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Abstract

This study addresses COVID-19 testing as a nonlinear sampling problem, aiming to

uncover the dependence of the true infection count in the population on COVID-19

testing metrics such as testing volume and positivity rates. Employing an artificial

neural network, we explore the relationship among daily confirmed case counts, test-

ing data, population statistics, and the actual daily case count. The trained artificial

neural network undergoes testing in in-sample, out-of-sample, and several hypotheti-

cal scenarios. A substantial focus of this paper lies in the estimation of the daily true

case count, which serves as the output set of our training process. To achieve this,

we implement a regularized backcasting technique that utilize death counts and the

infection fatality ratio (IFR), as the death statistics and serological surveys (providing

the IFR) as more reliable COVID-19 data sources. Addressing the impact of factors

such as age distribution, vaccination, and emerging variants on the IFR time series is a

pivotal aspect of our analysis. We expect our study to enhance our understanding of the

genuine implications of the COVID-19 pandemic, subsequently benefiting mitigation

strategies.
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1 Introduction

Since 2020, COVID-19 has infected the majority of the global population, caus-

ing nearly 7 million deaths worldwide and enormous economic losses (Organization

2023). While the severity of SARS-CoV-2 has significantly decreased due to the circu-

lation of less virulent variants and a hybrid immunity resulting from vaccination and

natural infection, COVID-19 still poses a significant threat to high-risk groups. As of

late 2023, COVID-19 still causes tens of thousands hospitalizations each week in the

United States alone. Over the past three years, numerous new variants with high fitness

in immune escape and transmission have emerged (Harvey et al. 2021). As of now, the

major threat from COVID-19 stems from the potential emergence of new and possibly

more virulent variants. This underscores the importance of collecting data, improving

its quality, assimilating it with models, and monitoring the circulation of SARS-CoV-

2 variants. Public health agencies must stay informed about the current COVID-19

situation, including the variant composition, the number of COVID-19-related hos-

pitalizations and deaths, as well as the percentages of people who are susceptible,

recently exposed, contagious, and recently recovered from COVID-19.

Since the beginning of the COVID-19 pandemic, it has been well-known that the

daily confirmed cases reported by healthcare agencies only represent a small propor-

tion of the true daily infection count (Wu et al. 2020). Increasing testing efforts can

effectively reduce the ratio of unconfirmed infection cases. The World Health Orga-

nization (WHO) recommends that the test positivity rate should be between 3% and

12%. However, determining the true infection count solely from the test positivity rate

is challenging, as the distribution of people undergoing COVID-19 tests is not uni-

form across the population. The lack of an accurate daily infection count significantly

impacts both data quality and modeling efforts, both of which are crucial to making

correct predictions and mitigation strategies.

The problem of lacking high-quality data has worsened due to two main reasons.

First, in 2020 and 2021, the infection fatality ratio (IFR) could be estimated by com-

bining COVID-19-related death counts with serological surveys (Team 2022; Brazeau

et al. 2022; Meyerowitz-Katz and Merone 2020). However, this method is no longer

viable as nearly everyone in the world has either been infected or vaccinated, and a sig-

nificant proportion of individuals have experienced multiple infections. The challenge

of distinguishing between individuals who "die with COVID-19" and those who "die

from COVID-19" further complicates the picture. It is evident that hybrid immunity

(from infection and vaccination) and improvements in treatment have significantly

reduced the IFR, but obtaining an accurate estimate has become much more diffi-

cult today. Secondly, in 2020 and 2021, most individuals who tested positive were

recorded and reported by state public health agencies. However, since the spring of

2022, an increasing number of people have been conducting self-tests at home using

home antigen tests, and these positive test results are no longer reported to public

health agencies. Consequently, since the spring of 2022, we have become increasingly

uncertain about the number of new infections occurring each day.

To address these issues, we propose the use of an artificial neural network trained

with data from the period when death counts and the infection fatality ratio (IFR) were

more reliable. This approach aims to predict the current state of COVID-19 circula-
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Fig. 1 Artificial neural network approximation of true daily case count. Input data includes confirmed case

count, population density, and testing data. Neural network takes normalized input data (Color figure online)

tion from testing data. The COVID-19 testing can be seen as a nonlinear sampling

problem, as people who go for test usually have higher risk of testing positive than the

general population. However, the relation between true infection, confirmed infection,

and testing volume is unknown. As depicted in Fig. 1, we enable the artificial neural

network to learn the nonlinear relationship between confirmed case count, testing data,

population density, and true case count. Mathematically, this is a classical function

approximation problem. Once the neural network approximates this relationship, we

can utilize it to predict the true COVID-19 case count when the confirmed case count

and testing data are known. In addition to making predictions, the neural network can

also help us understand the connection between testing data and case counts, enabling

a better understanding of how many tests are necessary to limit the undercounting

factor (the ratio of true cases to confirmed cases) within a certain range. We remark

that although there has been numerous papers addressing unreported COVID-19 infec-

tions (Barber et al. 2022; Hortaçsu et al. 2021; Chen et al. 2022; Albani et al. 2021),

estimating true infection count using machine learning approaches (Tang and Cao

2023; Guo and He 2021; Vaid et al. 2020; Dairi et al. 2021; Kamalov et al. 2022), or

forecasting new infections based on existing data (Rahimi et al. 2023; He et al. 2020;

Perc et al. 2020), to the best of our knowledge, the nonlinear relation between true

infection count and testing data has not been properly addressed yet.

A very significant part of this paper is devoted to the estimation of the true daily

case count of COVID-19, which is the most crucial step in preparing the training

data. The time series of true COVID-19 cases can be estimated by various approaches

such as compartment models, statistical models, time series analysis, and machine

learning methods (Vaid et al. 2020; Dairi et al. 2021; Kamalov et al. 2022; Namasudra

et al. 2021; Dutta et al. 2023; Chimmula and Zhang 2020; He et al. 2020; Watson

et al. 2021). The quality and applicability of these studies vary a lot because much

COVID-19 data has low quality and many model parameters are difficult to estimate.

Many studies using compartment models also have other issues, as discussed in the
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Fig. 2 A schematic diagram showing how true daily case count is estimated by solving a deconvolution

problem (Color figure online)

conclusion. Generally speaking, death and hospitalization data are more trustworthy

than confirmed case count. And serological survey is a more reliable way of estimating

the cumulative case count. Our method of recovering the daily infection count is

referred to as "backcasting" (Kevrekidis et al. 2022; Phipps et al. 2020), which relies

on the death count and the infection fatality ratio (IFR). Both death count and IFR are

relatively reliable in the United States because IFR can be estimated by serological

surveys. We also calibrate our result with some well-recognized studies based on

modeling and serological surveys.

Mathematically, the backcasting should be considered as a deconvolution problem

(Miller et al. 2022; Jahja et al. 2022) rather than convolution used in some studies

(Phipps et al. 2020; Sarría-Santamera et al. 2022). Since deconvolution is numerically

unstable, some regularizations of high-order derivatives are necessary to accurately

recover the true infection count. A schematic diagram in Fig. 2 describes our three-step

approach of estimating the true daily case count. (i) The distribution of the time delay

from a confirmed case to a confirmed death is recovered from the time series of daily

confirmed case and daily confirmed death by solving a deconvolution problem. (ii)

The IFR time series is estimated from well-recognized published data such as Team

(2022). Factors such as age distribution of cases, treatment improvements, vaccination

rates, and changes in variants are taken into account. (iii) We calibrate the baseline

IFR for each state using the findings in well-recognized studies (Irons and Raftery

2021; Team 2022), which combine modeling and serological surveys.

