Are Industrial ML Image Classifiers Robust to
Withstand Adversarial Attacks on Videos?

Sergei Chuprov, Shivam Mahajan, Raman Zatsarenko, and Leon Reznik
Department of Computer Science, Rochester Institute of Technology, Rochester, NY, USA
Email: sc1723@rit.edu, spm9398 @rit.edu, 174983 @rit.edu, leon.reznik @rit.edu

Abstract—We investigate the impact of adversarial attacks
against videos on the object detection and classification perfor-
mance of industrial Machine Learning (ML) application. Specif-
ically, we design the use case with the Intelligent Transportation
System that processes real videos recorded by the vehicles’
dash cams and detects traffic lights and road signs in these
videos. As the ML system, we employed Rekognition cloud
service from Amazon, which is a commercial tool for on-demand
object detection in the data of various modalities. To study
Rekognition robustness to adversarial attacks, we manipulate
the videos by adding the noise to them. We vary the intensity
of the added noise by setting the ratio of randomly selected
pixels affected by this noise. We then process the videos affected
by the noise of various intensity and evaluate the performance
demonstrated by Rekognition. As the evaluation metrics, we
employ confidence scores provided by Rekognition, and the ratio
of correct decisions that shows how successful is Rekognition
in recognizing the patterns of interest in the frame. According
to our results, even simple adversarial attacks of low intensity
(up to 2% of the affected pixels in a single frame) result
in a significant Rekognition performance decrease and require
additional measures to improve the robustness and satisfy the
industrial ML applications’ demands.

Index Terms—Object detection and classification in videos,
adversarial attacks, machine learning robustness

I. INTRODUCTION

The rapid advancement of information and communication
technologies has enabled the integration of intelligent video
and image processing Machine Learning (ML) applications
into various systems that leverage wireless networks. While
these integrated systems have been successfully applied in
various industrial domains, such as Intelligent Transportation
Systems (ITSs) [4], [5], their performance highly depends
on the quality of data inputs. In our previous research, we
investigated the effect of Data Quality (DQ) variations on
the performance of ML applications that process images and
other types of data as inputs [2], [3], and proved that they
have detrimental effect on the ML application performance.
Additional techniques, such as transfer learning, are needed
to satisfy the requirements for ML robustness posed by the
industry [1].

In this paper, we tackle even more complex and challenging
use case that involves object detection and classification in
videos. Instead of considering DQ variations due to tech-
nological factors, such as network packet loss and resource
limitations which we also investigate in [6], we explore
the data intentionally manipulated by a malicious adversary.
We consider the attack model that allows the adversary to

manipulate the data by introducing a specific amount of
noise into the input data before it is processed by the ML
application. As an industrial ML application, we consider an
ITS designed to detect traffic lights and road signs in the
video transmitted from a vehicle’s dash cam. In contrast to
examining open source industrial ML models, in this research
we focus on the commercial Rekognition service from Ama-
zon', which allows detecting objects in the images and videos
submitted to it. We evaluate the robustness of Rekognition to
the adversarial data manipulations and investigate in which
cases its performance drops to the levels unacceptable for
industrial ML applications. We discuss the intensity of the
adversarial manipulation required to cause detrimental effects
to the Rekognition performance. In the following section, we
describe our use case in greater detail.

II. INDUSTRIAL USE CASE DESIGN
A. Employed Data Collection

To explore the impact of adversarial attacks against the data
on video object detection and classification performance, we
utilize the Berkeley Deep Drive (BDD110K) Dataset?. This
extensive collection incorporates more than 100,000 videos
taken from vehicle dash cams, including driving in various
weather and lightning conditions, and in diverse areas. For our
experiments, we select 25 high-quality videos 8-10 seconds in
length, captured from the perspective of a moving vehicle on
various urban streets and highways. Since we are focused on
object detection and classification task, we manually choose
videos with clearly visible traffic lights and road signs. As a
benchmark, we first evaluate the Rekognition performance on
the selected original videos without any adversarial attacks.
For each of the selected videos, Rekognition demonstrated a
confidence score of greater than 90% for each detected pattern
of interest.

B. Employed ML Application

In our investigation, we employ the Amazon Rekognition
service®, which allows the use of pre-trained black-box ML
models for various ML tasks. As the service is commercial,
Rekognition does not provide any specifics on which ML
model architectures are employed for the object detection and
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classification services. Specifically for the object detection
service, Rekognition provides “Detect Labels” API endpoint.
This service returns a list of objects that have been detected in
an uploaded image. The response contains confidence scores
for each of the objects detected in the submitted data. If the
confidence score is high enough, Rekognition also outputs a
bounding box with the detected object location in the image.
In our ITS use case, we concentrate on the “Traffic Light” and
“Road Sign” labels Rekognition detects in the videos uploaded
by us. Since Rekognition is a black-box model, we possess
no information on the data collection it was pre-trained. We
evaluate ML performance based on the confidence level of
the object detected in the particular frame Rekognition outputs
after processing the video.

