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We investigate a 2 + 1D interacting Dirac semimetal with on-site flavor SU(2) symmetry. Topological

considerations imply that the skyrmions in the flavor-symmetry-breaking phase carry electron quantum numbers,

motivating a dual bosonized low-energy description in terms of two complex scalars coupled to anAbelian Chern-

Simons field. We propose that the transition between a nearby Chern insulator and the flavor-symmetry-broken

phase is a bicritical point in the bosonized description, and also suggest that the Gross-Neveu-Heisenberg (GNH)

transition between the Dirac semimetal and the flavor-symmetry-broken phase is a tricritical point. Heuristically,

the dual description corresponds to the gap closing of fermionic skyrmions. We discuss implications and potential

issues with our proposal and, motivated from it, perform extensive unbiased determinantal quantum Monte

Carlo (DQMC) simulations on a lattice regularized Hamiltonian for the GNH transition, extending previously

available results. We compare DQMC results with the estimates in the proposed dual to available perturbative

renormalization group results. We also numerically demonstrate the presence of fermionic skyrmions in the

symmetry-broken phase of our lattice model.
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I. INTRODUCTION

Quantum numbers associated with solitonic textures and

topological defects are crucial in a wide range of phenom-

ena, including fractionalization, quantum criticality, and the

determination of exchange statistics for emergent excitations

[1–12]. These quantum numbers also play a role in dual-

ities relating seemingly different theories that have led to

unique connections between exotic quantum criticality, inter-

acting topological insulators, and compressible quantum Hall

systems [13–36]. In this paper, we explore a setup where

skyrmions of an SU(2) flavor-symmetry-breaking phase carry

electron quantum numbers. Inspired by this observation, we

consider a proposal for a dual of a Gross-Neveu-type [37]

phase transition between the ordered phase and a Dirac

semimetal. This phase transition can be realized in a lattice-

regularized Hamiltonian that can be simulated without the

fermion sign problem [38]. We perform detailed quantum

Monte Carlo (QMC) simulations on the corresponding Hamil-

tonian, obtaining results for the universal scaling exponents

relevant to our duality proposal. A notable feature of the field

theory we investigate is that it cannot arise in a purely local

two-dimensional lattice model with time-reversal symmetry

and on-site flavor symmetry. This characteristic is evident in

the sign-problem-free lattice model that we simulate.

The starting point of our discussion is a Dirac semimetal

in 2 + 1D with two flavors of a two-component Dirac

spinor. Interactions can lead to the spontaneous breaking of

the SU(2) flavor symmetry down to U(1). Using standard

arguments, this transition can be described by the so-called

chiral Gross-Neveu-Heisenberg (GNH) field theory, where

electrons are coupled to a fluctuating O(3) order parameter

[37,39–44]. As already mentioned, a noteworthy aspect of the

symmetry-broken phase in our model is that the skyrmions

of the order parameter carry the same quantum numbers as

the microscopic electrons [10,45]. This suggests a physical

picture where, as one approaches the transition from the

ordered side, the gap to skyrmions closes at the transition,

resulting in the semimetal phase. The low-energy theory in the

ordered phase can be reformulated as a Chern-Simons-matter

theory where a two-component complex scalar is coupled

to a dynamic U(1) Chern-Simons gauge field whose flux

corresponds to the skyrmion density [5]. This motivates us

to explore the phase diagram of our model by tuning the

parameters in a Chern-Simons-matter theory whose field

content is similar to the aforementioned field theory deep

within the ordered phase. We find that the mass change of

the complex scalar describes a transition between the flavor-

symmetry-broken phase and a Chern insulator. This motivates

us to suggest that the GNH critical point where the three

phases, the Dirac-semimetal, the Chern insulator, and the

ordered phase meet, is dual to an interaction-tuned tricritical

point in this Chern-Simons-matter theory. We discuss

implications and potential issues with such a proposal and,

motivated from it, compare our QMC results with available

results from large-N expansions on the tricritical theory.

From a numerical standpoint, the lattice-regularized GNH

model we employ was originally introduced and studied by

Läuchli and Lang in Ref. [38]. However, connections to any

potential duality or topological aspects, such as the quantum

numbers of skyrmions, were not considered. Reference [38]

obtained scaling exponents of several operators corresponding

to the GNH transition. Inspired by the proposed duality, we

will provide universal exponents of several additional opera-

tors, such as the two-point correlation function of skyrmion

density, fermion mass, and electron pairs.
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Since the exchange statistics of skyrmions plays a key role

in the proposed duality, we will also implement a lattice regu-

larized numerical demonstration of the skyrmions’ fermionic

statistics. The main idea is to measure the Berry’s phase asso-

ciated with a process that generates a skyrmion-antiskyrmion

pair from the vacuum, rotates one of them by 2π , and then

annihilates the pair back into the vacuum [5].

The paper is organized as follows: In Sec. II, we intro-

duce the lattice regularized model which exhibits the GNH

transition. In Sec. III, we consider a bosonized description

of various phases and phase transitions in terms of a Chern-

Simons-matter theory. In Sec. VII, we discuss our QMC

results in light of the dual formulation. In Sec. VIII, we

provide a numerical demonstration of the fermionic exchange

statistics of the skyrmions. We conclude in Sec. IX with a

discussion of our main results, potential issues and future

directions.

II. PHASE DIAGRAM OF A LATTICE

REGULARIZED GNH MODEL

The theory we are interested in involves two flavors of

two-component Dirac fermions in 2 + 1D. One way to realize

such a theory is by considering spinless fermions at half-filling

with opposite sublattice hopping on a honeycomb lattice. In

the absence of interactions, one obtains two Dirac nodes in

the momentum space, whose low energy degrees of freedom

correspond to the two flavors. However, if one desires a theory

where the flavor symmetry acts locally in real space, then

the most physical way to realize the theory of our interest

is at the 2 + 1D boundary of a 3 + 1D C-I class topological

superconductor [46]. Alternatively, and for numerical feasi-

bility, one can consider long-range hopping of electrons on

a two-dimensional lattice, i.e., the SLAC fermion approach

originally proposed in Ref. [47]. Specifically, we consider

the Hamiltonian originally introduced in Ref. [38], where the

Hilbert space on site i corresponds to four different species of

complex fermions denoted as ci,τ,σ , where τ = a, b is an index

that becomes the Dirac spin at low energies while σ =↑,↓
denotes the flavor index. Correspondingly, we define Pauli

matrices τ a and σ a with a = x, y, z that act on the Dirac-spin

index and the flavor index, respectively. The Hamiltonian is

given by

H = H0 + HU , where

H0 =
∑

i,x

it (x)c†
i τ

yci+x −
∑

i,y

it (y)c†
i τ

xci+y,

HU = U

2

∑

i,τ=a,b

(ρi,τ − 1)2. (1)

Here t (r) = (−)r iπt0
L sin( πr

L
)
, with L being the linear system size of

the lattice while ρi,τ = ∑

σ c
†
i,τ,σ ci,τ,σ is the fermion density

operator for τ = a, b. From now on, we will set t0 to unity

so all energy scales are measured in units of t0. The global

continuous symmetry of H is SU(2)flavor × U (1)charge.

The long-range hopping t (r) is precisely the Fourier

transform of a dispersion linear in momentum [47], so in

the thermodynamic limit, H0 realizes two flavors of two-

component massless Dirac electrons: H0 = ∑

�k,σ
c

†

�k,σ
�k · �τc�k,σ

(see Appendix A for details). One notable aspect is that HU

is not Lorentz invariant, and the QMC results in Ref. [38]

imply that the Lorentz invariance in the Dirac semimetal

phase and at the GNH transition is emergent. In addition to

the lattice-related symmetries and on-site symmetries corre-

sponding to charge U (1) and flavor SU(2), the model also

possesses an on-site antiunitary symmetry, which we denote

as CT , that involves a combination of charge-conjugation

and time reversal: ci,σ
CT−→ τ zc

†
i,σ , i (= √−1)

CT−→ −i, and

time t
CT−→ −t . The CT symmetry is analogous to the one

realized at the 2 + 1D boundary of a 3 + 1D C-I class of

topological superconductors [46]. Crucially, a combination

of CT and flavor rotation, ci → (iσ y)τ zc
†
i , is an antiunitary

symmetry that squares to −1, and allows one to simulate

our model without a sign problem [48]. Indeed, as men-

tioned earlier, the phase diagram as a function of U/t has

already been mapped out using unbiased QMC simulations in

Ref. [38].

