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ABSTRACT. Given a self-adjoint operator 7" on a separable infinite-dimensional Hilbert
space we study the problem of characterizing the set D(T') of all possible diagonals of T'. For
operators T with at least two points in their essential spectrum oess(T"), we give a complete
characterization of D(T) for the class of self-adjoint operators sharing the same spectral
measure as T' with a possible exception of multiplicities of eigenvalues at the extreme points
of 0ess(T"). We also give a more precise description of D(T') for a fixed self-adjoint operator
T, albeit modulo the kernel problem for special classes of operators. These classes consist of
operators T for which an extreme point of the essential spectrum oess(7') is also an extreme
point of the spectrum o (7).

Our results generalize a characterization of diagonals of orthogonal projections by Kadison
[38, 39], Blaschke-type results of Miiller and Tomilov [51] and Loreaux and Weiss [48], and
a characterization of diagonals of operators with finite spectrum by the authors [15].

1. INTRODUCTION

The study of diagonals of bounded linear operators acting on infinite-dimensional Hilbert
spaces has a long history. A systematic study of the set of diagonals of an operator was
pioneered by Herrero [34]. In particular, he gave sufficient conditions for a sequence to
be a diagonal in terms of the essential numerical range W,(T') of an operator T', see [29].
Even earlier, Fan [26] jointly with Fong and Herrero [27, 28] studied the existence of zero
diagonals of bounded linear operators. More recently in this vein, Loreaux and Weiss [47]
have shown that an infinite-rank idempotent admits a zero diagonal if and only if it is not a
Hilbert-Schmidt perturbation of an orthogonal projection.

Miiller and Tomilov [51] proved a far reaching extension of Herrero’s result [34]. Any
sequence (d;);ey contained in the interior of W, (7") and satisfying the non-Blaschke condition

(1.1) ) " dist(di, R\ We(T)) = o0

ieN
is a diagonal of a self-adjoint operator T'. Moreover, their result extends to tuples of self-
adjoint operators. Miiller and Tomilov [52] also proved that the set of all possible constant
diagonals of a bounded Hilbert space operator 7' is always convex. In a related paper [53]
they studied matrix representations for 7" having certain specified algebraic or asymptotic
structure.
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Among other results on diagonals of operators, Fong [30] proved that any bounded se-
quence of complex numbers is a diagonal of a nilpotent operator. Jasper, Loreaux, and
Weiss [37] proved an infinite-dimensional extension of Thompson’s theorem [57] for compact
operators and they characterized diagonals of unitary operators. A complex-valued sequence
(d;)ien is a diagonal of some unitary operator on H if and only if sup |d;| < 1 and

200 - 1) < 301~ 16,

Bourin and Lee [10, 11] investigated a general setting of operator-valued diagonals defined
as compressions (Pyy, T Py, )Jnen of an operator T' with respect to a collection of mutually
orthogonal subspaces (M, )nen of a Hilbert space H such that @, .y M, = H, where Py, de-
notes an orthogonal projection onto M,,. In the case when all subspaces M,, are 1-dimensional
such compressions correspond to a diagonal of T

For finite-dimensional spaces, the classical Schur-Horn theorem [35, 49, 56] characterizes
diagonals of hermitian matrices in terms of their eigenvalues. A sequence (di,...,dy) is a
diagonal of a hermitian matrix with eigenvalues (A, ..., Ay) if and only if

(1.2) (di,...,dn) € conv{(Ao1),---, Aov)) : 0 € SN}

This characterization has attracted significant interest and has been generalized in many
remarkable ways. Some major milestones are the Kostant convexity theorem [45] and the
convexity of moment mappings in symplectic geometry [8, 31, 32].

An infinite-dimensional extension of the Schur-Horn theorem has been a subject of in-
tensive study in recent years. In particular, we are interested in the following problem
generalizing the Schur-Horn theorem.

Problem 1.1. Given a bounded linear operator 1" on a separable Hilbert space H, charac-
terize the set of all diagonals

(1.3) D(T) = {((Te;,€;))ien : (€)ien is an orthonormal basis of H} C ¢*°(N).

Neumann [54] gave an initial, albeit approximate, solution to this problem for self-adjoint
operators T' by identifying the ¢*°-closure of D(T') with a convex set generalizing condition
(1.2). Antezana, Massey, Ruiz, and Stojanoff [1] obtained a refinement of results of Neumann
[54]. However, the first fully satisfactory result in this direction was shown by Kadison in his
influential work [38, 39]. Kadison discovered a characterization of diagonals of orthogonal
projections on separable Hilbert spaces. A sequence (d;);eny in [0,1] is a diagonal of an
orthogonal projection if and only if the sums

(1.4) a:= Y di and b= Y (l—dy

di<1/2 di>1/2

satisfy either a +b = 00, or a + b < oo and a — b € Z. Constructive proofs of the sufficiency
part of Kadison’s theorem, also known as the Carpenter’s theorem, were given by the authors
[13] and Argerami [2]. Kaftal and Loreaux [40] gave an insightful proof of the necessity part of
Kadison’s theorem by identifying the integer a — b with the so-called essential codimension
of a pair of projections. Bownik and Szyszkowski [20] proved a measurable extension of
Kadison’s theorem.

The natural extension of this problem to characterizing D(T") for normal operators T'

remains mostly intractable. In the infinite-dimensional case Arveson [6] gave a necessary
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condition on diagonals of operators with finite spectrum. In the finite-dimensional case
the diagonals of 3 x 3 normal matrices were completely characterized by Williams [58], but
the problem remains open in dimensions > 3. Several authors [3, 4, 5, 9, 24, 43, 50, 55]
have studied an extension of the Schur-Horn problem in von Neumann algebras, which was
originally proposed by Arveson and Kadison [7].

Arveson and Kadison [7] and Kaftal and Weiss [41] extended the Schur-Horn theorem to
positive trace class operators and compact positive operators, respectively. These results
are stated in terms of majorization inequalities. Kaftal and Weiss [41] showed that a non-
increasing sequence of positive numbers d; > dy > ... > 0 converging to 0 is a diagonal of
a positive compact operator with trivial kernel and positive eigenvalues Ay > Ay > ... > 0,
listed with multiplicity, if and only if

(1.5) idi:i)\i and Zn:di < Zn:)\i for all n € N.
i=1 i=1 i=1 i=1

Loreaux and Weiss [46] gave necessary conditions and sufficient conditions on D(T') for
compact positive operators T with nontrivial kernel.

Beyond positive compact operators, the authors [12] characterized the set D(T') for a class
of locally invertible positive operators 7. This result was used to characterize sequences
of norms of a frame with prescribed lower and upper frame bounds, extending Kadison’s
theorem, which characterizes sequences of norms of Parseval frames. The connection between
frame theory [21, 33] and the study of diagonals was investigated by Antezana, Massey, Ruiz,
and Stojanoff [1]. For more results in this direction see [14, 17, 25, 44].

Beyond orthogonal projections, the second author [36] extended Kadison’s result [38, 39]
to characterize the set of diagonals D(T) of a self-adjoint operator T" with three points in the
spectrum. Subsequently, the authors have characterized the set of diagonals D(T") of self-
adjoint operators with finite spectrum [15, 16] by introducing Lebesgue type majorization
extending the Riemann type majorization (1.5).

Siudeja and the authors [19] proved a version of the Schur-Horn theorem for unbounded
self-adjoint operators with discrete spectrum. All previous results only considered bounded
operators. Another important development in this paper is a new type of result which we
refer to as “diagonal-to-diagonal”. For example, Proposition 2.16, which is the extension of
the result of Kaftal and Weiss [41] mentioned above, is an example of such a diagonal-to-
diagonal result. That is, given positive nonincreasing sequences (d;);en and (\;);en which
converge to zero and satisfy (1.5), if (\;)en is a diagonal of some (not necessarily bounded)
symmetric operator 7', then (d;);ey is also a diagonal of T'.

The most recent progress on Problem 1.1 was shown by Loreaux and Weiss [48]. They
resolved Blaschke’s enigma, introduced by Miiller and Tomilov [51], for self-adjoint operators
whose essential spectrum contains at least three points including the extreme points of the
spectrum. If 7" is a self-adjoint operator with essential spectrum satisfying #|oess(7)| > 3
and the spectrum of T is contained in its essential numerical range o(T') C W,(T), then the
sufficient condition (1.1) is also necessary, see [48, Theorem 4.6]. In summary, a complete
answer to Problem 1.1 was previously known only for compact positive operators with either
trivial or infinite-dimensional kernel [41, 46], for operators with finite spectrum [15, 38, 39],

or for the above class of operators with > 3 points in their essential spectrum [48].
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The goal of this paper is to characterize the set of diagonals D(T') of an arbitrary self-
adjoint operator 7. In our previous paper [18] we gave a characterization of D(T') for
compact self-adjoint operators, which extended earlier results for positive compact operators
in [41, 46]. In the current paper we characterize the set of diagonals D(T) for self-adjoint
operators with at least 2 points in their essential spectrum, extending earlier results of the
authors [15] for operators with finite spectrum.

In the case when T has at least two points in its essential spectrum o.s5(7"), by rescaling
we can assume that the smallest and the largest point of o.(7") are 0 and 1, respectively.
Our main result is Theorem 1.4, which yields a characterization of D(T) for the class of
self-adjoint operators sharing the same spectral measure as T" with the possible exception of
the multiplicities of the eigenvalues 0 and 1.

We also give a more precise description of D(7T) for a fixed self-adjoint operator T, al-
beit modulo the kernel problem for three classes of operators for which an extreme point
of the essential spectrum of T is also an extreme point of the spectrum of 7. The first
class consists of positive compact operators, where the kernel problem makes its initial ap-
pearance, see Theorem 2.20. The second class consists of diagonalizable operators whose
spectrum is contained in [0, 1] and its eigenvalues sequence ();) satisfies the Blaschke con-
dition: Y min(\;, 1 — \;) < co. The third class is an extension of the second class allowing
the spectrum to be contained either in (—oo, 1] or [0, 00), and requiring a similar Blaschke
condition for eigenvalues in (0, 1).

Our description is given by a series of algorithms, which are grouped according to the
cardinality of o.(7"), that determine whether a numerical sequence is a diagonal of T, or
not. The algorithm for operators with > 5 points in their essential spectrum uses a recursive
pruning procedure and is always conclusive unless it is reduced to 4-point algorithm. The
algorithm for an operator T" with 4-point essential spectrum is conclusive unless 7' decouples
into a pair of a compact operators and an operator with 3-point essential spectrum, which
reduces the outcome to the kernel problem (for positive compact operators) and 3-point
algorithm. A similar scenario plays out for an operator 7" with 3-point essential spectrum.
The most interesting, but also the most complicated, algorithm for an operator T with 2-
point essential spectrum is conclusive unless the question is reduced to one of the three
above mentioned classes of the kernel problem or an application of the 1-point algorithm
[18, Section 11]. In turn, 1-point algorithm for determining diagonals might be inconclusive
only when it reduces to the kernel problem for positive compact operators. In summary, a
conglomeration of our algorithms is inconclusive only if it reduces to the kernel problem for
the three specific classes of operators described in the previous paragraph.

Moreover, we characterize diagonals of self-adjoint operators with uncountable spectrum,
which includes all non-diagonalizable self-adjoint operators, see Theorem 1.5. This char-
acterization does not take the form of a finite list of conditions, but rather we show that
the algorithm for operators with > 5-point essential spectrum is always conclusive, though
possibly after an infinite number of steps.

There are two main differences between the current paper and our previous work on
compact operators [18]. First, we must consider operators which are not diagonalizable.
Second, even for diagonalizable operators the eigenvalues and diagonals need not be in c¢y,
and hence we need a concept of majorization for general bounded sequences. Even for
nonnegative nonincreasing sequences in ¢y, the concept of majorization for infinite sequences
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can be quite subtle, see [41, 42, 46]. Further subtleties were observed in [18] where sequences
were not necessarily nonnegative, but still in ¢y. Since the sequences in this paper can not,
in general, be rearranged into nonincreasing order, we developed a concept of majorization
using the following function. This is distinct from the Hardy-Littlewood-Pdélya majorization
of L' functions used in the Schur-Horn problem in von Neumann algebras [3, 9, 23, 24, 50, 55].

Definition 1.2. Given a sequence d = (d;);es, for each o € R define
Cal@)= > di and Dg(a)= Y  (1-d).
0<d;<a a<d;<1

Define the majorization function fq: R — [0, 00| by

Zdiga(a —d;) a<0
fa(a) = < (1 — a)Cy(a) + aDg(a) a € (0,1)
ZdiZa(di - Oz) a > 1.

We will say that x is an accumulation point of a sequence A = (\;);e; if for every € > 0
there are infinitely many ¢ € I such that |z — \;| < e. Note that a point « is an accumulation
point of X if and only if it is a limit point of the set of values which X takes, or {i € I: \; = z}
is infinite.

In contrast to our previous work on compact operators [12], the present difficulty with
characterizing diagonal sequences is expressing the necessary and sufficient conditions in a
concise way that includes all possible noncompact operators (see Theorem 1.4). To this end
we developed the following concept of unitary equivalence modulo the two extreme points
of the essential spectrum.

Definition 1.3. We say that two operators T and T" are unitarily equivalent modulo {0,1}
if '@ P and T" @ P are unitarily equivalent, where P denotes an orthogonal projection on
a Hilbert space with infinite-dimensional kernel and infinite-dimensional range.

Note that in the case 7" and 7" are unitarily equivalent modulo {0, 1} and 7" is diagonal-
izable, then 7" is diagonalizable and the multiplicities of all eigenvalues A # 0,1 of T" and
T’ coincide. In general, T' and 7" are unitarily equivalent modulo {0, 1} if and only if the
restrictions of the spectral measures of 7' and 7" to R \ {0, 1} are unitarily equivalent. Our
main result characterizing diagonals of non-compact operators, modulo two extreme points
of the essential spectrum, takes the following form.

Theorem 1.4. Let T be a self-adjoint operator on H such that 0 and 1 are two extreme
points of the essential spectrum oess(T) of T, that is,

{07 1} - Uess(T) - [0, 1].

Let A = ()\j)jes be the list of all eigenvalues of T with multiplicity (which is possibly an
empty list). Let d = (d;);en. Define

L 1 . . U T . .
0" = hgl/lélf(fA(ﬁ) fa(B)) and ¢ hgl\l{lf(fA(ﬁ) fa(B)).
Then, d is a diagonal of an operator which is unitarily equivalent to T modulo {0, 1} if and
only if
(1.6) fala) < fa(a) for all . € R\ [0, 1],
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and one of the following five conditions holds:
(i) 6% = oY = o0,
(i) 0" < 00, 6V =00, and 3_, . di = o0,
(iii) 6V < 00, 6% = o0, and Y, (1 —d;) = oo,
(iv) 6 4+ 6Y < 0o and fq(1/2) = oo, or
(v) 68 + 0V < oo, fa(1/2) < oo, fa(1/2) < oo, d has accumulation points at 0 and 1,
and there exists &y € [0,6%] and &, € [0,8Y] such that

(1.7) (@) < fala) + (1 — a)dp + ady for all a € (0, 1),
(1.8) (@) — fila) =61 — 6 mod 1 for some a € (0,1),
(1.9) > Al <oo = 6t =g <6V -4,
2i<0
(1.10) d (hi—1) <o = 6V -5 <" =4
Ai>1

The conditions (i)—(iv) have a qualitative character, which lacks any quantitative condi-
tions when at least one of the excesses 0 or ¢V, evaluated between eigenvalue list A and
diagonal d and beyond the extreme points of essential spectrum, are infinite. In the case
when both 6% and 6V are finite, we either have a qualitative non-Blaschke condition on
diagonal terms between (0, 1),

Z min(d;, 1 — d;) = oo,
1:0<d; <1
which is condition (iv), or we have the extremely elaborate quantitative conditions in (v).
It turns out that any operator E with diagonal d satisfying 6%+ 6V < oo and the Blaschke
condition

(1.11) > min(d;, 1 —d;) < o0,

1:0<d; <1
is actually diagonalizable, see Theorem 4.1. The eigenvalue list A of F must satisfy not only
the Blaschke condition

(1.12) > min(A, 1— ) < o0,
1:0< <1

but also the Lebesgue majorization inequality (1.7) expressed in terms of the majorization
functions fx and fg. This is an extension of the Lebesgue interior majorization inequalities
already present for operators with finite spectrum [15, Theorem 1.3]. The condition (1.8)
is an analogue of the trace condition a — b € Z for finite sums (1.4) in Kadison’s theorem.
In contrast, the last two conditions (1.9) and (1.10) do not have an obvious analogue for
operators with finite spectrum as they collapse to the equality 6% — 6y = oY — §; = 0.
Indeed, the quantities oy and d; measure how much of mass of the eigenvalue sequence A has
crossed over extreme points of the essential spectrum, 0 and 1 respectively, in the process of
producing the diagonal d. In other words, the quantities ¢* — §; and Y — §; represent how
much of the mass of A has disappeared within the exterior majorization inequality (1.6).
This is similar to the case of non-trace class compact positive operators where the excess o

could be positive. In light of (1.6), we could replace the summability of A_ and (A\; — 1)1
6



in (1.9) and (1.10), respectively, with summability of d_ and (d; — 1)4,~1. Hence, together
(1.8), (1.9), and (1.10) can be viewed as the trace condition on diagonals of self-adjoint
operators with two points in their essential spectrum.

To establish the sufficiency part in Theorem 1.4 we show the equivalence of Riemann
and Lebesgue interior majorization for nondecreasing sequences A and d in [0, 1], which
are indexed by the integers, and satisfy the Blaschke condition (1.11) and (1.12). As a
consequence, we establish diagonal-to-diagonal result for sequences in (0,1) satisfying the
majorization (1.7) and trace (1.8) conditions. This is then used to prove the main diagonal-
to-diagonal result for sequences A and d satisfying (v), see Theorem 7.2. In addition, we need
to impose strictness of the inequality (1.7), which is imposed by the decoupling phenomenon,
see Theorem 4.1. In a nutshell, decoupling at a point « € [0, 1] breaks the operator E into
two parts with spectrum in (—oo, a] and [a, 00), and splits the diagonal sequence d at the
same point « into two subsequences, which become diagonals of two parts of E, respectively.
Once decoupling happens, more necessary conditions arise, which imposes a limitation on
the generality of sufficiency results.

The proof of the sufficiency of the remaining conditions (i)-(iv) in Theorem 1.4 is ex-
ceedingly concise given how large of a class of self-adjoint operators it covers. It reflects a
general observation that sufficiency proofs are hardest and most convoluted for simple op-
erators such as projections, compact operators, and diagonalizable operators satisfying the
Blaschke condition (1.12), while they become simpler for more complicated operators, such
as non-diagonalizable operators. This is due to a theorem of Miiller and Tomilov [51], which
guarantees that any sequence in the interior of the essential numerical range W, (FE) and
satisfying (1.1) is a diagonal of E. Hence, the sufficiency proof is mostly reduced to consid-
erations involving exterior majorization (1.6), see Theorem 8.3. This result is exceptional,
compared with the rest of the paper, as all earlier sufficiency theorems are diagonal-to-
diagonal. The proof of Theorem 1.4 concludes in Section 9, which combines earlier necessity
and sufficiency results. In addition, we obtain a stronger variant of Theorem 1.4, namely
Theorem 9.1, which describes the set of diagonals D(T') for a single self-adjoint operator T,
albeit with a gap between necessary and sufficient conditions.

The rest of the paper is devoted to algorithms for determining whether a given sequence
is a diagonal of a self-adjoint operator. In particular, we answer Problem 1.1 for all non-
diagonalizable self-adjoint operators, see Remark 10.10.

Theorem 1.5. Let E be a self-adjoint operator such that its spectrum o(E) is uncountable.
Let d be a bounded sequence of real numbers. Then, the algorithm for determining diagonals
of self-adjoint operators with > 5-point essential spectrum in Section 10 is conclusive for the
pair (E,d).

We conclude the paper by discussing the kernel problem for two classes of non-compact
operators, for which our algorithms are inconclusive. We show that operators in these
classes need to satisfy additional necessary conditions beyond those arising from Theorem 4.1.
These are analogues of necessary conditions for compact positive operators with nontrivial
kernel shown by Kaftal and Loreaux [40]. Due to the gap between necessary and sufficient

conditions, Problem 1.1 remains open only for these very special classes of operators.
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2. PRELIMINARIES

In this section we state previously known results about diagonals of operators which will
be used in subsequent sections. To describe our results in detail, we need to set some
notation. Let I be a countably infinite set. Let ¢o(I) be the collection of real-valued sequences
converging to 0 and indexed by the set I. That is, the set {i € I : |d;| > €} is finite for every
e > 0. Let ¢ (I) be the set of nonnegative-valued sequences in co(I). We will write ¢y and
cg when the indexing set of the sequence is obvious.

