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Abstract—In industrial applications, Machine Learning (ML)
services are often deployed on cloud infrastructure and require a
transfer of the input data over a network, which is susceptible to
Quality of Service (QoS) degradation. In this paper we investigate
the robustness of industrial ML classifiers towards varying Data
Quality (DQ) due to degradation in network QoS. We define the
robustness of an ML model as the ability to maintain a certain
level of performance under variable levels of DQ at its input. We
employ the classification accuracy as the performance metric for
the ML classifiers studied. The POWDER testbed is utilized to
create an experimental setup consisting of a real-world wireless
network connecting two nodes. We transfer multiple video and
image files between the two nodes under varying degrees of
packet loss and varying buffer sizes to create degraded data. We
then evaluate the performance of AWS Rekognition, a commercial
ML tool for on-demand object detection, on corrupted video and
image data. We also evaluate the performance of YOLOvV7 to
compare the performance of a commercial and an open-source
model. As a result we demonstrate that even a slight degree of
packet loss, 1% for images and 0.2% for videos, can have a
drastic impact on the classification performance of the system.
We discuss the possible ways to make industrial ML systems
more robust to network QoS degradation.

Index Terms—image processing, network QoS, image classifi-
cation, robustness, data quality

I. INTRODUCTION

Industrial ML classifiers, such as AWS Rekognitionl, and
open-source like YOLO [9], are widely employed for a variety
of tasks in imaging and other areas, such as real-time traffic
management and decision making in Intelligent Transportation
Systems (ITSs) [8], anomalies detection in X-ray medical
images [7], and fraudulent transactions identification in fi-
nancial applications [4]. Despite being designed as standalone
applications usually deployed on cloud infrastructure, image
ML classifiers require data to get delivered there, for which
purpose they typically rely on an intermediate network. The
classifier’s performance has been shown to heavily depend
on the Data Quality (DQ) at their entrance point [4], which
emphasizes the Quality of Service (QoS) of the network
infrastructure employed for conveying the data from the data
source. We have shown for other applications [4], [6], [7] that
even minor degradation in network QoS due to the factors
such as packet loss, bit errors, network congestion, etc., can
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significantly affect the data transmitted reducing the DQ,
which results in a ML application performance degradation.

In our integral approach [5], we consider an image classifier
as an endpoint of the data delivery pipeline from the data
source through the communication network to the cloud that
makes its performance dependable not only of the DQ but
also network QoS. In order to ensure reliable and resilient
image classification service, it is important to determine the
QoS conditions that ML classifier is able to tolerate while
maintaining acceptable performance. This challenge was pre-
viously addressed in the context of static image classification
using open-source models by Chuprov et al. [6]. In this paper,
through our empirical study, we investigate the performance
of the AWS Rekognition industrial classifier in the domain
of video and image classification. Specifically, we transfer
video files using UDP protocol between two nodes in a
real wireless network established on the POWDER wireless
communication research platform [1]. During the data trans-
mission, we simulate varying network conditions caused by
either network technological problems or malicious attacks
[3] resulting in changing packet loss rate and the size of the
receiver buffer socket, which leads to a degraded version of
the original data. Then we employ AWS Rekognition over
the original and degraded data to quantitatively assess the
effects of network-based DQ degradation on the image or
video classifier performance. Additionally, we compare AWS
Rekognition ability to tolerate corruptions in static imaging
data against the open-source YOLOv7 model.

This paper has two major contributions. First, we systemat-
ically investigate and analyze the ML applications’ robustness
to network QoS degradation in the real image and video
object detection and classification use case. Second, based
on the results we develop, we derive our recommendations
on employing the pre-trained image and video classification
systems in varied network QoS conditions. Previously, we
studied the performance of AWS Rekognition under varied
network QoS conditions with medical image data [6]. In
the present work, we expand the field of applications and
examine the ML robustness towards DQ variations in videos
in the context of the ITS. We consider ITS as a specific use
case in which the quality of real-time intelligent decisions is
vital. In particular, we consider the scenario when the DQ
processed by the ML application may highly vary due to
changing network conditions, which results in ML application
performance drop. We observe a significant drop in the AWS



Rekognition classification accuracy demonstrated on videos
and images that are affected by varied network QoS. We
show that AWS Rekognition, if it used “off the shelf”, is
not robust enough to be leveraged in industrial applications,
especially those deployed in real-time systems, such as ITS.
To address this challenge, we discuss known techniques that
can be employed to enhance the image classifiers’ robustness
towards the varying DQ.

II. PREVIOUS WORK

The impact of network QoS degradation on the perfor-
mance of video classification systems is still a relatively
novel research area. In our previous work [7], we studied
the robustness of ML classifiers towards low DQ due to
network QoS degradation in medical image data. We found
that even a small packet loss rate can result in a considerable
decline in classification performance for medical images. We
determined that, depending on the medical image classification
system, only the packet loss of less then 1% could be reliably
tolerated. Earlier, we investigated how DQ degradation due to
packet loss and varying buffer sizes affects the performance
of various open-source image classification models, namely
VGG16, Inception, and EfficientNet [6], in the ITS use case.
We demonstrated that these image classifiers can endure a
packet loss of around 10%. Higher packet losses prevented
employing the studied classifiers in real domains, as their
classification accuracy dropped more than by a third.