At small U/t , the system is in a stable, gapless Dirac

semimetal phase. In the continuum limit, the gapless Dirac

modes near � point [ �Q = (0, 0)] can be written as c�r ∼
ei �Q·�r�. Although the QMC simulations effectively involve

simulating an imaginary time action, for the purposes of dis-

cussing symmetries and the duality in the subsequent sections,

we will employ a real-time notation (except in Sec. VIII

where we study exchange statistics of skyrmions). Defining

γ 0 = τ z, γ 1 = −iτ y, γ 2 = iτ x, � = �†γ 0, the free part of

the Hamiltonian, namely, H0, is then described by the standard

continuum Dirac Lagrangian L0 = �(i∂μγ μ)�. QMC simu-

lations show that as the interaction strength U/t is increased,

the system eventually undergoes a second-order phase transi-

tion to a phase with nonzero expectation value �N = 〈� �σ�〉,
see Fig. 1. In Ref. [38], the symmetry-broken phase was

referred to as an antiferromagnet. However, we will call it a

quantum spin-Hall insulator (QSH) since, as discussed below,

it exhibits a nonzero spin-Hall response. The phase transition

between the semimetal and the QSH phase is expected to be

second order and can be described by the following field the-

ory: L = �(i∂μγ μ + mN �N · �σ )� + (∂μ �N )2 + ..., where the

order parameter �N is normalized as �N2 = 1. In addition to

the sign-problem-free QMC [38,43,49–53], this critical theory

can also be studied using perturbative renormalization group

(RG) schemes [39–41,44,54–58].

We find it useful to couple fermions to probe gauge

fields. For most of our discussion, it will suffice to in-

troduce two U (1) gauge fields Ac and As that couple to

conserved currents �γ μ� and �γ μσ z�, respectively. It is

useful to know the transformation properties of these gauge

fields, as well as those of various operators relevant to our

discussion under discrete symmetry CT and mirror sym-

metries Mx, My defined as Mx : cσ (x, y) → τ xcσ (x,−y), My :

cσ (x, y) → −iτ ycσ (−x, y); see Table I. One notices that both

charge and flavor currents, i.e., �γ μ� and �γ μσ z�, re-

spectively, have the same symmetries as the skyrmion current

j
μ
topo = 1

8π
εμνλ �N · ∂ν �N × ∂λ �N . One also notices that in addi-

tion to diagonal Chern-Simons terms such as AcdAc/4π and

AsdAs/4π , even the off-diagonal Chern-Simons term associ-

ated with spin-Hall response AcdAs/4π is odd under CT . The

table also mentions operators involving an internal gauge field
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FIG. 1. (a) The phase diagram of our model consists of a Dirac

semimetal phase separated from a QSH insulator. (b) The critical

point between the Dirac semimetal phase and the QSH phase in our

lattice model can be located using the crossing point for the cor-

relation ratio r defined as r = 1 − C(δ �q)

C(�0)
, where C( �q) = 1

L4

∑

i, j〈 �Ni ·
�N j〉ei�q·�ri j is the spin-structure-factor and δ �q = ( 2π

L
, 2π

L
). The location

of the transition point is consistent with Ref. [38], Uc/t ≈ 6.76.

a which will be introduced in the next section [see Eq. (6)

below].

III. BOSONIZATION OF GROSS-NEVEU-HEISENBERG

TRANSITION

One approach to find a bosonized dual for the GNH

transition is to utilize dualities for free fermions for which

considerable evidence exists at large N [17–21], and then

append them with appropriate interactions to reach the GNH

fixed point. For example, consider the following two La-

TABLE I. Symmetry transformations of a few operators relevant

to our discussion.

Operator CT My Mx

� �σ�, �N – – –

��, �N · ∂2
x

�N × ∂2
y

�N – – –

�γ 0�, �γ 0σ z�, Ac
0, As

0, �N · ∂x �N × ∂y �N – + +
�γ 1�, �γ 1σ z�, Ac

x, As
x, �N · ∂t �N × ∂y �N + – +

�γ 2�,�γ 2σ z�, Ac
y, As

y, �N · ∂x �N × ∂t �N + + –

a0 + – –

ax – + –

ay – – +
AcdAc, AsdAs, AcdAs, ada – – –

Acda, Asda + + +

grangians with SU(2)flavor × U (1)charge symmetry:

LF =
2

∑

a=1

�ai /DA�a + u(� �σ�)2 − m�� + CS(A), (2)

LB = |Da+Aφ|2 − (φ†φ)2 + CS(a) + u(φ† �σφ)2

−v|φ†φ|3 − rφ†φ, (3)

where CS(X ) = 1
4π

tr[XdX − 2i
3

X 3] denotes the non-Abelian

Chern-Simons term for a gauge field X , �a with a = 1, 2

represents the two flavors of Dirac fermions (Pauli matrices

�σ act on the flavor space) coupled to a background U (2) =
SU(2)flavor × U (1)charge gauge field A in the fundamental rep-

resentation, and φa with a = 1, 2 denote two complex scalars

that are coupled to a fluctuating U (N ) gauge field a as well as

the background gauge field A in the fundamental representa-

tion. When u = m = 0, LF , the Lagrangian for two flavors

of gapless free Dirac fermions has been conjectured to be

dual to LB, the Wilson-Fisher fixed point Lagrangian of a

non-Abelian Chern-Simons-matter theory for any value of

N � 2 [17–21]. Under this duality, r ↔ −m, i.e., turning on

the operator ±φ†φ on the boson side corresponds to turning

on the operator ∓�� on the fermion side. For example,

giving a positive mass to the boson yields a nontopologically

ordered phase (i.e., a unique ground state on a torus) [21,22]

and a Hall response −AdA/4π , matching the fermion theory

at negative mass, while giving a negative mass Higgs out of

the internal gauge field a, resulting in a unique, gapped ground

state with Hall response AdA/4π , which again matches with

the fermion theory at positive mass. As discussed above, in

the presence of time-reversal symmetry (i.e., m = 0), tuning

the interaction term u in the fermionic Lagrangian LF beyond

some critical strength drives the GNH transition between the

Dirac semimetal and a flavor-symmetry-broken phase with

two Goldstone modes. Due to duality, it is reasonable to

expect that the same fixed point can also be reached in the

bosonized description LB by perturbing the Wilson-Fisher

point with a term of the form u(φ† �σφ)2 with sufficiently large

u. Therefore, LB, at the appropriate fixed point values of the

coefficients of |φ|4 and (φ† �σφ)2 can be thought of as the dual

description of the GNH transition.

The aforementioned duality proposal for the GNH tran-

sition may be worth analyzing in detail, particularly using

perturbative methods such as large-N calculations. However,

working with non-Abelian gauge fields can be a bit chal-

lenging. On that note, for the Gross-Neveu-Yukawa phase

transition for a single Dirac fermion �, where the order pa-

rameter corresponds to 〈��〉, a duality involving only an

Abelian Chern-Simons-matter theory has been proposed in

Ref. [24]. This duality can be obtained from the seed du-

ality between a single Dirac fermion and a single complex

scalar coupled to a level-1 Chern-Simons gauge field, with

the fermion mass mapping to the boson mass. Using the seed

duality, one can also argue for a duality between the Gross-

Neveu-Yukawa phase transition in a two-flavor QED-3 and

an SU(2) symmetric CP1 theory, as discussed in Ref. [34].

This motivates us to ask if there might exist a dual of the

GNH transition as well, involving only Abelian gauge fields.

One possible approach is to combine the seed duality for

two different flavors of free Dirac fermions, leading to a dual

155112-3



XIAO YAN XU AND TARUN GROVER PHYSICAL REVIEW B 109, 155112 (2024)

theory with two complex scalars z1, z2 coupled to two distinct

U (1) gauge fields [34,59]. One would expect that adding

flavor-symmetric interactions in such a bosonized description

would then drive the GNH transition (in such an approach, the

dual of �σ x� and �σ y� would involve monopole operators)

[60]. Here we will follow a different route and consider an

alternative candidate duality for the GNH transition, which

is motivated from the quantum numbers of skyrmions in the

symmetry-broken phase of our theory.