The training of the neural network is inspired by the physical-informed neural

network (PINN) method (Raissi et al. 2019). Since the available data only cover

a relatively small region of the entire domain, the neural network exhibits limited

generalization power. This limitation hampers its ability to make accurate predic-

tions or investigate the relationship between true/confirmed cases and testing data. To

overcome this challenge, we incorporate artificially generated input data and use the

derivatives of the output with respect to the input data to enhance the training process.

The underlying idea is that the true case count should increase with the confirmed case

count and decrease with the testing volume. This concept introduces a regularization

term that can be applied throughout the entire domain, as it does not rely on the out-

put data (recovered true case count). We refer to this technique as "biology-informed

regularization". Our results demonstrate that this regularization significantly improves

the generalization ability of the neural network.
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The paper is organized as follows. Section 2 introduces the artificial network approx-

imation and explores the relationship between confirmed cases, testing data, and true

cases in several scenarios. Section 3 explains how the artificial neural network is

trained. The generation of the training set, particularly the recovery of the daily infec-

tion count, is examined in Sects. 4 and 5. The focus of Sects. 4 and 5 are backcasting

method and IFR respectively. The data source of our study is introduced in Sect. 6.

Finally, Sect. 7 presents the conclusion of the study.

2 Artificial Neural Network Approximation of Daily Infection
Prediction

Estimating the true daily COVID-19 infection cases can be regarded as a nonlinear sam-

pling problem. Everyday a small subset of the total population undergoes COVID-19

testing. While it may be tempting to infer the number of total infected individuals from

the testing volume and the testing positivity, real-world scenarios reveal that individu-

als opt for COVID-19 testing due to various reasons, including experiencing symptoms

or having close contact with confirmed cases. Routine tests are also conducted in

many schools and workplaces. Consequently, individuals undergo COVID-19 tests

have a higher likelihood of test positive than the general population. The relative

risk of infection within the tested population, compared to the untested population, is

nonlinearly influenced by numerous factors. As a result, traditional statistical estima-

tion methods cannot be used to recover true infection count from testing data alone.

Instead, we employ an artificial neural network to predict the true daily new infection

count.

2.1 Approximation of the True Infection Count

As mentioned in the introduction, the primary goal of this paper is to utilize an artificial

neural network to learn a nonlinear function:

It ≈ f (Ic,λ, θ).

Here, It represents the daily true infection count, Ic represents the daily confirmed

infection count, λ encompasses various parameters such as testing volume, testing

rate, population density, mobility, and wastewater viral RNA concentration, and θ

represents the trainable neural network parameters. By employing this function f , we

can better comprehend the relationship between the undercounting factor (the ratio of

daily true infections to daily confirmed infections) and other associated parameters.

This understanding will aid public health agencies in obtaining insights into the current

state of the COVID-19 pandemic and determining the suitable testing volume.

The parameter set λ = (λ1, λ2, λ3) we select in this paper consists of testing

volume, testing rate per capita, and local population density. In order to facilitate the

training of the neural network, certain transformations are necessary to centralize and

normalize the distribution of the training data. See Sect. 3 for the full details.
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The training set of our neural network includes the true daily infection count (It ),

confirmed daily infection count (Ic), testing volume (λ1), testing rate per capita (λ2),

and population density data (λ3) from 50 states plus Washington DC, spanning from

February 29, 2020, to March 31, 2022. The input set (Ic,λ) comes from public health

data (see Sect. 6). The output set, i.e., the true infection count It , is estimated in Sects. 4

and 5 by using a backcasting method from daily death count.

Upon completion of the neural network training, we find a suitable parameter θ
∗

that minimizes the loss function. This gives a function

Ît = f̂ (Ic,λ) := f (Ic,λ, θ∗)

that describes the relationship between the undercounting factor, testing effort, and

local population density. Before introducing details of the neural network training, in

the following three subsections, we will demonstrate the property of the function f̂

through in-sample validation, out-of-sample forecast, and infection prediction in some

hypothetical scenarios.

2.2 In-sample Validation

To visually assess the performance of the trained neural network visually, we conduct

an in-sample test using training data from October 1st, 2021, to February 1st, 2021,

in six states: California, Georgia, Massachusetts, New York, Texas, and Wyoming.

The comparison between predicted true cases Ît := f̂ (Ic,λ), confirmed cases Ic, and

recovered true cases It is illustrated in Fig. 3. From the figure, the recovered true case

and the predicted true case roughly follow the same trend. Both recovered true cases

and predicted true cases indicate that COVID-19 tests can capture between one third

and one half of the infected individuals. The United States had intensive COVID-19

testing effort during this period, with about 1.5–2 million PCR tests carried out daily.

This highlights the difficulty of capturing the majority of COVID-19 cases through

PCR testing.

This outcome underscores the capability of the artificial neural network to rectify

inaccuracies in the training set. The recovered true cases It comes from backcasting the

death data, which contains some randomness, holiday effects, and human error (See

Sects. 4 and 5 for more detail). In particular, this period encompassed the Christmas

and New Year holidays, and holiday factors may influence the accuracy of recovered

cases because fewer deaths are reported during holidays. Despite our efforts to man-

ually mitigate theses effects, the recovered true case remains imperfect. As seen in

Fig. 3, occasionally the recovered true case It in the training set can be lower than

the confirmed Ic, indicating an obvious inaccuracy. Our result shows that the artificial

neural network avoids overfitting and provides a more reliable prediction of the true

case count. For instance, the recovered true case in Massachusetts in January 2021

is notably low, possibly due to reporting issues in the death statistics. As a result the

recovered true cases (blue line) lie below the confirmed cases (yellow line). While the

artificial neural network prediction correctly shows that the true daily COVID-19 cases

is around 10000. Nearly half of COVID-19 cases were undetected despite intensive

testing effort. (Refer to Figs. 25 and 26 for the daily testing volume of each state.)
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Fig. 3 Comparison of predicted true cases, recovered true cases, and confirmed cases between October 1st,

2021 and February 1st, 2021. Six panels are for California, Georgia, Massachusetts, New York, Texas, and

Wyoming, respectively (Color figure online)

2.3 Out-of-Sample Forecast

To further evaluate the performance of the neural network predictions, we conducted

an out-of-sample testing using the daily confirmed case and testing data from March

1st, 2022, to July 1st, 2022. This evaluation focuses on six randomly selected states

California, Georgia, Massachusetts, New York, Texas, and Wyoming. These states

were chosen to cover a range of parameters such as testing rate, case rate, and pop-

ulation density. Notably, this period witnessed a surge in the SARS-COV-2 variant

Omicron BA.2 across the United States. In Fig. 4, we present a comparison between

the predicted true case count and the confirmed case count during this time frame. The

predicted true daily new infections greatly surpass the number of confirmed cases.

Lower testing effort is generally associated with more undetected infections. The

undercounting factor is notably higher in Texas and Georgia primarily due to its lower

testing rate per capita in comparison to other selected states.

2.4 Exploration of Hypothetical Scenarios

One of the primary objectives of the neural network approximation is to reveal the

relationship between the recovered true cases, confirmed cases, and testing effort. To

explore this relationship, we establish a baseline using the testing data and daily new

confirmed case data from Massachusetts, New York, and Texas on November 15th,
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Fig. 4 Comparison of predicted true case and confirmed case between March 1st, 2022 and July 1st, 2022.

