2575 2.286 2412 | 2.348 2.138 2.169 | 3.380 2.990 3.057
HOPE 1.842 1915 2223 | 2.656 2.788 3.474 | 2.562 2514 2.731 | 3.343 3.301 3.502
PGODE (Ours) 1484 1424 1.575 | 1.960 2.029 2.119 | 1.684 1.809 1.912 | 2.464 2.734 2.727
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Figure 3. Visualization of prediction results of different methods on the SAWL dataset. We can observe that our PGODE can reconstruct

the ground truth accurately.

4.1. Performance on Physical Dynamics Simulations
Datasets. We employ two physics simulation datasets to
evaluate our PGODE, i.e., Springs and Charged (Kipf et al.,
2018). Each sample in these two simulated datasets contains
10 particles in a 2D box that has potential collisions without
exterior forces. We aim to predict the future position infor-
mation and the future velocity values of these interacting
particles, i.e., ¢ and v. More details of the two datasets can
be found in Appendix G.

Performance Comparison. The compared results with
respect to different prediction lengths are collected in Ta-
ble 1. From the results, we have two observations. Firstly,
ODE-based methods generally outperform discrete meth-
ods, which validates that continuous methods can naturally
capture system dynamics and relieve the influence of poten-
tial error accumulation. Secondly, our proposed PGODE
achieves the best performance among all the methods. In
particular, the average MSE reduction of our PGODE over

HOPE is 47.40% for ID and 48.57% for OOD settings on
these two datasets. The superior performance stems from
two reasons: (1) Introduction of context discovery. PGODE
generates disentangled object-level and system-level embed-
dings, which would increase the generalization capability of
the model to handle system changes, especially in OOD set-
tings. (2) Introduction of prototype decomposition. PGODE
combines a set of GNN prototypes to characterize the in-
teracting patterns, which increases the expressivity of the
model for complex dynamics. More compared results can
be found in Sec. I.1.

Visualization. Figure 2 shows the visualization of three
compared methods and the ground truth on Springs. Here,
semi-transparent paths denote the observed trajectories
while solid paths denote the predicted ones. From the re-
sults, we can observe that our proposed PGODE can gener-
ate reliable trajectories close to the ground truth for all the
timestamps while both baselines SocialODE and HOPE fail,
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Table 3. Ablation study on Springs, Charged (MSE x10™2) and SAWL (MSE x10~%) with a prediction length of 24.

Dataset ‘ Springs (ID) ‘ Springs (OOD) ‘ Charged (ID) ‘ Charged (OOD) ‘ SAWL (ID) ‘ SAWL (OOD)
Variable | q v | g v | g v | ¢ v | e Qy - | ¢ Qy 4
PGODE w/o O | 0.106 0.326 | 0.127 0.339 | 2.282 3.013 | 2.590 2943 | 2995 3.532 2932 | 3.649 4469 3.639
PGODE w/oe | 0.089 0.397 | 0.124 0.417 | 2.308 2994 | 2990 2911 | 2935 3.612 3.034 | 3.538 4.541 3.741
PGODE w/o F | 0.164 0.517 | 0.202 0.577 | 2497 3298 | 2.882 3.197 | 3.157 3.629 3326 | 3.634 4.604 3917
PGODE w/oD | 0.073 0.296 | 0.091 0.348 | 2.179 2.842 | 2.616 3.076 | 3.077 3.453 2961 | 3.684 4399 3.623
PGODE 0.070 0.262 | 0.088 0.291 | 2.037 2.648 | 2.584 2.663 | 2910 3.384 2904 | 3.374 4.334 3.615
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Figure 4. (a), (b) Performance with respect to varying condition lengths on Springs and SAWL. (c) (d) Performance and running time with

respect to different numbers of prototypes.
which validates the superiority of the proposed PGODE.

4.2. Performance on Molecular Dynamics Simulations

Datasets. We construct two molecular dynamics datasets us-
ing two proteins, i.e., SAWL, 2N5C, and our approach is eval-
uated on the two datasets. Each sample in both datasets com-
prises a trajectory of molecular dynamics simulation, where
the motions of each atom are governed by the Langevin
dynamics equation in a specific solvent environment. The
graph is constructed by comparing pairwise distance with
a threshold, which would be updated at set intervals. The
system parameters of the solvent are varied among different
simulation samples. We target at predicting the position of
every atom in three coordinates, i.e., ¢;, g, and ¢,. More
details can be found in Appendix G.

Performance Comparison. We demonstrate the perfor-
mance with respect to varying prediction lengths in Table
2. Based on the results, it can be seen that our proposed
PGODE can achieve the best performance on two datasets
in both ID and OOD settings. Note that molecular dynamics
involves hundreds of atoms with complicated interacting
rules. As a consequence, the performance further demon-
strates the strong expressivity of our proposed PGODE for
modeling challenging underlying rules.

Visualization. In addition, we provide the visualization
of the two baselines and our PGODE compared with the
ground truth with different prediction lengths in Figure 3.
We can observe that our PGODE is capable of exploring
more accurate dynamical patterns compared with the ground
truth. More importantly, our proposed PGODE can almost
recover the position patterns when the prediction length is

24, which validates the capability of the proposed PGODE
to handle complicated scenarios.