One known approach to make ML application more tolerant
to DQ variations is to re-train the model on a data than involves
samples of various quality. In [2], we studied how Transfer
Learning, which allows to adapt ML models trained on one
application domain to the target one, can effectively enhance
ML robustness towards DQ variations. We found that state-of-
the-art ML image classifiers are usually pre-trained on the high
quality data only, and need to be re-trained using the additional
set of lower quality images obtained under realistic conditions
in order to satisfy the performance requirements posed by
the industry. In [4], alongside Transfer Learning we also
investigated the feasibility of Federated Learning in improving
robustness of road sign images classification in ITS. Our
results showed that the aggregation procedure incorporated
in Federated Learning enables producing the global model
more robust to the input DQ variation in comparison to the
conventional centralized ML setup.

III. EMPIRICAL STUDY METHODOLOGY
A. Data Collection

To investigate the effects of network degradation on the
video classifier’s performance, we employ the Berkley Deep
Drive data set (BDD100K)?. The BDD100K is a large, diverse,
crowd-sourced video data set containing over 100,000 videos
featuring various scene types such as city streets, residential
areas, and highways in varying weather conditions recorded by
the vehicle dash cam. We selected 35 videos from BDD100K
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that contain visible patterns corresponding to “Traffic Lights”
and “Road Sign” labels detected by AWS Rekognition. Our
collection involves 25 files with visible traffic lights and 10
files with visible road signs. We evaluate the performance of
AWS Rekognition based on the confidence score supplied by
the system and the classification accuracy we calculate based
on the outputs, both for the original data and corrupted data.

B. Wireless Network Configuration Setup

We establish a wireless network in POWDER using the
geni-lib® library for the Python programming language, which
allows to generate RSPEC files for network topologies from
Python code. We employ the established end-to-end LTE
network to transmit video files between two nodes. During
the data transmission, we vary such network parameters as
packet loss rate and socket buffer size of the receiving node.
We investigate packet loss rates up to 20% for the image
transmission, and 0.1 to 1% for the videos since higher packet
losses make videos too corrupted for their processing by AWS
Rekognition. For the buffer sizes, we examine buffers of 128B,
256B, 512B, and 1024B.

C. ML Image and Video Classification Tools

AWS Rekognition is a cloud-based multi-functional ML
service launched in 2016. It offers pre-trained computer vision
model as a service with on-demand pricing for image and
video analysis. Alongside AWS Rekognition, we also employ
the YOLO image detection tool [9], which is a family of
open-source real-time object detection models that use a
single neural network to predict bounding boxes and class
probabilities from full images. In our ITS scenario, we employ
AWS Rekognition for detecting “Traffic Lights” and “Road
Signs” labels in the uploaded images and videos, and YOLO
for detecting the road signs in images specifically. First, we
upload the original data to AWS Rekognition and process it to
evaluate the baseline performance. AWS analyzes each frame
in the video and employs proprietary ML techniques to detect
and classify the objects in a given video frame. It assigns labels
for the objects detected and outputs a confidence score for each
object. The confidence score is a number between 0 and 100
that indicates the probability that a given prediction is correct.
After determining the baseline performance, we process the
data of varied quality by the employed ML systems. We
compare the performance demonstrated by AWS Rekognition
over classifying the images of various quality with the results
provided by YOLOv7 model. AWS Rekognition recommends
that applications that are very sensitive to detection errors
(false positives) should discard results associated with con-
fidence scores below a certain threshold.

D. Video Transfer and Classification Use Case

After determining the benchmark confidence and classifi-
cation accuracy scores over the original data, we transmitted
our videos over a real-world wireless network established with
POWDER. During the data transmission, we vary packet loss
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rate between 0-1% and buffer size at the receiver side between
512B and 1024B to capture the difference in resources avail-
able to the receiving node, which enables to obtain videos of
various quality. To manipulate these network parameters and
to organize the communication, we employ socket connections
in Python. Figure 1 demonstrates an example of the visual
degradation in a video transmitted with 0.5% packet loss and
various buffer size values. After obtaining videos of various
DQ, we upload them to AWS Rekognition again to investigate
its performance over the data affected by the changes in
network QoS.