Definition 2.1. Let A = (\;);er be a real-valued sequence. Define its positive part A, =
(A )ier by A = max(\;,0). The negative part is defined as A_ = (—=A). If XA € ¢, then

)

define its decreasing rearrangement X¥ = (Af)ieN by taking /\f to be the ith largest term of
X. For the sake of brevity, we will denote the ith term of (A.)* by A+

; ¥, and similarly for
(A

Definition 2.2. Given two sequences A = (\;),e; and d = (d;);er, the concatenation of A
and d, denoted XA @ d, is the sequence (cx)ges s where I'L1J is the disjoint union of I and J,

and
N ke,
C =
d, kel

Note, if INJ =@, then IUJ :=1UJ,if INJ# @, then IUJ = (I x{1})U(J x{2}). In
the latter case k € I is interpreted to mean (k,1) € I x {1}, and similarly for k € J.

2.1. Majorization of sequences. There are two ways in which we can define majorization
of sequences.

Definition 2.3. Let I, J be countable infinite sets, and let A = (\;);e; and d = (d;);es be
sequences in ¢ . We say that X majorizes d and write d < X if

(2.1) ZdﬁgZ)\f for all n € N.
i=1 i=1
If, in addition, we have

.. Loy
llg}arolf;()\i di)=0

then we say that A strongly majorizes d, and we write d < A.

Definition 2.4. Given two sequences d € co(I) and X € ¢o(J), for « € R\ {0} we define

the function
Si-a)- S (d—a) a>0,

2.2 Sla, A\, d) = Ai>a di>a
> A Y la=X) =) (a—d) a<0.
Aifla di<a

If 6(a, A, d) > 0 for all a # 0 then we say that A majorizes d.

The following lemma can be found in [18, Lemma 2.5].
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Lemma 2.5. Ifc € cd (I), then

e
is piecewise linear, continuous, and decreasing on (0,00), and
hm g(a Z Ci.
i€l
Moreover, if d, X € c¢y(I), then 6(a, A, d) is piecewise linear and continuous on R\ {0}.

The following result shows that two concepts of majorization are equivalent [18, Proposi-
tion 2.7].

Proposition 2.6. Let d = (d;)32,, A = (\)2, be sequences in cg. Then, the following two
conditions are equivalent:
(i) d <A,
(i1) 6(a, A, d) >0 for all a > 0.
In this case
k
(2.3) hzn\%lfd(oz, Ad) = hlgr_l)ng()\j —dh).

i=1

In the case A is summable we obtain a stronger version of the identity (2.3), see [18,
Proposition 2.8].

Proposition 2.7. Let d = (d;)ie; and A = (\;);eg be nonnegative sequences. If A is sum-
mable and §(a, A\, d) > 0 for all o > 0, then d is summable, and

hm1nf5 (a, X, d) Z)\ —Zd

JjeJ el

2.2. Necessary conditions for one-sided compact operators. In our earlier paper [18§]
we proved the following necessary conditions on diagonals, which only assume that either
positive or negative part of the operator is compact. Thus, they will also be useful for
non-compact operators.

The following result is a generalization of Schur’s Theorem [18, Theorem 3.2].

Theorem 2.8. Let E be a self-adjoint operator on a Hilbert space H with compact negative
part, and let (e;);c; be an orthonormal basis for H. Set d = ({(Fe;, €;))icr, and let X be the
sequence of strictly negative eigenvalues of E, counted with multiplicity. Then §(a, A, d) > 0
for all a < 0.

Definition 2.9. Let E be a self-adjoint operator on a Hilbert space H. Let (d;) be a diagonal
of E with respect to an orthonormal basis (e;) of H. We say that the operator E decouples
at o € R with respect to (d;) if

Ho = Span{e; : d; < a} and H, = Spanie; : d; > a},
are invariant subspaces of I/ and

0(Ely,) C (o0, agnd 0(Ely,) C [a,00).



The following result shows that the operator decouples when the excess lim /%1f d(a, A, d)

is zero [18, Proposition 3.5].

Proposition 2.10. Let E be a self-adjoint operator on H with the eigenvalue list (with
multiplicity) X, which is possibly an empty list. Let d be a diagonal of E with respect to
some orthonormal basis (€;)icr. Assume that either:

e the positive part E is compact and lim\i(r)1f5(a, Ad)=0, or
e the negative part E_ is compact and lim/iélf d(a, A, d) =0.
Then, the operator E decouples at the point 0.

The following theorem, whose proof depends on two technical lemmas, is a generalization
of the trace condition on diagonals of trace class operators to one-sided compact operators.
These three results were proven in our previous paper [18, Section 3] in far greater generality
than was needed for compact operators. But we will make use of their generality later in
this paper, namely in Section 4.

Lemma 2.11. Let E be a self-adjoint operator on H such that its positive part is a compact
non-trace class operator with positive eigenvalues \y > Ao > ... > 0, listed with multiplicity.
Let (f;)jen be the corresponding orthonormal sequence of eigenvectors, that is, Ef; = \;fj,
Jj € N. Let (&;)ien be an orthonormal sequence in H and let d; = (Ee;, e;), i € N. Then,

M

20 w0 d) 2 Yo (10 Sl £)R) - S P

i=1 €N ieN
where P is an orthogonal projection of H onto (span(f;)jen)*.
Lemma 2.12. Let E be a self-adjoint operator on H such that its positive part is a compact
trace class operator with positive eigenvalues ()\j)jj‘il, where M € NU{0,00}. Let (fj)jj‘il be

the corresponding orthonormal sequence of eigenvectors, that is, Ef; = X\;f;. Let (e;)ier be
an orthonormal basis in H and let d; = (Ee;, e;), 1 € I. Then,

(2.5) Z)\i— > d; :ZAJ(1 -y |<ei,fj>|2) — ) (EPej e,

itd; >0 j=1 izd; >0 i:d; >0
where P is an orthogonal projection of H onto (Span(f;)L,)*.

Theorem 2.13. Let E be a self-adjoint operator on H such that its positive part E is a
compact operator with the eigenvalue list (with multiplicity) X. Let d € cq be a diagonal of

FE such that
> ldi| < 0.

d; <0
If the excess o4 = liminf,\d(a, X, d) < oo, then the negative part of E is trace class.
Moreover,

(2.6) tr(E-) <Y |di| + 04,
d;<0

with the equality when ), oA < o0.
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We also need cardinality inequalities which are implied by decoupling [18, Lemma 3.11].

Lemma 2.14. Let E be a self-adjoint operator on H with the eigenvalue list (with multi-
plicity) X, which is possibly an empty list. Let d be a diagonal of E with respect to some
orthonormal basis (€;)icr. Assume that E decouples at 0. If the positive part E. is compact,
then

(2.7) #Hi: A =0} = #[{i: di =0} and #[{i: N = 0} = #[{1: d; = 0}].
If the negative part E_ is compact, then
(28)  #{i:h =0} = #[{i:di =0} and #|{i: A < 0} = #{i : d; < 0},

2.3. Diagonal-to-diagonal results. The following diagonal-to-diagonal result was shown
by Siudeja and the authors [19, Theorem 3.6].

Proposition 2.15. Let A = (\;)2, and d = (d;)2, be nonincreasing sequences and define

n

0n =Y (N —dy).

i=1
If X is a diagonal of a self-adjoint operator E, 6,, > 0 for alln € N, and
lim inf §,, = 0,
n— o0

then d is also a diagonal of E.

The following result is a diagonal-to-diagonal generalization of the Kaftal-Weiss theorem
[41, Corollary 6.1], which was shown in [18, Propostion 8.3].

Proposition 2.16. Let A = (\;)2, and d = (d;)2, be positive sequences in ¢y such that

d <X and o .
D= di
=1 =1

If X is a diagonal of a self-adjoint operator E, then d is also a diagonal of E.

The following elementary lemma [18, Lemma 4.5] shows that diagonal-to-diagonal results
extend from diagonal subsequences.

Lemma 2.17. Let (\;)ier and (d;)ies be two sequences of real numbers. Suppose that:
(i) there is a set K and partitions (It )kex and (Ji)kerx of I and J, respectively,
(i1) for everyk € K, if Ey is any self-adjoint operator with diagonal (\;)icr, , then (d;)ic,
1s also a diagonal of Ej,
Then, if E is any self-adjoint operator with diagonal (X\;)icr, then (d;)ics is also a diagonal
of E.
The following result on diagonals of compact operators was shown by the authors [18,
Theorems 10.1 and 10.2].

Theorem 2.18. Let A\, d € ¢y. Define

op =liminf > (A = df*) and o_ =liminf Y (A" —d;*).
=1 =1

n—oo n—oo t

11



(Necessity) Let E be a compact operator with the eigenvalue list X. If d is a diagonal of F,
then

(29) 0p =0 = #|{i: A= 0} > #/{i:di = 0}] and #[{i: A > 0} > #{i : d; > 0},

(2.10)
o =0 = #{i: =0} > #/{i:di =0} and #|{i: \ <0} = #{i: d; <0},

(2.11) SNt "dft forallneN,
i=1 =1

(2.12) SN =DYdt forallneN,
=1 =1

(2.13) d.cl! = o >0,

(2.14) d el! = o,>0..

(Sufficiency) Conversely, suppose that (2.9)—(2.14) hold and
(2.15) oy +o_>0.
If a self-adjoint operator E has diagonal X, then d is also a diagonal of E.

Using Proposition 2.6 we have the following special case of the sufficiency part of Theorem
2.18 when excesses are equal o_ = o, > 0.

Theorem 2.19. Let A\, d € cy. If there is a self-adjoint operator E with diagonal X,

(2.16) da, A, d) >0 forall o # 0,

and

(2.17) liminf §(a, A, d) = liminf 6(a, A, d) > 0,
a0 a0

then d is also a diagonal of E.

2.4. Diagonals of operators. Loreaux and Weiss [46] gave necessary conditions and suf-
ficient conditions on D(T') for compact positive operators 7" with nontrivial kernel. When
ker(7") is infinite dimensional, the necessary and sufficient conditions coincide yielding a
complete characterization. However, when kerT" is nontrivial and finite dimensional, the
full characterization of D(T') remains elusive. This is known as the kernel problem. The
following theorem is a convenient reformulation of their two results. The sufficiency part of
Theorem 2.20 is [46, Theorem 2.4], whereas the necessity is [46, Theorem 3.4].

Theorem 2.20. Let E be a compact operator on H with the eigenvalue list X € cf. Let
decf. If #|{i: d; = 0}| < o0, then we set z = #|{i : \; = 0} — #[{i : d; = 0}]; otherwise
set z = 0.

12



(Necessity) If d is a diagonal of E, then

(2.18) #{i: Ai =0} > #[{i: di = 0},
(2.19) SN dlt forallneN,
=1 =1

[e.9]

(2.20) dn=) d
=1 =1

and for any p € N, p < z, and for every € > 0, there exists N = N, . > 0, such that

n n+p
(2.21) Z A+ 6/\:j_1 > Z di for alln > N.
i=1 i=1

(Su]i;ﬁcfilency) Conversely, if (2.18)(2.20) hold and for anyp € N, p < z, there exists N = N,,,
such that

n n+p
(2.22) Z A > Zalzﬂ for alln > N,
i=1 i=1

then d is a diagonal of E.

To describe our algorithms for determining diagonals of self-adjoint operators we shall use
the concept of splitting of an operator.

Definition 2.21. Let E be a self-adjoint operator. Let o € R. We say that a pair of
operators Fy and Es is a splitting of E at « if there exist 2y, 21, 22 € NU {0, 00} such that:
(i) Ej is a self-adjoint operator such that o(F;) C (—o0,a] and z; = dimker(E; — al),
(ii) Es is a self-adjoint operator such that o(Es) C [o,00) and zo = dimker(Ey — al),
and
(iii) F is unitarily equivalent to ol,, @ E; @ Es, and hence zg+ 21 + 29 = dim ker(E — o).

The following elementary fact [18, Theorem 11.4] bridges the concepts of decoupling and
splitting.

Theorem 2.22. Let E be a self-adjoint operator. Let d be a bounded sequence. Suppose that
d is a diagonal of E and the operator E decouples at o € R. Then, there exists a splitting
Ei and Es of E at a such that:

(1) the sequence (d;)g,<a is a diagonal of E,
(i1) the sequence (d;)a,~a 1s a diagonal of Fs, and
(111) the number of a’s in d satisfies

(2.23) dimker(al — F) = dimker(al — E}) + dimker(al — Ey) + #[{i : d; = a}|.

Conversely, if there ezists a splitting of E such that (i)-(iii) hold, then d is a diagonal of E
and the operator E decouples at .

Finally, we will also need the characterization of diagonals of compact self-adjoint operators

modulo the dimension of the kernel [18, Theorem 1.3].
13



Theorem 2.23. Let A\, d € ¢y. Set

— limi +l_ g+ T o
oy = hTIngolf;()\i ;") and o_ h}gg}lf;()\l d;™)
Let T be a compact self-adjoint operator with eigenvalue list X. Then the following are
equivalent:
(i) d € D(T") for some operator T' in the operator norm closure of unitary orbit of T,

T e {UTU*: U 1is um’tary}"'n,
(i1) d is a diagonal of an operator T' such that T &0 and T'® 0 are unitarily equivalent,
where O denotes the zero operator on an infinite-dimensional Hilbert space,
(11i) X and d satisfy the following four conditions

(2.24) D A= dfY forallkeN,
=1 =1

(2.25) ANt =DYdt forallk €N,
=1 =1

(2.26) d.cl! = o >0,

(2.27) d c¢l' = o,>0_

3. THE MAJORIZATION FUNCTION fq

In this section we prove several useful properties of the majorization function f4 given by
Definition 1.2. Of particular interest in this section are sequences d that satisfy the so-called
Blaschke condition, that is, they satisfy any of the following three equivalent conditions:

o Z min(d;, 1 — d;) < oo,

0<d; <1
e fa(a) < oo for some « € (0,1),
o fa(a) < oo forall o € (0,1).

The following proposition is a convenient reformulation of [14, Lemma 3.9]. In particular,
we have relaxed the prior assumption that d is in [0, 1], since fq(a) for o € (0,1) does not
depend on the terms of d outside [0, 1]. Moreover, the formula (3.2) follows directly from
Definition 1.2.

Proposition 3.1. Let d = (d;)icr be a sequence with fq(a) < oo for all o € (0,1). The
function fq restricted to (0,1) is piecewise linear, continuous, and concave, satisfies

(3.1) Clylil% fala) = 613/11{ fale) =0,
and

fola) = Dg(a) — Cgq(a)  for every a € (0,1)\ {d;: i € I}.
Moreover, for1 >a > >0

(3.2) Ca(@) — Da(a) = Ca(p) —gd(ﬂ) +# i di € [8,a)} .



In particular, there exists a number n € [0,1) such that
Dg(a) — Cyq(a) =n mod 1  for all a € (0,1).

Kadison’s theorem [38, 39| takes the following form using the majorization function fjg.
Theorem 3.2 (Kadison). Let (d;)ic; be a sequence in [0,1] and o € (0,1). There exists an
orthogonal projection P on (*(I) with diagonal (d;)cr if and only if either:

(1) fa(a) = oo for some (and hence all) o € (0,1),
(11) fa(a) < oo for some (and hence all) o € (0,1), and
(3.3) fola) €Z  for some (and hence for almost every) o € (0,1).

Proposition 3.3. Let d = (d;)ier and X = (\;)ies be sequences in [0,1] with fa(a) < oo
and fx(a) < oo for all « € (0,1). The following are equivalent:

(1) fa(a) > fa(a) for all a € (0,1)
(it) fa(Ni) > fa(Ni) forallie J\{jeJ: X\ =0 orl}.

Proof. (i)= (ii) is obvious. For the other direction we simply note that fq4 is concave, and
fx is piecewise linear, with knots at each \; € (0, 1). O

Proposition 3.4. Let d = (d;)ie; be a sequence in [0, 1] with fq(a) < co. Then, for any set
J C I and o € (0,1) we have

(3.4) fal@) <(1—0a)) dita ) (1—d).

icJ ieI\J

Proof. We can assume that the right hand side (3.4) is finite. Suppose that there exists
ip € J such that d;, > a. Then the right hand side (3.4) corresponding to the set J \ {io}
decreases by d;, — . Likewise, if there exists ig € I\ J such that d;, < «, then the right
hand side (3.4) corresponding to the set J U {ig} decreases by a — d;,. This implies that the
right hand side (3.4) is minimized if and only if

{iel:di<a}ycJcC{iel:d <a}l.
In that case (3.4) becomes an equality. O

Lemma 3.5. Suppose X = (\i)ien and d = (d;);en are sequences such that fx(a)+ fa(a) < oo
foralla € (0,1) and (1.7) holds. Fiz ag € (0,1) such that oy is not a term of A or d. Define
Ao := (Ai)o<ri<aos do = (di)o<d;<ao

k= fglag) — fi(ao) — do + 61,

and
B = falag) — (o) + (1 — ap)dg + apdy — apk.
Then,
d(a, Ao, dy) > —kae — [ for all a # 0,
and

hgl\l((I)lf d(a, Ao, dy) = 09 — 5.
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Proof. For a < ay, by (3.2) we have
fala) = Cx(a) + a(Da(a) — Cx(a))
= COx(@) + a(Dx(ag) — Cx(ag) — #|{i : Ni € [, ) })
= Ox(a) + afy(ag) — a#t|{i: N € [a, )}
The same reasoning for the sequence d yields
fa(e) = Ca(a) + afglan) — a#tl{i = di € [or, a0) }-
Now, the inequality (1.7) becomes
Cx(@) — Ca(e)
< a(fiao) — filao) + #{i: di € [a,a0)} — #[{i : N € [, a0)}| + 01 — do) + o
= a(#/{i:d; € [a,a0)}] — #{i: N € [0, 0)} + &) + 0o

= Z o — Z a + ak + dg,

d;€[a,a0) Ai€la,ao)
and
Z i — Z d; = Cx(ag) — Ca(a)
0<\;<ag 0<d;<ao
(3:5) = falw) = fal0o) + ao(fa(a0) — fi(an))

= (1—010)50—{—&051 —&0%—6—{—0(0(/{—{—50—51) :50—5.
Putting these together we have

So—B< > (Ni—a)— D (di—a)+ar+d

Ai€[a,a0) di€la,ap)
Thus,
—ka—B< Y (N—a)— Y (di—a)=d(a, X, do).
Ai€la,ao) di€lor,a0)
Where Ag = (Xi)x,c[0,00) and do = (d;)g,e[0,00)- By (3.5) and Lemma 2.5 we see that
lizn\i[(l)qf d(a, Ao, dy) = 09 — . O

Corollary 3.6. Suppose A = (\;)ien and d = (d;);en are sequences such that fx(a)+ fa(a) <
oo for all a € (0,1). If (1.7) holds with equality at o = g € (0,1), then Ao : = (Ai)o<x;<ap
magorizes dy := (d;)o<da,<a, 0 the sense of Definition 2.4, that is,

d(a, Ao, dp) >0 for all a # 0.

Moreover,

liminf d(a, Ao, dy) = dp.

im in (o, Ao, do) = do
Proof. There is a nonempty interval Iy = (g — €, ) which contains no terms of A or d.
Note that C, Dy, Cq, and Dy are all constant on Iy, and hence we have equality in (1.7)
for all o € I. We can decrease g to guarantee it is not equal to any term of X or d, and

without changing the definitions of Ag and dj.
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Define x and 8 as in Lemma 3.5. Note that (1.7) is equivalent to
fa(a) — fa(a) + (1 — a)do + @dy >0 for all a € (0,1).

Equality in (1.7) at a = « is equivalent to § = —agk. Moreover, we see that the left-
hand side is differentiable at ag. We deduce that the derivative of the left-hand size is 0 at
a = «q, that is, kK = 0. Hence, we also have § = —agk = 0. Hence applying Lemma 3.5 to
the sequences A and d gives the desired conclusions. 0

Corollary 3.7. Suppose A = (\;)ien and d = (d;);en are sequences such that fx(a)+ fa(a) <
oo for all aw € (0,1). If (1.7) holds with equality at o = o € (0,1), then Ay := (1—X;)ag<ri<1
magorizes dy 1= (1 — d;)ag<a;<1 in the sense of Definition 2.4, that is,

d(a,A1,dy) >0 for all a # 0.

