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Abstract—We present a novel approach for anomaly detection
in a decentralized federated learning setting for edge units. We
propose quantifiable metrics of Reputation and Trust that allow
us to detect training anomalies on the local edge units during
the learning rounds. Our approach can be combined with any
aggregation method used on the server and does not impact
the performance of the aggregation algorithm. Moreover, our
approach allows to perform an audit of the training process
of the participating edge units across training rounds based on
our proposed metrics. We verify our approach in two distinct
use cases: financial applications with the objective to detect
anomalous transactions, and Intelligent Transportation System
supposed to classify the input images. Our results confirm that
our approach is capable of detecting training anomalies and
even improving the effectiveness of the learning process if the
anomalous edge units are excluded from the training process.

Index Terms—Edge Al IoT, Federated learning, trust, anomaly
detection

I. INTRODUCTION

DGE computing refers to a distributed computing

paradigm where the computations are performed closer to
the data sources, i.e. on the edge. With the recent developments
in network infrastructure, Internet of Things (IoT) computa-
tional capabilities, and Al algorithms, Edge Al is becoming
a viable alternative to conventional AI, where the model is
trained on a centralized server. Several decentralized learning
approaches have already been developed, including Federated
Learning (FL) [1]. In classical FL, the training process is split
between communication rounds. Each communication round a
client performs several training iterations for a local model and
then communicates the weights of the model to the aggregation
server, which uses some aggregation scheme to produce a
global model, which is then again distributed between clients
for further training. The benefits of FL, which are (1) ability
to train on real world data and (2) keeping the data private,
are especially relevant in Edge Al. For instance, consider an
ATM machine that performs transaction anomaly detection on
the spot using a deep neural network (DNN) model. Such
scenario would require privacy and confidentiality of the data
on the local ATM machine, so FL can be employed as a way
to train a local detection model. Another Edge Al use-case
where FL can be employed beneficially [2] is an intelligent
transportation system (ITS).
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Despite its benefits, there are several ways the FL process
can be abused, which can lead to unreliable models at each
edge device. For instance, the local edge units sending their
updates to the aggregation server might already be compro-
mised. The adversary can then apply data inference attacks
to derive sensitive information [3] from the updated global
model received from the aggregation server. Such attacks can
ultimately compromise the privacy of the local unit’s data [4]
solely by exploiting the model’s gradient updates. Besides
private data leakage, the adversary might interfere with the
training process by performing data poisoning attacks on the
edge client and sending malicious gradient updates to the
aggregation server [5]. If the aggregation technique used by
the server is not byzantine-robust [6], the whole model is
compromised, and any inference results by this model cannot
be trusted. In this work, we focus on the latter issue and derive
our method to help prevent data poisoning attacks.

While many aggregation schemes have been proposed since
the inception of FL, including [7]-[9], there is no consensus
as to whether which one approach can facilitate a robust FL
process in the real world. Indeed, some of the approaches
proposed in literature outperform others in a particular setting
under certain assumptions, but no approach is universal. Ulti-
mately, it is up to the implementer to decide which aggregation
technique to use. In this paper, we introduce a novel trust-
based anomaly detection approach in federated edge units.
The motivation behind our proposed solution is to develop
a framework for finding anomalies in the federated learning
process without impacting a particular aggregation algorithm
that is used, while also allowing for an auditable FL process in
a potentially malicious setting. Our approach proposes a novel
trust and reputation calculus, which allows us to quantify the
amount of trust an aggregation server can have in its edge
units and identify anomalous and potentially malicious edge
units based on the model updates the local edge units send to
the aggregation server. Our approach does not interfere with
any aggregation methods used, and in fact can be combined
with any aggregation method chosen by the application author.
The application stakeholders have the additional benefit of
tracing the aggregation history and inspecting the behavior
of anomalous units over the history of the training process
based on the proposed indicators, while the aggregation server
can also potentially exclude any anomalous edge units from
participating in the current FL process in order to prevent
further training degradation. We summarize our Trust-based
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Fig. 1. Trust-based anomaly detection in Edge Federated Learning. The
local models’ aggregation is preceded by evaluating Trust and Reputation.
Anomalous units can then be excluded from the aggregation process.

anomaly detection approach in Figure 1.