IV. QUANTUM NUMBERS OF SOLITONS

Let us first discuss the effective field theory of the order-

parameter-field �N deep in the ordered phase in the presence

of probe gauge fields that couple to the charge and flavor

degrees of freedom of the electrons. Coupling SLAC fermions

to gauge fields can lead to various inconsistencies [61–63]

and it is perhaps more appropriate to consider our subsequent

discussion in a setup where hopping of fermions is local,

e.g., spinful fermions at the boundary of a C-I topological

superconductor. After minimal coupling to the probe gauge

fields, one may write the effective Lagrangian as

L = �
((

i∂μ + Ac
μ + �σ · �As

μ

)

γμ + mN �N · �σ
)

� + (∂μ �N )2,

(4)

where Ac is a U (1) probe gauge field for the conserved charge,
�As is an SU(2) probe gauge field for the conserved flavor,

while mN is a parameter that can be thought of as a Hubbard-

Stratonovich (HS) parameter for the interaction of the form

(� �σ�)2. Since we are deep in the ordered phase, we neglect

fluctuations of the magnitude of the order parameter and set

| �N | = 1. After integrating out the electrons, one finds the

following effective action [10,45]:

SQSH[ �N, Ac, As] =
∫

d2x dt

( |mN |
16

tr(∂μ �N )2 + πH ( �N )

+ j
μ
topoAc

μ + 1

2π
εμνλ

(

∂μAc
ν

) �As
λ · �N

)

. (5)

Here H ( �N ) is the Hopf invariant that equals the winding

number associated with the homotopy group π3(S2) = Z,

where the base manifold S3 corresponds to the space-time

because one has identified the field configurations of �N at

space-time infinity, while the target manifold S2 corresponds

to �N with �N2 = 1. The coefficient π in front of H ( �N ) implies

that the skyrmions of field �N , whose current in the above

equation is denoted as j
μ
topo = 1

8π
εμνλ �N · ∂ν �N × ∂λ �N , have

fermionic statistics [5,10,45,64,65]. The physical electromag-

netic current is given by jμc = δS
δAc

μ
|Ac=As=0, and Eq. (5) implies

that jμc = j
μ
topo. The time component of this equation implies

that skyrmions carry the same electric charge as the physical

electron. This is consistent with the fermionic statistics of the

skyrmions and also the fact that the skyrmion density j0
topo has

the same symmetries as the electron density �†� (Table I).

In Sec. VIII, we will perform a numerical calculation that

provides support for the fermionic exchange statistics of the

skyrmions in our model. Finally, the mixed Chern-Simons

term between the gauge fields Ac and �As implies that the

symmetry-broken phase has a quantized spin-Hall response,

and therefore should be identified as a QSH insulator. All of

this is quite analogous to the more familiar case of N f = 4 fla-

vors of Dirac fermions (e.g., in graphene) except, in that case,

one finds bosonic, charge-2 skyrmions whose condensation

can lead to a deconfined critical point between a QSH insula-

tor and an s-wave superconductor [66–69]. We also note that

the idea of fermionic skyrmions as induced by a Hopf term

was originally discussed in the context of two-dimensional

antiferromagnets in Refs. [64,65]. However, as later shown,

such a possibility does not occur in a strictly two-dimensional

antiferromagnet [46,70].

It is useful to rewrite the Hopf invariant H ( �N ) in terms

of a Chern-Simons field [5]. Let us introduce a CP1 repre-

sentation for the order parameter, �N = z† �σ z, where z is a

two-component complex vector that satisfies z†z = 1. This

is a redundant description since �N is unchanged under the

local transformation z(�r, τ ) → eiθ (�r,τ )z(�r, τ ), which implies

that z is coupled to a fluctuating U (1) gauge field aμ. In this

representation, the Hopf invariant, an integer, can be rewritten

as H ( �N ) =
∫

S3
1

4π2 ada [5,71], so the term πH ( �N ) in the above

action precisely has the same form as a Chern-Simons term

at level 1. Further, the skyrmion current is simply given by

j
μ
topo = εμνλ∂νaλ/2π . In the absence of the �As probe field, the

effective field-theory deep in the ordered phase may then be

written as

SQSH =
∫

d2x dt

( |(∂μ − iaμ)z|2
g2

+ adAc

2π
+ ada

4π

)

, (6)

where g2 is a coupling constant analogous to 1/|mN | in Eq. (5).

The level-1 Chern-Simons term for the gauge field a implies

that the flux-charge composite operator z†
σM, where M is a

monopole operator that creates a 2π flux of the gauge field

a, has the same quantum numbers as the electron creation

operator �†
σ . This composite operator does not carry any

gauge charge of the internal gauge field a because both the

CP1 bosons zσ as well as a bare monopole M carry a unit

gauge charge of a. Physically, the action of this composite op-

erator on a given state corresponds to creation of a skyrmionic

texture that is bound to an electron. The mixed Chern-Simons

term between a and Ac implies that skyrmions carry a unit

electric charge.

V. PROXIMATE PHASES

To motivate a dual field theory for the GNH critical point,

it’s useful to explore proximate phases that emerge if one

perturbs our model Hamiltonian H with terms that break the

discrete symmetries CT , Mx, and My explicitly. Although we

do not know how to simulate the resulting model Hamiltonian

due to the fermion sign problem, one may still make a reason-

able guess about the phase diagram by considering various

limits. Therefore, consider the following effective Lagrangian

in the vicinity of the GNH transition:

L = �
((

i∂μ + Ac
μ + σ zAs

μ

)

γμ − m
)

� + u(� �σ�)2. (7)

We have supplemented the GNH critical theory with a fermion

mass that explicitly breaks the aforementioned discrete sym-

metries (see Table I) and restricted ourselves to probe gauge

field As that couple only to the z component of the flavor

(we will assume that in the QSH phase, the flavor-symmetry-
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FIG. 2. (a) Schematic phase diagram of the Lagrangian in Eq. (7)

in the (u, m) plane, in the vicinity of the GNH critical point. CI1 and

CI2 denote the two Chern insulators, QSH denotes the quantum spin

Hall phase, GNH denotes the Gross-Neveu-Heisenberg transition

between the Dirac semimetal (blue line along the u axis) and the

QSH phase. (b) Translation of the phase diagram to an RG flow.

breaking occurs along the z direction in the flavor space, so the

spin-rotation symmetry along the z direction is preserved). Let

us write the contribution to the action from the probe fields

as
σ c

xy

4π
AcdAc + σ s

xy

4π
AsdAs + σ sc

xy

2π
AcdAs. Integrating out a single

flavor of fermion coupled to a U(1) gauge field b, a mass m

generates a Chern-Simons response sign(m) bdb
8π

. At m = 0,

as a function of u, the system undergoes the GNH phase

transition from the semimetal phase to the QSH phase, where

〈�σ z�〉 
= 0. This phase has σ c
xy = σ s

xy = 0 and σ sc
xy = ±1

(the sign of σ sc
xy depends on the sign of 〈�σ z�〉). On the

other hand, when u = 0, for m > 0, one obtains a flavor-

symmetric Chern insulator (which we will denote as CI1) with

σ c
xy = σ s

xy = 1 and σ sc
xy = 0, while for m < 0, one obtains a

flavor-symmetric Chern insulator (CI2) with σ c
xy = σ s

xy = −1

and σ sc
xy = 0. Assuming that the phase diagram consists of

just these three stable phases, we schematically expect the

phase diagram shown in Fig. 2. We propose the following field

theory for the transition between the QSH and CI2:

S =
∫

d2x dt

(

∣

∣

(

∂μ − iaμ + iAs
μσ z

)

z
∣

∣

2 − r|z|2 + adAc

2π

+ ada

4π
+ u(z† �σ z)2 − AsdAs

4π

)

, (8)

where now z is a two-component complex scalar without the

constraint z†z = 1, and
√

r is the mass for this scalar. Note

that (z† �σ z)2 = |z†z|2. The transition from the CI2 to the QSH

phase is driven by changing the sign of r. When r � 0 or

u � |r|, we expect that z condenses leading to spontaneous

symmetry breaking of the flavor SU(2) down to U (1), result-

ing in the QSH phase, with 〈z† �σ z〉 
= 0, and two Goldstone

modes. Deep in this phase, if one neglects the fluctuations of

|z|, one recovers the effective action discussed above using

gradient expansion, Eq. (5), or, equivalently, Eq. (6). Choosing

〈z1〉 
= 0 in this phase, one finds a = As due to the Higgs ef-

fect. This correctly reproduces the Hall response σ c
xy = σ s

xy =
0 and σ sc

xy = 1 of the QSH phase. On the other hand, when

r � 0 and r � u, the field z will be gapped and one may

integrate it out. After solving for the equations of motion

for the gauge fields, one finds σ c
xy = σ s

xy = −1 and σ sc
xy = 0,

which we then identify as CI2. One may similarly describe the

phase transition between the QSH phase and the CI1 phase by

writing a similar action where the sign of the ada and AsdAs

terms are reversed, and one chooses 〈z2〉 
= 0.