4.3. Further Analysis

Ablation Study. To evaluate different components in
PGODE, we introduce four model variants as follows: (1)
PGODE w/o O, which removes the object-level contexts
and only utilizes system-level contexts for w;; (2) PGODE
w/o €, which removes the system-level contexts and only uti-
lizes object-level contexts for w;; (3) PGODE w/o F, which
merely adopts one prototype for graph ODE. (4) PGODE
w/o D, which remove the disentanglement loss. We com-
pared these model variants with the full model in different
settings. The results are recorded in Table 3 and more re-
sults on 2N5C can be found in Sec. 1.2. From the results,
we can have several observations. Firstly, removing either
object-level or system-level contexts would obtain worse
performance, which validates that both contexts are crucial
to determining the interacting patterns. Secondly, our full
model achieves better performance compared with PGODE
w/o F, which validates that different prototypes can increase
the representation capacity for modeling complicated dy-
namics. Thirdly, in comparison to PGODE w/o D and the
full model, we can infer that representation disentanglement
greatly enhances the performance under system changes.

Parameter Sensitivity. We first analyze the influence of
different conditional lengths and prediction lengths by vary-
ing them in {3, 6,9, 12,15} and {12, 24}, respectively. As
shown in Figure 4 (a) and (b), we can find that the er-
ror would decrease till saturation as the condition length
rises since more historical information is provided. In ad-
dition, PGODE can always perform better than HOPE in
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every setting. Then, we vary the number of prototypes in
{2,3,4,5,6} in Figure 4 (c) and observe that more proto-
types would bring in better results before saturation.

Efficiency. Although more prototypes tend to benefit the
performance, they can also bring in high computational cost.
We show the computational time with respect to different
numbers of prototypes in Figure 4 (d) and observe that
the computational complexity would increase with more
prototypes. Due to the trade-off between effectiveness and
efficiency, we would set the number to 5 as default.

5. Related Work

5.1. Interacting Dynamics Modeling

Recent years have witnessed a surge of interest in modeling
interacting dynamical systems across a variety of fields in-
cluding molecular biology and computational physics (Lan
et al., 2022; Li et al., 2022b; Bishnoi et al., 2022; Sun et al.,
2023; Yu et al., 2024; Schaefer et al., 2021; Abeyruwan
et al., 2023; Schlichtkrull et al., 2018). While convolutional
neural networks (CNNss) have been successfully employed
to learn from regular data such as grids and frames (Peng
et al., 2020), emerging research is increasingly utilizing
geometric graphs to represent more complex systems (Wu
et al., 2023; Deng et al., 2023). Graph neural networks
(GNNs) have thus become increasingly prevailing for mod-
eling these intricate dynamics. AgentFormer (Yuan et al.,
2021) jointly models both time and social dimensions with
semantic information preserved. R-SSM (Yang et al., 2020)
models the dynamics of interacting objects using GNN’s
and includes auxiliary contrastive prediction tasks to en-
hance discriminative learning. Equivariance is a crucial
property in physical simulation to guarantee the symmetry
of the physical laws and a range of previous works have
been proposed (Satorras et al., 2021; Wu et al., 2024). For
example, EqMotion (Xu et al., 2023) incorporates equiv-
ariant geometric feature learning for efficient multi-agent
motion prediction. ESTAG (Wu et al., 2024) includes the
equivariant discrete Fourier transform to learn from periodic
patterns. Despite their popularity, current methods often
fall short in modeling challenging scenarios such as out-of-
distribution shift and long-term dynamics (Yu et al., 2021).
To address these limitations, our work leverages contextual
knowledge to incorporate prototype decomposition into a
graph ODE framework.

5.2. Neural Ordinary Differential Equations

Motivated by the approximation of residual networks (Chen
et al., 2018), neural ordinary differential equations (ODEs)
have been introduced to model continuous-time dynamics
using parameterized derivatives in hidden spaces. These
neural ODEs have found widespread use in time-series fore-

casting due to their effectiveness (Dupont et al., 2019; Xia
et al., 2021; Jin et al., 2022; Schirmer et al., 2022). Incor-
porated with the message passing mechanism, they have
been integrated with GNNs, which can mitigate the issue of
oversmoothing and enhance model interpretability (Xhon-
neux et al., 2020; Zhang et al., 2022; Poli et al., 2019).
I-GPODE (Y1ldiz et al., 2022) estimates the uncertainty of
trajectory predictions using the Gaussian process, which fa-
cilitates effective long-term predictions. HOPE (Luo et al.,
2023) incorporates second-order graph ODE in evolution
modeling. In contrast, we not only introduce context discov-
ery with disentanglement, which disentangles object-level
and system-level embeddings with known system parame-
ters, but also introduce prototypical graph ODE, which incor-
porates the object-level and system-level embeddings into
prototypical graph ODE framework following the mixture-
of-experts (MoE) principle.

6. Conclusion

In this work, we investigate a long-standing problem of mod-
eling interacting dynamical systems and develop a novel ap-
proach named PGODE, which infers prototype decomposi-
tion from contextual discovery for a graph ODE framework.
In particular, PGODE extracts disentangled object-level and
system-level contexts from historical trajectories, which
can enhance the capability of generalization under system
changes. In addition, we present a graph ODE framework
that determines a combination of multiple interacting pro-
totypes for increased model expressivity. Extensive experi-
ments demonstrate the superiority of our PGODE in differ-
ent settings compared with various competing approaches.

Impact Statement

This work introduces a data-driven framework for modeling
interacting dynamical systems in different settings, which
can be applied to facilitate research in physics and molecular
biology. In addition, our work proposes new datasets and
benchmarks on physical and molecular dynamics simula-
tions in different settings, which can also benefit research in
scientific machine learning. Our PGODE model can also be
applied to traffic flow prediction and stock price prediction,
where we can model the continuous interaction between
different vehicles or stocks. In future work, we will ex-
tend PGODE to these practical problems and more scientific
applications, e.g., rigid dynamics and single-cell dynamics.
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A. Algorithm

We summarize the learning algorithm of our PGODE in Algorithm 1.

Algorithm 1 Training Algorithm of PGODE
Input: The observations G17 = {G*, ... | GT}.
Qutput: The parameters in the model.