Six panels are for California, Georgia, Massachusetts, New York, Texas, and Wyoming, respectively (Color

figure online)

Fig. 5 Predicted case with varying confirmed case and testing volume. Three panels are for Massachusetts,

New York, and Texas, respectively (Color figure online)

2020. This date is chosen because the case rate and the testing volume at that time

roughly lies in the middle of the range of the dataset. Next, we investigate different

hypothetical scenarios by modifying the testing volume by a factor of x1 from the

baseline and changing the confirmed cases by a factor of x2 from the baseline. In other

words, we plot f̂ (x1 Ic, x2λ1, x2λ2, λ3) for the trained neural network approximation

function f̂ . The values of x1 and x2 are selected from a 100×100 equi-spaced 2D grid

within the range of [0.5, 1.5] × [0.5, 1.5]. We generate a total of 104 new scenarios,

which are then input into the trained artificial neural network predictor f̂ . The results

are illustrated in Fig. 5. As anticipated, the predicted true cases increase with the

confirmed case count and decrease with the testing volume.
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Fig. 6 Predicted case with varying confirmed case and two fixed testing volume scenarios. TC 40k and TC

100k mean recovered true case with 40,000 and 100,000 daily tests respectively. CC means confirmed true

case (Color figure online)

To gain a clearer understanding of the relationship between the recovered true cases,

confirmed cases, and testing efforts, we conduct an analysis considering two distinct

scenarios. In scenario A, 40,000 tests are performed, while in scenario B, 100,000 tests

are conducted within a state. The number of positive cases Ic (i.e., confirmed cases)

is varied from 500 to 10,000. We examine the predicted true case count Ît = f̂ (Ic,λ)

in ten different states: California, Florida, Indiana, Massachusetts, New Jersey, New

York, Ohio, Pennsylvania, Texas, and Vermont. The results are depicted in Fig. 6.

The findings reveal that, for the first nine states, under the same testing effort, the

recovered case count exhibits a super-linear growth pattern in relation to the confirmed

case count. For instance, if 10,000 positive cases are detected out of 40,000 tests, the

recovered true case count is approximately four times higher than the confirmed case

count. As the testing effort increases and 10,000 positive cases are identified out of

100,000 tests, the recovered true case count is only about 2–3 times higher than the

confirmed case count. The last panel of Fig. 6 demonstrates a scenario where the trained

neural network fails to accurately predict the true recovered cases. This discrepancy

arises because the highest recorded daily test count in Vermont is only 12,000. As a

result, the two scenarios tested here are significantly different from the training set

that the neural network has learned from.

Another interesting observation is that even with sufficient testing, the recovered

true case count does not approach zero when the confirmed case count reaches zero.

This can be attributed to a combination of factors, including the nature of COVID-19

testing and potential data artifacts. On one hand, regardless of the number of tests

conducted by a state, cases in certain underserved communities and remote areas

may remain undetected. Consequently, this leads to a non-zero extrapolation of the

predicted true case count. On the other hand, there is a possibility of over-counting

deaths that are not actually caused by COVID-19 as COVID-19 deaths. Although the

impact of these over-counted deaths on the overall pandemic is relatively small, they

can contribute a non-negligible proportion to the reported death count during periods

when the case count is very low (such as in spring 2021 and spring 2022). Since the

true case count is derived from the daily death count in our analysis, this factor may

also inflate the estimated daily case count when the daily confirmed case count is low.
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3 Artificial Neural Network Training

3.1 Training Data Preparation

As previously mentioned, the objective of the neural network approximation is to find

a suitable parameter θ to fit the function

It = f (Ic,λ, θ)

to the training data, where It and Ic represent the normalized recovered true case

rate and confirmed case rate, respectively. The parameters θ correspond to the neural

network parameters, while λ = (λ1, λ2, λ3) represents the input data normalized from

testing volume, testing rate, and population density. Both daily confirmed case count

Ic and the testing data comes from the Coronavirus Resource Center of Johns Hopkins

University (Center 2023). The true infection count is recovered by backcasting from

the death count with a careful estimation of the IFR considering multiple factors. See

Sects. 4 and 5 for details.

To ensure proper normalization of the data, we apply the following nonlinear trans-

formations to the input and output data. Let Pop denote the local population (state

population). Recall that It , Ic, λ1, λ2, and λ3 are recovered daily true case count,

daily confirmed case count, daily test volume, daily test rate per capita, and the local

population density, respectively. Note that Pop = λ2/λ3 is a function of the input

parameters. We utilize the following transformations to normalize data:

Ĩc = 50
√

Ic/Pop

Ĩt = 25
√

It/Pop

λ̃1 = 0.05 3
√

λ1

λ̃2 = 200λ1/Pop

λ̃3 = 0.2 log λ3 .

In other words, the artificial neural network, denoted by NNθ : R
4 → R, takes the

value ( Ĩc, λ̃1, λ̃2, λ̃3) ∈ R
4 and maps to Ĩt ∈ R. The full form of the approximation

function f (Ic,λ, θ) is

It =
Pop

625
NNθ ( Ĩc, λ̃1, λ̃2, λ̃3) := f (Ic,λ, θ).

The function f is well defined because variables Pop, Ĩc, λ̃1, λ̃2, λ̃3 are all functions

of Ic and λ.

This results in a training data set {(X i , yi )}
N
i=1, where X i = ( Ĩc(i), λ̃1(i), λ̃2(i), λ̃3

(i)) and yi = Ĩt (i). The nonlinear transformation shifts the distribution of training

data to a suitable range for the artificial neural network. See Fig. 27 in the Appendix

for the distribution of all components of the training data.
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3.2 Neural Network Architecture and Training

In this paper, we employ a feed-forward neural network NNθ composed of six layers

to approximate the true case count It . The network architecture consists of layers

with widths of 64, 128, 128, 128, 64, and 16, respectively. Each layer incorporates a

sigmoid activation function and includes an L2 regularization term with a magnitude

of 0.005. The input layer takes the input X i = ( Ĩc(i), λ̃1(i), λ̃2(i), λ̃3(i)), while the

output layer approximates yi = Ĩt (i).

By the universal approximation theorem, any continuous function can be well-

approximated by a sufficiently large fully connected feed-forward artificial neural

network (Kidger and Lyons 2020; Maiorov and Pinkus 1999). Here we choose this

network architecture based on its successful application in solving high dimensional

partial differential equations in our prior studies (Zhai et al. 2022). Therefore, we know

that this neural network is large enough to well approximate a continuous function in

R
4. Through experimental tests, we find that the verification loss remains at 0.03 even

when adding an additional layer to the network. Given the relatively small size of our

data, a larger architecture is unnecessary. We choose the sigmoid activation function

instead of ReLU because the ReLU activation function exhibits discontinuities in

its first-order derivative. Since we require the first-order derivative for regularization

during training, the sigmoid activation function proves to be a suitable choice. The

neural network training uses the “alternating Adam” approach described below. The

loss is stabilized at around 0.03 after 25 training epochs. The neural network training

is carried out on a MacBook Pro laptop. The training time is less than four minutes.

The loss function used in this study comprises two components: the classical mean

squared error (L1) and a penalty term (L2) for regularization. The L1 term quantifies

the mean squared difference between the neural network prediction NNθ (X i ) and the

transformed observed daily true case count yi :

L1 =
1

N

N
∑

i=1

(NNθ (X i ) − yi )
2 .