Above we haven’t specified the relation between the

fermion mass m in Eq. (7) and boson mass
√

r in Eq. (8).

Here we simply mention that at a fixed interaction strength

u, the CI2 to QSH transition can be accessed by increasing m

in the fermionic description (see Fig. 2) and by decreasing

r in the bosonized description, which is somewhat similar

to standard bosonization dualities. We will elaborate on our

understanding and potential issues in more detail below.

VI. A DUAL OF THE GNH TRANSITION

The aforementioned theory for the transition between the

QSH to Chern insulator [Eq. (8)] and the phase diagram

(Fig. 2) motivates us to conjecture that the GNH theory written

in terms of fermions and the order-parameter field, i.e.,

L = �
((

i∂μ + Ac
μ + σ zAs

μ

)

γμ + mN �N · �σ
)

� + (∂μ �N )2

is dual to the following theory written in terms of a two-

component complex scalar z and a dynamic, compact U (1)

gauge field a:

L =
(

∣

∣

(

∂μ − iaμ + iAs
μσ z

)

z
∣

∣

2 + adAc

2π
+ ada

4π
+ u(z† �σ z)2

−v|z†z|3 − AsdAs

4π

)

. (9)

Since we are interested in the tricritical point, one needs

to keep terms up to |z|6 in Eq. (9). This ensures that the

symmetry-broken phase obtained by changing the sign of u

has a well-defined minima for the order parameter |z| [72].

Higher order terms are not expected to be relevant. The La-

grangian in Eq. (9) has identical field content and a similar

form as the one for the QSH to Chern insulator transition

[Eq. (8)], except the scalar mass
√

r = 0. We require that the

scalar mass |z|2 is not allowed by the symmetry CT . We will

discuss justification for imposing this requirement below. This

suggests a single parameter (= u) tuned transition between

the QSH phase and a gapless phase without any obvious

instabilities that hosts a gauge-neutral (with respect to a) field

z†
σM with the quantum numbers of the electron. We posit that

the latter phase corresponds to the gapless Dirac semimetal.

This suggestion for the dual of Dirac fermions is somewhat

similar to that proposed in Refs. [64,65], although we do

not know any controlled calculation or a known duality that

justifies this assumption. Nonetheless, assuming that such an
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identification is correct and that there is a unique universality

for the phase transition between the Dirac semimetal and the

QSH phase, we identify the tricritical theory with the standard

GNH transition. Although this is a tricritical point from the

perspective of the Chern-Simons-matter theory in Eq. (8), it

is a single-parameter-tuned transition when the boson mass

|z|2 is prohibited (we assume v > 0). This is reminiscent of

other Bose-Fermi dualities where a Gross-Neveu-type the-

ory maps to a tricritical theory of bosons coupled to gauge

fields [17–21,24], although our understanding of the theory

in Eq. (9) is comparatively limited. A heuristic picture for

the transition is as follows. The aforementioned flux-charge

composite z†
σM is gapless in the semimetal phase, while it

is gapped out in the QSH phase. In the QSH phase, it carries

the same quantum numbers as the electron, as discussed above

and has the interpretation of an electron bound to a skyrmionic

texture [see the discussion following Eq. (6)]. Therefore,

closing the gap to the flux-charge composite is tantamount

to closing the electron gap. This suggests that the standard

GNH Lagrangian [Eq. (4)] is dual to the Chern-Simons-matter

theory in Eq. (9). In the following, we will explore conse-

quences and potential issues related to this duality conjecture.

Above, we already identified the electron creation operator

with the flux-charge composite z†
σM and the topological cur-

rent j
μ
topo with the electromagnetic current �γμ�. One may be

inclined to identify the negative of electron mass −�� with

the boson mass z†z, analogous to other Bose-Fermi dualities

involving a Chern-Simons term [21,23]. Heuristically, at the

level of semiclassical equation of motion for gauge field a,

Im(z†∂μz) + 2aμz†z + εμνλ∂νaλ/2π = 0, which suggests that

the operator z†z has the same symmetries as ada, which is

odd under CT , see Table I. This is also natural from the

perspective of the phase diagram in the vicinity of the GNH

transition, where |z|2 acts as a tuning parameter for phase

transitions (e.g., between QSH and CI1) that are accompanied

by a change in the Hall response, as discussed above. How-

ever, such an identification does not quite work. When the

coefficient r of z†z is large and positive, the z fields have a

mass gap, and one finds a Hall response for the probe fields

which is consistent with the Chern-insulator phase CI2. This

indeed matches with the Hall response in the GNH theory

[Eq. (7)] when the fermion mass m � 0. However, when the

coefficient of z†z is large and negative, one expects to obtain

the QSH phase with no charge Hall response and two Gold-

stone modes. In contrast, in the fermionic theory [Eq. (7)],

reversing the sign of the mass simply reverses the sign of the

Hall conductance and one obtains the CI1 phase. We don’t

have a satisfactory resolution to this issue (as an aside, such

an issue does not arise if one considers aforementioned duals

of GNH that are based on standard Bose-Fermi dualities, such

as Eq. (2), or the one involving two complex scalars coupled

to two Abelian gauge fields). A guess for the dual of the

fermion mass �� is the topological mass term that drives

the bosonic integer quantum Hall transition for the z fields be-

tween a trivial gapped phase of z bosons and a nontrivial phase

where z bosons are in an integer quantum Hall state with Hall

conductance of two. Such a transition will be accompanied by

a change in the sign of the ada/4π term in Eq. (9), resulting

in a change in the Hall conductance of our original fermions.

Such an identification would be analogous to that obtained

for the standard particle-vortex applied to two flavors of Dirac

fermions [34,59]. However, we do not know how to write such

a mass term explicitly in terms of complex scalars z.

Similarly, it is not clear to us how to write the dual of

the boson mass z†z under the proposed duality. One naive

possibility is that perhaps it corresponds to a linear com-

bination of the two relevant operators at the transition, i.e.,

z†z ∼ α�� + β(� �σ�)2, where α, β are O(1) numbers. Such

an identification would imply that z†z is still prohibited at

the GNH transition due to the discrete symmetries, but it is

neither even nor odd under these symmetries. As one tunes

the coefficient of the z†z term, one moves along a line with

slope α
β

in the phase diagram in the (u, m) plane. An appro-

priate choice of α and β would then be consistent with the

requirement that one obtains the QSH phase for r � 0 and a

Chern insulator for r � 0. On the other hand, when |r| � 1,

so one is in the scaling regime corresponding to the GNH

critical point, z†z will effectively correspond to the operator

that has the lower scaling dimension out of �� and (� �σ�)2

at the GNH critical point (assuming they have different scaling

dimensions). Reference [38] found a scaling dimension of

(� �σ�)2, �u ≈ 1.98(1), and our numerics discussed in the

next section found the scaling dimension of �� to be �m ≈
2.2(3). Therefore, error bars preclude a definitive conclusion

on which of them is larger. At large N , �m = 2 + c/N , where

c > 0 [58,73] which, in light of the QMC results, is suggestive

that �u < �m. If so, then in the regime |r| � 1, for one sign

of r, the GNH critical point will be unstable towards QSH

mass opening [since (� �σ�)2 will dominate ��], while for

the opposite sign of r, at the leading order, there will be no

mass opening while the subleading term proportional to ��

will lead to a Chern-insulator-type mass opening.