1: Initialize model parameters;

2: while not convergence do

3:  for each training sequence do

4: Partition the sequence into two parts;

5: Construct the temporal graph with Eqn. 2;

6 Generate object-level contexts using Eqn. 5;

7 Generate system-level contexts with summarization;
8 Solve our prototypical graph ODE in Eqn. 10;

9 Output the trajectories using the decoder;

10: Compute the final objective, i.e., Eqn. 17;

11: Update 7/ in our PGODE with gradient ascent;

12: Update other parameters in our PGODE using gradient descent;
13:  end for

14: end while

B. Proof of Theorem 3.1

Theorem 3.1. Assume the prototype function ¥ has a bounded gradient. Moreover, each prototype function * and
¥ are Lipschitz continuous with Lipschitz constant L* and L%, and 1, and wr are for single prototype function with
Lipschitz constant L, and L,. For the sake of simplicity, we omit the last term —z} in Eqn. 10 and Eqn. 12 since it can be
incorporated in the revised GNN prototypes. Denote L* = L¥LF and L = L Lr, ifE(L¥) < E(L), Var(L¥F) < Var(L)
hold forall k = 1,. .., K, our multi-prototype system described in Eqn. 10 will have smaller mean and variance bounds for
the Lyapunov error function ||et||? /2 compared to the single-prototype system described in Eqn. 12.

Proof. To show that the multi-prototype system Eqn. 10 is better in terms of robustness compared to the single-prototype
system Eqn. 12, we consider a perturbation & of small magnitude ¢, with ||d]| = ¢, applied to an input point Z 9. For the
multi-prototype system, we assume the perturbed solution of the ODE at time ¢ is Z*. After omitting the last term in Eqn.
10, the difference between the perturbed and unperturbed states is:

‘, L K
[d(zfdzzf)] =Y whun | D w(ZLZD) | —en | Do wrZhZD | |
i k=1

i JES(3t) JES(it)

where [a]; denotes the ith element of the vector a. For the single-prototype system Eqn. 12, the difference between the
perturbed and unperturbed states is:

d(Z' - ZY)

T =va | Do (220 | —wa | Do e(122)))

i JES(it) JES(it)

Consider the error ! = Z! — Z' and analyze its growth over time. For the multi-prototype system, the combined effect of
multiple prototypes with weights w? tends to average out the perturbation, potentially leading to a slower growth of ||e||.
This can be quantified by:

K
[d;f].wa v | D0 WEIZEZN) | —wa | D0 wrZE ) ) - (18)
g k=1

JeS(i) Jjes(t)
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For the single-prototype system, the error propagation is:
de’ 1 t 71 1 t 74)
| = Zwrzz>—wa > w2 2Y) |- (19)
i JES(i FES(it)

We use Lyapunov functions to quantify the stability. A Lyapunov function V' (x) is a scalar function that maps the state of
the system to a non-negative real number. In this case, we define a Lyapunov function as:

1
Vie') = S le'|*.
2
The time derivative of V' is then given by:

av. _d (1, 0\ _ T de’
dt_dt(QHel)_(e) dt

Plugging in Eqn. 18 and Eqn. 19 into the above derivative, we get:

N
=S 2] =3 (Sout (vt | 3 wtizzp) ot [ ¥ wizman))) e

i=1 i=1 JES(it) JES(it)
and
av al t de’ o t 1 t t 1 t t
Zr= el | =3l (e | YD w22 |~ | Yo w22 ) ). @y
i=1 =1 FES(it) JES(it)

Assume v, and 1), are Lipschitz continuous with Lipschitz constants L, and L,., respectively. Eqn. 20 and Eqn. 21 can be
approximated by:

i=1

qv N N 2
] < e (st ) <) 3 (S wtrne

and

2
(ZI JilLa LklletH) < €'’V NL,L,

Under the assumptions in Theorem 3.1, we have LF=1LFLFk L.L, = L,and:

a~—r?

K K
E (Z wa’“) <E (Z wa> =E(L), (22)
k=1 k=1
and
K K K
ar (Z wak> = Z( 2Var(L*) < Z 2Var(L) < Var(L), (23)
k=1 k=1 k=1

where the last equality holds iff there exists &* such that w*" = 1 and w® = 0 for all & # k*. This shows that the
multi-prototype system has a distributed effect that reduces the impact of perturbations, leading to slower growth in Cfi‘t/
compared to the single-prototype system, which has a concentrated effect. This means that the multi-prototype system is

more robust.

O
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C. Proof of Lemma 3.2

Lemma 3.2. We first assume that the learnt functions /¥ : R?? — R ¢F : R? — R have bounded gradients. In other
words, there exists A, R > 0, such that the following Jacobian matrices have bounded matrix norm:

0%y, 0Py O, oYy,
Oy e Oxq oy1 o 0Ya
Jpr(le,y) =1+ oo (YDl < R, 24)
0%y q g OUrg 0%y q
Oz o Oxq oy1 o 0ya
L My s
Oz T Oxgq
Jyp@) =1 o (@)l < A (25)
g 4 g 4
ox1 e 0xq
Then, given the initial state (to, 2%°, - - - |, zf{,’, wi, - ,wy), we claim that there exists ¢ > 0, such that the ODE system

Eqn. 10 has a unique solution in the interval [ty — €, to + €].

We first introduce the Picard—Lindelof Theorem as below.

Theorem C.1. (Picard-Lindeldf Theorem (Coddington et al., 1956)) Let D C R x R"™ be a closed rectangle with
(to,yo0) € D. Let f : D — R™ be a function which is continuous in t and Lipschitz continuous in y. In this case, there exists
some € > 0 such that the initial value problem:

y'(t) = f(ty(0), v (to) = yo- (26)
has a unique solution y(t) on the interval [ty — €,to + €] .