Moreover,
lim inf (S(Oé, )\1, dl) = 51.

a\,0

Proof. As in the proof of Corollary 3.6 we may assume « is in the interior of an interval
Iy such that (1.7) holds for all a € Iy and both d;, \; ¢ I, for all ¢ € I. This implies that
dy = (1 = di)ag<a<1 and Ay = (1 = Ai)agan<1-

Set A = (1 — X\i)ier and d= (1 —d;)ser- Note that (1.7) holds for these sequences with d
and 0; swapped. Hence, the conclusions hold by applying Corollary 3.6 to X and d. U

4. NECESSITY PROOF OF THEOREM 1.4

The goal of this section is to prove the necessary conditions on diagonals of operators
with > 2 points in their essential spectrum. The bulk of necessity direction of Theorem 1.4
follows from the following theorem. In essence, Theorem 4.1 says that if a diagonal sequence
d satisfies the Blaschke condition and the lower and upper excesses are finite, then the
operator F is necessarily diagonalizable with eigenvalues satisfying the Blaschke condition.
A similar result, albeit with the stronger assumption on F that E_ and (E —I), are trace
class, was shown was Loreaux and Weiss [48, Corollary 4.5].

Theorem 4.1. Let E be a self-adjoint operator on H such that 0 and 1 are two extreme
points of the essential spectrum o.ss(E) of E, that is,

{0,1} C 0ess(E) C [0,1].
Let A = (X\j)jes be the list of all eigenvalues of E with multiplicity (which is possibly an

empty list). Let d = (d;)ier be a diagonal of E, which is given by d; = (Ee;, e;), with respect
to some orthonormal basis (e;)icr of H. Define the lower and upper excesses as

5" = ligl}élf(fx(ﬁ) — fa(B)) and &V = hrﬁﬂ\i{lf(fx(ﬁ) — fa(B)).

Suppose that fa(a) < oo for some a € (0,1) and 6% + 6V < co. Then the operator E is
diagonalizable and d has accumulation points at 0 and 1. Moreover, there exist & € [0, 6%]
and &1 € [0,6Y] such that the following five conclusions hold:

(1) fa(a) < oo for all a € (0,1),
(i1) fala) < fala) + (1 —a)dy + ady for all v € (0,1),
(iii) fi(a) — fi(a) =61 —do mod 1 for some o € (0,1),
(iv) if 305, <o [Aj| < 00, then 6% — by < ¥ — 4y,
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(U) Zf Z/\j>1(/\j — 1) < 00, then §Y — 01 < oF — 0g-
In addition, suppose that there exists a € [0,1] such that (3,) happens, where
(00) (SL =0 or 50 =0 and 51 = 5U,

(0a) @ € (0,1) and fa(a) = fa(a) + (1 — a)d + ady,
(01) Y =0 or & =0 and = o~

Then, the operator E decouples at the point o € [0,1]. That is,
Ho = Span{e; : d; < a} and ‘H, = span{e; : d; > a},
are invariant subspaces of E and
o(Elw,) C (—o0, ] and  o(Ely,) C o, 0).
The following lemma will play a key role in the proof of Theorem 4.1.

Lemma 4.2. Let E be a positive operator on a Hilbert space H with o(E) C [0,1]. Let
(€;)ier be a Parseval frame for H. Define the sequence d = (d;);er by d; = (Ee;, e;). If there
exists a subset J C I such that

(4.1) ddi<oo  and Y ([le|] - di) < o0,
icJ iel\J
then E is diagonalizable. Moreover, if A = (\;)ier is the eigenvalue list (with multiplicity)
of E, then fx(a) < oo for all a € (0,1),
(4.2) Al <@=a)) di+ad (lel*—d)  forallac(0,1),
ed 1€I\J

In addition, if

(4.3) > min(|le;][*, 1 [lei] ) < oo,
el
then
(4.4) fola) = fala) €Z  for a.e. a € (0,1).

Proof. By the spectral theorem there is a projection valued measure 7 such that

E:/ Adr(A).
0.1

Fix a € (0,1) and set
K = Adm(A)  and T:/ (1= X)dm(N).
[0,c) [e,1]
Let P be the projection given by P = 7([a,1]). For each i € I set k; = (Ke;,e;),p;i =
(Pe;, e;), and t; = (Te;, e;). Since E = K + P — T we also have
(4.5) d; = ki +pi — t;.

We claim that K and T" are trace class. Since K and T are positive and (¢;);¢; is a Parseval

frame, it is enough to show that ) ._,(k; +¢;) < oo.
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Next, we observe
4.6 T = — AN dr(\ —a)dr(\) = (1 —a)P
(4.6) /Mu ) <>s/ (1-a)dr(\) = (1 - a)

and

(4.7) K= | xdr(\) g/ adr()) = a(l— P).
[0,a) [0,a)

Combing £ = K + P — T and (4.6) yields £ > K + {2-T. By (4.5) we deduce that
d; > ki + 175t;, and thus

(4.8) > (k + %t) <Y d; < oo

iceJ

From (4.7) we deduce that I-E = T— K+ (I—P) > T+2K. Thus, ||e;||*—d; > =2k +t;.
By (4.1) this yields

(4.9) > (1?To‘k+t) < S (ledl? — i) < oo,

ieI\J iel\J

Combining (4.8) and (4.9) yields that K and T are trace class.

Set p = (p;)ier. Since p; = d; —k;+t; and 1 —p; = 1 —d; +k; —t;, from the assumption that
(di)ics and (1 — d;);eps are summable, we see that (p;)ics and (1 — p;);ep\ s are summable.
Thus, fp(a) < oo for all @ € (0,1). By Naimark’s dilation theorem (p;) is the diagonal of a
projection with respect to an orthonormal basis on some larger Hilbert space, by Theorem
3.2 we have

fpla) = Z(l —pi) — Zp,- eZ for a.e. a € (0,1).

piZo pi<a

By the spectral theorem for compact operators, there is an orthonormal basis (f;);c, for
ran(I — P) consisting of eigenvectors of K, with associated eigenvalues (\;);cs,. There is
also an orthonormal basis (f;);c, for ran(P) consisting or eigenvectors of 7" with associated
eigenvalues (1 — \;);ey,. Since K and T are trace class, both (\;);cs, and (1 — \;);ey, are
summable. For i € J; we have (P —T)f; = 0 and thus Ef; = \;f;. For ¢ € J, we have
K f; = 0 so that E'f; = \;. Therefore, (f;)ics,us, is an orthonormal basis for H consisting of
eigenvectors of E with associated eigenvalues (\;);c.,us,- This shows that F is diagonalizable.

From the definitions of K and T we see that \; < a for ¢ € J; and \; > « for ¢ € Js.
Thus,

Ca(o) = Zki:Z)\i <oo and Djy(a)= Z(l—ki) :Z(l—)\i) < 00.

Ni<a ey i« i€Ja
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This implies fa(a) < oo. Moreover, using (4.8) and (4.9) we have

Al)=010=a)) N+ad 1-X)=0-a)tr(K)+atr(T)=1-a)) k+ad &

icy ie s iel iel
o 11—«
= (- ki+——t ki +t;
( a>z< T )+az ( L )
ieJ i€I\J
<A=a)> dita ) (el —d),
icd iel\J

which shows (4.2).

Fix o € (0,1) and 8 € (a,1). By (4.3) there are finitely many i € I such that ||e;||* €
(1/2, 8], and hence 3, 1< [lesl|* < oo. By (4.1) there are finitely many i € I'\ J such that
both d; < a and ||e;]|* > 3. Thus, using the observation that d; < ||e;||* we have

di<a ieJ:d;<a ie]\J €I\J
di<a & ||es||2>8 di<a & |le]|?<B
2
< E d; + E d; + E [e:]|* < oo
icJ i€\J itlles]|2<B

di<a & ||6i||2>5

By (4.1) there are only finitely many ¢ € J such that d; > «. From (4.3) we see that

D ierei2sa(l = lleil|?) < oo, and thus using d; < [|e;|* we have
Dq(a) = Z (1—di)+ Z (1—d;)
ieJ:d;>a i€I\J:d; >«
= D> U=d)+ >, (-lelH+ D (el —d) < oo
i€J:d;>a i€I\J:d; >« i€I\J:d; >«

Putting these together, for any a € (0,1) we have
fala) = (1 — a)Cq(a) + aDg(a) < oo.

Hence, for a.e. a € (0,1),

fal@) = @) => (1=d) =Y di=Y (1=X)+> X\

di>a di<a icJ =
= Z (1—d;)— Zdi —tr(7) + tr(K) mod 1
iel\J icJ
Zl—pZ sz_ )=0 mod 1.
eI\J ieJ
This proves (4.4). O

Remark 4.3. Suppose that we have an equality in (4.2). Then, by analyzing the proof of

Lemma 4.2 we deduce that we have equalities in (4.8) and (4.9) and consequently we have
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di = ki + 2 t; for all i € J and ||e;||* — d; = =%k; +t; for all i € T\ J. Therefore,
(Tej,e;) =t = (1 —a)p; = ((1 — a)Pe;, e;) for all i € J,
(Kei,e)) = ki = af||ei]|* — pi) = (@I — P)ey, e;) forallie I\ J.
By (4.6) and (4.7) we deduce that
e; € ranm([0,a]) fori € J and e; € ranm([a, 1)) for i € J\ I.

We will prove Theorem 4.1 in several parts. To avoid repetition we will set some notation
for the remainder of Section 4.

Notation 4.4. Let E be a self-adjoint operator on a Hilbert space H such that 0 and 1 are
the extreme points of the essential spectrum o, (E) of E, that is,

(4.10) {0,1} C 0ess(E) C [0, 1].

Let 7 be the projection valued measure such that

E = / Adr (M),
R
and define the operators

Ly :/ Adr(N) and Ly :/ Adr(N),
(—00,0) (1,00)

and projections Py = 7((—00,0)), P = 7([0,1]), and P, = 7((1, 00)).
By (4.10), the operators Ly and L; are diagonalizable. Hence, there exists Ny, N €
NU{0, o0}, a sequence A1 <A <...<0,asequence A\; > Xy > ... > 1, and orthonormal

sequences (f_;)N =y and ( f]) such that

Ny
Lof = D_j( Foflf and Lif =3 N{f.fi)f; o for fEH.

Let X = ()\;);es be the list of all eigenvalues of £ with multiplicity (which is possibly an
empty list). Since (A_;)N° iy and ()\j)jv:ll are eigenvalues of F' we will assume that the indexing
sets of these sequences are subsets of J.

Let d = (d;);er be a diagonal of E, which is given by d; = (FEe;, e;), with respect to some
orthonormal basis (e;);c; of H.

Define

o = 1ig1/i(§lf(fx(ﬁ) — fa(8)) and 4" = lim inf(fz(8) — fa(B)).

Finally, define the following two quantities, which will be shown to be well-defined in the
sequel:

Ny
411) & _ZM_]I ST Hen f)P+ Y (EPe ey + >0 e f) -
0<d;<1 d; <0 7=1d;<0
No
(412) & :_Z N =1 > e )P+ AT = E)Peser) + > > [{es f-)I
0<d;<1 d;>1 Jj=1d;>1
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Lemma 4.5. If 6% < oo, then the following three series converge:

ZMZM, AP D (EPe e, ZA > e [P

d; >0 d;<0 d;<0

and hence 6y is well-defined. Moreover,

(4.13) 6O+Z|A-J|Z| C |2+ZA — 1> e )1 < 6",

di>1 ;<0
with equality if Z/\j<0 || < 0.
Proof. Since E = Lo + EP + Ly, we have

Ny

(4.14) d; = ZA_A e, f-)I° + (EPei,er) + > Nles, fi) .

7j=1

Case 1: Suppose )y o|A;| = oo. Since 0" < oo, this implies that Y, |d;| = oo, where
In = {i € I :d; < 0}. Hence, [ is infinite and there is a bijection ¢ : —N — I such
that dy—1) < dy(—2) < ... < 0. By Proposition 2.6 and Lemma 2.11 applied to —E and
orthonormal sequence (eq(—;))ien We deduce that

ot = hﬂgn;ngUMI — ldo(-i))
> Al (1 > e !2) + Y (B om([0,00))en(-i); €o-i)

(415) O=O €N €N .
= M(Z |<ei,f_j>|2) Y EPee) SN S e )
j=1 d;>0 i:d;<0 j=1  i:d;<0
_50+Z|)\_]|Z| e [ y?+z N =D e )7
d;>1 d; <0

This proves the lemma under the assumption that 0\ o |A;| = oo
Case 2: Suppose Y 2 <0 |Aj| < oo. This implies that the negative part of E is trace class,
and hence we can apply Lemma 2.12 and Proposition 2.7 to —FE to obtain

Zw(l— S e £o) ) ™ {(E o ([0, 00)) s, )

i:d; <0 i:d; <0
N1
—ZM( S e o)) )+ S (EBPee) + 3N S en £)
i:d; >0 i:d; <0 7j=1 i:d; <0
_50+Z|A_]12|e,,f_ |2+Z/\—1 > e fi)I O
d;>1 d; <0
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Lemma 4.6. If 6V < oo, then the following three series converge:
No
Z N=DY Kew P Y A= E)Pee), Y L+ )Y e Sl
di<1 di>1 j=1 di>1
and hence 61 is well-defined. Moreover,

(4.16) 51+Z)\—1Z|ez,fj |2+Z\)\_J\Z|ez,f_ )2 < oV

d;<0 di>1

with equality if 32\ (A — 1) < oo.

Proof. Case 1: Suppose ), .;(A; — 1) = co. Since 0V < oo, we have Y., (d; — 1) = oo,
where I} = {i € I : d; > 1}. Hence, I, is infinite, and there is a bijection ¢ : N — I; such
that dy(1) = ds2) = ... > 0. By Proposition 2.6 and Lemma 2.11 applied to £ — I and
orthonormal sequence (e,(;y)ien We deduce that

M
6¢ =Timinf Y (A — dy(p)

i=1

2 305 =11 e £ = A8 =D (=20, ey o)

j=1 €N €N
=300 X e ) + 3 (@ B Peses +Z L+ L) Y e f)
7=1 i:d; <1 i:d;>1 id;>1
_51+Z|>\—j|2’627— |2+Z)‘_1 > lew 1)
i:di>1 3:d; <0

This proves the claim under the assumption that >, ., (A; — 1) = oco.
Case 2: Suppose ;. ~;(A; — 1) < oo. This implies that the positive part of E — L is
trace class, and hence we can apply Lemma 2.12 and Proposition 2.7 to £ — I to obtain

oY Z (A =1 (1 - Z [(ei, f5)] > Z (B =T)om((—o0,1]))es €:)

ird;>1 id;>1
Ny No
:ZA—1(Z|6“J@ > + ) (I-E Pel,e,+21+|/\_J > ei f-)I
7j=1 i:d; <1 id;>1 ird;>1
_51+Z|)‘—J| Z |6Zaf— |2+Z>‘ _1 Z |€17fj : O

i:d;>1 1:d; <0

Lemma 4.7. If 0V < oo, then ), .,(1—d;) = co. Likewise, if 6% < oo, then y_, _d; = 0o
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Proof. Assume that 6¥ < co. On the contrary, suppose that », _,(1—d;) < co. By Lemma
4.6 the following two series converge

Z(<I—E)P1€m€i>= Z/\ —1) Z!eufa ,

di<1 d;<1

> (A= E)(Py+ Pejey = Y _((L—E)Pe;,e;) +Z L+ A Y e f-)

d;i>1 d;>1 d;i>1
Using the identity
Y (1=d) =) ((I-E)Pie;e;)+ (I— E)(Py+ Pes, e;))
d;<1 d;<1
we deduce that
> (A= E)(Py+ P)es, e5) < 0.

iel
This implies that the operator (I— E)(Py+ P) is trace class, which contradicts our assumption
that 0 € 0..,(F). The other claim with 6% < oo follows by an analogous argument. U

The following corollary shows the necessity of (1.9). As a corollary we also obtain the
necessity of (1.10) by symmetry.
Corollary 4.8. Suppose 6" + 67 < oo. If 30, (|| < oo, then 6% — 6y < 6V — 1. If
Z/\ (A —1) < oo, then 6V — 6, < 6% — 6.

Proof. Set
A= ZA — )Y e £y) |2+Z|A_]|Zrez, )
d;<0 di>1
By Lemmas 4.5 and 4.6, if 37, _(|\;| < oo, then 6" —dy = A < ¢Y — 4, Similarly, if
Z)\>1( — 1) < oo, then 7 — § < A = §Y — 4;. =

Lemma 4.9. If fq(a) < oo for some o € (0,1) and 6 + 6V < oo, then

Z d@+(50 = Z<EP€¢,€Z‘>

0<d; <« d;i<a
(4.17) Ny
+Z|A—J| > e f-; |2+ZA S Kea P+ Ken £)1,
a<d; <1 j=1 0<d;<a 7j=1d;<0
and
Ny
Y (l—d)+6 = (I-E)Peje)+ Y N—1) > e f)I
a<d;<1 di>a Jj=1 0<d;<a
(4.18) . .
WG ST Ken fP 303 e 01
j=1 a<d;<1 j=1 d;>1
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Proof. By (4.14) we have
No
Z dz: Z <Z)\_j|<€i,f_j>|2 EPGHGZ Z)\ | Gl,f] )
0<d;<a 0<di<a  j=1

Since Y 4 .o di < 00, We can interchange the order of summation

Z (EPe;,e;) = Z d; +Z|/\_J| Z |{es, f-

0<d; <« 0<d;<a 0<d;<1

ISP IEVEIES oY SRTEeS

a<d;<1 0<d;<a

(4.19)

From (4.19) and the definition of §y we obtain (4.17).
Again, by (4.14) we have

N No
S amd)= 3 (LAl P (- EYPesed + 3o+ N Dl £)P)
a<d;<1 a<d;<1 * j=1 Jj=1
Hence,
Ny
Y (I=BE)Peey= Y (1=d)+> (=1 Y [ewfi)f
(4.20) a<d;<1 . a<d;<1 Jj=1 . 0<d;<1
2 =0 > K P =D (1D Y Hew [
Jj=1 0<d;<a Jj=1 a<d;<1
Combining (4.20) and the definition of ¢; yields (4.18). O

Lemma 4.10. If f4(a) < oo for some a € (0,1) and 6%+ 6V < oo, then E is diagonalizable,
and

(421) f)\(()() S fd((lf) + (1 — 04)50 + OZ51

for all a € (0,1). Moreover, if equality holds in (4.21) for some a € (0, 1), then E decouples
at o.

Proof. Define g; = Pe;, i € N. Then, (g;)ien is a Parseval frame for the subspace K =
P(H) CH. Let d; = (Egi, g;) fori € I and J = {i € [ : d; < a}. Since P = 7([0,1]) we see

that Eg; = EPe; € K, and thus d; = (E'Pe;, Pe;) = (EPe;, e;). By Lemma 4.9 we deduce
that

(4.22) ZCZ = Z (EPe;,e;) < Z d; + 09 < 00,

i€J d; <« 1:d; €[0,a)
and
@28 Y (el -d)= AT~ E)Pec) < Y (1-d)+d <ox.
€I\J :d; > i:d;€la,1]
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Thus, the assumption (4.1) in Lemma 4.2 is met for the restriction of the operator E to
K and a Parseval frame (g;);en. Hence, we deduce that EP is diagonalizable. Since the
operator E is block diagonal sum F = Lo+ EP + Ly, it is diagonalizable as well.

Let X = ()j) e be the eigenvalue list of £. By Lemma 4.2, (4.22), and (4.23) we have for
all « € (0,1),

(4.24) Al <1=a)d ditad (g’ —d) < fale) + (1 — )6 + ady.
ieJ i€I\J

Suppose that for some a € (0, 1) we have an equality in (4.21). This means that we have
equalities in the two inequalities appearing in (4.24). In particular, we have equalities in
(4.22) and (4.23). By (4.17) and (4.18) we deduce that

(ei, fj) =0 foriel,d; <aandj>1,
<ei7f—j>:0 foriEI,dZ-Zozandel.
On the other hand, Remark 4.3 yields
g = Pe; € ran ([0, a]) %f d; < a,
ran7 ([, 1]) if d; > .
Combining these observations yields
c ran7((—oo,a) if d; < a,
€i .
ranm([a,00))  if d; > a.
In addition, if d; = «, then e; € ran7({«a}). Hence, the spaces Hy = Span{e; : d; < a} and
‘H, = span{e; : d; > «} are invariant under F. O

Lemma 4.11. If f4(a) < oo for some a € (0,1) and 6% + 6Y < oo, then fa(a) < oo for all
a € (0,1), and there exists a € (0,1) such that

(4.25) (@) — fila) =6, — 6 mod 1.
Proof. By (4.17) and (4.18), for a.e. o € (0, 1) we have

fél(oz)—l—51—(50: Z (1—d1)— Z di+51—50

a<d; <1 0<d; <«
(4.26) No N,
=Y (A=E)Peier) + Y > [ew f )P =D (EPeier) = > > [{ei fi).
di>a 1=l1d;>a di<a 71=1 d;<a

By (4.26) we have
fula) +61 =6 = > ((I— E)Pe;,e;) + (Poes,ei)) — Y ((EPes &) + (Pres, ;)

d;>a di<a
=Y (I-EP-P)eie;) — Y _((EP+ Pese;).
d;>a di<a

Let X be the eigenvalue list of EP + P;. Applying Lemma 4.2 to the operator EP + P, and
orthonormal basis (e;);e; implies that the diagonal d = ({(EP + Py)e;, €;)):er, satisfies

(4.27) fala) + 61— b = fi(a) = fz(a) mod1  forae ac(0,1)
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Finally, (4.25) follows from the fact that operators E' and EP+ P; have the same eigenvalues
in the open interval (0, 1), and consequently fx(a) = f5(a) for a € (0, 1). O

Lemma 4.12. If fq(a) < oo for some a € (0,1) and 6% +6Y < oo, then d has accumulation
points at 0 and 1.