C. Adversarial Manipulations Against Input Data

Adpversarial attacks are methods of manipulating the input
data that lead to incorrect or misleading predictions and
deteriorate the performance of ML systems. In our work,
we concentrate on pixel manipulation adversarial attack that
directly changes pixel values in the image. This attack might
be challenging to detect, as the frames are visually affected in
a way similar to a random noise appearing in the video due
to technical factors, such as network packet loss, compression
artifacts, or camera failures. These technical factors may cause
some pixels in the video to change their color or intensity,
resulting in a noisy or distorted video. Therefore, it may
be difficult to distinguish between the noise caused by the
adversarial attack and the noise caused by the technical factors,
especially when the adversarial manipulations intensity is low
or moderate. This may allow the attacker to evade the detection
mechanisms that are designed to identify and filter out the
noise from the video before feeding it to the ML application.
In particular, we investigate the attack that randomly changes
the color of a certain pixels percentage in the frame to a white
one. By changing random pixels to white ones, the attacker
may be able to alter the features or patterns that the ML
application relies on to make its predictions, and thus cause
the ML performance deterioration.

We introduce noise into the video frames by randomly se-
lecting a certain percentage of pixels in the frame and changing
their color to white. To generate data affected by diverse noise
intensity, we vary the percentage of the affected pixels in the
frame: 2, 5, 8, 10, and 15%. In our investigation, we limit the
percentage of the affected pixels in the frame to 15%, as higher
values lead Rekognition to produce confidence scores below
50%, which makes its use impractical for object detection
and classification. For data manipulations, we employ opencv-
python library. With the help of the aforementioned library,
we first read the video file and extract the frames from it.
Each frame represents an image that can be characterized as
a matrix of pixels, where each pixel has its color value. Next,
we set the noise intensity we need to introduce into the frame
by choosing the percentage of pixels in the frame affected
by the noise. After, we loop through the frames in the video

and apply the noise of specified intensity to each of them. We
apply the noise by performing the following steps:

1) Retrieving the number of rows and columns in the
frame’s pixel matrix using the shape attribute.

2) Calculating the number of pixels that need to be manipu-
lated in by multiplying the number of rows and columns
by the noise intensity percentage.

3) Randomly generating a list of coordinates for the pixels
that need to be manipulated.

4) Iterating through the list of generated random coordi-
nates and changing the color value of the corresponding
pixels to the white one.

5) Saving the modified frames and converting them back
into a new video file of the same format and character-
istics as the original one.

In Figure 1, we represent some examples of frames obtained
after the adversarial manipulations applied to the data by
adding noise of various intensity. As one can see, while the
overall scene in the image is still comprehensible for the
human eye, adding noise to the frame may obscure some
important visual patterns from detecting them by the ML
application, which we demonstrate later in this work.

IIT. INDUSTRIAL USE CASE RESULTS

For object detection and classification in videos with Rekog-
nition, we first prepare the video files and upload them to an
Amazon S3 bucket. Then, we establish an Amazon Rekog-
nition Video client and start a label detection operation. We
employ Python AWS SDK that supports Amazon Rekognition
Video and use start_label_detection method to obtain label
detection results. Rekognition identifies objects, scenes, and
concepts in a processed video and outputs a JSON file with
a list of labels identified in the video, confidence scores
for these labels, and timestamps corresponding to the labels
identification.

Rekognition is able to detect a single label multiple times
in one video at distinct timestamps. To evaluate the ML
application performance demonstrated by Rekognition over
a set of 25 videos affected by a similar noise intensity, we
take the mean of maximum confidence score values produced
for each video. We also calculate the average and minimal
confidence scores produced by Rekognition and determine
their mean values over the set of 25 videos. We evaluate
the confidence scores for both “Traffic Lights” and “Road
Signs” labels. Below we describe the results obtained in our
experiments.

Figure 2(a) demonstrates mean values for maximal, aver-
age, and minimal confidence scores produced by Rekognition
across 25 processed videos affected by various noise intensi-
ties. In the “Traffic Lights” label scenario, we observed a sig-
nificant change in Rekognition performance with noise levels
ranging from 2 to 5%. Beyond the 5% noise threshold, the
performance continued to decline, although at a progressively
slower rate. The average minimal confidence of 30.1% was
reached when 15% of pixels were randomly changed to white
ones.