However, due to the limited coverage of the observed data in the 4D domain of NNθ ,

training solely on L1 is insufficient to effectively capture the relationship between true

cases, confirmed cases, testing volume, and testing rate. For instance, when varying the

confirmed cases and testing data from a specific day, there is a noticeable discrepancy in

the neural network’s predictions. This is illustrated in Fig. 7, where the predicted cases

do not exhibit a monotonic increase with confirmed cases or a decrease with testing

volume. Moreover, the training results lack robustness, as demonstrated in Fig. 7 with

two different training results yield distinct true case count profiles for Massachusetts

and New York.

Therefore, to address these issues, we incorporate the concept of a Physics-informed

neural network (Raissi et al. 2019) and introduce a biology-informed regularization

based on three principles.
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Fig. 7 Predicted case with varying confirmed case and testing volume without using regularization. Input

data is identical to that of Fig. 5. Two rows are from the prediction of two different training results (Color

figure online)

Firstly, we enforce that the true case count must be greater than the confirmed case

count. This is achieved by including a term that penalizes the deviation between the

predicted true case count and the confirmed case count.

Secondly, we ensure that the partial derivative of the true case count with respect

to the confirmed case count is positive, as a higher confirmed case count implies a

higher true case count. We incorporate this constraint by penalizing the negative partial

derivatives.

Lastly, we aim to capture the negative relationship between the true case count and

the testing rate. This is because an increased testing rate, given a fixed number of con-

firmed cases, suggests a lower number of true infections. To enforce this relationship,

we introduce a term that penalizes positive partial derivatives of the true case count

with respect to the testing rate.

By incorporating these penalty terms, the overall regularization term L2 becomes

L2 =
1

N

N
∑

i=1

[l1(i) + l2(i) + l3(i)]

where l1(i), l2(i), and l3(i) are the three penalty terms defined as:

l1(i) = 5 max
(

Ĩc(i) − 2NNθ (X i ), 0
)

l2(i) = 8 max

(

−
∂NNθ

∂ Ĩc

(X i ), 0

)
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l3(i) = 12 max

(

∂NNθ

∂λ̃1

(X i ), 0

)

.

To compute the partial derivative terms in L2, we can utilize backpropagation, a

built-in function of TensorFlow (tf.gradient). As the training set derived from

real-world data may not sufficiently cover the entire input domain, and since the loss

term L2 is independent of the output, we address this issue by uniformly sampling

an additional set of M = 50, 000 points within the 4D box that contains the original

training set {(X i , yi )}
N
i=1. These new points, denoted as {Z j }

M
j=1, provide a more

representative distribution as they uniformly cover the 4D domain. Training the penalty

term L2 using the training set {Z j }
M
j=1 will help the neural network "learn" and properly

capture the three constraints described above.

To address the differences in scales between L1 and L2 and the fact that they

are trained on different sets, a training strategy inspired by the "Alternating Adam"

approach proposed in Zhai et al. (2022) is employed. During each training step, a

random batch is sampled from the original training set {(X i , yi )}
N
i=1, and the Adam

optimizer is applied to optimize L1 with respect to this batch. Then, another random

batch is sampled from the training set {Z j }
M
j=1, and the Adam optimizer is used to

optimize L2 with respect to this batch. The learning rates for the Adam optimizers

are set to 0.0003 for L1 and 0.0005 for L2. This approach effectively trains both loss

functions simultaneously, regardless of their scales. The inherent scaling-invariance

of the Adam optimizer ensures that the optimization is performed properly for each

loss function (Kingma and Ba 2014).

To monitor the training progress and prevent overfitting, a testing set is randomly

selected, consisting of 20% of the original training set {(X i , yi )}
N
i=1. The losses on

both the training set and the testing set are observed during training. The training

process stops after 25 epochs to avoid overtraining. Each epoch involves training both

loss functions using 458 batches with a batch size of 32.

4 Generation of Training Set I: Backcasting fromDaily Death Count

A well-constructed training set plays a crucial role in the success of a neural network

prediction project. As discussed before, the input data consisting of the daily confirmed

cases, testing volume, testing rate, and population density is relatively straightforward,

as this information can be sourced from public health agencies or online databases, such

as the database from the Coronavirus Resource Center of Johns Hopkins University

(Center 2023). However, the true daily new cases It , which serve as the output of the

artificial neural network, are unknown. Therefore, a significant portion of our efforts

in generating the training set is focused on recovering the true daily new cases, a topic

that will be extensively discussed in the next two sections.

The basic concept behind recovering the daily new cases is that

daily new case ∗ delay × IFR = daily new death,
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where IFR represents the infection fatality ratio (IFR) and ∗ denotes convolution.

Hence, our strategy involves first utilizing the daily new confirmed case count and the

daily new death count to infer the distribution of the delay from a confirmed COVID-19

case to a confirmed COVID-19 death. Subsequently, we utilize information regarding

age composition and vaccination rates to estimate the time series of the IFR.

4.1 Data Processing

It is widely recognized that COVID-19 data reporting is subject to various fac-

tors, including weekend effects, holiday effects, noise, and potential human errors

in reporting. As a result, the initial step in our analysis involves preprocessing the

daily confirmed cases and reported deaths. This data processing procedure comprises

the following five steps:

1. Correcting human errors. In many states, the COVID-19 data is affected by artificial

data backlogs, where the case count and/or death count of multiple days are reported

on a single day. Figures 17 and 18 demonstrate raw case and death count. It is

easy to see that human error causes multiple artificial spikes. Sometimes thousands

backlogged death accumulated in more than a year are reported in a single day, such

as the top left corner of Fig. 20 (Missouri). Through extensive testing, we identified

irregular reporting patterns by flagging days where the reported case/death count is

at least twice the average of the previous 8 days. The excess cases/deaths resulting

from backlogs are then uniformly redistributed over the previous L days. The value

of L is chosen to ensure that the redistribution for each day does not exceed 65%

of the average daily cases/deaths.

2. Removing weekend factor. Most states report less cases and deaths in the weekends,

which causes significant periodicity of the data. This problem can be solved by

taking the 7-day average.

3. Removing holiday factor. COVID-19 data reporting during Thanksgiving and

Christmas/New Year periods is highly irregular due to reporting delays during

these holidays. To address this issue, we employ a linear function to bridge the

data before and after a specific time window. The discrepancy between the actual

reported data and the linear function is then offset by redistributing the correspond-

ing cases/deaths from the day immediately following this time window. Since the

training set includes only four holidays, all time windows are manually adjusted to

effectively mitigate the impact of the holiday factor.

4. Smoothing data. We use the LOESS regression method (Cleveland and Devlin

1988) to smooth the data. The smoothing window extends from 7 days before to

28 days after each data point.

5. Addressing negative fluctuations: Following the LOESS smoothing process, there

is a possibility of the initial phase of case/death fluctuating below zero. To resolve

this issue, we utilize an exponential function to fit the 7-day average data of the

first L days (starting on January 22, 2020) for each state. Here, L represents the

date of the peak of the first wave during the spring of 2020. The initial case/death

counts are then replaced with the values obtained from this exponential fit.
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The daily confirmed case and daily death data after processing of each state are

demonstrated in Figs. 19 and 20. It is easy to see that the data become significantly

smoother and more readable than the raw data in Figs. 17 and 18.

4.2 Deconvolution and Regularization

The daily reported deaths attributed to Covid-19 can be viewed as a convolution of

the time series of fatal infections with a delay distribution. Specifically, the delay

time from a confirmed case to a reported death, denoted as �, follows an unknown

distribution:

P[� = i] = δi .

