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Abstract—The synergy between the Internet of Things and
Edge AI is revolutionizing industries by enabling real-time
data processing on devices at the network’s edge, like sensors
in Intelligent Transportation Systems (ITSs). However, a key
challenge arises when deploying foundation Machine Learning
(ML) models, trained on high quality data, on these Edge AI
systems often subjected to Data Quality (DQ) variations. In this
paper, we address this challenge by leveraging Transfer Learning
(TL) and Federated Learning (FL) as strategies to mitigate the
impact of DQ variations on ML application performance. While
these strategies were not originally designed for this purpose,
our findings demonstrate that both TL and FL can effectively
enhance the robustness of ML applications in ITS scenarios that
involve running ML processes on edge devices. We showcase this
through a real-world traffic sign detection application, analyzing
how TL and FL can be employed to improve model robustness
against variations in DQ typically encountered by edge devices
in ITS. We found that when high-quality data only is available
for re-training, FL with Geometric Median aggregation allowed
to train models performing on average by 20% better than in the
TL scenario. Our results demonstrated that employing Geometric
Median aggregation in FL allowed to increase accuracy by 6.7%
on average across the all the considered cases in comparison to
Federated Average aggregation. Additionally, employing varying
DQ for re-training helps to further enhance ML performance
if the application’s operation scenario involves high dynamics in
the quality of input data.

Index Terms—Federated learning, data quality, Internet of
Things, Edge AI, computer vision

I. INTRODUCTION

The current increasing employment of Machine Learning
(ML) applications on various Internet of Things (IoT) devices
has become renowned as Edge AI concept. Within the domain
of Intelligent Transportation Systems (ITSs), ML systems
integrated with edge devices have found their applications to
address a wide variety of problems, such as energy manage-
ment strategies for hybrid electric vehicles [13]; road traffic
management to reduce accidents and environmental impact
[1], [6], [19]; and pedestrian routing assessment to accommo-
date better design and planning of urban environments [24].
The synergy between IoT and Edge AI plays a critical role in
maintaining various ITS applications and processes. The edge
devices, running ML applications, heavily rely on the data
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collected in real-time by distributed sensors, such as cameras
or LiDARs. In order to get deployed in ITSs, which often
involve complex, dynamic, and uncertain operation scenarios,
ML applications have to be resilient, adaptable, and robust to
Data Quality (DQ) variations [4], [30]. Ensuring the robustness
of these applications during their execution stage becomes
crucial for their proper operation, as it significantly impacts
the performance and reliability of Edge AI systems. In this
paper, we refer to robustness as to the ability of an ML model
application to maintain its performance over its execution even
in the case when the input DQ drops down after an initial
training was completed.

Unfortunately, the foundation computer vision models em-
ployed in today’s Edge AI systems typically exploit models
pre-trained on good quality data only [14]. Their performance,
while executed in real-life scenarios with varied DQ, may
demonstrate a significant decline. To ensure the robustness of
ML applications, employed in Edge AI systems, against DQ
variations, it is necessary to handle and adapt to these effects
while minimizing their impact on learning and inference
performances. In order to enhance learning efficiency and
ML generalizability, the approach to adapt already pre-trained
models to a target knowledge domain have become favorable
[31]. Generalizable and robust ML models are crucial for Edge
AI applications as they can adapt well to input DQ shifts,
which are not rare in dynamic sensor and IoT networks.