VII. QMC RESULTS AND COMPARISON

WITH PROPOSED DUAL

In the last section, we discussed two different phase tran-

sitions. The first phase transition we discussed is between

the QSH phase and the Chern insulator phase. We argued

that this transition is described by the field theory in Eq. (8).

Although one can estimate the scaling dimensions of various

operators for this transition within a large-N RG calculation

[74,75], the Hamiltonian (action) for this transition (using

either the fermionic description or the bosonic description)

suffers from the sign problem, and therefore we are unable to

make any numerical comparison with the field theory results.

The second phase transition we discussed, which is the main

focus of this paper, is the GNH transition between the Dirac

semimetal and the QSH phase. We argued that it admits a

dual description as a tricritical Chern-Simons matter theory

[Eq. (9)]. For this transition, although there is a sign problem

in the conjectured bosonic description [Eq. (9)], there is no

sign problem in the fermionic description [38]. This offers

an opportunity to potentially compare universal exponents

obtained from the QMC with those obtained from large-N RG

calculations. One potential obstacle with such a comparison

is that not much is known about the tricritical theory directly

using large-N methods. However, as we will discuss below, in

the large-N limit, the critical value of the interaction strength
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uc at the bicritical point is very small, which suggests that

in the large-N limit, the exponents of the bicritical point

are likely close to those for the tricritical point. At the very

least, such a comparison can be a starting point for future

investigations of the proposed duality. We will also compare

QMC exponents with the mean-field theory for the tricritical

point.

A. Scaling dimension of fermion operator

The conjectured duality predicts that the scaling dimension

of the electron creation operator in the GNH theory corre-

sponds to the (dressed) monopole operator that creates 2π flux

in the tricritical Chern-Simons-matter theory, Eq. (9). Based

on the QMC calculations in Ref. [38], the electron creation op-

erator �† has a scaling dimension of approximately 1.09(1),

which is also consistent with our QMC simulations and is also

quite close to the large-N result on the GNH theory up to

O(1/N3) [57], which yields an approximate scaling dimension

of approximately 1.10. The monopole scaling dimension in

the standard bicritical theory [Eq. (8)] has been performed in

Ref. [76]. It was found that when the ratio k/N = 1/2, where

k is the level of the Chern-Simons and N is the number of

complex scalars, at large N , the saddle point value of the

critical interaction uc at the bicritical theory is almost zero

(≈0.02) for a dressed monopole of flux 2π [76]. Therefore,

one expects that the leading large-N result for the scaling

dimension of a 2π flux monopole in the tricritical theory is

close to that in the bicritical theory. Assuming this is the case,

one finds that the scaling dimension of the monopole operator

that creates flux 2π is approximately 0.53N [76]. Therefore,

for the problem of our interest, namely, N = 2, one finds that

the scaling dimension of the operator that creates a flux-charge

composite dual to the electron is approximately 1.06 at the

leading order, which is rather close to the QMC result in the

GNH theory.

B. Scaling dimension of charge-2 operator

Operators that are Lorentz scalars and carry charge 2

of the global U (1)charge correspond to 4π flux dressed

monopoles under the duality, and it is instructive to com-

pute their scaling dimensions using QMC as well [77].

We consider two-point correlations of two distinct pairing

operators, the on-site pairing operator Pos(i) = c
†
i,a,↑c

†
i,b,↓ −

c
†
i,b,↑c

†
i,a,↓ and the nearest-neighbor pairing operator Pnn(i) =

∑

δ ((c†
i,a,↑c

†
i+δ,b,↓ + c

†
i,a,↓c

†
i+δ,b,↑) − a ↔ b), where δ denotes

the four nearest neighbors on a square lattice, that is, ±x̂,±ŷ.

One may verify that both of these are Lorentz scalars (i.e.,

Dirac-spin singlet). The scaling dimensions for either of these

operators are close to each other: �Pos
≈ 2.5(2) and �Pnn

≈
2.6(1), see Fig. 3(a) in the main text and Figs. 12 and 13

in Appendix B. Assuming our duality conjecture is correct,

this number should be compared with the scaling dimension

of the dressed 4π monopole in the tricritical theory, Eq. (9).

One again expects that the leading large-N result is close

to the one in the bicritical theory obtained in Ref. [76],

since the saddle-point value of the critical interaction uc for

this calculation at the bicritical theory is again very small

(≈0.05); see Ref. [76]. The leading order result for the

4π monopole in the bicritical theory at N = 2 is approxi-

mately �4π monopole ≈ 2.69 [76], which is again close to our

QMC estimate.

C. Scaling dimension of electron charge density

and skyrmion density

As discussed above, the conservation of total electron

number is realized as the conservation of the topological

current j
μ
topo in the Chern-Simons-matter theory. Since

conserved charges do not acquire any anomalous dimension,

this correspondence predicts that ��†� = � j0
topo

= 2, where

both ��†� and � j0
topo

are obtained using QMC simulations in

the model Hamiltonian H by looking at the two-point corre-

lations of the electron density �†� and the skyrmion density

= 1
8π

ε0νλ �N · ∂ν �N × ∂λ �N , respectively. Numerically, we find

that ��†� ≈ 2.0(1) while � j0
topo

≈ 1.9(2), see Figs. 3(b) and

3(c) in the main text and Figs. 6–9 in Appendix B. We note

that the calculation for the skyrmion density correlations is

rather challenging since this correlation function involves

a product of 12 fermion creation or annihilation operators.

We used a MATHEMATICA code to generate all possible

Wick contractions and after the simplification, each such

correlation has 2 064 384 terms, where each term involves

a product of six single-particle Green’s functions. As an

aside, the prefactor CJ for the power-law decay, defined as

�†(x)�(x)�†(0)�(0) ∼ CJ/x4 is also universal, and will

take a different value for the GNH fixed point compared to

the free-fermion fixed point. However, we do not have the

numerical precision to estimate it reliably.

D. Critical exponent ν for diverging correlation length

The tuning parameter for the GNH transition is the inter-

action term u(� �σ�)2. In Ref. [38], it was found that various
quantities are a scaling function of uL1/ν with ν ≈ 0.98(1).
Therefore, the correlation length ξ diverges as ξ ∼ u−ν , and

the scaling dimension of the operator (� �σ�)2 is 3 − 1/ν ≈ 2.
We do not have a large-N estimate for this scaling dimension
in the tricritical theory. However, the value obtained from
the mean-field theory of the tricritical theory is surprisingly
close. In particular, within the mean-field theory, the inverse

propagator at momentum �k for the complex scalar is (k2 +
u〈|z|〉2), and since 〈|z|〉 ∼ √

u/v within mean field, this im-
plies that the mean-field correlation length exponent νMF = 1.
Alternatively, one notes that the scaling dimension of z is 1/2

within mean-field, and that of (z† �σ z)2 ∼ (� �σ�)2 is 2. The
close match between the mean-field tricritical theory and the
QMC results might well be a coincidence, but it is still worth
noting.

E. Scaling dimension of the order parameter �N

Both Ref. [38] and our simulations find the scaling di-

mension of the order parameter �N , � �N ≈ 0.75, see Fig. 10

in Appendix B. Although the scaling dimension of �N in the

bicritical theory has been calculated, see Ref. [78] (one finds

� �N ≈ 1.12 if one sets N = 2 within the large-N calculation

in Ref. [78]), we are not aware of a similar calculation for

the tricritical theory. Within the mean-field of the tricritical
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FIG. 3. Measurement of the scaling dimension of various operators at the GNH quantum critical point (Uc/t ≈ 6.76). The data in (a),

(b), and (d) are obtained from equal-(imaginary) time unequal-space correlations, while (c) is based on unequal-(imaginary) time, equal-

space correlations. The unequal-space correlations are more accurate than the unequal time since the latter requires two steps of fitting:

we first perform a power-law fit for the imaginary time decay at a fixed system size L, and then further perform a 1/L extrapolation to

the thermodynamic limit. The power-law fitting of �†� correlations, �� correlations, Pnn correlations, and Pos correlations at the largest

possible separation [ �Rmax = ( L−1

2
, L−1

2
)] with system size L gives 2��†� = 4.1(1), 2��� = 4.5(6), 2�Pnn = 5.3(1), and 2�Pos = 5.0(3) [the

corresponding numbers obtained from unequal time correlations are 2��†� = 3.2(1), 2��� = 4.6(1), 2�Pnn = 3.8(1), and 2�Pos = 4.6(3)].