Many FL publications employ well-curated, balanced, and
standardized datasets, such as MNIST [10], CIFAR-10 [11],
and others. To evaluate the viability of our approach, we
study its performance in two real-world Edge AI use-cases.
In the first use case, we consider the case of anomalous
financial transactions, where multiple edge (which could be
ATM machines or banking branches) units are potentially
compromised by an adversary. In this case the adversary’s
goal would be to adjust the model that detects anomalous
transactions in such a way so that the fraudulent transactions
are not considered anomalous anymore. We evaluate how
our approach helps to improve the detection of transaction
anomalies under malicious settings. In the second use case,
we evaluate the performance of an image classification model
in ITS in the traffic sign classification scenario. We provide
an audit of the reputation of each edge unit. Additionally, in
this scenario we evaluate the performance of our model, which
uses FedAvg [1] alongside our anomaly detection method to
guide the aggregation process, against a model that simply
used the FedAvg aggregation. To simulate the data anomalies
in both experiments we employ two distinct types of label
flipping attacks. In the first type, the adversary maliciously
modifies the labels of the unit by inverting them, i.e., by chang-
ing the anomalous transaction label to the benign one, and
vice versa. The second type incorporates changing all the local
data labels on the unit to the specific ones. We demonstrate
that our approach allows to improve the performance of the
FL process, regardless of the aggregation method, and enables
auditing the aggregation process by inspecting the historical
trust and reputation indicators, thus making the entire learning
process more explainable.

II. RELATED WORK

Recently, Trust-driven approaches gained attention in en-
hancing the learning effectiveness and security of FL , e.g., to
improve security and safety in ITSs [12]. However, the Trust
and Trustworthiness definitions in the literature may vary, and
there is no consensus on how to better approach, gauge, and
decide if the FL unit is trusted. Below, we review the Trust
in FL applications from various perspectives and discuss our
Reputation and Trust evaluation.

Approaches that employ the concept of Trust to optimize
communication in FL are mainly focused on establishing and
maintaining trustworthy interactions between the participating
nodes in a decentralized setting. These approaches recognize
the importance of secure and efficient communication while
preserving data privacy and integrity. For example, Gholami et
al. [13] leverage the concept of Trust to evaluate the trustwor-
thiness of the network nodes in a decentralized FL setting. To
address the problem of adversaries sending malicious updates
in mobile network environments, Kang et al. [14] propose
to use Reputation as a fair indicator to select network units
participating in the aggregation.

Cao et al. [7] propose FLTrust method, which uses trust
bootstrapping technique to defend against Byzantine attacks
in the FL environment.

Rjoub et al. [15] propose DDQN-Trust, a trust-based double
deep Q-network reinforcement learning algorithm for IoT
devices, which involves monitoring their CPU and RAM
consumption in order to optimize the local units selection in
FL. To address the privacy and security caveats in conventional
FL, various approaches that leverage cryptographic methods
and frameworks have been introduced to prevent data and
model poisoning attacks, and mitigate their consequences,
such as EIFFeL [16], RoFL [17], and ELSA [18]. Blockchain
is another technology that also relies on the concept of Trust
and is deemed as a perspective solution to address security,
reliability, traceability, and other challenges faced by the FL
systems [19]-[23].

As one can see, trust in FL can reflect the reliability,
credibility, and even security of the edge units. While many
approaches consider trust as a concept with no quantification,
which is usually based on satisfying some requirements, for
example, if the updates can be verified using cryptographic
proofs or blockchain, we proceed in another direction and
introduce the methods and calculus that allow to quantify the
trust and reputation of local edge units.

III. TRUST EVALUATION IN FEDERATED EDGE UNITS

Our method relies on clustering the models trained over
local data provided by the edge units. Anomalous local
edge units might generate data with distribution patterns that
strongly deviate from the majority of the edge units, and this
will be reflected in the model parameters that will be com-
municated to the aggregation server for the global model. We
assume that the majority of the edge units are not compromised
and thus a shift in the edge unit’s model parameters can be an
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indication of anomalous data patterns potentially caused by an
attack.