E. Image Transfer and Classification Use Case

We utilize the same experimental setup to study the effects
of packet loss on AWS Rekogntion performance over a static
image data. For this, we employed stop and traffic sign images
from Open Image V6 dataset*. In our research, we compare the
performance demonstrated by the commercial AWS Rekogni-
tion ML system with the pre-trained YOLOV7 architecture. In
our experiments related to static images processing, we employ
multiple buffer sizes at the receiver’s side, ranging from 128B
to 1024B. We study the performance of those classifiers with
packet loss rate varying from 0-20%. The comparison of
performance demonstrated by a black-box system with a well-
known open-source classifier will provide more insights about
the robustness of industrial ML systems to the input data
of various quality. Further we specifically discuss how we
compare the robustness of AWS Rekognition with YOLOv7
when the static image data are provided as an input.

IV. RESULTS
A. Static Image Classification Case

Figure 2(a) demonstrates that image classification accuracy
is highly sensitive to DQ degradation caused by packet loss. As
illustrated, even a packet loss rate of 1% leads to a significant
drop in classification accuracy. Specifically in case of AWS
Rekognition, we observe a performance drop of 26% for a
receiver with the 128B buffer, a drop of 32% for a receiver
with the 256B buffer, and a drop of 24% for a receiver with
the 1024B buffer. Overall, Figure 2(a) demonstrates that the
ML classifier with a 1024B receiver node tolerates packet loss
better when the packet loss rate is less than 1%. However, we
are not able to make any conclusion on the influence of the
buffer size on the classification accuracy in the general case
when the packet loss rate exceeds 1%. In case of YOLOV7, we
can see from Figure 2(a) that this model is slightly more robust
to DQ degradation due to packet loss than Rekognition when
the packet loss rates are less than 5%. However, as in the case
with AWS Rekognition, beyond packet loss rate of 1% it is
hard to tell whether an increase in resources in the receiving
node actually helps the model to make better classification
decisions.

Figure 2(b) represents the average confidence scores of the
classification decisions made by AWS Rekognition as depen-
dent on the packet loss rate. The figure clearly demonstrates
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Fig. 1. Example frames from videos affected by network QoS degradation:
(a) — original video; (b) — 0.5% packet loss and 512B receiver buffer; (c) —
0.5% packet loss and 1024B receiver buffer;

that Rekognition is more confident in its classifications when
a buffer size of the receiver is bigger.

B. Video Files Classification Case

Figure 3(a) represents the classification accuracy of AWS
Rekognition for video data depending on the packet loss rate
for the “Traffic Lights” and the “Road Sign” image categories.
This figure shows that for the “Traffic Lights” class even a
0.2% packet loss rate is sufficient to drop the performance of
AWS Rekognition by 20% for a model with a 1024B receiver
and by almost 30% for a model with a 512B receiver. A similar
trend is captured for the “Road Sign” class. With a 0.2% rate
of packet loss we can observe a drop of more than 20% for a
model with a 1024B receiver and a drop of more than 30% for
a model with a 512B receiver. Based on this, we can conclude
that AWS Rekognition is more sensitive to data loss in the
“Road Sign” objects.

Figure 3(b) captures the confidence scores provided by AWS
Rekognition when packet loss rates vary. For example, Figure
3(b) shows the confidence score decline of 8% for a packet loss
rate of 0.2% on the “Traffic Lights” class with a buffer size of
512B and a decline of 6% for the same packet loss rate and a
buffer size of 1024B. Similarly, for the “Road Sign” class we
can observe the confidence score decline of 20% for a packet
loss rate of 0.2% with a buffer size of 512B and a drop of
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Fig. 2. Performance comparison between AWS Rekognition and YOLOvV7

over the images classification: (a) — classification accuracy; (b) — average
confidence score (only provided by AWS Rekognition)
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Fig. 3. Performance demonstrated by AWS Rekognition over the videos for
“Traffic Lights” and “Road Sign” labels: (a) — classification accuracy; (b) —
average confidence score

15% for the same packet loss rate and a buffer size of 1024B.
We observe that the drop in the confidence scores is not as

significant as the drop in the actual classification accuracy of
AWS Rekognition which confirms the higher robustness of the
confidence score to the data loss.

V. CONCLUSION

In this paper, we investigated the impact of data affected by
network QoS variations on the performance demonstrated by
ML image classifiers, such as AWS Rekognition and YOLOV7,
in the real ITS use case. Our results show that even a small
packet loss rate, around 1% for images, and an even smaller
rate of around 0.2% for videos, resulted in a drastic decline
in classification accuracy demonstrated by AWS Rekognition
and YOLO. This decline could be explained by the pre-
training of image and video ML classifiers on high quality
imaging data sets with no corruptions or quality degradation.
Consequently, the performance showed by both industrial
and open-source classifiers we investigated is unacceptable
in most industrial domains. They cannot be employed as an
“out of the box” solution to provide effective decisions in
real applications like ITS, where the input data quality may
vary frequently and dramatically due to numerous factors.
The specific DQ variation tolerance thresholds for a particular
image and video classifier depend on the concrete scenario and
the application requirements. As a general recommendation,
we suggest employing the target data for an image classifier re-
training, which should include data of various quality instead
of using the service as it comes “straight off the shelf”.
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