From unequal-time skyrmion correlations, we find 2� j0
topo

≈ 3.8(3). The data quality for this calculation is further limited by the rather

challenging nature of the calculation of skyrmion density correlations. Note that data in grey are from density-channel calculations while

that in black are from spin-channel calculations. See Appendix B for more details.

point, since the order parameter is bilinear in the scalar z,

� �N,MF = 1.

F. Scaling dimension of fermion mass ��

To obtain the scaling dimension of ��, we perform finite-

size scaling in our QMC simulations up to system sizes with

linear length L = 25 and find an approximate scaling dimen-

sion ��� = 2.2(3); see Fig. 3(d) in the main text and Fig. 11

in Appendix B. As discussed above, we do not know the

precise form the operator dual to fermion mass ��, although

naively one might expect that the operator with which it has

the largest overlap is the boson mass operator z†z in the tricrit-

ical theory. Although we do not know any reliable estimate of

�z†z in the tricritical theory, within a large-N calculation for

the bicritical Chern-Simons theory, Refs. [74,75], at the lead-

ing order one finds �z†z = 2. Within mean field, this scaling

dimension would be 1.
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G. Estimates for universal entanglement F

The universal part of quantum entanglement for a circular

bipartition, generally denoted as F , has been shown to mono-

tonically decrease between two renormalization group fixed

points in 2 + 1D Lorentz invariant field theories [79–86]. For

various Bose-Fermi dualities that hold true in the large-N limit

[18–20], the equality between the F on two sides of dual-

ity has already been demonstrated in Ref. [87]. A judicious

choice of RG flows connecting theories of interest can con-

strain phase diagrams [88] and could potentially rule out our

conjectured duality. Using the monotonicity property, FGNH >

FDirac semimetal = 2FD, where FD ≈ 0.2190 is the value of F for

a single two-component Dirac fermion. This bound motivates

one to find an upper bound for the tricritical Chern-Simons-

matter theory [Eq. (8)], so as to possibly find contradiction

with the conjectured duality. However, unlike the standard

O(N ) Wilson-Fisher fixed point for which the Gaussian fixed

point provides an obvious upper bound, here the presence of

the Chern-Simons term makes it difficult to find an analo-

gous bound. Therefore, we will simply estimate the two sides

using results from large-N expansions. Using results from

Ref. [85], for an SU(2) GNH fixed point with N doublets of

two-component Dirac spinor, FGNH = 2NFD + 3ζ (3)/8π2 +
O(1/N ). Substituting N = 1, one finds that to this order

FGNH ≈ 0.48. To estimate F for the tricritical Chern-Simons-

matter theory, we use the inequality Ftricritical CS > Fbicritical CS,

where Fbicritical CS can be estimated from the large-N re-

sults in Ref. [89]. It was found that for the CPN−1 the-

ory with a level-k Chern-Simons term, Fbicritical CS = NFS +
1
2

ln(
√

k2 + (πN/8)2) + O(1/N ), where FS ≈ 0.1276 is the F

for a free complex scalar. Substituting N = 2, k = 1, one finds

Ftricritical CS > Fbicritical CS ≈ 0.38, which is not too far from the

aforementioned estimate for FGNH.

VIII. NUMERICAL DEMONSTRATION

OF FERMIONIC SKYRMIONS

To provide evidence for the presence of fermionic

skyrmions in the ordered phase, we consider the imag-

inary time motion of electrons in a specific space-time

configuration of the order parameter �N (�r, τ ). In particular,

starting with a uniform configuration of �N , we first create a

skyrmion-antiskyrmion pair, then separate them, followed by

a continuous 2π rotation of the skyrmion while keeping the

antiskyrmion static, and finally bringing them close together

and annihilating them; see Fig. 4 [5]. We also consider a

reference path where we rotate the skyrmion from zero to

π and then back to zero such that the net rotation is zero.

We chose �N (�r, τ ) so these two paths lead to the identi-

cal contribution to the lattice analog of the kinetic energy

term
∫

d2xdτ
|mN |
16

tr(∂μ �N )2 and, therefore, differ only in the

topological Berry phase picked up during the rotation. Since

rotation of a fermion leads to a minus one sign, we expect that

the ratio of the imaginary-time partition function for these two

paths will be minus one if the skyrmions are indeed fermions.

This calculation is implemented in the same SLAC fermion

lattice regularization of the GNH model that we used for our

QMC simulations discussed above [Eq. (1)]. The path-integral

corresponding to a configuration �N (�r, τ ) with τ ranging from

τ

FIG. 4. The schematic diagram showing the rotation of skyrmion

in a skyrmion-antiskyrmion pair so as to obtain the exchange statis-

tics of a skyrmion.

0 to β is K (0, β ) =
∫

D[�,�]T exp{−S[ �N]}, where S[ �N] =
∫ β

0
dτ

∫

d2�r�(i/∂ + imN �N · �σ )�. The skyrmion-antiskyrmion

configuration can be generated by setting �N = (Nx, Ny, Nz ),

where Nx = 2ReW
1+|W |2 , Ny = 2ImW

1+|W |2 , and Nz = |W |2−1

|W |2+1
[90]. For

the skyrmion-antiskyrmion pair, we set W (z, τ ) = a
z+R(τ )

−
a

z−R(τ )
, where z = x + iy, a controls the size of the skyrmion,

and 2R(τ ) is the time-dependent separation between the

skyrmion and the antiskyrmion. We find a systematic relative

sign change for K (0, β ) associated with the rotated skyrmion

configuration and the reference path (unrotated skyrmion) for

a wide range of parameters, including different system sizes,

skyrmion size, and the maximum separation between the pair

(see Appendix C for a detailed discussion), which is consistent

with the presence of spin-1/2 skyrmions in our model.

IX. SUMMARY AND DISCUSSION

In this paper, we studied a model of interacting fermions

that displays a GNH transition. Motivated from the quan-

tum numbers of skyrmions, we considered a duality between

the standard 2 + 1D GNH critical point for two flavors

of two-component Dirac fermions and a tricritical Chern-

Simons-matter theory with two complex scalars coupled to

a level-1 Abelian Chern-Simons field [Eq. (9)]. The lattice

model we studied was originally introduced and studied in

Ref. [38], and we obtained results on the scaling dimensions

of various operators in the GNH critical theory and compared

them with the operators in the conjectured dual using avail-

able results from various perturbative renormalization group

calculations. We also discussed a numerical demonstration of

the fermionic statistics of the skyrmions in the ordered phase.

There are several open questions and potential issues per-

tinent to our proposal. First, we do not know how to show

that at weak interactions, and in the absence of scalar mass,

the Chern-Simons-matter theory flows to the Dirac semimetal

phase. As also emphasized, we do not fully understand the

relation between the operators on the two sides of the pro-

posed duality, in contrast to other bosonization dualities. In
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particular, unlike standard Bose-Fermi dualities, identifying

the boson mass with the fermion mass does not quite work,

which may indicate that either the duality conjecture is incor-

rect or perhaps unrelated to known bosonization dualities. It

could also be interesting to pursue bosonization of the GNH

transition using approaches that are better understood, at least

within large N , such as Eq.(2), or the duality for the two

complex fermions obtained from the duality between a single

complex scalar coupled to a level-1 U(1) Chern-Simons field

and a single complex fermion [34,59,60].

Recent large-N calculations indicate that tricritical Chern-

Simons theories may have a vacuum instability [91], and

in fact if the estimates from the leading large-N results in

Ref. [91] are applied to our case, namely, Chern-Simons level

k = 1 and two complex scalars, one would conclude that our

theory may not be stable. At the same time, the estimates

for the regime of stability obtained from large N may not be

accurate for small values of N . For example, large-N calcula-

tions on the CPN theories without the Chern-Simons term also

indicate absence of a second-order transition at small values of

N (see, e.g., Refs. [92,93]), contrary to the numerical evidence

of a well-defined second-order transition at small values of N

(see, e.g., Refs. [94,95]).