Proof. Note that the assumptions (4.10) and fg(a) < oo for some a € (0,1) imply that
0 and 1 are the only possible accumulation points of d. From Lemma 4.7 we see that
Yoa,a(1—di) =3, di =00, and hence both 0 and 1 are accumulation points of d. [

Lemma 4.13. Assume fq(a) < oo for some a € (0,1) and 6% + 6V < oco. If 6y = 0 and
8, = 6Y, then E decouples at 0. If 6, = 0 and 5y = 6%, then E decouples at 1.

Proof. We will only prove the second implication. The other follows by a symmetric argu-
ment. Suppose that §y = 6% and §; = 0. By (4.13) we deduce that ¢; € 7((—o0,1]) if d; < 1
and e; € m([1,00)) if d; > 1. In particular, if d; = 1, then e; € 7({1}) is an eigenvector of E.
Hence, the spaces Hy = span{e; : d; < 1} and H; = span{e; : d; > 1} are invariant under
E. 0

Now we are ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. That E is diagonalizable and conclusions (i) and (ii) follow from
Lemma 4.10. Lemma 4.12 shows that d has accumulation points at 0 and 1. Conclusion
(iii) follows from Lemma 4.11, whereas (iv) and (v) follow from Corollary 4.8. The operator
E decouples at a = 0 when 6 = 0, and at a = 1 when 6V = 0 in light of Proposition 2.10.
Hence, the “In addition” part of the theorem follows from Lemmas 4.10 and 4.13. 0]

We finish the section with some necessary conditions that follow when (9,) in Theorem
4.1 happens for some « € [0,1]. The decoupling of E yields the following additional list of
necessary conditions.

Theorem 4.14. Under the same assumptions as in Theorem 4.1 suppose one of the following
happens:

(i) (90) holds. If 3 o4 o1 (1 —di) < oo, then
=) <a+ Y (1-d)< (1—),)).

0<A;<1 0<d;<1 0<);<1
if Zo<di<1<1 —d;) = 0o, then Zog)\j@(l — Aj) = oo.
(i1) (34) holds for some o € (0,1). Then there exists zy, zo € NU {0} such that:
o #{j: Nj=a}| =z +2+#/{i:d=a},
® (di)q,<a 15 a diagonal of a compact operator with an eigenvalue list (\j)x;<a @
al,,, where 1,, is the sequence consisting of z; terms equal to 1, and
o (d; — 1)g,;>a is a diagonal of a compact operator with an eigenvalue list
()‘j - 1)/\j>04 D (O‘ - 1)122'
(i1) (01) holds. If Y 4 1 di < 00, then

DoM< h+ DA< > A

0<A;<1 0<d;<1 0<A;<1

If Zo<di<1 d; = 00, then ZO<>\]§1 Aj = o0.
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Proof of (i1). This is a consequence of Theorem 4.1, which shows that the operator E de-
couples at a. More precisely, let

Ho = Span{e; : d; < a} and H, = span{e; : d; > a},
Since d; = « implies that e; is an eigenvector of E with eigenvalue «, the operator Ely,an,
has eigenvalue list (Aj)x; 20 © al., where 2 = #{j : A\j = a}| — #{i : d; = a}|. Let z,
k = 0,1, be the multiplicity of the eigenvalue a of the operator El|y, . Clearly, z = 2y + 2.
Then, Ely, is a compact self-adjoint operator with eigenvalue list (\j)x,<a © al.,. Likewise,

Ely, is a self-adjoint operator with eigenvalue list ()\;)y,>a © al.,. Hence, its essential
spectrum contains only the point 1. This yields the required conclusion. O

Proof of (iii). By Theorem 4.1 the operator E decouples at 1. That is, the spaces Hy =
span{e; : d; < 1} and H, = span{e; : d; > 1} are invariant under E, and o(E|y,) C (—o00, 1]
and o(Ely,) C [1,00). This implies that f; € H; for j > 1. Hence, the last term in (4.11)
vanishes. Moreover, if d; = 1, then e; € H;, and hence from (4.11) we have

Z Ml D e )P+ (EPeser).

0<d;<1 d;<0

Now, assume Zo<di<1 d; < oo. Observe that for any ¢ such that d; < 1 we have e; € Hy, and
hence

Z d; = Z <Eei,€¢> = Z <(LO+EP)€”€@ = Z <Z)\j’ e, | <EP€i,€7;>>

0<d; <1 0<d;<1 0<d;<1 0<d;<1

By Lemma 4.5 we can interchange summations in the last expression, and thus
o+ > di=Y (EPe;e;) = tr((Ely,)s).
0<d; <1 d;i<1
Since ‘Hy and H; may both contain some eigenvectors with eigenvalue 1, we have

SN <u((Blu)) < DA

0<A;<1 0<A;<1

Alternatively, assume » o, , d; = 0o. Since fq(1/2) < oo we see that 1 is an accumula-
tion point of the sequence {d; : 0 < d; < 1}. Hence, the positive part of F|y, is not compact.
Therefore,

S A > t((Ely)s) = oo

0<)\j§1

Conclusion (%) is shown by symmetric considerations. O

In addition, we have the following cardinality estimates for an operator as in Theorem 4.1,
which are consequences of decoupling:

(i) If (d9) holds, then
BN = O} > #{idi= 0} and £\ <O} > #1{i di <0}

(ii) If (91) holds, then
#H7 = 2 #[{idi=13 and  #|{j A 2 1 > #{i 0 di > 1},
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(iii) Finally, if both (9¢) and (9;) hold, then
#{i:0<d; <1} >#N{j:0< X <1} and #[{j:0< N\ <1} >#|{i:0<d; <1}

Since these additional necessary conditions are not exhaustive, in each of the subsequent
sufficiency results we shall assume that decoupling condition (9,) does not happen.

5. EQUIVALENCE OF RIEMANN AND LEBESGUE MAJORIZATION

In this section we show the equivalence of Riemann and Lebesgue interior majorization for
nondecreasing sequences in [0, 1] satisfying the Blaschke condition, see the introduction to
Section 3. The concept of Lebesgue interior majorization was introduced in [15, Definition
4.2] in the case where A takes only finitely many values in [0, 1]. The following definition is
a generalization to the case where A takes possibly infinitely many values.

Definition 5.1. Let d = (d;)ie; and let A = (\;);es be sequences in [0, 1]. We say that d
satisfies interior majorization by X if fg(a) < oo for all a € (0, 1) and both of the following
hold:

(5.1) fala) > fa(a) for all a € (0,1),
and
(5.2) fola) = fi(a) mod 1 for some a € (0,1).

Similarly, Riemann interior majorization [15, Definition 5.2] was also introduced for the
case where A takes only finitely many values.

Definition 5.2. Let d = (d;);ez and A = (\;)icz be nondecreasing seqeunces in [0, 1] with
fala) < 00 and fx(a) < oo for all € (0,1). We say that d is Riemann majorized by X if
there is some k € Z such that the following two hold:

(5.3) Omi= Y (dig—X)>0 forallmeZ,

(5.4) lim 4, = 0.

m—r 00

Theorem 5.3. Let d = (d;)icz and A = (\;)icz be nondecreasing seqeunces in [0, 1] with
fa(a) < 0o and fa(a) < oo for all aw € (0,1). The sequence d is Riemann majorized by X if
and only if d satisfies interior majorization by .

Proof. First, we will assume that A is a sequence in (0,1). Let (A4;)32 . be an increasing

sequence in (0, 1) consisting of all of the distinct values of the sequence A. Moreover, set
Without loss of generality, by shifting the indices of d and A, we may assume that \; < A;
<= i<0Qandd; <A <= i<0. Foreachr € Z set

m,=max{i €Z:d; < A,} and o, =max{i € Z: \; < A.}.
With this notation we have
(5.5) A1 <di< A — m_1+1<i<m,,

(56) A = Ar—l <~ o,1+1<i1 <0,
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Moreover, note that the shifts of d and A we chose imply m; = 0; = 0. Therefore, we have

(5.7 CalA)= Y i Da(d)= 3 (-

Since fa(a) < 0o and fi(a) < oo for all a € (0,1), we see that Cy(A;) < 0o, Da(A;) < o0,
S Ai<oo,and 3o (1 - )) < oo

Next, we define
(5.8) ko= Y (di—N).

From this we have

(5.9) Cq(A1) — Da(Ar) = Z di_z (1—d, Z Ai —Z i) + ko

1=—00 =1 1=—00 =1

- C)\(Al) - D)\(Al) + k’o.

By Proposition 3.1 the difference f}(a) — fi(a) = ko mod 1 for all points a € (0,1) at
which fg and fy are both differentiable. Hence, (5.2) is equivalent to k¢ being a integer.
Next, note that for r, k € Z we have

r

r—k
RIUNEEUI VSO S
i=—00 1=—00 i=r—k+1

Letting » — oo and using the assumption that \; — 1 as ¢ — oo we have
(5.10) S (dick =)= > (di—\)—k

If we assume (5.2), then ky € Z. From (5.10) we deduce that (5.4) holds with k = k.
Conversely, if (5.4) holds for some k € Z, then (5.10) implies ky = k£ € N, and hence (5.2)
holds. This proves the equivalence of (5.2) and (5.4). For the rest of the proof we will assume
that both (5.2) and (5.4) hold.

Next, we claim that the inequality (5.1) with o = A, is equivalent to

(5.11) % d; > i Xi + Ap(ko — o +my).
i=—o00 j=—o0
From (3.2), (5.5), and (5.6) we deduce that for all r € Z
(5.12) Cx(A,) — Dx(A,) = Cx(A1) — Da(Ay) + o,
and
(5.13) Ca(Ar) — Da(Ay) = Ca(A1) — Da(A1) +m,.
Using (5.9), (5.12), and (5.13) we have
(5.14) Ca(A;) — Da(A,) = Cx(A,) — DA(A,) + ko — 0 + M.

Using the identity (5.14), we can rewrite (5.1) with a = A, as the equivalent inequality

Cd(AT> 2 C)\(Ar) + Ar(k’o — 0, + mr).
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This is exactly (5.11), and hence if (5.1) holds, then (5.11) holds for all » € Z. Conversely,
by Proposition 3.3, if (5.11) holds for all € Z, then (5.1) holds.

To complete the proof we will show that (5.11) holds for all r € Z if and only if (5.3)
holds.

Assume (5.11) holds. We will show that for each r € Z we have §,, > 0 for m =
or+1,...,0.41. There are three cases to consider:

Case 1. Assume that o, +1 < m, + ko < 0,41. First we will show that 0,,,,r, > 0. Using
(5.11) and then (5.6)

my+ko my—+ko mr—+ko
Oty = > (digy — A Zd—ZA>Z)\+A (ko —or+my) = >\
. T T T ot
= > Nt A= +m)— > N=Alko— o +m)+ > A =0
i—=—00 1=—00 i=m,+ko+1

By (5.5) and (5.6)

dicky —Ni > Ar — X >0 for m, + ko <i < 0ppq,
di*kg_)\’i<A7'_)\i:O forar+1§i§mT+k0.

Combining this with d,,, 1, > 0 implies that d,, > 0 forall m =0, +1,...,0,41.
Case 2. Assume m, + ky > 0,,1. Using (5.11) and then (5.5)

Ort1 ory1—ko
Ooris = Y, (digy — Z d; - Z Ai = (0rs1 — 0,)A,
O’T+1—k0 my moy
> Z di + Ap(ko — 01 +my) — Z di = — Z d; + A (ko — opy1 +my)
1=—00 1=—00 i=0r+1—ko+1

>— Y A+ A(ky— o +my) =0

1=0,4+1—ko+1

For all ¢ such that o, +1 < i < 0,41, (5.5) and (5.6) imply d;_p, — \i < A, — X\; = 0.
Combining this with d,, ;; > 0 implies that 6,, > 0 for all m =0, +1,...,0,41.
Case 3. Assume m, + kg < o,. First, we calculate

Or

00, = D (dicky = N) Zd+ Zd—ZA

1=—00 1=—00 t=myr+1 1=—00
or—ko or—ko
ZAT(kO_OT+mT)+ Z diZAT(kO_UT+mT)+ Z Ar:
i=my+1 i=my+1

For i such that 0, +1 < i < 0,41, using (5.5) and (5.6) we have d;_, —A; > A,—\; = 0. Since
we have already demonstrated that d,, > 0 this shows that d,, > 0 form =0,+1,...,0,41.
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Finally, assume (5.3) holds for some k € Z. Fix r € Z and assume o, > m, + k. Using
Om,+x > 0 and the fact that \; < A,_; < A, for ¢ < o,, we have

my my+k my+k or or or
Dodi= Y dik= Y A=Y Ah— D A=) A (o —m— kA
i=—00 1=—00 1=—00 I=—00 i=m,+k+1 I=—00

Next assume o, < m, + k. Using 6,,.+r > 0 and the fact \; > A, for i > o, + 1, we have

my my+k my+k or my+k or
Ddi=D dik= ) =D A+ D N> Nt (mtk—o)A,.
1=—00 1=—00 1=—00 1=—00 1=or+1 1=—00

This proves that (d;) satisfies (5.11) for each r € Z.

To complete the proof we must consider the cases where 0 and 1 are terms of A. If both 0
and 1 are terms of A, then A takes only finitely many values, and the result is a reformulation
of Theorem 5.2 from [15]. If 0 is a term of A and 1 is not, then we define the sequence (4,),
but indexed by NU {0} and with Ay = 0, and use the same proof as above by restricting r
to N. For the final case where 1 is a term of A and 0 follows from a symmetric proof. 0J

6. SUFFICIENCY OF INTERIOR MAJORIZATION

In this section we will show that interior majorization is sufficient for the diagonal-to-
diagonal result for sequences in (0, 1) satisfying the Blaschke condition. To achieve this we
will show that Riemann interior majorization is sufficient for nondecreasing sequences.

Theorem 6.1. Let (\;)icz and (d;)iez be two nondecreasing sequences in [0,1] such that
(d;)? (\i)Y (1 —d)$2,, and (1 — N2, are summable. Define

Sm= > (di—=X\) form¢eZ
Suppose that
(6.1) Om >0 forallmeZ
and
(6.2) lim 6, = 0.

m—0o0

If (N\;) is a diagonal of a self-adjoint operator E, then so is (d;).

Proof. First, suppose there exists mqy € Z such that ,,, = 0. Set [} = J; = Z N (—o0, my|
and Iy, = J; = Z N (mg,00). For k = 1,2, let Ejy be a self-adjoint operator with diagonal
(Ai)ier,- The sequences (Ay+1-i)52; and (dp,+1-4)52, are nonincreasing, and for each n € N

we have
n

5»511) = Z()\mo—‘rl—i - dmg—i—l—i) = 5mo+1—n - 5mo = 5m0+1—n > 0.
i=1
It is also clear that 65" — 0 as n — oo. By Proposition 2.15, (d;);cy, is also a diagonal of E;.
Similarly, the sequences (Apmy+4)52; and (dp,+4)52, are nondecreasing, and for each n € N
522) - Z(dmoJri - )\m0+i) = 6mo+n - (Smo - 5m0+n 2 0.

i=1
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Again, it is clear that 52 = 0 asn — oo. By a symmetric version of Proposition 2.15 ([19,
Theorem 3.6]) (d;);er, is also a diagonal of Fy. Since E; and Ey were arbitrary, by Lemma
2.17 if E' is any self-adjoint operator with diagonal ()\;);cz, then (d;);cz is also a diagonal of
E.

We may now assume that d,, > 0 for all m € Z. Let E be a self-adjoint operator with
diagonal (\;)icz. Fix ig € Z such that A\;,_1 < A;. Since 6,, = 0 as m — —oo, we can
choose ko < iy such that dg, < 0, for m = ko+1,ko+2,...,4. Additionally, we may choose
ko small enough that

(6.3) diy + Oy < Mig — Nig_1-
Define the sequence (Xi)iez by
N d; i < ko,
=4 A i€ {ko+1,. . ig—1}U{ig+ Lo +2,...},
Xig — Ok, 1 = 1p.
Set I = Jy = {io, ko, ko — 1,ko — 2,...}, and Iy = Jp = ZN\II. For k = 1,2 let E} be a

self-adjoint operator with diagonal (\;);es,. It is clear that (\;)ier, = (Ai)ier, is a diagonal
of E5. Define the sequences

o= ()\2'0, /\ko, /\ko—h .. ) and Zl, = ()\2‘0 — 5]%, dkm dko—h .. )

By the assumption that dy,+dx, < A;, we see that both p and g are nonincreasing. Moreover,

for each n € N we have
n

Gt i= 3t = i) = B > 0,
i=1
and clearly 6o — 0 as n — oo. Note that p is a diagonal of Fy. By Proposition 2.15, n
is also a diagonal of F;. Since E; and Es were arbitrary, by Lemma 2.17 (\;);cz is also a
diagonal of E.
For the final application of Lemma 2.17 we define the sets I} = J; = {ko + 1, ko + 2,...}

and I = J, =Z\ I;. For k = 1,2 let Ej be a self-adjoint operator with diagonal (\;)iez,. It
is clear that (d;);er, is a diagonal of Ey. Define the sequences

n = ()\k-0+1, )\k0+27 Cey )\Z‘O,l, )\io — 5k07 )\i0+17 .. ) and ’ﬁ = (dk0+1, dk0+2, .. )

From (6.3) we see that m is nondecreasing. For each n € N we have

N Okgin — Okg m=1,...,0g—1
Oy 1= N —1i) = ’ ’ .’ ’ ’

;( ) {(5k0+n n > io.
By our choice of ky we see that 9] > 0 for all n € N. Moreover, §] — 0 as n — oco. By
a symmetric version of Proposition 2.15 we conclude that i is a diagonal of Ej, and thus
(d;)icr, is a diagonal of E;. Since E; and E, were arbitrary, by Lemma 2.17 (d;);ez is also a

diagonal of E. O

Theorem 6.2. Let A = (\)ieny and d = (d;)ien be two sequences in (0,1) which have
accumulation points at 0 and 1. Assume that

fa(a) < fa(a) < oo for all a € (0,1),
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and
fA(a) = fi(a) mod1  for some a € (0,1).
If X is a diagonal of a self-adjoint operator E, then so is d.

Proof. The assumptions that fg(«) and fx(«) are finite imply that we can reindex d and
A by Z in nondecreasing order. Theorem 5.3 implies that d is Riemann majorized by A.
Finally, Theorem 6.1 shows that if d is a diagonal of some self-adjoint operator, then A is a
diagonal as well. 0

Theorem 6.3. Let X = (\;)icr and d = (d;);ey be two sequences in (0,1). Assume that
fala) < fala) < 0o for all a € (0,1),

and

(6.4) (@) = fila) mod1l  for some a € (0,1).

There exists a sequence X obtained by appending some number of zeros and ones to X such
that if X is a diagonal of a self-adjoint operator E, then so is d.

Proof. First we will show that #|I| < #|J|. Suppose #|J| < co. Choose ag € (0, 1) such that
ap < d; foralli € J. On (0, ap) the function fq is linear and has slope Dg(ag) = >, ,(1—d;).
For a € (0, ap) we have

i) 11—«

;(1 —di) === > 5= = ——Cx(a) + Da(a) > Da(a) = gaa —\).
Letting o — 0 we have
d—d) =D (1-N)
ied el

A symmetric argument shows

(6.5) dodi=) N
ieJ iel

From these we deduce that #|/| < oo, and adding these inequalities shows #|J| > #|I|.