The number of confirmed deaths in the United States on day n, denoted as Dn , can be

expressed as

Dn =

n
∑

i=0

Iiδn−iξ,

where Ii represents the confirmed cases in the United States on day i, and ξ repre-

sents the case fatality rate (CFR). Thus, the process of recovering fatal infections from

reported deaths is a deconvolution operation. (Note that a deconvolution is different

from a convolution in the other direction as Phipps et al. (2020) does, which tends

to overly smooth the time series of the true infection count.) Based on the findings

presented in Flaxman et al. (2020), Phipps et al. (2020), we assume that the delay distri-

bution, {δi }, follows a gamma distribution characterized by two unknown parameters,

α and β.

Let N denote the duration of available data. The convolution problem can be

expressed in matrix form as

PN (α, β) �I ξ = �D, (1)

where �I is a column vector of length N containing the number of confirmed infections

each day, �D is a similar column vector containing the number of reported deaths, and

PN (α, β) is an N ×N square matrix that represents the conditional probability of death

on each day. Specifically, the entry in column i and row j represents the probability that

a newly confirmed COVID-19 patient on day i eventually dies on day j , conditioned on

the assumption that this infection is fatal. We follow Phipps et al. (2020) by assuming

that the time duration between confirmed case and confirmed death follows a Gamma

distribution with unknown parameters α and β. To simplify the computation, we

make the assumption that the maximum delay is 35 days. Consequently, each column

of PN (α, β) contains at most 35 non-zero entries (ranging from θ0 to θm , where

m = 34).
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In other words, we have

PN (α, β)i j =

{

δi− j if 0 ≤ i − j ≤ 34

0 otherwise

where

δi = P[i ≤ Z ≤ i + 1]

for a Gamma distributed random variable Z with parameters α and β.

One might attempt to find suitable parameters by minimizing ‖PN (α, β)−1 �Dξ− �I‖2
2

over all possible values of α and β. However, this approach is not feasible for two

reasons. Firstly, the deconvolution process is known to be unstable due to the ill-

conditioned nature of PN (α, β) (Miller et al. 2022; Jahja et al. 2022). Even small

noise in �D can lead to significant amplification during matrix inversion. Secondly, the

case fatality ratio ξ is unknown. Thus, regularization is necessary to prevent excessive

fluctuations in the recovered �I . The optimization problem also involves the recovery

of the unknown ξ .

The regularization is achieved by incorporating penalty terms for the second and

fourth order derivatives. Two matrices, namely R2 and R4, are employed to discourage

excessive fluctuations in the time series of confirmed cases. Each row of R2 is respon-

sible for regularizing one entry of �I (except the first and last ones). More precisely,

R2 has the form

R2 = λ2

⎡

⎢

⎢

⎢

⎣

1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

⎤

⎥

⎥

⎥

⎦

∈ R
(N−2)×N .

Similarly, matrix R4 regularizes the fourth order derivative of entries of �I (except

the first two entries and the last two entries). It has the form

R4 = λ4

⎡

⎢

⎢

⎢

⎣

1 −4 6 −4 −1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 −1

⎤

⎥

⎥

⎥

⎦

∈ R
(N−4)×N .

With the regularization and the tuning parameter λ, we can utilize the modified

delay matrix P to perform a reliable deconvolution of the reported death time-series

into the corresponding fatal infections. This allows us to estimate the daily confirmed

infection count by solving the following system using the least squares method:

⎡

⎣

PN (α, β)ξ

λ2 R2

λ4 R4

⎤

⎦ �I = �D. (2)

123



Artificial Neural Network Prediction... Page 17 of 38 49

Fig. 8 The red curve shows the reported death time series in the United States between 03/01/20 and

11/30/21, and the blue curve is the deconvolve time series of fatal infections when some arbitrary matrix P

is constructed with values of α = 30 and β = 0.5. For the sake of simplification, λ4 = 0 in all plots. λ = λ2

changes from 0 (no regularization) to 105 (too much regularization) in six plots (Color figure online)

Figure 8 demonstrates the effectiveness of regularization and how the variation of

λ2 and λ4 impacts the recovered least squares solution of equation (2).

Since the parameter ξ (CFR) is also unknown, it must be solved in the optimization

problem together with α and β. After conducting several tests, we determine that λ2 =
0.5 and λ4 = 2 are suitable coefficients for the regularization matrices. Additionally,

we only focus on minimizing the difference between the observed �I and the least

squares solution after a period of 120 days from the start date (March 1st, 2020). This

choice is made because the testing was limited during the initial few months of the

pandemic, and widespread testing became available in the summer of 2020, stabilizing

the case fatality rate. This gives the optimization problem

min
α,β,ξ

‖P120( �I − Î (α, β, ξ))‖2
2 (3)
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Fig. 9 The result of the deconvolution is the yellow curve (found using λ2 = 0.5 and λ4 = 2). The delay

distribution is shown in the lower panel (Color figure online)

where Î is the least square solution of

⎡

⎣

PN (α, β)ξ

λ2 R2

λ4 R4

⎤

⎦ Î = �D,

the projection matrix P120 cuts off the first 120 entries of the vector. We implemented

the optimization procedure using the fmincon function in MATLAB, and the results

are displayed in Fig. 9. The daily confirmed case count and daily death count of the

United States come from the Coronavirus Resource Center of Johns Hopkins Univer-

sity (Center 2023). As illustrated in the figure, the recovered case count from the death

count shows a reasonable match with the confirmed case count, particularly after the

availability of widespread testing in the summer of 2020. The optimal values obtained

for α and β are α̂ = 25.358 and β̂ = 0.802, respectively. These values indicate that

the expected value of the delay between a fatal infection and the reported death is

approximately α̂β̂ = 20.337 days.

One important observation from this deconvolution process is that the CFR ξ does

not show significant change from mid-2020 when testing became widely available to

late 2021 before the surge caused by Omicron variant. As seen in Fig. 9, the yellow
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line and blue line remains parallel during this time period. Therefore, we only address

the change of infection fatality rate for the Omicron variant. See Sect. 5 for details

4.3 Recovery of Daily Infection Count

After obtaining the optimal values α̂ and β̂, we can recover the true daily new infection

count by solving the following least squares problem:

⎡

⎣

PN (α, β)
i f r

cλ2 R2

cλ4 R4

⎤

⎦ Î = �D, (4)

where 
i f r is a diagonal matrix whose entries represent the time series of the infection

fatality rate (IFR), and c is the average value of the IFR. Note that the IFR is typically

a small value around 0.01. Without multiplying c, we would overly regularize the

deconvolution problem. The solution to this least squares problem, denoted by Ĩ ,

represents the time series of the recovered infection count.

As seen from the problem (4), the next crucial data required is the time series of the

infection fatality rate (IFR). The IFR is influenced by various factors, including the

overall healthiness of the population, treatment methods, age composition of cases,

vaccination rate, and the presence of variants. In the following section, we will discuss

these factors in detail.

5 Generation of Training Set II: Estimation of Infection Fatality Ratio
(IFR)

The infection fatality ratio (IFR) of a state at time t can be expressed as

IFR(t) = IFRb × IFRR(t),

where IFRb is the baseline IFR and IFRR(t) is the relative change in IFR over time. The

baseline IFR is calibrated using well-acknowledged data, as discussed in the previous

subsection. The time series IFRR(t) represents the relative changes in the IFR due to

various factors, including improvements in treatment, changes in the age composition

of cases, vaccination efforts, and the emergence of different variants. More precisely,

IFRR(t) is represented by

IFRR(t) = IFRT (t) × IFRA(t) × IFRV (t) × IFRO(t),

where IFRT (t) is the relative reduction of IFR due to the improvement of treatment,

IFRA is the relative change in IFR due to the age composition of cases, IFRV (t) is the

relative reduction in IFR due to vaccination, and IFRO(t) is the reduction in IFR due

to the Omicron variant. At the baseline (July 1st, 2020), all four factors of the IFR are

assumed to be equal to 1.
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We remark that the real world IFR depends on many other factors that are not

addressed in our paper, such as variants in addition to Omicron, protection from prior

infections, seasonality, and the capacity of healthcare systems. In order to proceed, we

also need to make many assumptions such as the linear extrapolation of IFR baseline

and the mortality rate of population with advanced age. We also assume that the time

series of IFR of each state is roughly proportional to that of the US average. While we

make every effort to estimate all quantities accurately using the data that is available

to us, any real-world estimation inherently comes with numerous hypotheses and

limitations.