Fig. 1. Examples of images manipulated by the adversary with various noise
intensity: (a) — original image; (b) — 2% noise; (¢) — 5% noise; (d) — 8%
noise; (e) — 10% noise; (f) — 15% noise
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Fig. 2. Experimental results obtained by processing the videos, affected
by the noise of various intensity, with Amazon Rekognition: (a) — mean
values of maximum, average, and minimal confidence scores provided by
Rekognition across 25 videos affected by various noise intensities; (b) — the
correct decisions ratio demonstrated by Rekognition across 25 videos affected
by various noise intensities; (c) — the average video file size for 25 videos
affected by various noise intensities

Figure 2(b) represents the correct decisions rate demon-
strated by Rekognition in detecting the objects of each consid-
ered label. Rekognition conducted object detection at times-
tamps occurring every 0.5 seconds during the video analysis.
We calculated the correct decisions rate by determining the
timestamps at which the traffic lights were correctly detected
and dividing it by the total number of timestamps where any



object was detected. The correct decisions rate was calculated
for each noise intensity cohort. For the original videos not
affected by any noise, Traffic Lights label was successfully
detected in approximately 82.2% of the timestamps when
averaging across 25 videos. As can be seen in Figure 2(b),
the decisions correctness exhibited a rapid drop as noise levels
increased from O to 2%, followed by a smooth gradual decline
thereafter.

In Figure 2(c), we present the average file sizes across 25
videos affected by various noise intensities. Initially, the file
size exhibited a rapid growth as noise levels increase. How-
ever, after the ratio of affected pixels reached 5%, the increase
in file size started to diminish. This increase in video file size
can be primarily attributed to the employed cv2.VideoWriter()
method from opencv-python library to combine the frames
affected by the noise back into a new video. To render the
video, we employed “mp4v” codec, which utilizes default
compression settings not as efficient in terms of compression
as the original video’s settings. Video codecs rely on exploiting
redundancy to achieve compression, while the noise, on the
other hand, introduces non-redundant information. The codec
we employed utilizes blocks and macroblocks concepts for
video encoding. Each macroblock can be encoded using vari-
ous techniques contingent upon its content and the surrounding
context. Noise disrupts the uniformity within these blocks,
ultimately resulting in less efficient compression.

In Figure 2(a), we also demonstrate results on the mean
values for maximum, average, and minimal confidence scores
for detecting the “Road Signs” label demonstrated by Rekog-
nition across 25 videos. As one can see, Rekognition exhibited
fairly lower performance for the considered label almost for
all metrics even on the original videos. The exception is 2%
noise case for the mean minimal metric, in which Rekognition
performed slightly better with a confidence of 54.1% against
52.2%. As can be seen from Figure 2(a), when the noise in the
videos exceeds 8%, the mean confidence scores for the “Road
Sign” label become dense on the plot. This is attributed to
the low deviation in the confidence scores demonstrated by
Rekognition across all 25 videos. In contrast, in the “Traffic
Lights” case, the metrics’ values do not demonstrate similar
trend and deviate significantly.

For the correct decisions rate, depicted in Figure 2(b),
Rekognition also performed worse in recognizing Road Signs
label with the average of 61.4% compared to 82.2% for
the “Traffic Lights” label. For the noise intensity of 2%,
the recognition performance dropped significantly for both
labels compared to the original videos, with the “Road Signs”
experiencing more rapid decrease. Beyond the noise of 2%,
the recognition performance continued to decrease more grad-
ually in both cases, with a similar faster diminishing trend
showcased by the “Road Signs” label. When the noise reached
8%, the situation changed and the recognition performance
over the “Traffic Lights” category started to decrease more
rapidly. However, it was still significantly higher than the
correct decision rate with 51.9% against 11.3% showed by
Rekognition over the “Road Signs”.

IV. CONCLUSION

In this paper, we investigated the impact of adversarial
attacks against the videos processed by the industrial ML
application. In particular, we focused on the Intelligent Trans-
portation System use case, and employed real videos recorded
by vehicles’ dash cams. We manipulated them using a spe-
cialized adversarial technique that introduces noise into the
videos, and processed these videos with Amazon Rekognition
service that allows detecting traffic lights and road signs. Our
major contributions include the following points.

First, even simple adversarial manipulations of low intensity,
such as changing pixel values, affected Rekognition perfor-
mance significantly. Adding the noise of only 2%, which is
slightly perceptible for the human eye, resulted in ~10%
Rekognition confidence score drop on average for all the
considered labels.

Additionally, the increase of adversarial manipulations in-
tensity lead to a rapid reduction in recognizing the patterns of
interest in the videos processed by Rekognition. Even for the
original videos, Rekognition failed to recognize traffic lights
and road signs in some of them, which means that it cannot
tolerate any noise introduced into the videos.

Furthermore, after performing the adversarial manipulations
to the videos, we observed the substantial increase in their
file’s size, attributed to the compression techniques we em-
ployed to combine the manipulated frames back into the
video. In practice, analyzing the file size can be employed
as a complementary technique to detect a potential adversarial
attack more effectively. Our results showed that Rekognition
should be made more robust to a simple adversarial attacks
against the videos, and additional methods and steps need
to be developed and implemented in order to be effectively
employed in most industrial applications.
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