An investigation of improving ML robustness in Edge AI
systems’ design does deserve further research. In [3], we
presented the employment of Federated Learning (FL) in
design of applications that rely on edge devices for training
the ML models for ITS. In this paper, we methodologically
extend our research by examining, verifying, and analyzing
Transfer Learning (TL) in addition to FL as a strategy to
address DQ variations in real-life data. Though both FL
and TL techniques were not originally designed to mitigate
DQ drifts, but as our empirical study proves, can effectively
enhance ML applications robustness. Our goal in this paper
is to demonstrate that despite TL and FL distinct natures and
original purposes, they both are effective in improving ML
application robustness against DQ variations in applications
that involve edge devices for training and running ML models.
However, their selection will depend on the available resources
and other conditions.979-8-3503-8780-3/24/$31.00 ©2024 IEEE
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Fig. 1. Schematic representation of the conceptual differences and similarities between the TL and FL empirical study setups, employed in this paper. The
upper part of the Figure depicts the studied TL cases on using the various DQ combinations for ML model re-training. The bottom part portrays how the
training progress is organized in the FL setup. Both TL and FL techniques employ the pre-trained foundation computer vision model, and then this model is
re-trained in order to achieve higher ML robustness to DQ variations in the ML application scenario with dynamic input DQ

As contributions additional to [3], we extend our empirical
study by investigating the effect of TL against DQ varia-
tions in ITS scenario, where Road Side Units (RSUs) act
as edge devices. We focus on a real-world use case with
the ML computer vision application to detect traffic signs,
specifically dealing with varied DQ due to network Quality
of Service (QoS) decrease. Figure 1 demonstrates similarities
and differences between TL and FL in our ITS application
setup. In contrast to centralized training, when all the data is
accumulated by a single unit and then a single ML model
is trained, training in a FL manner allows to significantly
reduce the communication burdens by lowering the amounts
of data transmitted over the network in ITS. Switching to FL
makes edge devices responsible for the data collection and
local model training, which allows to avoid DQ variations
caused by the network disruptions while transmitting all the
data to a central processor.

The scope of our research is to investigate how such
learning and re-training techniques as TL and FL contribute to
improving the robustness of ITS computer vision applications
for traffic sign detection and classification to DQ variations.
We discuss how each of the techniques is applicable to
various DQ conditions in ITS. The importance of our study
lies in its potential to enhance the robustness of ITS that
involve ML applications integrated with edge devices. By
investigating techniques addressing the performance degrada-
tion due to DQ variations in the ML applications’ execution

stage, this research contributes to the development of more
robust systems that can function effectively in vulnerable ITS
cyberinfrastructure conditions.

II. RELATED ML TECHNIQUES TO IMPROVE ML
ROBUSTNESS

TL is a highly powerful technique in ML that leverages
knowledge from one domain to enhance ML model’s learning
performance in another, commonly referred as a target domain.
Weiss et al. [28] classify TL approaches as homogeneous or
heterogeneous, based on the similarity or disparity between
the source and target domains’ feature spaces. Zhuang et
al. [31] categorize TL approaches based on the elements
employed for knowledge transfer in the target domain: instant-
based, feature-based, parameter-based, and relational-based
ones. Distribution matching aims at minimizing the divergence
between the source and target domain distributions, such as the
Maximum Mean Discrepancy [9] or the Wasserstein distance
[27]. Adversarial training incorporates the process of domain
discriminator training, which is responsible for distinguishing
between the source and target domain while the feature extrac-
tor aims at confusing the discriminator by generating domain-
invariant representations [8]. Another approach is ML model
fine-tuning that involves adapting a pre-trained ML model to a
source domain in order to enhance its performance on a target
domain [26]. There are other TL approaches designed and
developed for the specific cases, such as combining TL with
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multi-task learning [20] and leveraging ML model ensembles
[31] to improve the performance on the target domain.

The fundamental FL feature is preserving the local data
privacy by communicating only the model updates instead
of raw data to the aggregation unit [21]. One of the key
challenges is how to aggregate the updates from local clients
in a way that allows to balance the generalizability, robustness
to the local data variations, and performance of the resulting
model. Various aggregation functions have been proposed,
such as FedAvg [18], which incorporates averaging of all the
local updates submitted for aggregation; Geometric Median
[22], which is more robust to the outliers in the data; Krum
[10]; trimmed mean [29]; and FedMGDA [12]. Some studies
leverage the robust aggregation strategies to train ML model
more robust to heterogeneous or shifted data distributions [15].