To preserve the local data privacy, we utilize models
trained over the local data and analyze their trainable param-
eters distribution. Clustering in the space of trainable param-
eters is a universal approach that allows us to analyze any
learning model’s behavior without restrictions on what specific
task the model is aimed to perform. Another possibility is to
cluster based on the model’s residuals, however, that would
possibly require additional communication between units and
modification of the conventional FL flow. Clustering based on
trainable parameters does not require any additional commu-
nication or modifications to the FL flow and preserves local
data privacy (assuming the local units are not compromised).
Before the aggregation, we cluster the received local models
based on the k-means clustering method in their trainable
parameter space, and calculate the distance from the cluster’s
center to each model. Then, based on the clustering results, we
calculate our Reputation and Trust indicators that we employ
for detecting and discarding compromised local units from the
aggregation and further communication. Below we formalize
our Reputation and Trust evaluation approach.

A. Reputation and Trust Calculus

Following our previous efforts in [24], [12], [25], we define
two basic metrics: Reputation (R) and Trust. Reputation cap-
tures the historical information of the differences between the
model submitted by a given edge unit and all other edge units.
However, Reputation alone is not robust to outliers and can be
manipulated. That is why we introduce Trust as a function of
Reputation that is more robust. The value of R is calculated
based on the normalized Euclidean distance d from the cluster
center of the model parameters submitted for aggregation by
the local edge units. At the first communication round tg the
value of R is initialized as (1):

R =1-d RY.dY € 0,1] )

where R,Eé) and diz) refers to the initial reputation value and
distance to the cluster center of edge unit ¢ respectively. The
value of R is updated in each aggregation round according to
the following (2):

. . () .
; R(Q + d(l) _ Rt—l’ if d(’t) S a,
Ri ) _ t—1 t ¢ . t 2

Ril_)l + dgl) — el_d( t

), it d” > a.

« is a specified threshold, which dictates how sensitive the
Reputation indicator is to outliers and should be chosen
empirically. In our applications we use o = 0.5. Notice that
such formulation allows to penalize local edge units heavily for
anomalous models and requires them to consistently provide
models that fall within the normal pattern to build up their

Reputation. To cap the values of R between 0 and 1, we also
employ the following rule (3):

1, if R >1,
R =0, it RY <o, 3)

Rﬁi), otherwise.

Based on Reputation, the Trust indicator is calculated,
which is a function of Reputation that regulates how the
change in Reputation affects the T'rust an aggregation server
can have in an edge unit. Additionally, it is possible to
exclude a local unit with a low level of Trust from following
communication rounds to avoid the malicious manipulations
on the global model. We formalize the definition of Trust as
follows (4):

Trustii) = (Rgi’))2 + (dﬁ"))2—

- @2 41—y,

“)
Trustgi) € [0,1]

To bound the values of Trust between O and 1, we use the
same rule as for reputation:

1, if Trust”) > 1,
Trust!” := {0, if Trust!” <0, (5)
Trustgz) , otherwise.

Below we discuss the advantages our Trust and Reputation
evaluation-driven learning anomaly detection offers:

1) Historical tracking: this feature allows accumulating and
tracing the changes in Trust towards local units over time in
the FL system. The retrospective information on the quality
of models the edge units provide for aggregation is employed
for Trust evaluation, enabling the identification of anomalous
(potentially untrustworthy) units. This feature might be highly
useful and employed, for example, for extensive security
analytics and audit [26].

2) Aggregation-method agnostic: as mentioned previously,
our anomaly detection approach works with any aggregation
method that is used in a decentralized learning setting and
does not interfere with the aggregation process. As such, the
convergence rate of the selected aggregation algorithm will
stay the same, however, the security of the learning process can
be enhanced with addition of our anomaly detection approach.