Then, we prove the following lemma.

Lemma C.2. Suppose we have a series of L-Lipschitz continuous functions {f; : R™ — R"}N | and then their linear
combination is also L-Lipschitz continuous, i.e., V{ay,---an} € [0,1]V, satisfying Zfil a; = 1, we have Zfil a; f; is
also L-Lipschitz continuous.

Proof. Y,y € R™, we have:

N N N
[ Zaifi(w) - Zaifi(y)ll <Y aillfi(®) - fi(y)ll 27)

i=1
N
<l -yl e8)
i=1
= Lz —y]. (29)
O
Next, we show the proof of Lemma 3.2.
Proof. First, we can rewrite the ODE system Eqn. 10 as:
azt &
— =) Wkfkz") -2z 30
o ; Mz -z, (30)

where W € RNIXNd s 3 diagonal matrix. It is evident that the right hand side is continuous with respect to ¢ since it does
not depend on ¢ directly.
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Then, for any continuous function f : R™ — R™, with the Mean Value Theorem, we have Va,y € R"™, || f(z) — f(y)| =
[IJ¢(P)|| * |l — yl|, where p is a point in the segment connecting « and y. Also, denote

09y 0Py 0%y oY,
Oxq U Oxyg oY1 o 0ya
Jpra(zy) = 0 pry(my) = 0 | (31
OV 4 OYr.a oYL 4 oYL 4
oz o Oxgq Oy1 o 0ya
By assumption, we have
1Ty e ([ YDl [ Tyr g ([ YD < Ty ([, Y] < R. (32)

Now, denote A(i, j) € R244N  For the indices from (1, idN+1) to (d, (i+1)dN), and from (d+1, jdN+1) to (2d, (j+1)dN),

Iy Y1
the matrix value is 1; the others are 0. By introducing A(i, j), for all X = Y = : € RN we have:
TN YN
[ (A, ) X) = D (AG DY < 1 ([ 225]) — o (yis 2D |+ 100 (s 25]) = ¢ (s yi) | (33)
= Ty a([pis ;)1 * les — yall + [[Tye o ([ys DI * g — g5l (MVT)  (34)
< Rllw; — yill + Rllw; — ;| (35)
<SR[|X -Y], (36)

S

where p; is a point in the segment connecting x; and ¥;, and a similar definition is for p;. Note that we have
R-Lipschitz continuous. Therefore, by Lemma C.2, the following linear combination is also R-Lipschitz continuous:

> YR(AG ) 21Y). 37)
jtes(it)
Thus, forall X,Y € RN we have:
[F5(X) = FEO)|| = [k (17 (X)) — k(17 ()| (38)
< A|lIF(X) = 1F(Y)| (39)
<ARN|X -Y|. (40)

Again, we have each f* is ARN-Lipschitz continuous, so their linear combination Zkl,(zl W* f* will also be Lipschitz
continuous. Finally, we have

H[Z Wh (X ZW’“f’“ Y| < HZW"f’“ Zwkfk (@1
k=1
+[|X =Y (42)
< (ARNK +1)[| X - Y. (43)
Thus, the right hand side will be (ARNK+1)-Lipschitz continuous. According to the Theorem C.1, we prove the uniqueness
of the solution to Eqn. 10. O
D. More Related Work

D.1. Graph Neural Networks

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Xu et al., 2019a; Velickovic et al., 2018; Feng et al., 2023; Ju
et al., 2024; Lienen et al., 2024; Steeven et al., 2024) have shown remarkable efficacy in handling a range of graph-based
machine learning tasks such as node classification (Yang et al., 2021) and graph classification (Liu et al., 2022). Typically,
they adopt the message passing mechanism, where each node aggregates messages from its adjacent nodes for updated
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node representations. Recently, researchers have started to focus more on realistic graphs that do not obey the homophily
assumption and developed several GNN approaches to tackle heterophily (Zhu et al., 2021; Li et al., 2022a; Zhu et al., 2020).
These approaches typically leverage new graph structures (Zhu et al., 2020; Suresh et al., 2021) and modify the message
passing procedures (Chien et al., 2021; Yan et al., 2022) to mitigate the influence of potential heterophily. In our PGODE,
we focus on interacting dynamics systems instead. In particular, due to the local heterophily, different objects should have
different interacting patterns, and therefore we infer object-level contexts from historical data.

E. Limitation

One limitation of our PGODE is that it does not consider the symmetry of physics, which is an important property in physical
simulations (Satorras et al., 2021; Xu et al., 2023; Wu et al., 2024). In future works, we will incorporate the symmetry of
physics to further enhance the expressivity of our method, which builds high-quality equivariant graph ODE models for
dynamical system modeling.

F. Detail of Baselines

The proposed method is compared with these competing baselines as follows:

* LSTM (Hochreiter & Schmidhuber, 1997) has been broadly utilized for sequence prediction tasks. Compared with
classic RNNs, LSTM incorporates three critical gates, i.e., the forget gate, the input gate, and the output gate, which can
effectively understand and retain important long-term dependencies within the data sequences.

* GRU (Cho et al., 2014) is another popular RNN architecture, which employs the gating mechanism to control the
information flow during propagation. GRU has an improved computational efficiency compared LSTM.

¢ NODE (Chen et al., 2018) is the first method to introduce a continuous neural network based on the residual connection.
It has been shown effective in time-series forecasting.

* LG-ODE (Huang et al., 2020) incorporates graph neural networks with neural ODE, which can capture continuous
interacting dynamics in irregularly-sampled partial observations.

* MP-NODE (Gupta et al., 2022) integrate the message passing mechanism into neural ODEs, which can capture sub-system
relationships during the evolution of homogeneous systems.