Real-world ML applications, especially those that involve
data collection and transmission in sensor and IoT networks,
and running ML processes on edge devices, pose several
challenges to achieve ML robustness against the DQ varia-
tions [16], such as limited access to the data on the target
domain, and dynamically generated data of varied quality.
In this paper, we investigate the two approaches not initially
designed to enhance ML robustness against the DQ variations,
but practically appeared to demonstrate effectiveness in this
manner: TL and FL. However achieving the similar goal, these
approaches drastically vary in the means to achieve this goal.
TL makes use of adjusting the last layers of the ML model’s
architecture and re-training it on the new training collection
relevant to the target domain, which enhances generalizability
but commonly decreases the performance [25]. In contrast,
FL utilizes the mechanism of ML local models’ aggregation,
which employs the specific aggregation function to produce
the global model based on the majority of submitted local
updates. In sec. V, we analyze and compare the effects of
employing these two approaches to enhance ML application
robustness to DQ variations.

III. INTELLIGENT TRANSPORTATION SYSTEM USE CASE
DESCRIPTION

To facilitate our use case, we design a prototype of an
ITS computer vision-based facility, which is responsible for
transmitting the images from the data sources over a wireless
network to a cloud-based ML application and classifying them
into stop sign or non-stop sign categories. To establish the real
wireless network connection, we employ similar POWDER
platform [2] setup we described in [5]. We use a subset of
images from Open Images V6 Dataset1 and transmit them
over a network with unstable QoS to produce the data of
varied quality. Specifically, as the network QoS parameters, we
study the effect of packet loss and available buffer resources
on the receiving unit. Examples of the images received by
the ML application after transmitting them over the network
with various QoS can be seen in Figure 2. For our study, we

1https://blog.research.google/2020/02/open-images-v6-now-featuring-
localized.html

(a) (b) (c) (d)

Fig. 2. Examples of the original images from Open Images Dataset V6 and
their corrupted versions obtained through employed for empirical study: (a)
– original traffic sign image. Stop sign image transmitted with 512B buffer
and: (b) – 5% packet loss; (c) – 10% packet loss; (d) – 20% packet loss

Algorithm 1 Transfer Learning with VGG16 Model
Input: Mbase – base VGG16 model without the top classi-

fication layer; Mpre – parameters of VGG16 model pre-
trained on ImageNet; Dtarget – target dataset (our data
cohorts of varying quality)

Output: Mft – fine-tuned VGG16 model after re-training on
the target domain

1: Mbase ← Load Mpre excluding the top classification layer
(FC)

2: for each convolutional layer l in Mbase do
3: Freeze weights (Wl)
4: end for
5: FCnew ← Initialize new fully connected layer with output

size equal to the number of target classes (2 in our case)
6: Mft ← Replace FC in Mpre with FCnew

7: Compile Mft with loss function L (binary cross-entropy
in our case) and optimizer O (stochastic gradient descent
in our case)

8: Train Mft on Dtarget with batch size b (20 in our case),
for e (20 in our case) epochs

9: Evaluate Mft on validation set from Dtarget

10: Deploy Mft for target task

employ the stop sign and traffic sign image categories from
the dataset. There are around 600 stop sign images and over
3000 traffic sign images. We employ these images in both TL
and FL setups to re-train and test the ML model on various
DQ.