3) Trust-based filtering: instead of selecting local units for
aggregation [14], it is possible to decide which units should
be discarded from aggregation based on Trust towards them.
We develop calculus that quantifies Reputation and Trust
indicators, and allows to evaluate them in a specified numerical
range. Our calculus allows flexibility and personalization as
the FL system user is able establish a specified level of Trust,
based on the thresholds « and 3, deemed acceptable for their
application and context requirements. Untrusted local units
can be excluded from further communication, preventing them
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from receiving further global updates, which enhances privacy
and security of FL.

4) Unsupervised clustering: our approach does not require
any prior knowledge on the training data and its distribution. It
solely relies on the models’ updates sent by the local units to
the aggregation unit. These updates are clustered in an unsu-
pervised manner, and the Reputation and Trust are calculated
based on these clustering results. Hence, our approach does
not need access to ground truth or the local data distribution
in advance for Trust estimation. In addition, the employment
of unsupervised clustering requires only the model updates as
an input, which makes the approach adaptable to many data
types and FL applications.

To summarize, compared to previous approaches [7], [27],
we believe that our approach allows for a more customizable
and auditable FL process based on the values of « and 3, and
also does not require communicating a ground-truth model,
which incurs a certain degree of privacy violation to the local
clients’ data.

IV. VERIFICATION IN INDUSTRIAL APPLICATIONS

To verify our novel Trust-based approach, we investigate
two use cases that represent distinct industrial applications
of Edge Al First, we study the scenario of training the FL
model on a dataset of financial transactions with a target
to identify the anomalous ones (anomalous financial transac-
tions scenario). Second, we examine the ITS image classifier
supposed to categorize real traffic sign images (ITS traffic
sign classification scenario). In both cases, we employ data
poisoning attacks that affect some portion of the local units in
the FL system. We assess how effective is our Trust evaluation
approach in detecting the compromised local units and how
it influences the performance of the trained model. Below we
describe each of these use cases.

A. Anomalous Financial Transactions Identification Case

We employ the industrial dataset provided by SWIFT! and
used in U.S. PETs Prize Challenge® hosted by NIST and
NSF, which incorporates about 4 million records on financial
transactions performed over a 30 days interval. As the original
dataset is highly imbalanced with almost 95% of the data
being benign transactions, we utilize the SMOTE library [28]
to avoid oversampling. For our FL training, we divide our data
into 10 cohorts based on the records pertaining to a particular
bank origin. Each of these cohorts has a roughly equal number
of records and is composed of similar attributes. To select the
appropriate basic ML topology, we compare various models
based on their performance achieved after a centralized ML
training: Deep Neural Network (DNN) and a Random Forest
(RF) classifier. The performances demonstrated by these two
ML architectures are given in Figure 2(a). From these results,
one can see that DNN is able to achieve about 74% AUC
in contrast to ~63% showed by RF on a test set. Hence, we

Uhttps://www.swift.com/

Zhttps://www.drivendata.org/competitions/98/nist-federated-learning- 1/
page/522/

TABLE I
REPUTATION AND TRUST VALUES CALCULATED FOR EACH LOCAL UNIT
AFTER THE FIRST LOCAL TRAINING ROUND

d from cluster center | Client ID R Trust
0 Unit 9 1 1
0.139 Unit 7 0.860 1
0.184 Unit 6 0.815 0.893
0.289 Unit 5 0.710 0.596
0.296 Unit 8 0.703 0.576
0.325 Unit 1 0.674 0.494
0.444 Unit 4 0.555 0.156
0.461 Unit 10 0.536 0.109
0.866 Unit 3 0.133 0
1 Unit 2 0 0

select DNN for the further FL empirical study. The best DNN
topology, based on the the Area under the ROC Curve (AUC)
metric, incorporates four dense layers: the first layer has 200
neurons, takes an input shape of 9 features, and employs the
Rectified Linear Unit (ReLU) activation function; the next
three layers have 100, 50, and 25 neurons, respectively, all
employing ReLU as well. We also employ a dropout rate of
0.5, which results in preventing model’s overfitting. The last
layer has a single neuron with the Sigmoid activation function,
which is typically used for binary classification problems.