As recently argued [96], the long-range hopping associated

with SLAC fermion regularization can lead to a gap for the

Goldstone modes in the symmetry-broken phase. We did not

find any signature of a similar gap at the critical point, which

is our focus in this paper. As shown in previous works (e.g.,

Ref. [97]), the critical exponents obtained using SLAC regu-

larization are in agreement with those obtained from other ap-

proaches, e.g., conformal bootstrap [98]. Nonetheless, it will

be useful to obtain a field-theoretic understanding of the effect

of long-range hopping associated with SLAC regularization.

Another direction that may be worth pursuing is to sup-

plement our model with interactions that favor binding of

skyrmions and which may therefore result in skyrmionic

superconductivity, similar to the scenario discussed in the

context of deconfined criticality in Refs. [66–69] or more

recently in the context of magic-angle graphene [99–102].

Finally, if the proposed duality is correct, then it would be

fruitful to use it to derive other dualities, e.g., by gauging the

probe fields, similar to the derivation of a multitude of duali-

ties using a seed Bose-Fermi duality [21,23]. For example, if

one elevates the probe gauge field Ac in Eq. (9) to a fluctuating

one, then on the fermion side of the duality, one obtains the

GNH transition in a two-flavor-QED-3, while on the bosonic

side, the gauge field a gets Higgsed and one obtains the tri-

critical O(4) theory (based on the expectation that the SU (2)

symmetry is enlarged to O(4), see, e.g., Refs. [103–105]). The

critical exponents for the O(4) tricritical point are essentially

mean field since the interactions are only marginally relevant

[106–108]. Therefore, this argument is suggestive that the

QED-3 GNH transition is dual to simply the O(4) Gaussian

fixed point. We leave further explorations of such implications

to the future.
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APPENDIX A: SLAC FERMION

As we discussed in the main text, we use the SLAC fermion

[47] to regularize a single four-component Dirac cone on a

square lattice. The noninteracting part H0 has the form

H0 =
∑

i,x

t (x)c†
i,a,σ ci+x,b,σ −

∑

i,y

it (y)c†
i,a,σ ci+y,b,σ + H.c.,

(A1)

where L is the linear system size of the lattice. The hopping

parameter t (r) has the following form for odd L:

t (r) =
{

(−)r iπt

L sin ( πr
L )

r 
= 0

0 r = 0,
(A2)

and the following form for even L:

t (r) =
{

(−)r iπte−i πr
L

L sin ( πr
L )

r 
= 0

πt
L

r = 0.
(A3)

In Fig. 5, we plot the dispersion along the kx direction. The

dots corresponding to the discrete set of momenta on the

lattice are all located on a straight line.

APPENDIX B: DETAILS OF QMC ESTIMATION

OF SCALING DIMENSIONS

Since our low-energy theory is relativistic, we expect that

the dynamical exponent z = 1 both in the Dirac semimetal

phase and at the GNH critical point. In principal, if one has

access to arbitrary large system sizes with enough accuracy,

one should be able to calculate the scaling dimension of

various operators using either the equal-time correlations or

FIG. 5. SLAC fermion energy-momentum dispersion. The left

figure is for odd L (L = 17) and the right for even L (L = 16). The

blue dots correspond to a discrete set of allowed momentum on a

lattice, the red lines are the dispersion for continuous kx on a finite-

size lattice. It will approach a straight line in the thermodynamic

limit.
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FIG. 6. Measurement of scaling dimension of density operator for noninteracting Dirac fermions. (a) Real-space density operator cor-

relation at largest possible separation [ �Rmax = ( L−1

2
, L−1

2
)] for different system sizes L. We obtain 2��†� = 4.01(1) based on a power-law

fitting. (b) Imaginary-time correlation of density operator. We drop the initial eight points for each L fitting and the fitting range is indicated

by a solid line in the figure. Explicitly, the fitting range is τ t ∈ (0.9, 8). The inset is a linear extrapolation of 2��†� with 1/L, and we get

2��†� = 4.05(2) in the thermodynamic limit.

unequal-time correlations. However, in practice, we find that

for some operators, it is easier to estimate their scaling di-

mension using equal-time, unequal-space correlations while,

for others, unequal time, equal space yields better estimates.

In Figs. 6 and 7, we compare the imaginary-time corre-

lation and the real-space correlation for the electron-density

operator and the skyrmion-density operator for noninteracting

Dirac fermions. The exact value of the scaling dimension

for either of these operators is two, and from these figures,

we notice that both the imaginary-time correlation as well as

the real-space correlation yields an accurate estimate in the

thermodynamic limit.

In Figs. 8–13, we estimate the scaling dimensions of var-

ious operators at the GNH critical point. To improve the

estimation, we tried two different kinds of HS transforma-

tions (see Appendix D), the spin channel and the density

channel. The spin-channel one (denoted by colored points

in the figures) has a higher quality of data for unequal-time

skyrmion density correlations, and the density-channel one

(denoted by grey points in the figures) has a higher quality

of data for unequal-time �̄� correlations and �†� correla-

tions. See Figs. 8, 9, and 11 for details. The calculation of

skyrmion-density correlation is particularly challenging, as

they involve Wick contractions of a product of 12 fermion

operators. With the help of the MATHEMATICA code, we

perform the Wick contractions and after the simplifica-

tion, each two-point correlation of the skyrmion density has

2 064 384 terms, where each term involves a product of six

single-particle Green’s functions. It appears that the unequal-

time, equal-space correlation has a much higher quality than

the equal-time, unequal-space correlation; see Fig. 9 for

details.

FIG. 7. Measurement of scaling dimension of skyrmion-density operator for noninteracting Dirac fermions. (a) Real-space skyrmion-

density operator correlation at largest possible separation [ �Rmax = ( L−1

2
, L−1

2
)] for different system sizes L. We obtain 2� j0

topo
= 4.0(1) based

on a power-law fitting. (b) Imaginary-time correlation of skyrmion-density operator. We drop the initial eight points for each L fitting and the

fitting range is indicated by a solid line in the figure. Explicitly, the fitting range is τ t ∈ (0.9, 8). The inset is a linear extrapolation of 2� j0
topo

with 1/L, and we get 2� j0
topo

= 3.8(1) in the thermodynamic limit.
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FIG. 8. Measurement of the scaling dimension of the density operator at the GNH critical point. (a) Real-space density operator correlation

at largest possible separation [ �Rmax = ( L−1

2
, L−1

2
)] for different system sizes L. We obtain 2��†� = 4.1(1) based on a power-law fitting.

(b) Imaginary-time correlation of density operator. We drop the initial four points for each L fitting, and the fitting range is indicated by a solid

line in the figure. The inset is a linear extrapolation of 2��†� with 1/L; we get 2��†� = 3.2(1) in the thermodynamic limit. Note that the

spin-channel Hubbard-Stratonovich transformation data is denoted by colored points, while the density-channel one is denoted by grey points.

Similar notation is used in the following figures.