A. Transfer Learning Setup

In the TL case, we employ VGG16 image classifier [23] as
an example to examine how the network QoS decrease affects
the quality of the input data and the performance of the ML
application. We first transmit our data over a real network in
the unstable QoS conditions, and obtain the images of varied
quality. We then submit these corrupted data to the employed
classifier, pre-trained on the ImageNet [7] dataset and re-
trained on the good quality images from our target domain.
We measure the ML baseline performance and find that the
DQ variations reduce the ML model’s ability to correctly
classify the provided samples due to the lack of robustness
to the low quality input data. To investigate ML robustness
enhancement ways, we further re-train our baseline model on
the images of varied quality. In total, we study four re-training
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and testing data combinations: re-trained on original images
and tested on distorted; re-trained on distorted images and
tested on distorted; re-trained on distorted and tested on a
mix set of various quality images; and re-trained on a mix
set of various quality images and tested on distorted only.
A mix set of various quality images represents a uniform
distribution sampled from each of the considered DQ cohorts.
We evaluate how the employed re-training strategies contribute
to the performance and robustness of the produced ML model.
We re-train the model for 20 epochs and 74 steps per epoch in
each experimental scenario with the Learning Ratio (LR) of
0.001. The particular steps employed to re-train the VGG16
model using TL strategy for each of the DQ cohorts are
represented in Algorithm 1.

B. Federated Learning Setup

In this study, we follow-up the work of Manias and Shami
[17], who suggested using Road Side Units (RSUs) as edge de-
vices to train the models in a FL manner for ITS applications.
We envision a scenario where RSUs obtain data from mobile
and static nodes over the network and leverage this data to train
a local ML model, which is then transmitted for aggregation
with the updates from other RSUs. The data obtained by
RSUs originates from various sensor devices (e.g., embedded
into vehicles or road infrastructure), and is conveyed over
a wireless communication channel, which might induce the
DQ variations. This data of diverse quality is then used to
train the local models on each RSU. In our experiments, we
employ the images of various quality to train the ML model
in the FL manner, and then cross-evaluate the trained model
performance on various DQ cohorts. We analyze the obtained
results and compare them with the ones obtained in the
TL scenario. Furthermore, we propose our recommendations
on boosting the ML computer vision classification system
robustness for the considered ITS industrial use case.

To facilitate our empirical study, we developed the FL
framework in Python using PyTorch. As the ML image
classification model, we selected ResNet50 architecture [11],
pre-trained over the ImageNet [7] data. As a data collection,
we utilized the original (high quality) and corrupted (varied
quality) labeled traffic sign images. The corrupted images
are represented by five cohorts corresponding to the network
packet loss ratio during their communication: 1, 2, 5, 10, and
20%. In this case, we did not change the buffer size and
employed images transmitted with 512B buffer. We performed
several experiments with the models trained on a single image
cohort influenced by a certain packet loss percentage, and
tested on all other image cohorts. For instance, we trained
the FL model over the high quality data distributed over 10
clients, and then we evaluated the resulting model on image
sets of diverse quality (influenced by the packet loss of 1, 2%,
etc.). The image corpus assigned to each client is split into
66 of training and 33% of testing data in order to perform a
local training iteration. In our experiments, we performed 10
successive FL training rounds with 10 local training epochs
for each client with the LR of 0.001. After the local training,

the acquired models are transmitted to the aggregation unit,
where the aggregation procedure is performed. We contrasted
two FL aggregation strategies: FedAvg [18] and Geometric
Median (GM) [22].

IV. INTELLIGENT TRANSPORTATION SYSTEM USE CASE
RESULTS

A. Transfer Learning Re-training Results

1) Baseline Model: To adapt the pre-trained VGG16 to our
specific knowledge domain, we re-train it on the set of high
quality images. Then, we test this re-trained model on samples
corrupted by the unstable QoS while transferred over a net-
work. For the model evaluation, we employ images transmitted
with various buffer sizes and packet loss percentages: buffer
size of 128B and packet loss of 5%; buffer size of 256B and
packet loss of 5%; buffer size of 512B and packet loss of
20%. The results of the baseline model testing classification
accuracy are shown in Table I, which provides mean values
of the classification accuracy demonstrated by the model, over
20 re-training epochs, and Standard Deviation (SD) of these
values. According to the results obtained, the ML model re-
trained on original images demonstrates on average the lowest
performance in comparison to other data re-training cases.
Hence, ML models pre-trained on the high quality data need
to be further trained for the selected case.