To recreate data poisoning attack scenario, we modify the
original SWIFT data collection with label flipping attacks on
two of the local units. Specifically, we explore two types
of label flipping attacks. On unit 2, we invert labels in the
local training data, i.e., we change the labels pertaining to
anomalous transactions to benign ones and vice versa. On unit
3, we change labels of all the transactions in the stored local
training data to anomalous ones. We employ these two types
of malicious manipulations to augment local data on unit 2
and unit 3 respectively, while leaving the other clients’ data
intact. We assume that the attackers have full control over
the local data and models of these clients, but not over the
communication or aggregation process.

Initially, the constructed DNN model is distributed across
10 distinct local edge units from the aggregation server via en-
crypted socket communications. After the model is distributed,
the local training process is initiated by each unit. The model is
trained for 100 consequent epochs. To calculate the Reputation
and Trust indicators, we employed k-means clustering of the
model parameters submitted for the aggregation. We found the
major cluster’s center and calculated the Euclidean distances
d to each of the models, normalized d in the range between
0 and 1, and employed the clustering results to initialize the
Reputation indicator R for each client. The initial Reputation
was calculated according to (1), which means that the farther
the model lies from the cluster center, the lower Reputation it
receives. Then, the Trust indicator was calculated based on R,
as described in sec. III. The Reputation and Trust indicators
were updated in each aggregation round.

We evaluated the Reputation and Trust indicators for the
units submitted models for aggregation after the first local
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Fig. 2. Performance comparison of various models based on the ROC curve
generated on a testing dataset: (a) — DNN vs RF trained in a centralized
manner; (b) — DNN trained in a FL. manner with and without the proposed
Reputation and Trust-based indicators; (c) — performance of the advanced and
conventional FL model vs conventional ML model within the most important
in practical applications False Positive Rate region

training round. As can be seen from Table I, units 2 and 3
received the lowest Reputation and Trust values even after the
first training round, which indicates that they provided models
lying out of the major distribution. The small differences in
Trust values between the units 4, 10, 3, and 2 correspond to
the retrospective nature of the Trust indicator — it requires
to accumulate some historical data during several aggregation
rounds to reflect the changes in the Reputation more accurate.
In this particular case, just after the first training round, it
is more reasonable to use Reputation as the decision-making
criteria to detect compromised local units. Our approach
is capable of detecting the compromised units even before
aggregating the local updates, which means that, based on
the Reputation and Trust values, they can be excluded from
the further aggregation procedure and from the global model
distribution. Discarding from the aggregation procedure will
prevent the influence of harmful updates on the global model,
and preventing compromised local units from receiving the
global model will enhance the security and privacy of FL.
After discarding two units with the lowest Reputation, we
continue the FL training process under normal conditions
without data poisoning attacks. The local updates are ag-
gregated using the FedAvg [1] to produce a global model.
First, we evaluated the model trained in a conventional FL
manner [29], without employing the Reputation and Trust
indicators. Orange line in Figure 2(b) represents the perfor-
mance demonstrated by this model on a test set. According
to the results obtained, FLL. model demonstrated AUC of

D [ Conventional FL (1 poisoned) D [ Conventional FL (2 poisoned)
E‘ D [ Conventional FL (3 poisoned) El B FL with Trust (1 poisoned)
-
é 100 E @ FL with Trust (2 poisoned) El P FL with Trust (3 poisoned)
< =
g J
g /
5 A
& J
E 50 / —
5 ]
* 1
0 1 . 1
3 4 6
Local Units” ID
Fig. 3. Average performance demonstrated by both models, trained in a

conventional FL. manner and using our anomaly detection for exclusion in
aggregation, and tested over the local data on each of the local units. The
results are presented for the cases with the presence of 1 (unit 6), 2 (units 3
and 6), and 3 (units 3, 5, and 6) compromised local units

around (.72, which was comparable to one achieved in the
centralized learning case. Blue line in Figure 2(b) represents
the performance results for the FL process that employs the
proposed Reputation and Trust mechanisms with edge unit
exclusion. In Figure 2(c) one can see the scaled version of
these results over the more practical False Positive Rate values
interval. The produced model evaluated over the testing data
was able to achieve AUC of 0.77, which outperformed both
models trained in centralized and conventional FL manners.
Based on the results, the employed Reputation and Trust-
based mechanisms demonstrated the FL. model performance
improvement.