Case 1. Suppose both 0 and 1 are accumulation points of d. Define A by appending
infinitely many zeros to A if 0 is not an accumulation point of A, and appending infinitely
many ones to A if 1 is not an accumulation point of A. Thus, the sequence A can be reindexed
by Z in nondecreasing order, A = (\;);ez. Similarly, since both 0 and 1 are accumulation
points of d and Cy(a), Dg(a) < oo for a € (0,1), we can reindex d by Z in nondecreasing
order, d = (d;);ez. By Theorem 5.3 we see that d is Riemann majorized by X, and Theorem
6.1 gives the desired conclusion.

Case 2. Suppose 1 is the not an accumulation point of d. From (6.5) we deduce that 1
is also not an accumulation point of A.

Choose o € (0, 1) such that oy > d; for all i € J and o > \; for all ¢ € I. By Proposition
3.1 we have

falag) = —Cqlap) Zd and  f3(ag) = —Cx(ap) Z)\

ieJ ieJ
34



From (6.4) and (6.5) we see that there is some k£ € NU {0} such that
(6.6) ddi=k+> A

Applying Lemma 3.5 to the sequences A and d we deduce from (6.6) that K = —k and
B =k (Note that since the sequences are in (0,1) we have Y = §* = §, = §; = 0). Hence,

lim\i(l)lfé(a,)\,d) =—k and d(a, A, d) > —k(l—a) forall a#0.

Define X by appending k ones, and appending and m € NU {0} U {cc} zeros to A, where
m will be chosen later. Now, we note that for a < 1 we have

S, A, d) = 8(a, A, d) + k(1 — o).

Hence
lim\iélf da,A\,d) =0 and d(a,A,d) >0 forall a#0.

Proposition 2.6 (or its finite variant if d is a finite sequence) implies

k k
> dr <Y X forall k.
=1 =1

and from (6.6) we see that these sequences have the same (finite) sum. Together these imply
that the number of positive terms of d is at least the number of positive terms in A. Choose
m so that the sequences have the same number of terms. Finally, by applying Proposition
2.15 (or the Schur-Horn Theorem if d is a finite sequence) we see that if Ais a diagonal of
some self-adjoint operator E, then d is as well.

Case 3. Suppose 0 is not an accumulation point of d. Apply Case 2 to the sequences
(1—X;) and (1—d;), and we get a sequence (1 —Xz) which is obtained by appending zeros and
ones to (1 — \;). Set A= (XZ), and note that this sequence is obtained by appending zeros
and ones to A. If E is any self-adjoint operator with diagonal ;\, then I — E has diagonal
(1= X). Hence (1 — d;) is also a diagonal of I — E, and thus d is a diagonal of E.

O

7. BLASCHKE CONDITION DIAGONAL-TO-DIAGONAL RESULT

In this section we prove the diagonal-to-diagonal result for sequences having accumula-
tion points only at 0 and 1, and satisfying the Blaschke condition. We start by proving a
preliminary result under restrictive conditions on sequences A and d.

Lemma 7.1. Let A = (\)ieny and d = (d;)ien be two sequences, which have accumulation
points only at 0 and 1, and such that fx(1/2) < 0o, fa(1/2) < co. Assume that the sequence
A has infinitely many terms 0 < A\; < 1/2 and infinitely many terms 1/2 < \; < 1. Define

0" =liminf(fx(8) — fa(B)) and 6 =liminf(fx(8) = fa(5)).

Assume that 0¥ + 6V < oo,

fala) < fa(a)  forallao € R\ [0, 1],
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and there ezist 5 € [0,6%] and 6, € [0,6Y] such that
fala) < fa(a) + (1 — a)dy + ady for all a € (0,1),
(@) — fila) =61 — 6 mod 1 for some a € (0,1).
In addition, assume one of the following holds:
(i) Ni,d; > 0 for alli € N, and 6V = 6, > 0,
(ii) Ni,d; < 1 for alli € N, and 6% = §, > 0,
(iii) 6% >0, 6V > 0, and 6% — 5y = oY — 6;.
If X is a diagonal of a self-adjoint operator E, then so is d.
Proof. We present a parallel proof that works simultaneously for each of the mutually exclu-
sive assumptions (i)—(i27). However, (i7i) has the most interesting proof since the first two

cases are simplified modifications of this argument.
Suppose momentarily that 6% > 0. Let 0 < oy < 1/2 be small enough that

5t 5k

Ai<ag Ai>ag

The first inequality clearly holds for all ay > 0 sufficiently small. For the second condition
we note that the ratio of the endpoints of the given interval is
6L(1 — (10)
209 inzao(l - i)

By Proposition 3.1 the above ratio goes to co as ag \, 0. Since the left endpoint of the
interval is also going to oo as a \, 0 we see that the second condition is also satisfied for all
sufficiently small «g. Hence, we let ag be sufficiently small, and let N € N such that

1 oF
Z(l—&)SNS—-

1—a 2c
0 Ai>ao 0

Let (d;);er, be an infinite positive sequence in (0, o] containing all terms of A in (0, ap), N
copies of ap, and a finite sequence of additional terms such that

S -

icly
In the case when 6% = 0, the above construction is mute and we let ag = 0 and I, = @.

Likewise, suppose momentarily that 6V > 0. By a symmetric argument we can find
ap € (1/2,1) sufficiently close to 1 and M € N such that
5U

1 1
11—\ oY d — <M< —
Z ( i) < 25 an ay Z Ai < —2(1 —ay)
Aizon Ai<on

Let (d;);er, be an infinite positive sequence in [, 1) containing all terms of A in [y, 1), M
copies of aq, and a finite sequence of additional terms such that

> (1 —di) ="
i€ly

In the case when 6V =0, we let a3 =0 and I; = @.
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Let d = (di)o<d;<1D (&;’)Z’e[o &) (&;)ieh. Each of the assumptions (i)—(7ii) implies that IoUI4
is infinite, and hence d is an infinite sequence. For o € (ag, o) we have

f&(Oé) = fd(Oé> + (1 — Oé)5L + Oé(5U > fd<Oé) + (1 — 04)50 + 0451 > f)‘(Oé).
If ap > 0, then for a € (0, ap] we have

M) =0-a) Y Ata 3 A=A ta Y (1-1)

Ai<a a<;<ag i >ag

<(1-a)) di+a > (1—d)+a(l—a)N
Ji<a a§@<a0

Sl dita Y (I-d)ta)y (1-d)= fia)
di<a a<d;<ag di>ag

By a symmetric argument we will also have fx(a) < fz(«) for all o € [aq,1) if oy < 1.
Combining these estimates yields

(@) < fy(a)  forall a e (0,1).
Moreover, we calculate
fale)—=fa(a) = fi(a)=fala)+6" =8 = 6, —do+6"—6" =0 mod 1  for ae a € (0,1).
By Theorem 6.2, if a self-adjoint operator has diagonal (A;)o<x,<1, then d is also its diagonal.
Hence, n = (\))x,<0 © d @ ()\j),>1 is a diagonal of E.

We claim that if a self-adjoint operator has diagonal p = (A;)x,<0 ® (di)o<d,<1/2 ® (di)ic,,
then (d;)q,<1/2 is also its diagonal. Indeed,

da, A, d) a<0
5(aal’l’7 (dz)dz 1 2) - Y T ’
T Sengsaldi—a) a>o0.
By Lemma 2.5
o ‘ _ sL _ 1 — lim i ,
hglflgﬂ(oa t (di)a,<1p2) = 6 = d; llgn\}gftS(oz, B, (di)a,<1/2)-

i€l

Hence, Theorem 2.19 applies and yields the claim if 6% > 0. If 6% = 0, then the claim holds
trivially by (i) since p = (d;)a,<1/2-
By a similar argument involving Theorem 2.19 or the assumption (i), if a self-adjoint

operator has diagonal v = (d;)1/2<d,<1® (ds)icr, ® (Aj)a;>1, then (d;)q,>1/2 is also its diagonal.
Since n = p @ v is a diagonal of E, by Lemma 2.17 so is d. O

We use Lemma 7.1 to show the following diagonal-to-diagonal result under more general
conditions on sequences A and d, which are nearly identical with the necessary conditions
in Theorem 4.1.

Theorem 7.2. Let A = (\)ieny and d = (d;);en be two sequences, which have accumulation
points only at 0 and 1, and such that fx(1/2) < oo and f4(1/2) < co. Define

o = lninf(f(5) = fa(B)) ~ and 0" = lim inf(fz(8) — fa(B)).
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Assume that 6% + 6V < oo,

(7.1) fala) < fa(a) for all « € R\ [0, 1],
and there ezist 5 € [0,6%] and 6, € [0,6Y] such that
(7.2) fala) < fala) + (1 — a)do + ady for all a € (0,1),
(7.3) fala) — fila) =61 —d mod 1 for some a € (0,1),
(7.4) > Ml <00 = 8 =g <6V -4y,
Ai<0

(7.5) Y (Ni—1) <o = 6V =5 <" = 6.

Ai>1

In addition, in the case when &y = 6% or &, = 6V assume that
(7.6) do,01 >0 and  fala) < fala) + (1 — a)dy + ady for all a € (0,1).
If X is a diagonal of a self-adjoint operator E, then so is d.

Remark 7.3. Assume that F is an operator satisfying hypotheses of Theorem 4.1. Then, if
the last assumption (7.6) of Theorem 7.2 is not met, then we necessarily land in one of the
following three scenarios:

e (09) holds,

e (9,) holds for some a € (0,1), or

e (91) holds.
By Theorem 4.1 we deduce that the operator E decouples at « € [0,1]. Hence, we have
additional necessary conditions on eigenvalue list A and diagonal d, see Theorem 4.14, which
we need to impose to obtain diagonal-to-diagonal result.

Proof. Without loss of generality we can assume that d, < 6% and §; < 6V by decreasing 6
and §; by the same quantity if necessary. Indeed, if 6y = 6% or §; = 6V, then by (7.6) and
Proposition 3.1, there exists a constant 0 < ¢ < min(dy, d;) such that

Ia(a) + ¢ < fala) + (1 — a)dp + ady for all a € (0,1).
Hence, replacing dg and d; by dy — ¢ and d; — ¢, respectively, does not affect assumptions
(7.2)—(7.5).

Step 1. We reduce to the case when there are infinitely many A; € (0,1/2) and infinitely
many A; € (1/2,1). If there are only finitely many \; € (0,1/2), then there are infinitely
many A; < 0, because 0 was assumed to be an accumulation point of A.

Take 0 < ¢ < min(6% — &y, Y — 6;). By increasing & and §; by € we can assume that
50, (51 Z € and
(7.7) fala) + e < fala) + (1 —a)dy + ady for all a € (0,1).

Note that the §(a, A, d) given by (2.4) is well-defined and finite for o € R\ [0, 1] despite the
fact that d and A are not in ¢y. Moreover, for o € R\ [0, 1] we have

(5(057 A: d) = f)\(Oé) - fd(a)'
Thus, since 0% = liminfg (fk(ﬂ) — fd(ﬁ)) > ¢, we may choose oy < 0 such that

(7.8) da, A\, d) > € for oy < @ < 0.
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Likewise, we can choose a; > 1 such that
(7.9) da, A, d) > ¢ forall 1 < a < a.

If there are infinitely many A; > 1, then we choose jj such that 1 < \;; < a;. Otherwise, we
choose for A\j, the smallest A\; > 1. We also choose an infinite subset Jy such that ap < A; <0
for all j € Jo and ., [Aj] < min(e/2, A, — 1).
Take any n such that >, ; [A\;[ <n < min(e/2, Aj, — 1) and let on = \;, — 1. Choose a

positive sequence (X]) jes, and such that

DoN=n=> INI=XN =X+ DA

j€Jdo Jj€Jo J€Jo
By Theorem 2.19 if (\;)jec5,u(j,) 1s a diagonal of a self—ad301nt operator, then so is ()\ )€ JoUtio}-

Define )\] = \; for j & JyU{jo}. Then, the sequences X and d satisfy the assumptions (7.1)—
(7.5) of Theorem 7.2 with

(7.10) oL =" =STINl do=d0— Y N U =6"—n, =06 —n.

J€Jo J€Jo

Indeed, (7.8) and (7.9) imply that (7.1) holds for A and d in the range a < 0 and a > 1,
respectively. Likewise, (7.7) and (7.10) imply that (7.2) holds. Indeed, for any o € (0,1) we
have by Proposition 3.4

f5(@) < fala) + (1 — ) Z/\ < fala)+ (1 —a)dg+ady +n—€

J€Jo
< fa(@) + (1 — @) + ady — 1 < fala) + (1 — a)dy + ads.
Perhaps the least obvious is (7.3)

fi(@) = fula) )= > N —fal@) =6 —d+ > [Nl —n=05—0d modl
Jj€Jdo Jj€Jo
Finally, (7.4) and (7.5) follow immediately from the definition of A and (7.10).

This process modifies the diagonal sequence A to another diagonal sequence . X such that
)\ € (0,1/2) for infinitely many j and the assumptions of Theorem 7.2 for X and d are
met Therefore, without loss of generality we can assume that there are infinitely many \; €
(0,1/2). By a similar procedure we can assume that there are infinitely many \; € (1/2, 1).

Step 2. Next we reduce to the case when 6% —§, = 6V —§,. Suppose that 6*—3y > 6V —6;.
By (7.4) this implies that 3., |\;| = 0o, where Jo = {j : \; < 0}. Since 6" < 0o we also
have 3., |d;| = oo, where Iy = {i : d; < 0}. Define 6L := 6o+ 06U — 6,. Since 6% < 6%, there
exists ag < 0 such that

(7.11) S, A, d) > 6" for all o € (e, 0).

Let v be the sequence (d;);c;, appended by a finite sequence which consists of terms in (v, 0)

and adds up to —d%. Define a sequence XA = (\;)jen s, O V.
By (7.11) we have

5o, A, A) = 8(a, (M) jes,v) >0 forall a < 0.
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By Proposition 2.16, if ()\;)jes, is a diagonal of a self-adjoint operator, then v is also a

diagonal. Hence, by Lemma 2.17 we deduce that Ais a diagonal of E.
On the other hand,

5(a,X,d) = (o, v, (di)icr,) > 0 for all o < 0.

By Lemma 2.5 we have
liminf 6(a, A, d) = 6*.
a 0
Therefore, sequences A and d satisfy assumptions (7.1)-(7.3) with the exception that 6% is

replaced by 0L = d +6Y — &,. In a similar way we deal with the case when 6% — &, > 6V — &,
using (7.5).
Step 3. By two previous reductions we can assume that:
e the sequence A has infinitely many terms 0 < )A; < 1/2 and infinitely many terms
e % 6V >0, and
o 6L — 6y =6Y -6, >0.

Hence, the assumption (iiz) of Lemma 7.1 is met, which completes the proof. 0]

We can also use Lemma 7.1 to show the following diagonal-to-diagonal result when exactly
one of the exterior parts is missing.

Theorem 7.4. Let A = (\;)ien and d = (d;)ien be two sequences, which satisfy the same
assumptions (7.1)~(7.5), as in Theorem 7.2. In addition, assume one of the following holds:

(i) Niyd; >0 for alli € N, and 6; > 0,
(ZZ) >\z,d1 <1 fOT all v € N, and (50 > O,
If X is a diagonal of a self-adjoint operator E, then so is d.

Proof. Assume (i) holds. If §¢ = &, then the conclusion follows by Lemma 7.1. Hence,
we may assume that §© > J, and we will proceed as in the proof of Step 2 in Theorem 7.2.
By (7.4), we have } ., |\;| = oo, where Jo = {j : \; < 0}. Since §; < oo, we also have
> ier, |di| = 0o, where Io = {i : d; < 0}. There exists ag < 0 such that

(7.12) da, A, d) >0y forall a € (ap,0).
Let v be the sequence (d;);e;, appended by a finite sequence which consists of terms in
(@0,0) and adds up to —dy. Define a sequence A = (A;) en g, © V.
By (7.12) we have
5o, A, A) = b(a, (Aj)jesy, V) >0 for all & < 0.

By Proposition 2.16, if (A;)jes, is a diagonal of a self-adjoint operator, then v is also a

diagonal. Hence, by Lemma 2.17 we deduce that Xis a diagonal of FE.
On the other hand,

5, A\, d) = 6(a, v, (di)ier,) >0 for all a < 0.

By Lemma 2.5 we have

llgﬂ/l(l)lfc?(a, A, d) = 0.
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Therefore, sequences X and d satisfy assumptions (7.1)-(7.3) with the exception that &’ is
replaced by 6 = §y. Hence, the assumption (ii) in Lemma 7.1. Consequently, d is a diagonal

of F. O

8. NON-BLASCHKE DIAGONAL RESULT

In this section we show that all sequences that satisfy exterior majorization, but do not
satisfy the Blaschke condition in the interior, are diagonals of self-adjoint operators with at
least two points in the essential spectrum. Moreover, in the case that the excess is infinite
we show the same result even if the Blaschke condition holds.

Miiller and Tomilov [51, Theorem 1.1] have shown the following result about the existence
of diagonals d satisfying non-Blaschke condition, that is, any of the following three equivalent
conditions:

L] Z min(di, 1— dz) = 00O,
0<d;<1
e fi(a) = oo for some a € (0, 1),
e fi(a) = o0 for all a € (0,1).
Their results also hold for n-tuples of self-adjoint operators, but we will not need such
generality. For convenience we assume that 0 and 1 are two extreme points of the essential
spectrum, but they can be replaced by any pair of distinct real numbers.

Theorem 8.1. Let E be a self-adjoint operator on ‘H such that 0 and 1 are two extreme
points of the essential spectrum o.ss(E) of E, that is,
(8.1) {0,1} C oess(E) C [0, 1].
Let d = (d;)ier be a sequence in (0,1) such that
iel
Then, d is a diagonal of E.

Lemma 8.2. Let E be a self-adjoint operator on H such that 0 and 1 are two extreme points
of the essential spectrum o.ss(E) of E, that is,

{0,1} C oess(E) C [0, 1].
In addition, assume o(E) C (—o0,1]. Let X = (\;)jes be the list of all eigenvalues of E with

multiplicity (which is possibly an empty list). If d = (d;)ies i a sequence in (—oo, 1) such
that fa(a) = oo for some o € (0, 1),

ot = hgl/%lf(fx(ﬁ) — fa(8)) > 0,

and

fala) < fa(a) for all a < 0,
then d is a diagonal of E.

Proof. We need to consider two cases.
Case 1. Suppose that the sequence (d;)q4,<o is infinite. Let v be an infinite sequence in
(0,1) that sums to 7. By Theorem 8.1 the sequence v @ (d;)o<q,<1 is a diagonal of EP|4,,

where 7 is the spectral measure of E, P = 7(0,00), and H, = ran(P). Hence, the sequence
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(Aj)r<0 ® V& (d;)o<ca;<1 is a diagonal of E. In the case that " < oo, by Theorem 2.19 we
conclude that if (A;),<o @ v is a diagonal of a self-adjoint operator, then so is (d;)q,<0. We
deduce the same conclusion in the case that 6% = oo using Theorem 2.19. Hence, by Lemma
2.17 we conclude that d is a diagonal of E.

Case 2. Suppose that Iy = {i : d; < 0} is finite. Let Jy be a finite set with at most #|/o|
elements such that (\;);cs, contains the smallest elements of ();)x,<o and

§(a, (Nj)jedos (di)ier,) = 0 for a < 0.

=3l = Dl 2 0

j€Jo i€ly
and the inequality is strict if N = #|1o| — #]Jo| > 0. In this case we choose a € (0, 1) such
that Na < 6. Otherwise, if N = 0 we let a = 0. Next we choose a finite set Ky such that
0<d; <1forie Koand ), . (1—d;)> 06" Choose d; <d; <1, i€ Ko, such that

> (di —di) = 6" — aN.

1€ Ko

Hence,

By the Schur-Horn theorem, if (\;) e, ®aln®(d;i)ick, is a diagonal of a self-adjoint (finite-
dimensional) operator then, so is (d;)ier,ur,- Here, 1y denotes the the constant sequence
of N terms equal to 1. By Theorem 8.1 the sequence aly @ (d;)ick, @ (di)icn\(1uke) 1S a
diagonal of El3,, where H, is the orthogonal complement of eigenvectors corresponding to

eigenvalues \j, j € Jy. Hence, the sequence ()))jcs, ® aly @ (di)ick, ® (di)ien (uko) 1 a
diagonal of E. Therefore, by Lemma 2.17 we conclude that d is a diagonal of E. O

Theorem 8.3. Let E be a self-adjoint operator on H such that 0 and 1 are two extreme
points of the essential spectrum o.ss(E) of E, that is,

(8.2) {0,1} C 0ess(E) C [0, 1].

Let A = (\j)jes be the list of all eigenvalues of E with multiplicity (which is possibly an
empty list). Let d = (d;);er be a sequence such that

(8.3) fala) < fa(a) for alla e R\ [0, 1].