2) Re-training and Testing on Distorted Samples: To ex-
plore possible ways of enhancing ML model’s robustness to
the varied DQ, we continued to further re-training the baseline
model on corrupted images. TL is performed separately for
various DQ variations categories, such as buffer size and
packet loss percentage, e.g., first we re-trained the baseline
model on images distorted by communication through the
channel with the 128B buffer size and 5% packet loss, and
tested this model on images distorted in the same way; then
we repeated this procedure on other buffer sizes and packet
loss percentages. According to Table I, in comparison to the
baseline model training results, the classification accuracy did
not improve enough over the training process and was still
not sufficient for the industry-level systems. This means that
it is much more difficult for the model to learn the knowledge
representations over the varied quality data. Also, the higher
the image corruption degree we trained the model on (e.g.,
an increased packet loss or reduced buffer size), the lower
classification accuracy we obtained on the testing set.

3) Re-training on Distorted Data and Testing on a Mix
of Distorted and Original Data: In this case, we examined
further training the baseline ML model only on the distorted
samples and testing it on a combined collection of various
quality samples. As in the previous scenarios, we conducted
experiments for all corrupted images categories. The mean and
SD values for the classification accuracy for data cohort are
shown in Table I. One can see that the model re-trained on
only low quality data and tested on a mix of distorted and
original images demonstrated on average higher performance
in the majority of cases.
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TABLE I
AVERAGE CLASSIFICATION ACCURACY AND SD OVER 20 TRAINING

EPOCHS, DEMONSTRATED BY THE PRE-TRAINED ML MODEL AFTER TL
ON THE DATA COHORTS OF VARIOUS QUALITY

DQ cohorts
Re-training
and testing

sets

Buf. 128B,
PL‡ 5%

Buf. 256B, PL
5%

Buf. 512B, PL
20%

TR*: original;
TS†: corrupted

0.702
(±0.054)

0.747
(±0.097)

0.669
(±0.033)

TR: corrupted;
TS: corrupted 0.821 (±0.07) 0.934

(±0.021)
0.802

(±0.055)
TR: corrupted;

TS: mixed
0.885

(±0.032)
0.915

(±0.032)
0.866

(±0.048)
TR: mixed;

TS: corrupted
0.745

(±0.103)
0.801

(±0.101)
0.738

(±0.066)
* Re-training dataset; † Testing dataset; ‡ Packet loss

4) Re-training on a Mix of Original and Corrupted Data
and Testing on Corrupted Data: In this scenario, we continued
to re-train the baseline model on a mixed set of high and
low quality images and evaluated its performance only on the
low quality samples. As in the previous case, the model was
re-trained and tested separately on each DQ image cohort.
According to Table I, combining high and low quality samples
into a single training set helped to slightly improve the ML
performance in comparison to the baseline model. However,
in this case training and testing sets differed more than in
the previous one, and the ML model trained on the mixed
set demonstrated lower performance over the low quality data
than the model re-trained only on this low DQ.

B. Federated Learning Re-training Results

Figure 3 illustrates the results for the image classification
accuracy attained by our FL model over the image testing
sets of diverse quality. In each experiment, we evaluated the
ML models trained on various DQ and measured their perfor-
mance against the images corrupted by real unstable network
conditions. To examine the case when the data produced by a
single local unit might be of varied quality, we incorporated
the cohort that contained the combination of all employed DQ,
i.e., the combination of original images and images affected by
1-20% packet losses sampled in a uniform distribution manner.
This image testing set is marked as “Mix” in Figure 3.