* Social ODE (Wen et al., 2022) simulates the evolution of agent states and their interactions using a neural ODE architecture,
which shows remarkable performance in multi-agent trajectory forecasting.

* HOPE (Luo et al., 2023) is a recently proposed graph ODE method, which leverages a twin encoder to learn hidden
representations. These representations are fed into a high-order graph ODE to learn long-term correlations from
complicated dynamical systems.

* EGNN (Satorras et al., 2021) is a graph neural network architecture, which promises the equivalence to E(3) transforma-
tions. It shows superior performance for learning from physical simulations.

» EqMotion (Xu et al., 2023) is an efficient model, which includes both an equivariant geometric feature learning module
and an invariant pattern feature for comprehensive motion prediction.

G. Dataset Details

We use four simulation datasets to evaluate our proposed PGODE, including physical and molecular dynamic systems. We
will introduce the details of these four datasets in this part.

» Springs & Charged. The two physical dynamic simulation datasets Springs and Charged are commonly used in the
field of machine learning for simulating physical systems. The Springs dataset simulates a system of interconnected
springs governed by Hooke’s law. Each spring has inherent properties such as elasticity coefficients and initial positions,
representing a dynamic mechanical system. Each sample in the Springs dataset contains 10 interacting springs with
information about the current state, i.e., velocity and acceleration, and additional properties, i.e., mass and damping
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Table 4. Datasets and distributions of system parameters. For the OOD test set, there is at least one of the system parameters outside the
range utilized for training. : box size, {: initial velocity norm,y: interaction strength, J: spring/charged probability. ¢: temperature, p:

pressure, p: frictional coefficient.

Springs Charged SAWL/2N5C

Parameters a,B,7,6 a, 8,7,0 t,p, 1
A={a€4.9,5.1]} A={a€4.9,5.1]} T = {t € [200,310))

B ={B€[0.49,0.51]} B = {3 €[0.49,0.51]} B
Train/Val/Test C = {y€10.09,0.11]} C={vye09,11]} ]\1; = {{1; ee [%99, 11.11]]}}
D = {0 €[0.49,0.51 D = {5 €[0.49,0.51 B i
Qtfﬁin :{(A X[B x C X]}D) erain :{(A ><[ BxC X]}D) Qtrain - (T x P x M)
A={ac48,52]} A={ac48,52]} B
T L o R
- € 10.05, 0. = € |U.0, 1. . )
OOD Test Set D= {g € [0.48,0.52]} D= {576 [0.48,0.52]} M ={p€[0.8,1.2]}

Qoop =

Qoop = Qoop = (T x P x M)\ Qain

(Ax B xC x D)\ Quain (Ax BxC x D)\ Quain

Number of samples
Train/Val/Test 1000/200/200 200/50/50
OOD Test Set 200 50

coefficients. Similar to the Springs dataset, Charged is another popular physical dynamic simulation dataset that simulates
electromagnetic phenomena. The objects in Charged are replaced by the electronics. We use the box size «, the initial
velocity 3, the interaction strength -y, and springcharged probability § as the system parameters in the experiments. It is
noteworthy that the objects attract or repel with equal probability in the Charged system but unequal probability in the
spring system. Both systems have a given graph indicating fixed interactions from real springs or electric charge effects.

SAWL & 2N5C. To evaluate our approach on modeling molecular dynamic systems, we construct two datasets from two
proteins, SAWL and 2N5C, which can be accessed from the RCSB'. First, we repair missing residues, non-standard residues,
missing atoms, and hydrogen atoms in the selected protein. Additionally, we adjust the size of the periodic boundary box
to ensure that it is sufficiently large, thus avoiding truncation effects and abnormal behavior of the simulation system
during the data simulation process. Then, we perform simulations on the irregular molecular motions within the protein
using Langevin Dynamics (Garcia-Palacios & Lazaro, 1998) under the NPT (isothermal-isobaric ensemble) conditions,
with parameters sampled from the specified range, and we extract a frame every 0.2 ps to record the protein structure,
which constitutes the dataset used for supervised learning. In the two constructed datasets, we use the temperature ¢,
pressure value p, and frictional coefficient i as the dynamic system parameters. Langevin Dynamics is a mathematical
model used to simulate the flow dynamics of molecular systems (Bussi & Parrinello, 2007). It can simplify complex
systems by replacing some degrees of freedom of the molecules with stochastic differential equations. For a dynamic
system containing N particles of mass m, with coordinates given by X = X (¢), the Langevin equation of it can be
formulated as follows:

NED' dX
mey = —AU(X) - P V2ukeTR(t), (44)

where p represents the frictional coefficient, AU (X)) is the interaction potential between particles, A is the gradient
operator, 1" is the temperature, k;, is Boltzmann constant and R(t) denotes the delta-correlated stationary Gaussian process.

H. Implementation Details

In our experiments, we employ a rigorous data split strategy to ensure the accuracy of our results. Specifically, we split the
whole datasets into four different parts, including the normal three sets, i.e., training, validating and in-distribution (ID) test

"hitps://www.rcsb.org
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Table 5. Performance comparison with NRI, AgentFormer, and I-GPODE on physical dynamics simulations (MSE x10~2). NRI,
AgentFormer, and I-GPODE are out of memory on molecular dynamics simulations.

Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (O0D) 36 (OOD)
Dataset .
Variable q v q v q v q v q v q v
NRI 0.103 0.425 | 0210 0.681 | 0.693 2.263 | 0.119 0472 | 0.246 0.770 | 0.807 2.406
Springs AgentFormer 0.115 0.163 | 0.202 0.517 | 1.656 1.691 | 0.157 0.195 | 0.243 0.505 | 1.875 1913
I-GPODE 0.159 0479 | 0.746 3.002 | 1.701 7.433 | 0.173 0.498 | 0.796 3.193 | 1.818 7.322
PGODE (Ours) 0.035 0.124 | 0.070 0.262 | 0.296 1.326 | 0.047 0.138 | 0.088 0.291 | 0.309 1.337
NRI 0.901 2.702 | 3.225 3.346 | 7.770 4.543 | 1.303 2.726 | 3.678 3.548 | 8.055 4.752
Charged AgentFormer 1.076 2476 | 3.631 3.044 | 7.513 3944 | 1.384 2514 | 4224 3.199 | 8985 4.002
I-GPODE 1.044 2818 | 3.407 3.751 | 7.292 4570 | 1.322 2.715 | 3.805 3.521 | 8.011 4.056
PGODE (Ours) 0.578 2.196 | 2.037 2.648 | 4.804 3.551 | 0.802 2.135 | 2.584 2.663 | 5.703 3.703

Table 6. Mean Squared Error (MSE) x10~2 on Springs.

L Prediction Length 12 24 36

Distribution .
Variable Gz Qy Ug Uy qz Qy Vg Uy Qz Qy Ug Uy
LSTM 0.324 0.250 0909 0.931 | 0.679 0.638 2.695 2.623 | 1.253 1304 5.023 6.434
GRU 0.496 0.291 0.565 0.628 | 0.873 0.623 1.711 2.001 | 1.368 1.128 2980 3.912
NODE 0.165 0.148 0.649 0.479 | 0.722 0.621 2.534 2293 | 1.683 1534 6.323 6.142

D LG-ODE 0.077 0.077 0264 0.272 | 0.174 0.135 0.449 0.576 | 0.613 0.441 1.757 2.528
MPNODE 0.080 0.072 0.222 0.263 | 0.237 0.105 0.407 0.506 | 0.866 0.335 1.469 2.006
Social ODE 0.069 0.068 0.205 0.315 | 0.138 0.120 0.391 0.630 | 0.429 0.400 1.751 2.624
HOPE 0.087 0.053 0.152 0.200 | 0.571 0.342 0.707 1206 | 2.775 2.175 4412 6.405
PGODE (Ours) 0.033 0.037 0.122 0.127 | 0.074 0.066 0.239 0.286 | 0.318 0.273 1.186 1.466
LSTM 0.499 0449 1.086 1.227 | 1.019 0.857 2.847 2466 | 1.768 1415 5.154 5.293
GRU 0.714 0469 0.713 0.703 | 1.280 0.905 1.795 2.096 | 1.844 1.497 2.852 3.994
NODE 0.246 0.209 0.997 0.585 | 0.876 0.687 2.790 2269 | 2.002 1.663 6.349 5.670

00D LG-ODE 0.093 0.083 0.272 0.327 | 0.185 0.172 0.463 0.661 | 0.684 0.545 1.767 2.645
MPNODE 0.107 0.081 0.230 0.268 | 0.299 0.126 0.420 0.528 | 0.967 0.386 1.464 1.969
Social ODE 0.082 0.076 0.221 0.350 | 0.151 0.156 0.414 0.726 | 0.488 0495 1.793 2.826
HOPE 0.094 0.058 0.178 0.264 | 0.506 0.523 1.031 1.603 | 2.369 2251 3.701 8.291
PGODE (Ours) 0.046 0.048 0.133 0.144 | 0.094 0.081 0.286 0.297 | 0.336 0.281 1.360 1.313

sets and an out-of-distribution (OOD) test set. For the physical dynamic datasets, we generate 1200 samples for training and
validating, 200 samples for ID testing and 200 samples for OOD testing. For the molecular dynamic datasets, we construct
200 samples for training, 50 samples for validating, 50 samples for ID testing and 50 samples for testing in OOD settings.

Each sample in the datasets has a group of distinct system parameters as shown in Table 4. For training, validation and ID
test samples, we randomly sample system parameters in the space of 4,4, For OOD samples, the system parameters
come from Qoo p randomly, which indicates the distribution shift compared with the training domain. In our experiments,
we set the conditional length to 12, and we used three different prediction lengths, i.e., 12, 24, and 36.

We leverage PyTorch (Paszke et al., 2017) and torchdiffeq package (Kidger et al., 2021) to implement all the compared
approaches and our PGODE. All these experiments in this work are performed on a single NVIDIA A40 GPU. The
fourth-order Runge-Kutta method from torchdiffeq is adopted as the ODE solver. We employ a set of one-layer GNN
prototypes with a hidden dimension of 128 for graph ODE. The number of prototypes is set to 5 as default. For optimization,
we utilize an Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.0005. The batch size is set to 256
for the physical dynamic simulation datasets and 64 for the molecular dynamic simulation datasets. In some real-world
applications, we could face region-level contexts, which influence the dynamics of a group of objects. The potential solution
is to learn the embedding of region-level contexts and then incorporate them into prototypical graph ODE, i.e., replacing
w; = p([u;, g;]) with w; = p([u;, r;, g;]) where r; denotes the region-level embedding.
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Table 7. Mean Squared Error (MSE) x 1072 on Charged.