Define
5L:1igl/i‘£lf(f)\<6)_fd(6)) and 5U=1igl\i{lf(fx(5)—fd(5))-

Assume that one of the following happens:

(a) 6%,6Y € (0,00) and fa(a) = oo for some a € (0,1),

(b) 0% € (0,00), 0Y = o0, and Y, _od; = oo,

(b7) 6% =0, Y =00, 3, ogdi = 00, and d; > 0 for alli € I

(c) Y € (0,00), 6L = oo, and Zdi<1(1 —d;) = o0,

(¢’) 6¥ =0, 0" =00, 3, ;(1 —d;) =00, and d; <1 for alli €I
d) ot = 6V = cc.

(d)

Then, d is a diagonal of E.

Proof of (a). We claim that there exists two orthogonal invariant subspaces Ky and Ky of E

and a partition {/y, I;} of the index set I such that:
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(i) H = Ko @& K, and the operators Ey = E|x, and E; = E|i, satisfy (8.1)
(i) d; < 1 for all i € Iy and d; > 0 for all i € I,
i) letting d* = (d;)icr,, we have fu(a) = oo for k=0,1 and a € (0, 1),

)

iv) letting A* be the the list of all eigenvalues of Ej with multiplicity, we have

(

(
(8.4) fro(a) > fp(a) forall a <0 and hIﬁn/%lf(f)\o (B) — fp(B)) >0,
(8.5) fa(a) > fa(a) foralla>1  and lirﬁn\i?f(f)\l(ﬁ) — fa(B)) > 0.

To prove the claim we can partition a sequence (d;)o<q,<1 into two subsequences, both of
which satisfy non-Blaschke condition. Then we append all the terms d; < 0 to the first
subsequence to form d° = (d;)ier,- Likewise, we append all the terms d; > 1 to the second
subsequence to form d' = (d;)scr,. This shows (ii) and (iii).

Let 7 be the spectral measure of E. If the sequence (A;)x;<o is infinite, then we require
that the subspaces Ky and Ky each contain infinitely many eigenvectors corresponding to
eigenvalues \; < 0 and (8.4) holds. This is possible since we assume that 6 > 0. Otherwise,
if (A\j)x,<o is finite, then we require that Cy contains all eigenvectors A; < 0. In this case,
the rank of the projection 7(0,d) is infinite for all 4 > 0. Hence, we can partition the
interval (0,1/2) into two Borel sets By and B; such that rank(m(By)) = oo, k = 0,1, to
guarantee that 0 € 0.s(Ep) and 0 € oes(E1). Likewise, if the sequence (A;)y,>1 is infinite,
then we require that the subspaces Ky and K; each contain infinitely many eigenvectors
corresponding to eigenvalues A\; > 1 and (8.5) holds. Otherwise, we require that ; contains
all eigenvectors A\; > 1. This yields (i) and (iv).

By the claim, we can reduce the proof of Theorem 8.3 to the case when the sequence
d = (d;);er satisfies d; < 1 for all ¢ € I, albeit 6V could take value 0. This is exactly Lemma
8.2. O

Proof of (¢). In light of (a), it suffices to consider the case when fq(a) < oo for some
a € (0,1). Together with the assumption that ), _,(1 — d;) = oo, this implies 0 is an
accumulation point of the subsequence (d;)q4,<1. Hence, there exists an infinite subset Iy C I
such that 0 is the only accumulation point of (d;);cz, and

Choose a sequence d = (cAl;)ieN such that CZ € (0,1) for all 7 € N, lichl; = 0, and ZJZ =
co. Choose an infinite subset Jo C {j € J : A\; < 0} such that >, ; [A\;| < oo and
d(a, (Nj)jenns. d) > 0 for all « < 0. Consequently,

(8.7) hm/iélfé(a, (Aj)jes,d) = oo, where J; ={j € J\ Jo: \; <0}

By part (a) the sequence (d;)a,0 ® d is a diagonal of Ely,, where H, is the orthogonal
complement of the eigenvectors corresponding to eigenvalues \;, j € J;. Hence, the sequence

(di)g, >0 ® d ® (Aj)jes, is a diagonal of E. Let Iy = {i € Iy : d; > 0}. By Theorem 2.19 and
(8.7), if (d;)ier, ®d D (Xj)jen is a diagonal of a self-adjoint operator, then so is (d;)icr,. By
(8.6) we have

{iel:d;>0}\I,=1\I.

Therefore, by Lemma 2.17 we conclude that (d;)icr, ® (di)icr\1, = d is a diagonal of £. [
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Proof of (¢’). The proof is identical to the proof of (c¢), with the two applications of (a)
replaced with Lemma 8.2. 0

Proof of (b), (b’), and (d). By symmetry, parts (¢) and (¢’) imply parts (b) and (b’), re-
spectively. Assume that 0 = 0¥ = oco. Since d is an infinite sequence, one of the sums
> a0 dior Y, (1 —d;) must be infinite. Hence, part (d) follows immediately from parts
(b) and (c). O

9. MAIN RESULT FOR OPERATORS WITH AT LEAST 2-POINT ESSENTIAL SPECTRUM

In this section we formulate and prove our main result, Theorem 9.1, on diagonals of self-
adjoint operators with > 2 points in their essential spectrum. To achieve this we combine
necessity results from Section 4 and sufficiency results from Sections 5-8. The statement
of Theorem 9.1 uses the concept of decoupling, see Definition 2.9. Finally, we also prove
Theorem 1.4, which yields a characterization of D(T") for the class of self-adjoint operators
sharing the same spectral measure as T' with a possible exception of the multiplicities of the
eigenvalues 0 and 1. While the proof of Theorem 9.1 merely combines earlier results, the
proof of Theorem 1.4 requires additional work.

Theorem 9.1. Let E be a self-adjoint operator on H such that 0 and 1 are two extreme
points of the essential spectrum o.ss(E) of E, that is,

(9.1) {0,1} C 0ess(E) C [0, 1].

Let X = (X\j)jes be the list of all eigenvalues of E with multiplicity (which is possibly an
empty list). Let d = (d;)ien be a sequence of reals. Define

5 =i inf(a(8) = fa(8) and 8" =i inf(f(3) — fa(5)).
(Necessity) If d is a diagonal of E, then

(9.2) fala) < fa(a) for all « € R\ [0, 1],
and one of the following five conditions holds:
(i) 6% = oYV = o0,
(i) 0" < 00, 6V =00, and Y, ., d;i = o0,
(iii) 0V < 00, 6% = o0, and Y, _ (1 — d;) = o0,
(iv) 6 4+ 6Y < 0o and fq(1/2) = oo, or
(v) 8L +6Y < 00, fa(1/2) < 00, fa(1/2) < oo, d has accumulation points at 0 and 1,
and there exists &y € [0,6%] and &, € [0,8Y] such that:

(9.3) In(@) < fala) + (1 — a)dp + ady for all o € (0,1),
(9.4) () = fila) =6 —d mod 1 for some a € (0,1),
(9.5) > Ml <00 = " =gy <6V -4y,
Ai<0
(9.6) > (Ni—1)<oo = ¢ =45 <" — 4.
Ai>1

In addition, the operator E decouples at a point o € [0,1] if (d,) holds, where

(09) =0 or =0 andd =Y,
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(0a) a €(0,1) and fx(e) = fa(e) + (1 — )do + ady,

(01) V=0 or & =0 andd ="
(Sufficiency) Conwversely, if exterior majorization (9.2) holds, one of conditions (i)-(v) holds,
and (3,) does not hold for any o € [0, 1], then d is a diagonal of E.

Remark 9.2. Note that the numbers Jy and d; are only defined when (v) holds. Hence, in
the case that (v) does not hold, the statements (9,,) must be properly interpreted using the
following convention. If one of the conditions (i)—(iv) holds, then dy and ¢; are not defined,
and we interpret any equality involving them in the statements (9,) as false. With this
convention, we note that if one of (i)—(iv) holds, then (9,) is false for all « € (0, 1), whereas
the statement (99) becomes 6% = 0, and (9;) becomes 6V = 0.

Proof. (Necessity) Note that the §(«, A, d) given by (2.4) is well-defined and finite for o €
R\ [0, 1] despite the fact that d and A are not in ¢y. Moreover, for o € R\ [0, 1] we have

fale) = fala) = 6(a, A, d).
From Theorem 2.8 we deduce fx(a) > fq(a) for @ < 0. Applying a symmetric variant of
Theorem 2.8 for operators with compact positive part to £ —1I we deduce fx(«) > fq(«) for
a > 1. This shows (9.2) holds.

There are now four mutually exclusive possibilities, depending on whether 6% and §V are
finite or infinite. If both are infinite, then there is nothing to show. If exactly one of them is
finite, then the desired conclusion follows from Lemma 4.7. Finally, if both are finite, then
either f4(1/2) = oo, in which case there is nothing to show, otherwise Theorem 4.1 yields
exactly conclusion (v) of Theorem 9.1 and conditions that guarantee that the operator F
decouples at « € [0, 1].

(Sufficiency) Suppose that (9.2) holds. Since (9,) does not hold for o € {0, 1} we see that
6Y, 6% > 0. If any of the conditions (i)-(iv) hold, then d is a diagonal of E by Theorem
8.3. If condition (v) holds, then Theorem 4.1 implies F is diagonalizable, and hence X is a
diagonal of E. That (9) and (9;) do not hold shows that if either 5o = 6% or §; = §Y, then
d0, 01 > 0. The assumption that (9,) does not hold for any a € (0, 1) implies that have strict
inequality in (9.3). Hence, if 6y = 6* or ; = 6 holds, then (7.6) also holds. Thus, we can
apply Theorem 7.2 to deduce that d is a diagonal of E. ([l

We are now ready to prove Theorem 1.4 which aims to bridge the gap between necessary
conditions and sufficient conditions in Theorem 9.1. The necessity direction offers no diffi-
culty. However, given an operator 7" and a sequence d that satisfy the necessary but not
the sufficient conditions of Theorem 9.1, it may be the case that d is not a diagonal of T'.
Hence, the difficulty is to find an operator T', by carefully modifying the multiplicities of the
eigenvalues 0 and 1 of T, such that d is a diagonal of T

Proof of Theorem 1.4. The necessity direction follows directly from the necessity direction
of Theorem 9.1. For the sufficiency direction, note that if any of (i)-(iv) hold, then by
Theorem 9.1 the sequence d is a diagonal of T. Thus we may assume that (v) holds. In
particular, we have fq(1/2) < oo and 6V + 6 < co. By Theorem 4.1 we see that T is
diagonalizable. Moreover, an operator T" is unitarily equivalent modulo {0,1} to T if and
only if 7" is diagonalizable, and the eigenvalue lists of 7" and 7" are identical apart from 0
and 1. Hence, to complete the proof, we must construct an operator 77 with diagonal d such

that the eigenvalue lists of 7" and 7" are identical apart from 0 and 1.
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In the case that &y < 6% and §; < §Y, the conclusion follows from Theorem 7.2. Thus, we
can assume either 6y = 6% or ' = 6V (or both). By symmetry, it suffices to consider the
case where &, = §~.

Case 1. Suppose we have equality in (1.7) for some ag € (0,1). Define the sequences
Ao = (ANi)ai<ans A1 = (1 = X)a>a0s do = (di)d;<a0, and dy := (1 — d;)g;>a,- By Corollary
3.6, Corollary 3.7, and Proposition 2.6 we see that

(do)+ < (Ao)+: (do)— < (Xo)—; (di)4+ < (A1), (di)- < (A1)
lignfiglfé(a,)\o,dg) = 0", ligl\i‘gf d(ar, Ao, dy) = do,

.. U .. .
hgl/l(l)lf&(a,)\l,dl) =47, and hgl\%lf(S(Oé,)\l,dl) = 0.

Note that §y = § and §; < §Y. Moreover, if (d;)_ € ¢!, then since 6V < oo we also have

(A1)_ € ¢' and hence (9.6) implies that §Y = §;. Hence, by Theorem 2.23 there are compact

self-adjoint operators Tg, Sy, T}, and S such that for i = 0,1

e T} has diagonal d;,

e 5; has eigenvalue list \;,

o1, ® 0 and S; & 0 are unitarily equivalent, where 0 is the zero operator on an
infinite-dimensional Hilbert space.

Finally, we note that the operator 7" = Ty @ (I — T}) is diagonalizable, has diagonal d, and
both T" and 7" both have identical eigenvalue lists apart from 0 and 1. This completes Case
1.

For the final three cases we will assume we have strict inequality in (1.7) for all & € (0, 1).
If 69,01 > 0, then Theorem 7.2 gives the desired conclusion. Thus, we need only consider
the case that §o = 0 or §; = 0 (or both).

Case 2. Suppose dyp = 0, and d; > 0. We have already shown that it is sufficient to assume
that d, = 0¥, hence 6* = 0. By Proposition 2.6 d_ < A_. From this we deduce that the
number of negative terms in the sequence d is at least the number of negative terms in A. If
d has N < oo negative terms, then by the Schur-Horn Theorem there is an operator T; with
diagonal (d;)g, <o and eigenvalues (—; "), (note that this is all of the negative eigenvalues
of T and possibly some zeros). If d has infinintely may negative terms, then by Proposition
2.15 there is a self-adjoint operator Sy with eigenvalue list (A_)* and diagonal (d_)*. Set
Ty = —Sp. Thus, in either case, we have a diagonalizable negative operator 7 with diagonal
(d;)a,<0 and eigenvalues consisting of (A;)x,<o and possibly some zeros. By Theorem 7.4 there
is a self-adjoint operator 7) eigenvalue list (\;)y,>0 and diagonal (d;)4,>0. Finally, let 0 be
the zero operator on a space of dimension #[{i : d; = 0}| and 7" = Ty &0 & T} is the desired
operator.

Case 3. Suppose dp > 0, and §; = 0. By (1.10), either (A\; — 1),,51 is nonsummable, or
0y = 01 = 0. In the nonsummable case we apply Proposition 2.16 to obtain a compact self-
adjoint operator T} with diagonal (d; — 1)4,>1 and eigenvalues (\; — 1)y,51. If 6Y = 0, then,
as in the previous case, either by the Schur-Horn Theorem or Proposition 2.15 there is a self-
adjoint operator 77 with diagonal (d; —1)4,~1 and eigenvalues (\; —1),,51 and possibly some
zeros. By Theorem 7.4 there is a self-adjoint operator Ty eigenvalue list (\;)y,<1 and diagonal
(d;)a,<1. Finally, let I’ be the identity operator on a space of dimension #[{i : d; = 1}| and
T"=Ty® T & (11 +1) is the desired operator.
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Case 4. Suppose 6p = 0; = 0. Since 9y = 0 we can construct the operator Ty as in
Case 2. Since §; = 0 we can construct the operator T} as in Case 3. Define the sequences
d; = (di)a;c0,1) and A; = (Ai)r,e(0,1). By our assumption that gy = d; = 0 we see that d; and
As satisfy the assumptions of Theorem 6.3. Hence, there is a self-adjoint operator 77 with
diagonal d; and eigenvalues consisting of A7, possibly with extra zeros and ones. As before,
let 0 be the zero operator on a space of dimension #|{i : d; = 0}|, and let I be the identity
operator on a space of dimension #|{i : d; = 1}|. The operator 7" = To 00T T ® (I+17)
is as desired. O

10. ALGORITHM FOR DETERMINING DIAGONALS OF SELF-ADJOINT OPERATORS
WITH AT LEAST 3-POINT ESSENTIAL SPECTRUM

In this section we give an algorithm for determining whether a given sequence is a diagonal
of a self-adjoint operator E with at least three points in essential spectrum. We introduce
the concept of pruning, which allows us to reduce the problem to a simpler operator E’ with
fewer points in its essential spectrum.

Definition 10.1. Let E be a self-adjoint operator on a Hilbert space H with projection-
valued measure 7 such that

E= / Adr(N).
R
The right essential spectrum of E is the set
0} (E) == {X € R:rankw([]A\, A + €]) = oo for all € > 0}.

€SS

Similarly, the left essential spectrum of E is the set 0. (E) :={\: =\ € 0/, (—E)}.

€SS €SS

Note that A ¢ o, (F) if and only if dim ker(E — AI) < oo and there exists € > 0 such that

€SS

MA+e)No(E) = 2.

Theorem 10.2. Let E be a self-adjoint operator on H such that 0 and 1 are two extreme
points of the essential spectrum o.ss(E) of E, that is,

(10.1) {0,1} C 0uss(E) C [0, 1].

Let X = ()j);es be the list of all eigenvalues of E with multiplicity (which is possibly an
empty list). If oess(E) = {0,1}, then additionally assume fx(1/2) = oco. Let d = (d;)ien-
Define

ot = hgl/iélf(fx(ﬁ) — fa(B)) and &Y = 1i%ﬂ\i{1f(f>\(5) — fa(B))-

(Necessity) If d is a diagonal of E, then

(10.2) fala) < fa(a) for alla € R\ [0, 1],
(10.3)

6" =0 = #|{i:di =0} < #{j: N =0} and #|{i: d; <O} < #[{j: \; <0},
(10.4)

V=0 = #{i:di=1} <#|{j: N\ =1} and #|{i : di > 1}| < #|{j: \; > 1},
and one of the following four conditions holds:
(i) 6% = 6Y = o0,
(i) 0" < 00, 6V =00, and Y, . d; = o0,
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(iii) 0V < 00, 6% =00, and Y, (1 —d;) = oo, or

(iv) 6L 4+ 6Y < oo and f4(1/2) = .
(Sufficiency) Conversely, if (10.2)—=(10.4) hold, one of the conditions (i)—(iv) holds,
(10.5) =0 = 0€o/(E), and =0 = 1€o_,(F),
then d is a diagonal of E.

Proof of Theorem 10.2. The necessity direction follows directly from the necessity direction
of Theorem 9.1. Indeed, by our assumption fx(1/2) = oo, the conclusion (v) in Theorem
9.1 cannot happen. If 6% = 0, then E decouples at 0 by Proposition 2.10, and thus (10.3)
follows from Lemma 2.14. Finally, (10.4) follows by applying the same argument to I — E.

For the sufficiency direction, note that if any of (i)-(iv) hold and §%,6Y > 0, then by the
sufficiency direction of Theorem 9.1 the sequence d is a diagonal of F.

Next suppose that ¥ = 0. We claim that we can reduce to the case d; # 0 for all 7. Indeed,
suppose momentarily that Theorem 10.2 is true for sequences d = (d;);en such that d; # 0
for all 7. Take an arbitrary sequence d satisfying the assumptions of Theorem 10.2. Let
In = {i:d; = 0}. If I is finite, then by (10.3) there exists Jy C J such that #|Iy| = #|Jy|
and \; = 0 for all j € Jy. If I is infinite, then by (10.3) there exists an infinite subset J, C .J
such that \; = 0 for all j € Jy, A\; = 0 for infinitely many j € J \ Jy, and

Either way, (10.6) holds. Next we decompose the operator £ = 0 @ FEy, where 0 is the zero
operator on a space of dimension #|.Jy|, and 0 € 0.4(Ep). Applying Theorem 10.2 in the
case of nonzero diagonal sequences yields that (d;)ien s, is a diagonal of the operator Fj.
Clearly, (d;);cr, is a diagonal of the operator 0. Hence, d is a diagonal of F, which completes
the reduction step. Hence, without loss of generality we can assume that d; # 0 for all i. By
a similar argument, we can also assume d; # 1 for all ¢ when 6V = 0.

By (10.2) and 6% = 0, Proposition 2.6 yields d* < A*, and hence

FI N <0} < #l{i - d < 0},
Thus, there exists a set J; satisfying
{7: A <0}CJiCc{j: N\ <0}

such that I, = {i : d; < 0} and J; have the same cardinality. Moreover, we can guarantee
that {j € J\ Ji : \; = 0} is infinite if {j € J : A\; = 0} is infinite. We can decompose the
operator £ = E; & E, such that E) is a diagonalizable operator with eigenvalue list (\;);e, -
In particular, this implies that o(Ey) C [0, 00) and by (10.5) we also have 0 € o.s5(E2).

Since §% = 0 either (ii) or (iv) holds. If (ii) holds, then by Theorem 8.3(b’) we deduce
that (d;)iem, is a diagonal of Es. Next, we assume that (iv) holds. If §Y > 0, then by the
symmetric variant of Lemma 8.2 we deduce that (d;);en, is a diagonal of E,. If 6V = 0,
then we can also assume d; # 1 for all i. Let I3 ={i:d; > 1} and Iy ={i: 0 <d; < 1}. By
a similar argument as in previous paragraph there exists a subset J; C {j : A\; > 1} and a
decomposition of the operator Fy = E5® E4, such that E5 is a diagonalizable operator with
eigenvalue list () e, and o(Ey) C [0,1]. By (10.5) we also have 1 € o.45(Ey), and hence
{0,1} C 0.ss(Ey). Since

fa(1/2) = min(d;, 1 - d;) = o0,

i€ly
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by Theorem 8.1 we have that (d;);cs, is a diagonal of Ej.