Figure 3(a) reveals the ML performance results obtained
with the application of FedAvg as the FL aggregation strategy.
The models trained on the mixed DQ set showed on aver-
age better performance on the original images. Interestingly,
despite the training on the low DQ categories, the model
exhibited the highest performance on the original images in
all cases. The model trained on the “Mix” image cohort
allowed to achieve more stable results in terms of classifi-
cation performance. It surpassed models trained on other DQ
categories in four testing cases, while the models trained on
other cohorts excelled only once: trained on “PL10” and tested
on PL1”, trained on “PL0” and tested on PL2”, and trained on
“PL2” and tested on “PL20”. Figure 3(b) demonstrates our FL
model image classification accuracy with the GM aggregation
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Fig. 3. FL model’s performance after 10 consequent FL training rounds
demonstrated over various DQ using two aggregation strategies: (a) – FedAvg;
and (b) – Geometric Median (GM). Various colors represent the employed
training data, and the labels on the horizontal axis correspond to the data
the models were tested on. PL is a packet loss, and the number after PL
corresponds to the packet loss percentage, for example, PL0 corresponds to
0% packet loss percentage during the image transmission over the network

strategy. As one can see from the results, the models trained
with this FL aggregation strategy attained on average better
performance than with FedAvg in almost all the considered
cases. Like the FedAvg case, the models classified the original
images on average better than the other categories. However,
the model trained on “Mix” cohort did not follow the same
trend and did not even dominate in any experiment. The model
trained over “PL10” showed better performance in “PL1”,
“PL2’‘, and “PL5” cases, and surprisingly, the model trained
over the original data demonstrated the higher classification
accuracy in “PL20” and “Mix” testing categories.

V. DISCUSSION AND ANALYSIS

A. Transfer Learning Case Results Analysis

As we learned in our investigation, pre-trained foundation
ML models may not perform sufficiently well in applications,
where DQ may vary. ML models are usually trained only
on good quality images (e.g., state-of-the-art datasets such
as ImageNet [7]), but in reality, images can be distorted by
various factors, such as vulnerable cyberinfrastructure. Further
re-training is needed to demonstrate better performance on
both high and low quality samples from the target domain.
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If the DQ is not expected to vary much during the ML
application operation, a short re-training with some additional
samples can rapidly help in ML performance improvement.
However, this may not work for more complicated cases,
where the data undergoes multiple stages and is processed
by various ML cyberinfrastructure components before being
classified. In this case, the DQ might be affected by noise,
interference, data loss or malicious attacks. Our investigation
showed that training on good quality images only does not
improve the ML performance on the varied DQ.

In this paper, we studied TL from a source domain (high
DQ) to a target one (varied DQ) as one of the ways to enhance
ML robustness against DQ variations. TL can involve retrain-
ing on the varied DQ only or on the mixed set of varied quality
images. Our results demonstrated that TL allowed improving
the ML performance on both high and low quality images.
With re-training on the low quality data, the ML performance
on both DQ types was commensurable. Re-training the ML
model on the mixed set resulted in less efficient training
process, as it required more time for the ML performance
to converge because of the dynamic and inconsistent patterns
in the training data. Based on our investigation, we can
recommend to perform further ML model re-training to the
target domain data in order to enhance its robustness to the
varied DQ, and to improve the performance on both high and
varied quality data.

Based on our results, one can see that current foundation
computer vision models are needed to be re-trained on lower
quality data samples to achieve acceptable performance in real-
world applications, especially those that possess dynamic DQ
nature. The classifier’s performance robustness to possible DQ
variations can be improved with TL by further re-training on
bad quality images. TL on low DQ only appeared to be more
effective than extending the training base by combining high
and low DQ.