On the other hand, as seen in Fig. 9 (the yellow and blue plots), the ratio of confirmed

death to confirmed infection remains largely stable with a very slow decrease from

mid-2020 (when the testing became widely available) all the way until late-2021 (when

the Omicron variant became dominant). Noting that the majority of infected people

came from unvaccinated and uninfected group before the surge of Omicron variant. We

believe this evidence supports our assumptions that the IFR baseline can be linearly

extrapolated (Sect. 5.1) and that the variants before Omicron did not significantly

change IFR in the real world (Sect. 5.4).

5.1 Time Dependence of IFR Baseline

Since the beginning of the pandemic, significant advancements have been made in the

treatment of COVID-19. The relative reduction in the infection fatality rate (IFRT ) due

to treatment improvements is obtained from the study (Team 2022). We gather IFR

estimates for the United States on April 15, 2020, July 15, 2020, October 15, 2020,

and January 1, 2021. To estimate the values between April 15, 2020, and January

1, 2021, cubic interpolation is employed. Linear extrapolation is used for estimating

IFRT before April 15, 2020, and after January 1, 2021. The extrapolation is halted

in March 2022 when oral antiviral treatments become widely available. Linear inter-

polation is no longer suitable after this time. At the end of our estimation, the final

IFRT (t) is approximately 0.005 before rescaling to the baseline. This estimate may

be slightly conservative as monoclonal antibody treatments became widely available

in 2021. However, it is challenging to estimate the reduction in IFR for each category

of treatment method. The calibration performed in the previous subsection, utilizing

serological survey data, partially addresses this issue. The plot of IFRT (t) is shown in

Fig. 10 (left).

5.2 Change of Age Compositions

Unlike many other pathogens, age is the most significant risk factor for COVID-19. The

disease poses a considerable risk to individuals in advanced age groups. As illustrated

in Fig. 10 (right), based on data from Team (2022), the infection fatality rate (IFR) for

those aged 85 and above is thousands of times higher compared to younger age groups.

Moreover, due to changes in public health policies and events such as nursing home

outbreaks and school reopenings, the age composition of confirmed COVID-19 cases
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Fig. 10 Left: time dependent baseline IFR. Right: IFR for different age group in log-linear plot (Color

figure online)

has varied significantly throughout the pandemic. Therefore, it is crucial to estimate

the age composition of COVID-19 cases for each state.

Case rates for seven different age groups (under 20, 20–29, 30–39, 40–49, 50–

64, 65–74, and 75+) in ten different Health and Human Services (HHS) regions are

obtained from the CDC COVID-19 patient database (Disease Control 2023a). For the

under 20 age group, which is further divided into many groups in the CDC patient

database, we use the case rate of ages 12–15 to represent the entire under 20 age

group. This approximation has a minimal impact on the overall population IFR since

the IFR for the under 20 age group is very low. The case rates at the beginning

of each month are collected and interpolated using the modified Akima algorithm

(Akima 1970, 1974). The advantage of the modified Akima algorithm is its ability to

minimize overshooting or undershooting when data changes dramatically. However,

during the Omicron surge at the end of 2021, weekly data is utilized as the case rates

exhibit significant fluctuations during this period. The interpolated case rates for all

age groups and regions are presented in Fig. 21 in the Appendix.

The time series IFRA(t) can be obtained by calculating a weighted average of the

case rate and the age group IFR. The age group IFR is derived from a weighted average

of the age-specific IFR values reported in the study (Team 2022) and the population

of each 5-year age group based on the 2020 US Census data. However, due to the

significantly higher IFR in the 85+ age group, it needs to be estimated separately with

a better approximation of number of individuals at each age. According to Figure 3

of Easton and Hirsch (2008), for people with age ≥ 80, the mortality rate has a linear

growth. Therefore, in this estimation, we assume that the number of individuals at each

age 85 or older decreases as the exponential of a quadratic function with unknown

parameters. As there are approximately 97,000 individuals in the United States aged

over 100 years, unknown parameters of the quadratic function can be fitted. The IFR

of the 85+ age group is obtained through a weighted average of the IFR values for

each specific age provided in Team (2022) and the estimated number of individuals in

each age group based on the fitting.
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5.3 Change of Vaccination Rate

To assess the relative change in IFR due to vaccination, represented by the time series

IFRV , we need to estimate the relative risk of cases and deaths for the vaccinated

group compared to the unvaccinated group. This can be achieved by analyzing CDC

data provided by Disease Control (2023b), which provides case rates and death rates

for each age group among both the vaccinated and unvaccinated populations.

The CDC vaccination data covers five age groups: 18–29, 30–49, 50–64, 65–79,

and 80+. Vaccination for individuals under 18 years old does not significantly impact

the overall IFR due to their relatively low risk. It’s important to note that the CDC data

is reported on a weekly basis. To match the daily basis of our analysis, we use cubic

spline interpolation to convert the data to daily values.

For a specific age group i , we can determine the relative risk of cases and deaths by

comparing the case and death rates of the unvaccinated group to those of the vaccinated

group. Let Rc(i) and Rd(i) denote the relative risk of cases and deaths, respectively,

for age group i . Additionally, let α(i) represents the vaccination rate of age group i ,

and di denotes the death rate of this age group. We can then determine the proportion

of deaths contributed by the vaccinated group, denoted by β(i),

β(i) :=
α(i)

α(i) + (1 − α(i))Rd(i)
.

Considering the IFR of age group i as IFR(i), we can then calculate the relative

reduction of IFR due to vaccination using the expression

∑

i

di

IFR(i)

∑

i

diβ(i)Rd(i)

Rc(i)IFR(i)
+

∑

i

di (1 − β(i))

IFR(i)

.

Performing this calculation for each day allows us to obtain the time series IFRV .

The daily vaccination rates for each age group can be obtained from CDC data set

(Disease Control 2023b).

5.4 Change of Variants

The final step is to account for the impact of variants on the infection fatality rate

(IFR). As discussed in the beginning of this section, based on the observations shown

in Fig. 9, neither the Alpha variant nor the Delta variant significantly altered the case

fatality ratio in the United States, despite some studies indicating that the Delta variant

may be more intrinsically virulent. This may be because high risk groups are already

vaccinated when the Delta variant surged in United States. Significantly lower risk of

vaccinated and infected group after contracting the Delta variant may also contribute.

Therefore, we will mainly address the impact of the Omicron variant, which has

been found to have a substantial impact on the IFR. The estimated hazard ratio of death
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for Omicron variant compared with Delta variant in various studies ranges from 0.12 to

0.34. Here we set the relative risk of the Omicron variant compared to the pre-Omicron

era as 0.25, which is roughly the average hazard ratio reported in Lewnard et al. (2022);

Ulloa et al. (2022); Ward et al. (2022); Nyberg et al. (2022). Consequently, the relative

risk IFRO(t) is given by

IFRO(t) = (1 − O(t)) + 0.25O(t),

where O(t) represents the proportion of the Omicron variant at time t . The time series

O(t) can be obtained through logistic regression analysis of sequencing data from

Disease Control (2023c).