APPENDIX C: SKYRMION ROTATION CALCULATION

As discussed in the main text (see Sec. VIII), conceptually

we consider adiabatic motion of electrons in the background

of a specific space-time configuration of the order parameter
�N (�r, τ ) that corresponds to skyrmion rotation (Fig. 4) and

compare the phase picked up by the electron with a reference

configuration where the skyrmion is not rotated. In the actual

calculation, we use a SLAC fermion to regularize the Dirac

fermion on a lattice, and make a Trotter decomposition of the

imaginary time β ≡ Lτ�τ , where �τ is taken to be very small

so as to implement the adiabatic motion. In the calculation, we

set Lτ = 400 and �τ t = 0.1. The space-time Hamiltonian is

written as

H[ �N] = H0 − m
∑

i

�N (�ri, τ ) · c
†
i τ

z �σci ≡ c†h(τ )c, (C1)

where h(τ ) is the coefficient matrix of the space time Hamil-

tonian at imaginary time. After tracing out fermions, one

obtains

K (0, β ) = det

[

1 +
Lτ
∏

l=1

e−�τ h(l�τ )

]

. (C2)

The skyrmion configuration can be generated by setting
�N = (Nx, Ny, Nz ), where Nx = 2�W

1+|W |2 , Ny = 2�W
1+|W |2 , and Nz =

|W |2−1

|W |2+1
[90]. For the skyrmion-antiskyrmion pair, we can

set W (z) = a
z+R

− a
z−R

, where z = x + iy, a is the size the

skyrmion, and 2R is the separation of the skyrmion and the

antiskyrmion. To describe the separation process, we make R

time dependent and, similarly, W (z) depends on the time as

FIG. 9. Measurement of the scaling dimension of the skyrmion-density operator at GNH critical point. (a) Real-space skyrmion-density

operator correlation at largest possible separation [ �Rmax = ( L−1

2
, L−1

2
)] for different system sizes L. We obtain 2� j0

topo
= 3.0(5) based on a

power-law fitting. (b) Imaginary time correlation of skyrmion-density operator. We drop several small τ and large τ points for each L fitting,

and the fitting range is indicated by a solid line in the figure. The inset is a linear extrapolation of 2� j0
topo

with 1/L, and we get 2� j0
topo

= 3.8(3)

in the thermodynamic limit.
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FIG. 10. Measurement of the scaling dimension of the QSH order parameter �N at the GNH critical point. (a) Real-space QSH operator

correlation at largest possible separation [ �Rmax = ( L−1

2
, L−1

2
)] for different system sizes L. We obtain 2� �N = 1.47(3) based on a power-law

fitting. (b) Imaginary-time correlation of the QSH order parameter. We drop the initial four points for each L fitting and the fitting range is

indicated by a solid line in the figure. The inset is a linear extrapolation of 2� �N with 1/L, and we get for both the spin-channel calculation and

density-channel calculation 2� �N = 1.52(2) in the thermodynamic limit, which matches with the previously reported value in Ref. [38].

FIG. 11. Measurement of the scaling dimension of �̄� operator at the GNH critical point. (a) Real-space �̄� operator correlation at largest

possible separation [ �Rmax = ( L−1

2
, L−1

2
)] for different system sizes L. We obtain 2��̄� = 4.5(6) based on a power-law fitting. (b) Imaginary-

time correlation of the �̄� operator. We drop the initial eight points for each L fitting and the fitting range is indicated by a solid line

in the figure. The inset is a linear extrapolation of the 2��̄� with 1/L, and we get for density-channel calculation 2��̄� = 4.6(1) in the

thermodynamic limit.

FIG. 12. Measurement of the scaling dimension of Pnn operator at the GNH critical point. (a) Real-space Pnn operator correlation at largest

possible separation [ �Rmax = ( L−1

2
, L−1

2
)] for different system sizes L. We obtain 2�Pnn = 5.3(1) based on a power-law fitting. (b) Imaginary-

time correlation of the Pnn operator. We drop the initial 12 points for each L fitting and the fitting range is indicated by a solid line in the figure.

The inset is a linear extrapolation of the 2�Pnn with 1/L, and we get for spin-channel calculation 2�Pnn = 3.8(1) in the thermodynamic limit.
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FIG. 13. Measurement of the scaling dimension of Pos operator at the GNH critical point. (a) Real-space Pos operator correlation at largest

possible separation [ �Rmax = ( L−1

2
, L−1

2
)] for different system sizes L. We obtain 2�Pos = 5.0(3) based on a power-law fitting. (b) Imaginary-

time correlation of the Pos operator. We drop the initial 12 points for each L fitting and the fitting range is indicated by a solid line in the figure.

The inset is a linear extrapolation of 2�Pos with 1/L, and we get for spin-channel calculation 2�Pos = 4.6(1) in the thermodynamic limit.

well to implement the rotation:

W (z) = a

z + R(τ )
− a

z − R(τ )
eiα(τ ). (C3)

During the period when the skyrmion-antiskyrmion is created

out of the vacuum and slowly separated, we set α(τ ) = 0

as R(τ ) changes from zero to R0 in this process. The re-

verse process of annihilating is also carried out similarly.

During the period when the skyrmion is being rotated, we

set R(τ ) = R0 fixed, and slowly increase α(τ ) from zero to

2π . The rotation process is made very slow by dividing the

angle 2π into 300 small steps. As mentioned above and in

Sec. VIII, we also consider a reference configuration, where

we rotate the skyrmion from zero to π and then from π back

to zero, such that in total there is no rotation. We tried a

range of parameters. We considered different sets of system

sizes: {Lx = 4R0 + 1, Ly = 2R0 + 1} with R0 = 5, 6, 7, 8. We

also considered different values of a = 2, 3, 4 corresponding

to different sizes for the skyrmion. Larger a is not suitable

due to the limited total system size we can simulate. Fi-

nally, we also considered a different set of mass ratios in the

range 0 � m/t � 4. We obtained a relative sign change for

the propagator K (0, β ) corresponding to the rotated skyrmion

compared to that of the unrotated one for all sets of L and a

when 1.0 � m/t � 2.5, as shown in Table II. For larger m/t ,

we do not find a sign change, which may be related to the fact

that when m/t becomes large, ultraviolet physics may affect

the result of the calculation since the phase stiffness of �N is

proportional to |m|. This provides a numerical demonstration

of spin-1/2 skyrmions, at least for a range of parameters.

APPENDIX D: DETAILS OF QUANTUM

MONTE CARLO CALCULATION

We perform projection QMC calculations. The observables

are written as

〈O〉 = 〈�0|O|�0〉
〈�0|�0〉

, (D1)

where |�0〉 is the ground-state wave function and is obtained

via projection

|�0〉 = e−�H |�T 〉, (D2)

TABLE II. Relative sign changes for K (0, β ) for different parameters.

R0 = 5 R0 = 6 R0 = 7 R0 = 8

m/t a = 2 a = 3 a = 4 a = 2 a = 3 a = 4 a = 2 a = 3 a = 4 a = 2 a = 3 a = 4

0.5 + + + + + − + + − + + −
0.6 + + − + − − + − − + − −
0.7 + − − + − − + − − + − −
0.8 + − − + − − + − − + − −
1.0 − − − − − − − − − − − −
1.5 − − − − − − − − − − − −
2.0 − − − − − − − − − − − −
2.5 − − − − − − − − − − − −
3.0 + − − + + − + + − + + +
4.0 + + + + + + + + + + + +
5.0 + + + + + + + + + + + +
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where � is the projection time, and |�T 〉 is the trial wave

function which is set to be the ground-state wave function

of the noninteracting part of H . In the calculation, we set

2�t = 60, which is large enough both for the equal-time and

dynamical calculations. The trotter decomposition step is set

as �τ t = 0.1. To deal with the interaction, we perform a

symmetric trotter decomposition,

e−�τ (H0+HU ) ≈ e− 1
2
�τ H0 e−�τ HU e− 1

2
�τ H0 , (D3)

and then consider the following two kinds of HS transforma-

tion. For convenience, we rewrite c̃i,a/b,↑ = ci,a/b,↑, c̃i,a,↓ =
c

†
i,a,↓, c̃i,b,↓ = −c

†
i,b,↓. The first type of HS transformation is

in the so-called spin channel,

e− U
2
�τ (ρ̃i,τ,↑−ρ̃i,τ,↓ )2 ≈ 1

4

∑

si,τ =±1,±2

γ (si,τ )eiα1η(si,τ )(ρ̃i,τ,↑−ρ̃i,τ,↓ ),

(D4)

where α1=
√

U
2
�τ , γ (±1)=1+

√
6/3, γ (±2)=1−

√
6/3,

η(±1) = ±
√

2(3 −
√

6), η(±2) = ±
√

2(3 +
√

6). The sec-

ond type of HS transformation is in the so-called density-

channel,

e− U
2
�τ (ρ̃i,τ,↑−ρ̃i,τ,↓ )2+ U

2
�τ = 1

2

∑

si,τ =±1

eα2si,τ (ρ̃i,τ,↑+ρ̃i,τ,↓−1), (D5)

where α2 = acoshe
�τ U

2 . It turns out the spin-channel calcu-

lation is more stable for spin-type unequaltime correlations

such as skyrmion density correlation, and the density-channel

calculation is more stable for density type unequaltime corre-

lations such as �̄� correlations and �†� correlations.
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