B. Federated Learning Case Results Analysis

Based on our investigation results, we can offer the follow-
ing suggestions on how to increase the foundation computer
vision models robustness to the DQ variations when trained
in a FL manner. One suggestion is to use ML models initially
pre-trained on comprehensive datasets (e.g., ImageNet [7])
and re-train them for the target domain rather than training
a model from scratch only on the local data. This pre-training
allows improving the model’s generalizability on new data.
Another suggestion is to consider the dynamic ML application
operation environment and changing image DQ used for
training, which may affect the ML training performance. If
the operational conditions are stable, only the available high
quality data may be used for the re-training. Otherwise, the
better strategy is to mix the data received from various edge
devices for the local training in order to improve the robustness
of the model. Moreover, in almost all the investigated cases,
the FL models trained with the GM-based aggregation strategy
showed higher robustness against the DQ variations. Hence,

we can recommend employing GM as the aggregation strategy
whenever the corresponding resources are available.

C. Discussion on Transfer Learning and Federated Learning
Capabilities to Enhance ML Robustness

As our study has shown, the performance of real-world
ML applications, which operate in dynamic environments and
employ edge devices for running ML processes, is significantly
influenced by the quality of the training data. When ML
models, trained on original data, are tested on the lower
DQ, their performance tends to decrease. This observation
emphasizes the importance of maintaining high input DQ for
achieving the required ML performance in the operational
stage. However, in real-world applications, the quality of data
may vary due to multiple reasons. As a way to address this
problem and to enhance ML robustness to DQ variations, we
investigated two approaches that were not directly designed
for this task: TL and FL.

TL strategies might be successfully employed to address
DQ variations. In cases when DQ variations were a concern,
training the model solely on the low DQ, without including
the high quality data into the re-training set, allowed to
achieve higher performance. This can be attributed to the
initial pre-training of the model on the original data, which
establishes the necessary knowledge for recognizing patterns
and capturing relevant features. When re-training the ML
model only on the data of degraded quality, it better adapts
to the characteristics and challenges posed by varied DQ,
resulting in improved performance in the presence of DQ
variations.

When dealing with DQ variations, FL with the GM as the
aggregation strategy was found to be more robust compared
to FL with FedAvg, provided the necessary computational
resources are available. By employing GM, the FL aggregator
is better equipped to produce more effective global model
under the adverse local data conditions, making FL with
GM a preferable approach when DQ is a concern. When
considering training or re-training on the high quality data, FL
demonstrated greater robustness to DQ variations compared to
TL. FL’s inherent ability to leverage distributed data sources
and aggregate models from multiple participants enabled it
to handle variations in data distributions more effectively. FL
proved to be a robust approach for mitigating the impact of
DQ variations, surpassing TL in terms of overall performance
and adaptability in the case of employing high training DQ.

Despite the advantages of FL, TL can still achieve com-
parable results when trained or re-trained on the varied DQ.
However, TL in a conventional centralized fashion implies
high data communication loads, which might be too expensive
for the ITS network facilities and raises DQ variation issues
due to possible network disruptions. In the scenarios exam-
ined, FL and TL demonstrated similar performance levels.
This suggests that both FL and TL are viable strategies
for addressing DQ variations, with each approach offering
different advantages and trade-offs.
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VI. CONCLUSION

In this paper, we investigated methods to enhance the
robustness of pre-trained foundation computer vision models
deployed in IoT systems that involve running ML processes
on edge devices. Specifically, we concentrated on an ITS
scenario with DQ variations due to network disruptions serving
as a real-world use case. The key challenge we addressed
is maintaining robustness to the quality variations in the
data received by edge devices. Our study demonstrated that
pre-trained, foundation models can be effectively leveraged
in Edge AI applications, but require re-training to maintain
performance in real-world scenarios. We explored TL and FL
as strategies for re-training these models on edge devices.
Through empirical evaluation, we found that both TL and
FL could effectively mitigate the impact of such variations,
and the employment of the particular strategy depend on the
resources available. When high-quality data only is available
for retraining, FL with Geometric Median aggregation demon-
strates superior robustness compared to TL. In applications
operating within dynamic input DQ landscapes, leveraging
available data of varying quality for model re-training using FL
is advantageous. Our findings highlight the importance of re-
training pre-trained models within Edge AI and IoT systems,
and offer the community valuable approaches to address input
DQ variations.
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