5.5 Calibration of State Baseline IFR

After acquiring information on how the IFR changes over time, age composition,

vaccination rate, and variants, it is necessary to calibrate the baseline IFR using estab-

lished results from modeling and serological surveys. The baseline IFR, denoted as

IFRb, represents the estimated IFR on July 1st, 2020. The time series of IFR is then

expressed as

IFR(t) = IFRb × IFRr (t),

where IFRr (t) has already been determined by combining all relevant factors.

We find that if the US average baseline IFR is applied to all states, the true case

counts of a few states seems to be underestimated. To fix this issue, in this paper, we use

two well-recognized studies published in Team (2022) and Irons and Raftery (2021)

to calibrate our baseline IFR. The study published in Team (2022) utilizes serological

surveys to estimate the IFR for each state on April 15, 2020, July 15, 2020, October 15,

2020, and January 1, 2021. On the other hand, the study described in Irons and Raftery

(2021) employs a combination of modeling and serological surveys to estimate the

IFR and undercounting factor (the ratio of true cases to confirmed cases) for each

state on March 7, 2021. Both studies provide confidence intervals to account for the

uncertainty in their estimates.

The method used to estimate IFRb is as follows. We start by assuming IFRb =
0.00754X to simplify the calculation, where 0.00754 represents the estimated IFR of

the United States as of January 1st, 2021, as reported in Team (2022). The parameter

X acts as a relative prefactor. Next, we use IFRb = 0.00754 to estimate the IFR on

January 1st, 2021, March 7th, 2021, and the undercounting factor on March 7th, 2021.

By comparing these estimated values with the data provided in Team (2022) and Irons

and Raftery (2021), we can determine the likelihood of X for each state.

To estimate the probability density of X , we employ a Monte-Carlo-like approach.

We assume that the two IFRs and the undercounting factor are normally distributed.

The mean and variance of the normal distribution are derived from the estimated values

and their respective confidence intervals. This approach yields an estimated probability

density function for X . For example, if the IFR of a state on January 1st, 2021, using
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the baseline IFR, is denoted as r1, and the normal random variable representing the

IFR of this state, based on Team (2022), has a mean of μ and a variance of σ 2, then this

data suggests that X follows a normal probability density function N (μ/r1, (σ/r1)
2).

Let f1, f2, and f3 denote the probability density functions obtained from the IFR

in Team (2022), the IFR in Irons and Raftery (2021), and the undercounting factor

in Irons and Raftery (2021), respectively. The likelihood of X is represented by the

rescaled sum of these probability density functions, i.e., f1(x) + f2(x) + f3(x). The

estimated baseline IFR, denoted as I F Rb, can then be calculated as

IFRb = 0.00754 ×
1

3

∫ ∞

−∞
x( f1(x) + f2(x) + f3(x))dx,

which is equal to 0.00754 multiplied by the expectation of X . Additionally, the lower

and upper bounds of IFRb can be determined as the 0.05 and 0.95 percentiles of the

rescaled probability density function 1
3
( f1(x) + f2(x) + f3(x)), respectively.

In states with limited case counts or a significant number of COVID-19 cases in

people of advanced age, the serological survey may tend to overestimate the IFR. This

can result in the recovered true cases being smaller than the confirmed cases during

certain time periods. To address this issue, we introduce an additional upper bound

correction to ensure that the recovered true cases are not smaller than the confirmed

cases. We use a criterion where, after a sufficient number of cases, the 50-day moving

average of the recovered true cases should be greater than the confirmed cases. This

provides an upper bound for the prefactor X .

If the calibrated X from the likelihood function exceeds the upper bound, we set

X to be the upper bound value and adjust the lower bound of the confidence interval.

The lower bound is reset to 0.6891 (which is the average ratio of the lower bound of

the confidence interval to the estimated IFR in Team (2022)) multiplied by X . This

additional correction is applied in a few states such as Virginia, Rhode Island, and

Massachusetts.

Regarding the estimation of IFR in Vermont, there is a significant difference between

the estimates in Team (2022) and Irons and Raftery (2021). We observe that the upper

bound of X is close to the estimate in Irons and Raftery (2021). Taking into account

the healthcare conditions, the estimated IFR for Vermont in Team (2022) (which is

2.498%) appears unreasonably high. Therefore, we only use the estimates from Irons

and Raftery (2021) to calculate the likelihood of X for Vermont.

After calibration, we obtain the time series of IFR, denoted as 
i f r , for 10 selected

states. These states are shown in Fig. 11. The time series of IFR for all states, including

Washington DC, can be found in the Appendix.

After obtaining the time series of IFR, 
i f r , we proceed to solve the least square

problem for each state, including Washington DC. The results for the 10 selected

states are plotted in Fig. 12. The time series of all 51 states, spanning from February

29, 2020, to March 1, 2022, are provided in the Appendix. These 51 time series serve

as the output data for the training set. It is evident that in most cases, the trend of the

recovered true cases aligns with that of the confirmed cases.
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Fig. 11 Time series of each state after calibration (Color figure online)

Fig. 12 Time series of recovered true case of 10 selected state and undercounting factor. CC: confirmed

case. RC: recovered true case. UF: undercounting factor (Color figure online)

6 Data Source

In this section we summarize the data source used in our study to facilitate interested

readers.

Daily confirmed cases count, daily death count, and state testing volume data are

from the JHU COVID-19 database (Center 2023), available at https://github.com/

CSSEGISandData/COVID-19

Infection case rate for each age group are from CDC (Disease Control 2023a),

available at https://covid.cdc.gov/covid-data-tracker/#demographicsovertime

Vaccination rate are from CDC (Disease Control 2023b), available at https://data.

cdc.gov/Vaccinations/COVID-19-Vaccination-Age-and-Sex-Trends-in-the-Uni/5i5k-

6cmh
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Vaccinated and unvaccinated incident rate ratio (IRR) of COVID-19 infection and

death are from CDC (Disease Control 2023d), available at https://data.cdc.gov/Public-

Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/54ys-

qyzm

Variant proportions data are from CDC (Disease Control 2023c), available at https://

covid.cdc.gov/covid-data-tracker/#variant-proportions

7 Conclusion and FutureWork

In this paper we use the backcasting method to estimate the true daily new case count

of each state in the United States. The idea is that the true daily new case can be seen as

a deconvolution problem because daily new death count is the convolution of a delay

distribution and the product of the daily new case count and the infection fatality ratio

(IFR). We first use time series of confirmed cases and deaths count from the whole

United States to estimate the delay distribution from case to death. Then a significant

portion of this paper is dedicated to estimating the IFR. The IFR can be inferred from

serological survey and death count, both of which are considered as more trustworthy

COVID-19 data. The time series of IFR depends one many additional factors, including

age, vaccination, and viral variants. We use the case distribution of COVID-19 cases,

weekly statistics of case and death reduction of vaccination, and daily composition of

variants to estimate the time series of IFRs. The time series of IFR is then calibrated

with some well-recognized studies that combines modeling and serological survey.

While the effect of those factors on IFR are known to the community, as far as we

aware, such a time series of IFR in the United States has not been estimated in other

studies. The resulting estimated true case count is then used as the output training

data for an artificial neural network to investigate the relation among testing volume,

testing rate, confirmed case count, and true case count. Such relation is useful to public

health agencies as it shows how many tests are necessary. It can also be use to provide

a real-time true case count when the death count is not yet available or not reliable.