B. Image Classification in Intelligent Transportation System
Case

In this use case, we employ a subset of real traffic images
from Open Images V6 dataset [30], categorized into traffic and
stop sign labels. As the ML model architecture, we employ a
custom Convolutional Neural Network (CNN) consisting of 10
layers designed to be relatively small in scale. Our FL setup
for this case incorporates six local units in each training round,
and we also use the FedAvg aggregation strategy in each of
the 15 training rounds. Initially, we randomly allocate images
over 6 local edge units, each unit has around 120 images of
each category. We conduct FL training using the conventional
FL aggregation as well as FL training with the help of our
Trust-based approach - to exclude local units identified as
compromised from the aggregation. Our experiments include
scenarios with one, two, and three local units compromised
by the label-flipping attack. In this case, during the aggre-
gation procedure, we remove two local units in each round
with the lowest Reputation scores. In general, the application
developers are free to choose any indicator between Reputation
and Trust, and here we wanted to demonstrate that Reputation
alone can be used for anomaly detection, although it may not
be a very robust indicator.

Figure 3 represents average performance values demon-
strated by the models trained over 15 rounds and tested over
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Fig. 4. Reputation values for each local unit calculated in each consequent
aggregation round for the scenario with: (a) — 1 compromised unit (unit 6 is
compromised); (b) — 2 compromised units (units 3 and 6 are compromised);
and (c) — 3 compromised units (units 3, 5, and 6 are compromised)

the data residing on each local unit in the end of each round.
From these results, one can see that the ML model trained with
our anomaly detection outperformed the conventional FL setup
in terms of performance on each unit except ones that possess
poisoned data, which can be observed in all investigated cases.
The anomalous units were excluded from further training
rounds, and this exhibited lower performance. Moreover, a
relationship between the increase in the number of compro-
mised units and the trained model’s performance drop can be
observed. The employment of our anomaly detection with unit
exclusion allowed to achieve an average 14.8% performance
growth while tested over the units possessing original non-
compromised data with two compromised edge units; and in
the case of three compromised units, the difference in perfor-
mance became significant and achieved 130.8%. In all three
cases, the performance of the ML model trained using edge
unit exclusion based on anomaly detection experiences only
marginal deviations while introducing additional compromised
units.

Figures 4(a), 4(b), and 4(c) show results of the Reputation
value changes for each of the local units over the 15 training
rounds, which can be used for an audit of the learning process
across communication rounds. From these results, one can

observe that the Reputation values of all of the poisoned
units either start at zero or eventually converge to zero after
a number of training rounds. For instance, from Figure 4(a)
we can see that unit 6 (the compromised one) demonstrates
high Reputation score after the first training round, and it is not
excluded from the aggregation in the second and third training
rounds. However the Reputation value of this unit rapidly
declines to zero after the third training round, and the further
updates are excluded from the aggregation in all the remaining
training rounds. In some cases, non-compromised local units
also received low Reputation on par with the compromised
ones, which can be considered as a false positive. The potential
reason behind this is unbalanced local data distribution across
the units. Our results demonstrate that, in some cases, our
Trust-based anomaly detection may cause some false positives
initially and requires some time for the correct identification
of the units that possess compromised data. In other cases,
our historic knowledge accumulation helps to correctly detect
units that possess poisoned data at the early training stages.

V. CONCLUSION

In this paper we proposed a method for Trust-based anomaly
detection in edge units that participate in the federated learning
process. We developed the calculus necessary to give a quan-
tifiable definition of Trust and Reputation indicators in the FL
setting based on the parameters that each edge unit submits to
the aggregation server. We verified the validity of our approach
in two industrial Edge Al use-cases. We demonstrated that our
method allows for (1) historical tracking of the aggregation
process and performing audits on the aggregation across
training rounds, (2) anomaly detection independent from the
aggregation method, (3) filtering of edge units based on the
proposed indicators, (4) ground-truth-free learning anomaly
detection.
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