If I is finite, then by the Schur-Horn theorem (d;);cs, is a diagonal of E;. If I is infinite,
then Proposition 2.15 (d;);ey, is a diagonal of E;. Likewise, (d;)icr, is a diagonal of Ej.
Hence, d = (d;)icr,ursur, is a diagonal of £ = E; & E3 & Ej. O

As an immediate corollary of Theorem 10.2 we have the following characterization of
diagonals of a large class of operators. Part (i) of Corollary 10.3 was already shown by
Loreaux and Weiss [48, Theorem 4.6].

Corollary 10.3. Let E be a self-adjoint operator on H. Set a = info.(E) and b =
sup oess(E), and suppose that o(E) C [a,b]. Assume that either

(Z) #|0655<E)| Z 3, or
(it) #|0ess(E)| = 2 and the list of eigenvalues A = (\;)jes of E satisfies

Zmin()\j —a,b—\j) = o0.

jed
Let d = (d;)ier be a sequence in |a,b]. Then, d is a diagonal of E if and only if
#{i:d; =a}| < dimker(F —al), #|{i:d; =0} <dimker(F —bl), and
(10.7) Zmin(di —a,b—d;) = 0.

iel

Proof. By shifting and scaling F we may assume a = 0 and b = 1. Either (i) holds or
fa(1/2) = oo, and hence the operator E meets the assumptions of Theorem 10.2.

Now, suppose d is a sequence in [0, 1]. Since both d and A have no terms outside of [0, 1]
we see that fx(a) = fg(a) = 0 for all @ € R\ [0,1], and 6 = 6Y = 0. Thus (10.2) holds.
Using o(FE) C [0,1] and 0,1 € 0.45(F), we conclude that 0 € ¢ (F) and 1 € o, (F), and

the implications in (10.5) both hold. Thus, from Theorem 10.2 we see that d is a diagonal
of F if and only if (10.3) and (10.4) hold, and fg4(«) = oo. This is equivalent to (10.7). O

To describe our algorithm, it is convenient to introduce the concept of a pruning of an
operator.

Definition 10.4. Let E be a self-adjoint operator such that (10.1) holds. Let d = (d;);en-
Suppose that

=0 and 0¢o/ (E).

€SS

Let 7 be the spectral measure of E. A pruning of E at 0 is the pair (E’,d'), where E’ is the
restriction of F to the range of the projection 7([0,00)) and d’ = (d;)4,>0. Likewise, if

V=0 and 1¢o(E),

a pruning of F at 1 is the pair (E’,d'), where E’ is the restriction of E to the range of the
projection 7((—o0,1]) and d’ = (d;)4,<1-

We also need to extend the definition of the function §(«, A, d) given in Definition 2.4 to
sequences A and d which are not necessarily in ¢y. Note that the following function coincides
with 0(a, A, d) when o = 0.
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Definition 10.5. Let A = ();) and d = (d;) be real sequences. Suppose o € R is such that
for all v < ag we have #|{i : d; < a}| +#[{j : \; < a}| < co. For each o < ap we define

Sap(s Xd) = (a=X) = > (a—dy).

Aila di<a

Given an operator I with eigenvalue list A and diagonal d, the lower ezxcess of E at «q is
defined to be liminf, oy 6oy (v, A, d).

Suppose ap € R is such that for all & > ay we have #|{i : d; > a}|+#|{j : \; > a}| < cc.
For each a > « we define

Sap( Xd) =D (Ni—a) = > (di—a).

Aiza di>a

Given an operator E with eigenvalue list A and diagonal d, the upper excess of E at aq is
defined to be liminf,\ o, 0o (@, A, d).

The following two lemmas describe what happens when the necessity condition in Theorem
10.2 holds, but sufficiency condition fails.

Lemma 10.6. Let E be a self-adjoint operator on H such that (10.1) holds. Let d = (d;);en
be such that (10.2), (10.3), and one of the four conditions (i)-(iv) in Theorem 10.2 hold.
Suppose that

st =0 and  0¢& ol (E).

Let (E',d') be a pruning of (E,d) at 0. Let ay = mino.(E'). Let X be the list of all
eigenvalues of E' with multiplicity (which is possibly an empty list). Suppose that

&% = liminf 0o, (a, X', d') < 0.

a fag
Then, d is a diagonal of E <= d' is a diagonal of E'.

Proof. Note that 0 ¢ o/, (F) implies that apy > 0. Suppose first that d is a diagonal of
E. Since 6¥ = 0, the operator E decouples at 0 with respect to d as in Definition 2.9. In
particular, the operator Ely,, which is a restriction of E’, has diagonal d’. The operators
E'" and FEl3, may only differ by the multiplicity of the eigenvalue 0. That is the eigenvalue
list of E|z, is the same as that of £’ with the exception that it might contain fewer zero
eigenvalues. By Theorem 2.8 applied to El|3,, the lower excess of F|y, at ag is > 0 and at
most 0'". This yields that 0" = 0 and E|y, = E'. Hence, d’ is a diagonal of E’. Conversely,
suppose that d’ is a diagonal of E’. By a special case of Theorem 2.20, a characterization
of diagonals of positive compact operators with trivial kernel due to Kaftal and Weiss [41],
(d;)a,<o is a diagonal of the restriction of E to the range of m(—o00,0). Hence, d is a diagonal
of E. 0J

Lemma 10.7. Let E be a self-adjoint operator on H such that #|o.ss(E)| > 5 and (10.1)
holds. Let d = (d;)ien be such that (10.2), (10.3), (10.4), and one of the four conditions
(i)-(iv) in Theorem 10.2 hold. Suppose that

=0 and 0¢ol(E) and 6V =0 and 1¢o_,(F).
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Let (E',d') be a pruning of (E,d) both at 0 and 1. Let ay = minoess(E') and ap =
max o..(E'). Let X be the list of all eigenvalues of E' with multiplicity (which is possi-
bly an empty list). Suppose that

& = liminf6(a, N, d) >0 and & :=liminf(a, X, d) > 0.

o, fag aN\o
Then, d is a diagonal of E <= d' is a diagonal of E'.
Proof. Note that the assumptions 0 & o, (F), 1 & 0_,(E), and #|o.ss(F)| > 5, imply that

0 < ap < a; < 1. Suppose first that d is a diagonal of £ with respect to an orthonormal
basis (e;) of H. Since 6 = §Y = 0, the operator E decouples at 0 and at 1 with respect to

d as in Definition 2.9. That is, the spaces
Ho = span{e; : d; < 0}, Ho1) = Span{e; : 0 < d; < 1}, H, =spanie; : d; > 1}
are invariant subspaces of E/ and
o(Elwy) € (=00,0),  0(El) € 0,1, o(Blw,) € [1,00),

In particular, the operator E |H[0’1] has diagonal d’. The operators £’ and E |H[071] may only
differ by the multiplicity of the eigenvalues 0 and 1. That is, the eigenvalue list of E]Hm] is
the same as that of £’ with the exception that it might contain fewer eigenvalues equal to
0 or 1. Hence, both the lower excess of E’ at 0 and the upper excess of E’ at 1 are positive.
Since the normalization of the operator Ely, , satisfies the necessary conditions of Theorem
10.2 for the normalization of the diagonal d’, so does the normalization of the operator E’.
Since both upper and lower excesses of E’ are positive and #|o.ss(E")| > 3, by the sufficiency
of Theorem 10.2, the sequence d’ is a diagonal of E'.

Conversely, suppose that d' is a diagonal of E’. By a special case of Theorem 2.20, a
characterization of diagonals of positive compact operators with trivial kernel due to Kaftal
and Weiss [41], (d;)a,<0 is a diagonal of the restriction of E to the range of m(—00,0).
Likewise, (d;)4,>1 is a diagonal of the restriction of E to the range of 7(1,00). Hence, d is a
diagonal of FE. 0

The algorithm for determining whether a sequence d is a diagonal of an operator F with
#|oess(E)| > 5 is represented by Figure 1. This procedure starts by normalizing E so that
(10.1) holds. Then we check whether all necessary conditions (10.2)—(10.4) and one of the
conditions (i)—(iv) in Theorem 10.2 are satisfied. If not, then d is not a diagonal of E.
Otherwise, we check whether the three conditions 6* = 0, 0 € o,(F), and §'* < 0 from
Lemma 10.6 all hold. If yes, then we can prune an operator E at 0, and then repeat the
process of normalizing and checking necessary conditions in Theorem 10.2 as long as we have
at least 5 points in the essential spectrum. Since the minimum of the essential spectrum of
E (without normalizing) increases with each pruning, this iterative procedure has to stop
after a countable number of steps. This can be described by countably transfinite induction
procedure. Using a symmetric variant of Lemma 10.6, we also run the procedure of pruning
operator E from the right.

After countable number of pruning steps we have a trichotomy:

(i) either the operator E has exactly 4 points in its essential spectrum, in which case
we need to apply the 4pt algorithm described in Figure 2,

(ii) the necessity in Theorem 10.2 fails, in which case d is not a diagonal of E, or
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Input: self-adjoint operator E such that
#|0ess(E)] > 5 and a sequence (d;)

Normalize E so that
{0,1} C 0.55(E) C [0, 1]

(Necessity)

Apply 4pt algoritl
PPLy +pt algorithm Theorem 10.

Prune E at 0 or 1,
respectively

st =0,
0¢ ol (E),
and 0 <0

(d;) is not a
diagonal of E

yes

L 3 =0,
yes 0% =0 and no _ yes
0 ¢ O'+ (E) 1 € Uess(E)>
ess and 5/U < 0
Prune E at 0 and
normalize E so that o
{0,1} C 0.55(E) C [0,1]
0V =0 and
1¢ 0., (E)
Prune E at 1 and
normalize E so that
{0,1} C o.ss(E) C [0,1]
(d;) is not a (Necessity) (d;) is a
diagonal of F Theorem 10.2 diagonal of

F1GcURE 1. Algorithm for pruning operators with > 5-point essential spectrum
by countably transfinite recursive process.
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Input: self-adjoint operator E such that
#|oess(F)| = k, where k = 3,4, and a sequence (d;)

Normalize E so that
{0,1} C 0.ss(E) C [0,1]

(d;) is not a
diagonal of £

(Necessity)
Theorem 10.2

6F =0 and
0¢ ot (E)

€SS

Split into compact and
(k — 1) point essential
spectrum operators

0V =0 and
1o, (E)

no (d;) is a

Compact kernel problem diagonal of £

Apply (k — 1)pt
algorithm

FI1GURE 2. Algorithm for operators with 3-point or 4-point essential spectrum.

(iii) no more pruning as in Lemma 10.6 can be done, in which case the resulting pair
(E,d) has the property that d is diagonal of E if and only the same is true for the
original input operator and sequence.

In the last case, we will perform up to two additional prunings. That is, we check if 6% = 0
and 0 € o (F). If yes, then we prune operator E at 0, renormalize F, and observe that
the new lower excess 6© > 0. If no, we leave E intact. Likewise, we check if 6V = 0 and
1€ o, (F). If yes, then we prune operator E at 1, renormalize F, and observe that the new
upper excess 0V > 0. If no, we leave F intact. As a result we obtain a normalized operator

E’ with at least 3 points in its essential spectrum and a new sequence d’, which satisfies

(10.8) 7'=0 = 0eol (F), and &' =0 = 1eco_(FE),

€ss €ss

where &'" and &Y are excesses corresponding to (E’,d'). We claim that d is a diagonal of
E if and only if d is a diagonal of E’. Lemma 10.7 shows this claim in the case when E’ is

obtained by pruning of F at both 0 and 1. The case when pruning occurs only on one side
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follows in a similar way. Since both lower and upper excess of E’ are positive, the necessary
conditions in Theorem 10.2 are also sufficient. Hence, the algorithm concludes by giving a
definite answer whether the d is a diagonal of E or not.

The algorithm for determining whether a sequence d is a diagonal of an operator F with
#|oess(E)| = 3, 4 is represented by Figure 2. This procedure starts by normalizing E' so that
(10.1) holds. Then the algorithm splits into two similar cases depending whether we have 3
or 4 points in the essential spectrum.

In the latter case, we check whether all necessary conditions (10.2)—(10.4) and one of the
conditions (i)—(iv) in Theorem 10.2 are satisfied. If not, then d is not a diagonal of E.
Otherwise, d is a diagonal of E provided that (10.5) holds. In the case that both 6% = 0 and
0 ¢ o, ,(F) hold, Theorem 2.22 applies. In particular, we look for all possible splittings of £
into Fy and Fy at 0 with zp = #|{i : d; = 0}| and apply both Theorem 2.20 to test whether
(d;)a,<o is a diagonal of F; and the 3pt algorithm to test whether (d;)4,~0 is a diagonal of Es.
If the necessary condition in Theorem 2.20 fail or the 3pt algorithm gives negative answer
for all possible splittings, then d is not a diagonal of E. On the other hand, if the sufficient
condition in Theorem 2.20 holds and the 3pt algorithm gives affirmative answer for some
splitting, then d is a diagonal of E. This leaves out the possibility that for some splittings
the 3pt algorithm is inconclusive (this only happens if the 2pt algorithm needs to invoked)
or we encounter the kernel problem for positive compact operators. Since dimker £ < oo,
the algorithm requires analyzing only a finite number of splittings of £ if any. We deal in
a similar way in the case when §Y = 0 and 1 & o_,(F) hold. This leaves out the final case
when (10.5) holds, where Theorem 10.2 yields that d is a diagonal of E.

The algorithm for 3-point essential spectrum is performed in the same way with the
exception that in the case 0 = 0 and 0 & o, (F) or the case 6V = 0 and 1 ¢ o, (F),
we need to consider all possible splittings and apply Theorem 2.20 and the 2pt algorithm.
Hence, the 3pt algorithm is inconclusive only when we encounter the kernel problem for
positive compact operators or the 2pt algorithm is inconclusive. Likewise, the 4pt algorithm
is inconclusive only when we encounter the kernel problem for positive compact operators
or the 3pt algorithm is inconclusive. Finally, the > 5pt algorithm is inconclusive only when
it reduces to the 4pt algorithm. In fact, the following theorem shows that a combination of
algorithms in Figures 1 and 2 for operators with > 3 points in their essential spectrum is
conclusive for a large class of operators.

Theorem 10.8. Let E be a self-adjoint operator such that
(10.9) N € 0ess(F) infol (F) <\ <supo,,(F).

€SS €SS (

Let d be a bounded sequence of real numbers. Then, the algorithms in Figures 1 and 2 yield
a definite answer whether d is a diagonal of E, or not.

To show this result we need and analogue of Lemma 10.7.

Lemma 10.9. Let E be a self-adjoint operator on H such that #|0ess(E)| = 4 and (10.1)
and (10.9) hold. Let d = (d;)ien be such that (10.2), (10.3), (10.4), and one of the four
conditions (i)—(iv) in Theorem 10.2 hold. Suppose that

(10.10) 5 =0 and 0¢ o (F).

Let (E',d') be a pruning of (E,d) at 0. Let ag = inf o..(E'). Suppose that ag € ol (F).
Then, d is a diagonal of E <= d' is a diagonal of E'.
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Proof. Note that the condition (10.1) and 0 ¢ o, (F) imply that 0 < ap < 1. Suppose first
that d is a diagonal of E with respect to an orthonormal basis (e;) of H. Since 6% = 0, the
operator E decouples at 0 with respect to d as in Definition 2.9. In particular, the operator
El3, has diagonal d’. The operators E’ and E|y, may only differ by the multiplicity of the
eigenvalue 0. Since the normalization of the operator F|y, satisfies the necessary conditions
of Theorem 10.2 for the normalization of the diagonal d’, so does the normalization of the
operator E’. Since both oy € o (E'), 1 € 0., (E"), and #|o.ss(E")| = 3, by the sufficiency
of Theorem 10.2, the sequence d’ is a diagonal of E'.

Conversely, suppose that d' is a diagonal of E’. By a special case of Theorem 2.20, a
characterization of diagonals of positive compact operators with trivial kernel due to Kaftal
and Weiss [41], (d;)q4,<0 is a diagonal of the restriction of E to the range of m(—o0,0). Hence,

d is a diagonal of FE. 0

Proof of Theorem 10.8. Observe that the > 5pt algorithm in Figure 1 is inconclusive only
when it reduces to the 4pt algorithm. By the assumption (10.9), the 3pt algorithm in Figure
2 is conclusive. Finally, the 4pt algorithm might be inconclusive only when (10.10) or its
symmetric variant at 1 holds. However, Lemma 10.9 (or its symmetric variant) shows that
the question whether d is a diagonal of E reduces to the same question for the pruning of
E at 0, which is answered by the 3pt algorithm. Either way, our algorithms yield a definite
answer for operators satisfying (10.9). OJ

Remark 10.10. As a corollary of Theorem 10.8, the > 5pt algorithm is conclusive for the class
of self-adjoint operators with uncountable spectrum, which includes all non-diagonalizable
self-adjoint operators. Indeed, if a self-adjoint operator £ has uncountable spectrum, then
o(FE) has cardinality of the continuum ¢, and so does the essential spectrum o.s5(E). Con-
sequently, the set ot (E) No_,(F) has cardinality of the continuum ¢, and (10.9) holds.

€SS €SS

We finish this section by illustrating the necessity of transfinite recursive pruning in the
algorithm in Figure 1.

Ezample 10.11. Let A, d € ¢j be two sequences in [0, 1] such that the necessity conditions
(2.18)—(2.21) hold, but the sufficiency condition (2.22) fails with z = 1. That is, Theorem
2.20 can not be applied to deduce that there exists a compact operator £ with the eigenvalue
list A and diagonal d. In other words, we encounter the kernel problem for compact positive
operators with 1-dimensional kernel. Next, we shall add additional terms to A and d to
obfuscate the presence of the kernel problem.

By the von Neumann definition of ordinals, an ordinal « is a well ordered set of smaller
ordinals # < a. Let a be a countable limit ordinal. Let 7 : N — a be a bijection. Define a

sequence vV = (Vg)g<q by
vp=2— Yy 27

neN: m(n)<pB
Hence, v is an embedding of ordinal « as a subset of the interval [1, 2] reversing the usual
order < of reals. Moreover, the limit points of the sequence v are in one-to-one correspon-
dence with limit ordinals < a. We shall consider sequences obtained by concatenation of A
and d with the sequence v.
Now suppose that our ordinal « is quite large, say o = w®. Let E be a self-adjoint operator

with eigenvalue list A @ v. Hence, #|0ess(E)| = co. When we run the algorithm in Figure
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1 for £ and the sequence d @ v, after normalization we see that all necessity conditions in
Theorem 10.2 hold. While §© = 0, we have that 0 € o, (F), and hence no pruning at 0 is

allowed. However, 0¥ =0, 1 € o_,,(E), and the upper excess of a pruning of £ at 1 is zero,

8"V = 0. Hence, we prune the operator £ at 1, which corresponds to reducing the sequence
v to V' = (Vg),<p<a- Hence, up to a scaling factor the resulting pair is an operator E with
eigenvalue list A @ v/ and the sequence d & v'.

The algorithm takes this pair and then feeds it as an input for another run of the loop. The
result of this run is an operator F with eigenvalue list A@®v"” and the sequence d®v"”, where
V" = (V3)aw<p<a- This is done infinitely many times until we are reduced to original pair A
and d. If a = w*, only the algorithm in Figure 1 is employed. However, if « = w* + 3w,
then after w runs through the loop, we are left out with the pair A @ v* and d @ v*, where
V¥ = (Vg)ww<p<a- Since A @ v* has 4 accumulation points we need to run through 4pt, then
3pt, and finally 2pt algorithms in Figures 2 and 3 at the final stages since pruning needs
to be replaced by splitting. The compact kernel problem in Figure 2 does not arise at each
splitting since sequences A and d are being concatenated by the same sequence. Likewise,
in 2pt algorithm in Figure 3 we observe that (9;) holds and we split £ into two compact
operators for which 1pt Algorithm [18, Figure 1] and Theorem 2.20 are used, respectively.
This is actually the special case of the splitting marked by %. However, the kernel problem
in Theorem 2.20 is mute since sequences A and d are concatenated by the same sequence.
The end result is the original pair A and d for which 1pt algorithm is synonymous with the
unsolved kernel problem.

This illustrates how our algorithms process a pair of sequences A and d into simpler
subsequences until no more processing can be done and we either have a definite answer or
we encounter the kernel problem.