It is worth mentioning that the lack of reliable daily infection counts is a widespread

problem in the area of COVID-19 modeling and prediction. Many modeling efforts

resort to using death counts to infer model parameters. However, a fundamental

assumption of a large class of compartment models is that the probability distribution

for an individual transitioning from one compartment to another follows an exponen-

tial distribution. These compartment ODE models represent the infinite volume limit

of continuous-time Markov chains (CTMC) that describe individual infections. The

jump times of a CTMC must adhere to an exponential distribution because of the

Markov property. However, as discussed in this paper and numerous other literature

sources (Scheiner et al. 2020; Feng et al. 2007; Ghosh et al. 2022), the time from a

confirmed case to a confirmed death significantly deviates from an exponential dis-

tribution. Therefore, assuming a linear transition rate from the infected population (I)

to deaths (D) is problematic and leads to substantial deviations of the model from the

real world.

Despite the progress made in this paper, we acknowledge that some additional

work is necessary for our artificial neural network estimator to improve the accuracy
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of estimate of the true daily new case count of COVID-19. One factor is that the home

antigen test became widely available since 2022 late spring. As a result, a significant

proportion of daily new COVID cases from low risk groups were not reported to the

healthcare agency because many people just test themselves at home. This factor has

not been addressed into our neural network estimator. In addition, today’s IFR of

COVID-19 is more difficult to estimate due to many factors. For example, the death

count becomes less reliable due to higher immunity level and less virulent variants.

Compared to the situation in 2020, it is less clear how many reported COVID-19

deaths are actually caused by COVID-19. One way of compensating this discrepancy

is to consider the wastewater viral RNA data. Since late 2020, many cities and states

test the COVID-19 RNA concentration in their wastewater regularly. It is known

that wastewater surveillance is an important tool to infer the COVID-19 transmission

dynamics (Shah et al. 2022; Daughton 2020). This serves as an invaluable bridge

connecting the days when daily death count and IFR are more reliable (in 2020 and

2021) and the days when wastewater viral RNA data is available (after mid-2021). We

expect the inclusion of wastewater data will provide a more accurate estimate of the

COVID-19 daily case count in 2022 and afterward.
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Appendix A: Additional Data About COVID-19

In this section we present many figures that demonstrate raw data, processed data, and

intermediate results used to generate the training set. Some data for selected states

have been already demonstrated in the main text. This includes

1 Time series of IFR for all 50 states plus Washington DC

2 Time series of recovered true cases and undercounting factor for all 50 states plus

Washington DC

3 Raw and smoothed confirmed daily case count and daily death count for all 50

states plus Washington DC

4 Time series of case rate per age group at all regions of the United States

5 Time series of vaccination rate of all age group for all 50 states plus Washington

DC

6 Incident rate ratio of COVID-19 case and death for vaccinated and unvaccinated

groups.

7 Time series of testing volume for all 50 states plus Washington DC
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Fig. 13 Time series of state IFR for 24 states plus Washington DC (Color figure online)

Fig. 14 Time series of state IFR for 26 states (Color figure online)

A.1 Time Series of State IFR

The time series of IFR for 10 selected states are presented in the main text. Below

we demonstrate the time series of IFR for all 50 states plus Washington DC after

considering age group case rate, vaccination, variant in Figs. 13 and 14.
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Fig. 15 Time series of recovered true case count for 24 states plus Washington DC (Color figure online)

Fig. 16 Time series of recovered true case count for 26 states and Washington DC (Color figure online)

A.2 Time Series of State Recovered True Case

The time series of recovered true case and under counting factor for 10 selected states

are demonstrated in the main text. Here we show these data for all 50 states plus

Washington DC in Figs. 15 and 16.
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Fig. 17 Daily confirmed case count and 100× daily death count for 24 states plus Washington DC. Raw

data before processing (Color figure online)

Fig. 18 Daily confirmed case count and 100× daily death count for 26 states. Raw data before processing

(Color figure online)

A.3 State Confirmed Case and Death

Figures 17 and 18 show the daily case count and 100× daily death count of all 50 states

plus Washington DC. The data comes from the JHU COVID-19 database (Center

2023). Figure 19 and 20 are the processed daily case count and daily death count after

addressing data dump and holiday issues.
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Fig. 19 Daily confirmed case count and 100× daily death count for 24 states plus Washington DC. Processed

data after addressing weekday issue, holiday issue, and artificial data dump from backlogs (Color figure

online)

Fig. 20 Daily confirmed case count and 100× daily death count for 26 states. Processed data after addressing

weekday issue, holiday issue, and artificial data dump from backlogs (Color figure online)

A.4 Case Rate Per Age Group

Figure 21 shows the time series of case rate of each age group from all 10 regions

provided by CDC (Disease Control 2023a). The HHS regions used by CDC is described

in the following Table 1.
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Table 1 List of states and districts in each CDC region

Region States

1 Connecticut, Maine, Massachusetts, New Hampshire,

Rhode Island, Vermont

2 New Jersey, New York, Puerto Rico, Virgin Islands

3 Delaware, District Of Columbia, Maryland,Pennsylvania,

Virginia, West Virginia

4 Alabama, Florida, Georgia, Kentucky, Mississippi, North

Carolina, South Carolina, Tennessee

5 Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin

6 Arkansas, Louisiana, New Mexico, Oklahoma, Texas

7 Iowa, Kansas, Missouri, Nebraska

8 Colorado, Montana, North Dakota, South Dakota, Utah,

Wyoming

9 Arizona, California, Guam, Hawaii, Nevada

10 Alaska, Idaho, Oregon, Washington

Fig. 21 Case rate of each age group in all 10 regions (Color figure online)

A.5 State Vaccination Rate

Figures 22 and 23 gives the time series of vaccinate rate for each age group older than

18 years old in all 50 states plus Washington DC. This data is obtained from CDC

(Disease Control 2023b).
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Fig. 22 Time series of vaccination rate of each age group for 24 states plus Washington DC (Color figure

online)

Fig. 23 Time series of vaccination rate of each age group for 26 states (Color figure online)

A.6 Incident Rate Ratio (IRR) of Vaccinated and Unvaccinated Groups

The incident ratio of COVID-19 infection and death for each group is given in Fig. 24.

This data is obtained from CDC website (Disease Control 2023d). Note that death data

of younger age group is not included because there are too few, sometimes zero, death

count from vaccinated young group in many weeks. The ratio of IFR of unvaccinated

group to vaccinated group of three older age groups are shown in Fig. 24 Right.
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Fig. 24 Left and Middle: Incident rate ratio (IRR) of COVID-19 infection and death for each age group.

Right: Ratio of IFR of unvaccinated group to vaccinated group (Color figure online)

Fig. 25 Time series of COVID-19 testing volume for 24 states plus Washington DC. The blue and red lines

are raw data and smoothed data respectively (Color figure online)

A.7 State TestingVolume

Figures 25 and 26 gives the time series of smoothed COVID-19 test volume in all 50

states plus Washington DC. This data comes from the Coronavirus Resource Center

of Johns Hopskins University (Center 2023).

A.8 Training Set Data Distribution

Figure 27 displays the distribution of the data in the training data set.
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Fig. 26 Time series of COVID-19 testing volume for 26 states. The blue and red lines are raw data and

smoothed data respectively (Color figure online)

Fig. 27 Distribution of normalized data (Color figure online)
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