N Prediction Length 12 24 36

Distribution .
Variable qz Qy Vg Uy Qx Qy Vg Uy qz Qy Vg Uy
LSTM 0.743 0.846 2913 3.145 | 2.797 3.052 3.605 3.863 | 6477 6.660 4.240 4423
GRU 0.764 0.799 2931 3.063 | 2.709 2901 3.572 3.709 | 5.657  6.281 4.068 4.227
NODE 0.743 0.808 2.764 2.777 | 2913 3.114 3432 3451 | 6468 6.868 3.997 4.089

D LG-ODE 0.736  0.783 2322 2414 | 2320 2.731 3.361 3268 | 5.188 6.782  6.194 5.043
MPNODE 0.720 0.759 2414 2496 | 2379 2.536 3.589 3.738 | 5.636  5.614 5472 7.046
Social ODE 0.630 0.695 2311 2.358 | 2252 2.631 3.509 2995 | 5.743 7.076  5.701 4.122
HOPE 0.593 0.635 2295 2.337 | 3214 2938 3.279 3482 | 9.289  7.845 8.406 8.511
PGODE (Ours) 0.555 0.600 2.164 2.228 | 1.940 2.134 2.624 2.673 | 4449 5159 3.778 3.324
LSTM 1.130  1.123 3.062 2992 | 4.026 3950 3.768 3.512 | 7934 8435 4517 3925
GRU 1.072 1.012 3.108 2948 | 3.893 3.602 3.844 3428 | 6970 8.061 4485 3.718
NODE 1.185 1.062 2956 2732 | 4.057 3.804 3.645 3.480 | 8.622 8372 5.097 4.376

00D LG-ODE 0.999 0.866 2.581 2.521 | 2.797 3.239 4200 2978 | 5996  7.593 8.422  4.309
MPNODE 1.092 0.897 2487 2.623 | 2967 2.828 3.670 4.001 | 6.051 6.118  6.029 7.566
Social ODE 0.865 0.924 2481 2.359 | 2.610 3.177 3.968 2836 | 5482 7.102 8.530 4.150
HOPE 0.839 0918 2466 2484 | 3.586 3.783 3.417 3.442 | 11.254 10.652 10.133 8.107
PGODE (Ours) 0.739 0.865 2.159 2.110 | 2.524 2.643 2.704 2.623 | 5.748 5.659 4.017 3.389

I. More Experiment Results
I.1. Performance Comparison

To begin, we compare with our PGODE with more baselines, i.e., AgentFormer (Yuan et al., 2021), NRI (Kipf et al., 2018)
and I-GPODE (Yildiz et al., 2022) in our performance comparison. We also compared our PGODE with two equivalence-
based methods, i.e., EGNN (Satorras et al., 2021) and EqMotion (Xu et al., 2023). The results of these comparisons
are presented in Table 5 and our method outperforms the compared methods. In addition, we show the performance of
the compared methods in two different coordinates of positions and velocities, i.e., ¢z, gy, v, and vy. The compared
results on Springs and Charged are shown in Table 6 and Table 7, respectively. The compared results of our methods and
equivalence-based methods are shown in Table 8. From the results, we can observe the superiority of the proposed PGODE
in capturing complicated interacting patterns under both ID and OOD settings. In particular, compared with EGNN, our
method can model continuous and complicated dynamics with better performance.

Besides, we triple the number of agents in physical dynamics simulations. The compared results are shown in Table 9. We
can observe that our proposed PGODE surpasses the performance of baseline models, highlighting the superiority of the
proposed method. The compared performance on COVID-19 (Luo et al., 2023) can be seen in Table 10. From the results,
we can further validate the superiority of the proposed PGODE in real-world datasets.

Table 8. Performance comparison with EGNN, EqMotion, and PGODE on physical dynamics simulations (MSE x 10™2).

Dataset Springs Charged

Prediction Length 12 (ID) 12 (O0OD) 12 (ID) 12 (OOD)
Variable dz Qy qzx dy qx qy qx Qy
EGNN 0.140 0.147 | 0.150 0.149 | 2.092 2.227 | 2.139 2.244
EqMotion 0.077 0.080 | 0.084 0.080 | 0.807 0.893 | 0.867 0.936
PGODE (Ours) 0.033 0.037 | 0.046 0.048 | 0.555 0.600 | 0.739 0.865

Table 9. Performance comparison on Springs (MSE x 10~ 2) with triple number of objects.

Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (O0D) 36 (O0D)
Variable q v q v q v q v q v q v
SocialODE 0.152  0.364 | 0.521 0950 | 2438 3.785 | 0.275 0.584 | 0.687 1.044 | 2.544 3.981
HOPE 0.070 0.195 | 0.734 1.892 | 3.571 5.766 | 0.241 0.592 | 0.893 1.840 | 3.972 5.841

PGODE (Ours) 0.059 0.126 | 0.179 0.471 | 1.150 2.041 | 0.224 0.415 | 0.464 0.886 | 1.686 2.145
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Table 10. Performance comparison on COVID-19.

Method 1-week-ahead 2-week-ahead 3-week-ahead

MAE RMSE | MAE RMSE | MAE RMSE
MPNODE 152.7 2375 272.0 5494 | 248.7 385.8
HOPE 85.64 146.0 180.9 2752 | 243.1 373.3

PGODE (Ours) | 82.99 129.2 | 165.2 250.6 | 220.6 3254

Table 11. Ablation study on 2N5C (MSE x10™%) with a prediction length of 24.
Dataset | 2N5C (ID) | 2N5C (00D)

Variable ‘ qx qy qz ‘ 9z qy qz

PGODE w/o O | 2.076 2.130 2.215 | 2.582 2.800 2.833
PGODE w/oe | 2.040 2.046 2227 | 2559 2791 2.854
PGODE w/oF | 2.424 2208 2465 | 2970 2.868 3.118
PGODE w/oD | 2.119 2.083 2.171 | 2785 2759 2.829
PGODE 1.960 2.029 2.119 | 2464 2.734 2.727

Table 12. Further ablation study on Springs (MSE x 10™2) and SAWL (MSE x 10~%) with a prediction length of 24.
Dataset | Springs ID) | Springs (OOD) | SAWL (ID) | 5AWL (OOD)

Variable | q v | g v ay - | @ ay g

PGODE w. Single | 0.208 0.434 | 0.248 0.481 | 3.010 3.741 3.143 | 3523 4.691 3.839
PGODE w. MLP 0.152 0454 | 0.179 0.514 | 2997 3.638 3.240 | 3.605 4.492 3.908
PGODE 0.070 0.262 | 0.088 0.291 | 2.910 3.384 2904 | 3.374 4334 3.615

Table 13. Performance comparison with a model variant, i.e., PGODE-S on Springs (MSE x10~2).

Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (O0OD) 36 (O0OD)

Variable q v q v q v q v q v q v

Social ODE 0.069 0.260 | 0.129 0.510 | 0.415 2.187 | 0.079 0.285 | 0.153 0.570 | 0.491 2310

HOPE 0.070 0.176 | 0.456 0.957 | 2475 5409 | 0.076 0.221 | 0.515 1.317 | 2310 5.996

PGODE 0.035 0.124 | 0.070 0.262 | 0.296 1.326 | 0.047 0.138 | 0.088 0.291 | 0.309 1.337

PGODE-S 0.038 0.129 | 0.095 0.298 | 0.406 1.416 | 0.051 0.148 | 0.114 0.319 | 0423 1.411
L.2. Ablation Study

We show more ablation studies on Charged and 2N5C to make our analysis complete. In particular, the compared
performance of different model variants are shown in Table 11. From the results, we can observe that our full model can
outperform all the model variance in all cases, which validates the effectiveness of each component in our PGODE again.
In addition, we introduce two model variants: (1) PGODE w. MLP, which combines a GNN with an MLP to learn the
individualized dynamics; (2) PGODE w. Single, which takes the node representation and the global representation as
input with a single message passing function. The compared performance of different model variants is shown in Table 12.
From the results, we can observe that our full model can outperform all the model variance in all cases. Compared with
these variants, our prototype decomposition can involve different GNN bases, which model diverse evolving patterns to
jointly determine the individualized dynamics. This strategy can enhance the model expressivity, allowing for more accurate
representation learning of hierarchical structures from a mixture-of-experts perspective.

To enhance the practical utility of our method in real-world settings, we propose a model variant PGODE-S, which utilizes
the top-k GNN prototypes instead of all the prototypes to enhance the efficiency. The compared performance can be found
in Table 13. We can observe that although PGODE-S includes fewer parameters, its performance is still competitive, which
enhances the practical utility of our model.
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Figure 5. (a),(b),(c),(d) Performance on the OOD test set of Springs, Charged, SAWL, and 2N5C with respect to four different numbers of
prototypes. (e),(f) Performance with respect to different condition lengths on the ID test set of Springs and SAWL.

Table 14. Performance comparison with different types of GNNs on SAWL (MSE x10™%).

Prediction Length 12 (ID) 24 (ID) 12 (OOD) 24 (OOD)
Variable qa Gy q: Gz Gy q: Gz Gy qz Gz qy qz
PGODE w. GIN 2.126 2426 2216 | 2968 3496 3.003 | 2.327 3.173 2.614 | 3.573 4.395 3.618

PGODE w. GraphSAGE | 2.136 2399 2.154 | 2935 3488 3.014 | 2.294 3.158 2.591 | 3.536 4.442 3.620
PGODE w. GCN (Ours) | 2.098 2344 2.099 | 2910 3.384 2904 | 2.217 3.109 2593 | 3.374 4334 3.615

1.3. Performance with Different Backbone Architectures

In this part, we explore different types of GNNS, e.g., GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019a) and Graph-
SAGE (Hamilton et al., 2017). The results are shown in Table 14. From the results, we can find that GCN is slightly better
than other types, which helps us make the choice. Therefore, we use GCN as the default backbone for SAWL.

L4. Performance with Different Number of Prototypes

Figure 5 (a) (b) (c) and (d) record the performance with respect to different numbers of prototypes on different datasets.
From the results, we can find that more prototypes would bring in better results before saturation. In practice, we can use the

maximum number of prototypes in our device initially and then consider reducing it if it will not influence the performance
seriously.

L5. Performance with Different Condition Lengths

We analyze the influence of different conditional lengths by varying them in {3, 6,9, 12, 15}, respectively. As shown in

Figure 5 (e) and (f), we can observe that our PGODE can always outperform the latest baseline HOPE, which validates the
superiority of the proposed PGODE.
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L.6. Efficiency Comparison

We have conducted a comparison of computation cost. The results are shown in Table 15 and we can observe that our method
has a competitive computation cost. In particular, the performance of HOPE is much worse than ours (the increasement

of ours is over 47% compared with HOPE), while our computational burden only increases a little. Moreover, both the
performance and efficiency of I-GPODE are worse than ours.

Table 15. Comparison of training cost per epoch (s).
Method LSTM GRU NODE LG-ODE MPNODE SocialODE I-GPODE HOPE PGODE (Ours)

Springs 1.53 1.04 2.21 17.39 23.33 21.02 267.08 23.86 37.03
Charged  1.33 1.02 2.06 16.59 22.26 19.93 250.23 20.43 33.88

1.7. Visualization
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Figure 6. Visualization of different methods on Springs. Semi-transparent paths denote observed trajectories and solid paths represent our
predictions.

Lastly, we present more visualization of the proposed PGODE and two baselines, i.e., Social ODE and HOPE. We have
offered visualization of the predicted trajectory of a sample in Figure 2 and now we visualize four extra test instances (two
ID samples and two OOD samples) in Figure 6. From the results, we can observe that the proposed PGODE is capable of
generating more reliable trajectories in comparison to the baselines. For instance, our PGODE can discover the correct
direction of the orange particle while the others fail in the second OOD instance.
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