11. ALGORITHM FOR DETERMINING DIAGONALS OF SELF-ADJOINT OPERATORS
WITH 2-POINT ESSENTIAL SPECTRUM

In this section we give an algorithm for determining whether a given sequence is a diagonal
of a self-adjoint operator FE with exactly two points in its essential spectrum.

Theorem 11.1. Let E be a self-adjoint operator on H such that its spectrum satisfies
o(E) C (—o0,1] and  0ess(E) ={0,1}.
Suppose that fx(1/2) < oo, where A = (\;)jes is the list of all eigenvalues of E with
multiplicity. Let d = (d;);en be a sequence in (—oo, 1]. Define
5% =l inf ((5) — fal9)).
(Necessity) If d is a diagonal of E, then

(11.1) #{i o di =1} < #1{7: Ay = 1},
(11.2) fala) < fa(a) for all a < 0,

and one of the following three conditions holds:
(i) 6% = o0 and -, (1 —d;) = oo,

(ii) 0F < oo and f4(1/2) = oo, or
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(iii) 0¥ < oo, fa(1/2) < oo, d has accumulation points at 0 and 1, and there exists
o € [0, 0] such that:

(11.3) fala) < fala) + (1 —a)dy for all a € (0,1),
(11.4) (@) — fila) = =6, mod 1 for some a € (0,1),
(11.5) > Al <00 = dF =4

Ai<0

In addition, the operator E decouples at a point o € [0,1) if (?))) holds, where
(0y) =0 or =0,
(0)) a€(0,1) and fa(a) = fala) + (1 — a)dp.

(Sufficiency) Conversely, if (11.1) and (11.2) hold, (d)) does not hold for any o € [0, 1),
and either

e (i) or (ii) holds, or

e (iit) holds, \; <1 for all j,
then d is a diagonal of E.

Remark 11.2. Note that the number d, is only defined when (iii) holds. Hence, in the case
that (iii) does not hold, the statements (97,) must be properly interpreted using the following
convention. If (i) or (ii) holds, then we interpret any equality involving dy in the statements
(0/,) as false. With this convention, we note that if (i) or (ii) holds, then (?/)) is false for all
a € (0,1), whereas the statement (9)) becomes §% = 0.

Proof. The necessity part of Theorem 11.1 follows automatically from Theorem 9.1. The
exception is (11.1) which follows from the fact that any basis vector corresponding to diagonal
d; = 1 is an eigenvector of E.

For the sufficiency suppose that (11.1) and (11.2) hold, and (?)) does not hold for any
a € [0,1). By (i)-(iii)) we have that d; < 1 for infinitely many i. Let d' = (d;)4,<1. If
#{i : d; = 1}|] < oo, let X" be a sequence with all of the terms of ()\;)y,<1 together with
#{i: \i = 1} —#|{i : d; = 1}| terms equal to 1. If #|{i : d; = 1}| = oo, then set X' = \. If
d' is a diagonal of a self-adjoint operator E with eigenvalue list X', then E @1 has eigenvalue
list A and diagonal d, where I is the identity on a space of dimension #|{i : d; = 1}|. Note
that 1 is an accumulation point of X', and hence, without loss of generality, we may assume
d; < 1 for all 4.

If (i) holds, then by Theorem 8.3(c’) the sequence d is a diagonal of E. If (ii) holds, then
6% > 0 since (9f) does not hold. By Lemma 8.2 the sequence d is a diagonal of E. Finally,
suppose that (iii) holds, and A\; < 1 for all j. That (9;) does not hold implies that dy > 0.
Hence we may apply Theorem 7.4(ii) to deduce that d is a diagonal of E. O

Theorem 11.3. Let E be a self-adjoint operator on H such that its spectrum satisfies
o(E) C[0,1] and  0ess(E) ={0,1}.

Suppose that fx(1/2) < oo, where A = (\;)jes is the list of all eigenvalues of E with
multiplicity. Let d = (d;);en be a sequence in [0, 1].
(Necessity) If d is a diagonal of E, then

(11.6) #{i - di = 0} < #{j - Aj = 0},
(11.7) i di =1 <3 {7 - A =1},
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and one of the following two conditions holds:
(i) fa(1/2) = oo, or
(ii) fa(1/2) < oo, d has accumulation points at 0 and 1, and
(11.8) Ia(a) < fa(a) for all a € (0,
(11.9) fala) = fi(a) =0 mod 1 for some o € (0,
In addition, the operator E decouples at a point « € (0,1) if fa(a) = fa(a).
(Sufficiency) Conversely, if (11.6) and (11.7) hold and either
e (i) holds, or
e (ii) holds, and 0 < \; < 1 for all j,
then d is a diagonal of E.

1)7
1)

Proof. (Necessity) Suppose that d is a diagonal of E. Both (11.6) and (11.7) follow from the
fact that, since o(F) C [0, 1], any basis element corresponding to a diagonal term d; € {0,1}
must be an eigenvector. If fg(1/2) = oo, then there is nothing to prove. In the case that
fa(1/2) < oo, then (11.8), (11.9), and the additional statement about decoupling follows
from Theorem 4.1.

(Sufficiency) Suppose (11.6) and (11.7) hold. Suppose (i) holds. We can decompose
E =0® E' @1 where 0 is the zero operator on a space of dimension #|{i : d; = 0}|, and I
is the identity operator on a space of dimension #[{i : d; = 1}|. Moreover, we may assume
{0,1} C 0ess(E’). By Theorem 8.1 the sequence d' := (d;)a,e(0,1) is a diagonal of E’, and
hence d is a diagonal of E. Next, suppose (ii) holds, and 0 < A; < 1 for all j. Note that
(11.6) and (11.7) imply that 0 < d; < 1 for all ¢ € N, and hence d is a diagonal of E by
Theorem 6.2. U

The algorithm for determining whether a sequence d is a diagonal of an operator F with
#|oess(E)| = 2 is represented by Figure 3. This procedure starts by normalizing E so that
(9.1) holds. Then the algorithm splits into two cases depending whether eigenvalue sequence
A satisfies the Blaschke condition fx(1/2) < oo, or not.

In the former case, we check whether the exterior majorization (9.2) holds and whether
one of the conditions (i)—(v) in Theorem 9.1 is satisfied. If not, then d is not a diagonal of
E. Once the necessity conditions in Theorem 9.1 are satisfied, we check whether (d,) holds
for some o € (0,1). By Remark 9.2 if one of the conditions (i)—(iv) hold, then (9,) is false
for all @ € (0,1). Hence, if (d,) holds for some « € (0, 1), then necessarily condition (v) in
Theorem 9.1 holds. By Theorem 4.1, if d is a diagonal of E, then the operator £ decouples
at a. Hence, Theorem 2.22 yields a splitting of £ at « into operators E; and E5 such that
(di)a,<a is a diagonal of Ey, (d;)4,>« is a diagonal of Fs, and (2.23) holds. Conversely, the
existence of such splitting implies that d is a diagonal of E. Hence, to determine whether d
is a diagonal of E, we look for all possible splittings of £ into F; and F5 at « as above. For
each of operator E; and Es we use 1pt Algorithm in [18, Figure 1] to test whether (d;)4,<a
and (d;)q,>o are diagonals of F; and Es, respectively.

If (0,) is false for all @ € (0, 1), then we check whether (d,) holds for « = 0 or a = 1.
If not, then Theorem 9.1 yields that d is a diagonal of E. Hence, we can assume that (0,)
holds for & = 0 or @ = 1. To fix attention, assume (9;) holds, but (9y9) does not hold.
By Theorem 9.1, if d is a diagonal of E, then the operator E decouples at 1. As before,

Theorem 2.22 yields a splitting of E at 1 into operators F; and Es such that (d;)4,<1 is a
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Input: self-adjoint operator F such that
#|oess(E)| = 2 and a sequence (d;)

(04) holds
a€(0,1)

Normalize E so that
oess(F) = {0,1}

(d;) is not a
diagonal of F

Split E at « into
two compact parts

Apply 1pt algorithm
to each part of E

(Necesssity)
Theorem 10.2

Prune lower part of E

Apply 1pt algorithm
to upper part of E

6y =0 and
1 ¢ 0. (E)

Split £ into compact

and Blaschke parts? Prune upper part of £

Apply 1pt algorithm
to lower part of F

Compact kernel problem

Theorem 11.1 applicable

‘ (i) is a

(d;) is a
diagonal of F

diagonal of F

Compact kernel problem ‘

Kernel problem for oper-
ator as in Theorem 11.3

Split E into compact
and Blaschke parts

kernel problem for oper-
ator as in Theorem 11.1

(00) and (01)
hold

FiGURE 3. Algorithm for operators with 2-point essential spectrum. In the
special case the splitting marked by ¥ might result into two compact operators
for which 1pt Algorithm and Theorem 2.20 are used instead.

diagonal of Fy, (d;)4,>1 is a diagonal of E,, and (2.23) holds for a = 1. Conversely, the
existence of such splitting implies that d is a diagonal of £. While the operator Ej is a shift

of compact operator, the operator E; might or might not have two points in its essential
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spectrum depending whether 1 belongs to the left essential spectrum o (FE). In the special
case when F; has only one point in its essential spectrum, we use the 1pt Algorithm in [18,
Figure 1] and Theorem 2.20 to test whether (d;)4,<1 and (d;)4,>1 are diagonals of E; and Es,
respectively. This corresponds to symbol ¥ in Figure 3. In the generic case when E; has two
points in its essential spectrum, Theorem 11.1 is used to test whether (d;)q,<1 is a diagonal
of E;. Since (9,) does not hold for any o € [0,1) and d; = 0, we can deduce that for the
operator E; the condition (9))) does not hold for any a € [0,1). Note that the sufficiency
direction of Theorem 11.1 only applies when all the eigenvalues A of E; are < 1. For all
splittings where E) has at least one eigenvalue A = 1, the algorithm is inconclusive due to
the kernel problem for operators as in Theorem 11.1. Finally, observe that if any splitting of
E results in an operator F, that is finite dimensional, then we apply the classical Schur-Horn
theorem instead of Theorem 2.20. This concludes the analysis of the algorithm when ()
holds, but (9¢) does not hold.

The case when () holds, but (9;) does not hold follows by applying a symmetric variant
of Theorem 11.1. Finally, we consider the case when both (9y) and (9;) hold. By Theorem
9.1, if d is a diagonal of E, then the operator E decouples both at 0 and at 1. Two successive
applications of Theorem 2.22 yield a splitting of £ at 0 and 1 into operators Ey, F1, and FEj
such that (d;)q,<o is a diagonal of Ey, (d;)o<a,<1 is a diagonal of Ej, (d;)4,>1 is a diagonal of
Eg, and

dimker(FE) = dim ker(Ey) + dim ker(Ey) + #|{i : d; = 0},
dimker(I — F) = dimker(I — Ey) + dimker(I — Ey) + #[{i : d; = 1}|.

Conversely, the existence of such splitting implies that d is a diagonal of E. Hence, to
determine whether d is a diagonal of E/, we look for all possible splittings of E into Ey, Ej,
and E, as above. For operators Fy and Fy we use Theorem 2.20 to test whether (d;)q,<o
and (d;)4,>1 are diagonals of Ey and FEs, respectively, whereas we use Theorem 11.3 to test
whether (d;)o<a,<1 is a diagonal of E;. For all splittings when when E; has at least one
eigenvalue A = 0 or A = 1, the algorithm is inconclusive due to the kernel problem for
operators as in Theorem 11.3.

Finally, observe that if any splitting of E results in one of the operators Ey, E1, or E5 being
finite dimensional, then we apply the classical Schur-Horn theorem instead of Theorems 2.20
and 11.3. Observe that the extreme case when both E, and FE, are finite dimensional is
also possible. However, this is the only scenario when two of the operators Fy, Ey, or Ej
are finite dimensional. This concludes the analysis of the algorithm in Figure 3 when the
eigenvalue sequence A satisfies the Blaschke condition fx(1/2) < oco.

To analyze the algorithm when the eigenvalue sequence X satisfies non-Blaschke condition
fa(1/2) = oo, we employ the following lemma.

Lemma 11.4. Let E be a self-adjoint operator on H. Let X be the list of all eigenvalues of
E with multiplicity. Suppose that

oess(F) ={0,1} and  fx(1/2) = oc.
Let d = (d;);en be such that (10.2), (10.3), and one of the four conditions (i)—(iv) in Theorem

10.2 hold. Suppose that

V=0 and 1¢o_(E).
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Let (E',d") be a pruning of (E,d) at 1. Let X' be the list of all eigenvalues of E' with
multiplicity. Then, d is a diagonal of E <= d' is a diagonal of E'.

Proof. Suppose first that d is a diagonal of E. Since 0V = 0, the operator E decouples at 1
with respect to d as in Definition 2.9. That is,

Ho = spanie; : d; < 1} and H, = spanie; : d; > 1},
are invariant subspaces of E/ and
0(E|y,) C (—o0, 1] and o(E|y,) C[1,00).

In particular, the operator E|s,, which is a restriction of E’, has diagonal d’. The operators
E'’ and E|y, are compact and may only differ by the multiplicity of the eigenvalue 1. That is,
the eigenvalue list of F|y, is the same as that of E’ with the exception that it might contain
fewer eigenvalues equal to 1. If E' equals FEly,, then d is a diagonal of E’. Otherwise
note that the value of o, in Theorem 2.18 for the pair (E’,d’) is positive and greater than
or equal to that of for the pair (F|y,,d’). By the necessity direction of Theorem 2.18, we
see that (2.9)—(2.12) and (2.14) also hold for the pair (E’,d’). Since fx(1/2) = co, we have
(N4 & 0'. Hence, if d, € ¢*, then the values of o, and o_ for the pair (E|y,,d’) are infinite.
Thus, (2.13) also holds for the pair (E’,d’), and by the sufficiency direction of Theorem 2.18
the sequence d’ is a diagonal of E’.

Conversely, suppose that d' is a diagonal of E’. By a special case of Theorem 2.20, a
characterization of diagonals of positive compact operators with trivial kernel due to Kaftal
and Weiss [41], (d;)4,>1 is a diagonal of the restriction of E to the range of (1, 00). Hence,
d is a diagonal of F. 0

In the case when f)(1/2) = oo, we start by checking whether all necessary conditions
(10.2)—(10.4) and one of the conditions (i)—(iv) in Theorem 10.2 are satisfied. If not, then d
is not a diagonal of E. In the case that both 6V = 0 and 1 & o, (F) hold, then we define
(E’,d’) to be a pruning of (E,d) at 1. Lemma 11.4 yields that d is a diagonal of E if and
only if d’ is a diagonal of E’. Since E’ is a compact operator, we apply the 1pt algorithm
to test whether d' is a diagonal of E’. Likewise, if both ¥ = 0 and 0 € o/, ,(F) hold, then
we use a symmetric variant of Lemma 11.4 to justify the pruning of (E, d) at 0. This leaves
out the final case when (10.5) holds, where Theorem 10.2 yields that d is a diagonal of E.

This concludes the analysis of the 2pt algorithm in Figure 3.

12. KERNEL PROBLEM FOR OPERATORS WITH 2-POINT ESSENTIAL SPECTRUM

In this section we discuss the kernel problem for two classes of operators, namely the
operators that appear in Theorems 11.1 and 11.3. In particular, we show that an operator
as in Theorem 11.3 needs to satisfy additional necessary conditions in the analogy to compact
positive operators in Theorem 2.20.

Theorem 12.1. Let E be a positive operator on a Hilbert space H with o(E) C [0,1]. Let
(€:)ier be an orthonormal basis of H. Define the sequence d = (d;)ie; by d; = (Ee;,e;). If
fala) < oo for some a € (0,1), then E is diagonalizable. Moreover, if A = (\;)ies is the
eigenvalue list (with multiplicity) of E, then
(12.1) fa(a) < fa(a) for all a € (0,1),
(12.2) fola) = fala) €Z  for a.e. a € (0,1).

61



In addition, we have

M > #1{ A = 0} > #[{i : di = 0}],

(12.3) #{i:d; =0} + lim\jgf
(12.4) #{i:d; =1} +li?}?fw >H#{j N =1} > #{i:d; =1}

Remark 12.2. Conditions (12.3) and (12.4) are analogues of the majorization inequality
(2.21) in Theorem 2.20, albeit expressed in terms of majorization functions. Indeed, (2.21)

can be equivalently stated using the Lebesgue majorization as
oo, A, d
lim inf M >z
a\,0 o

Likewise, (2.22) is equivalent to existence of ap > 0 such that
a, A\, d) > az for 0 < a < .
Since we do not need these facts, the proof is left to the reader.

Proof. In light of Lemma 4.2, it remains to show conclusions (12.3) and (12.4). By symmetry
consideration, it suffices to show only (12.3). If d; = 0 or 1 for some i € I, then ¢; is an
eigenvector of E with eigenvalue 0 or 1, resp. Hence, without loss of generality we can
assume that d; € (0,1) for all i € I. We proceed as in the proof of Lemma 4.2.

By the spectral theorem there is a projection valued measure 7 such that

o / Nr(\).
[0,1]

Fix a € (0,1) and set

K= [ xdr()) and T:/ (1= \)dr(\).

[0,c) [e,1]
Let P be the projection given by P = 7([a, 1]). For each i € I set k; = (Ke;,e;),p; =
(Pei,e;), and t; = (T'e;,e;). Since E = K + P —T we also have
(125) dz = kz +pi — ti.

We claim that K and T are trace class. Since K and T are positive and (e;);cr is a Parseval
frame, it is enough to show that ). ,(k; +¢;) < oo.
Next, we observe

(12.6) T:/ (1— N dr(\) g/ (1—a)dr(\) = (1—a)P
[o,1] [o,1]
and
(12.7) K= [ xar() < / adr(N) = a(l— P) — an({0}).
(0,a) (0,a)
Let J={ie€l:d; <a}. Combing =K + P —T and (12.6) yields £ > K + 2-T. By
(12.5) we deduce that d; > k; + 1%~t;, and thus

(12.8) > (k + 5 f@ti) < Zdi < .

icJ
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From (12.7) we deduce that
1—
1-E=T-K+(I-P)>T+—2K+7({0}).
«

Thus, 1 —d; > 1jTo‘kz + t; + z;, where z; = (w({0})e;, e;). This yields

1€I\J el\J

Combining (12.8) and (12.9) yields that K and 7" are trace class.

By the spectral theorem for compact operators, there is an orthonormal basis (f;);c,, for
ran(I — P) consisting of eigenvectors of K, with associated eigenvalues (\;);cs,. There is
also an orthonormal basis (f;);c, for ran(P) consisting or eigenvectors of T" with associated
eigenvalues (1 — \;);ey,. Since K and T are trace class, both (\;);cs, and (1 — \;);ey, are
summable. For i € J; we have (P —T)f; = 0 and thus Ef; = \;f;. For ¢ € J, we have
K f; = 0 so that E'f; = \;. Therefore, (f;)ics,us, is an orthonormal basis for H consisting of
eigenvectors of E with associated eigenvalues (\;);c.,us,- This shows that E is diagonalizable.

From the definitions of K and T we see that \; < a for ¢ € J; and \; > « for ¢ € Js.
Thus,

Cala)=> A=) A<oo and Da(a)=) (1-X)=) (1-X)<oo.

i< i€y i« i€y

This implies fx(«) < co. Moreover, using (12.8) and (12.9) we have

Al =10=-a)) N+ad 1-N)=0-a)tr(K)+atr(T)=1-a)) k+ad

i€J1 i€Ja el el
o 1 -«
= (1-0[)2 <l€z+mtz) +OZIZ ( o k’z—i‘tI)
ieJ €I\J
< (1—a)2di+o¢ Z(l—di)—a Z zi = fala) — Z 2,
ieJ €I\J i€I\J €I\J

which shows (12.1). Moreover,

MzzzieZzi:dimkerE as a N\ 0.

di>a el

This proves (12.3). O

Theorem 12.1 could be extended to the class of operators as in Theorem 11.1 by replacing
the conclusion (12.4) with

#{i:d; = 1}|+1i?}?fw

+00 > #{j: N =1} = #[{i: di = 1}].
Since we do not use this fact, we skip its proof which is a more complicated variant of

Theorem 12.1. Besides, it seems unlikely that (12.3) and (12.4) are sufficient conditions for
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the existence of operators with prescribed diagonals as in Theorem 12.1. Indeed, we expect
that the existence of ag > 0 such that

#|{i3d¢:0}|+M

> #{j: N =0} > #|{i:d; =0} for 0 < o < av,
together with analogous statement for (12.4) are sufficient conditions. This is in analogy
with the kernel problem for positive compact operators in Theorem 2.20, where the gap
between the necessary (2.21) and sufficient (2.22) conditions persists.
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