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Critical phase induced by Berry phase and dissipation in a spin chain
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Motivated by experiments on spin chains embedded in a metallic bath, as well as closed quantum systems

described by long-range interacting Hamiltonians, we study a critical SU(N ) spin chain perturbed by dissipation,

or equivalently, after space-time rotation, long-range spatial interactions. The interplay of dissipation and the

Wess-Zumino (Berry phase) term results in a rich phase diagram with multiple renormalization-group fixed

points. For a range of the exponent that characterizes the dissipative bath, we find a second-order phase transition

between the fixed point that describes an isolated critical spin chain and a dissipation-induced-ordered phase.

More interestingly, for a different range of the exponent, we find a stable, gapless, nonrelativistic phase of matter

whose existence necessarily requires coupling to the dissipative bath. Upon tuning the exponent, we find that the

fixed point corresponding to this gapless, stable phase “annihilates” the fixed point that describes the transition

out of this phase to the ordered phase. We also study a relativistic version of our model, and we identify a new

critical point. We discuss the implications of our work for Kondo lattice systems and engineered long-range

interacting quantum systems.

DOI: 10.1103/PhysRevResearch.5.043270

I. INTRODUCTION

Two recurring themes in many-body quantum physics,

especially in the context of quantum phases and phase tran-

sitions, are Berry phase effects and long-range interactions

induced by coupling to gapless modes. For example, Berry

phase effects can lead to critical states in systems where one

might naively expect a gap to excitations [1], while coupling

to gapless modes can effectively generate nonlocal interac-

tions that can influence the nature of quantum criticality [2,3],

and can also help circumvent the Mermin-Wagner-Hohenberg

theorem [4,5] for systems with local interactions [6–19]. In

this paper, we will revisit the problem of one-dimensional

dissipative quantum systems, which, in the special case of

dissipative Luttinger liquids, has been extensively studied

in the past [9,13,14,17,18]. One common feature of various

setups for dissipative Luttinger liquids is the possibility of

long-range order in one dimension and the associated order-

disorder transition. Here we will show that in a class of

one-dimensional systems with a non-Abelian symmetry, an

interplay of Berry-phase effects and dissipation can result

in a new possibility: a stable, dissipative phase with power-

law correlations in both space and time, and which has no

counterpart in a one-dimensional, nondissipative system with

short-range interactions. We will also demonstrate the phe-

nomena of fixed-point annihilation in this system, which is

reminiscent of that seen in a zero-dimensional quantum impu-

rity coupled to a dissipative bath [20–24].
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It is well known that long-range interactions can lead to

new critical points that are neither mean-field nor related to

critical points in short-ranged interacting systems [25–38].

Previous studies in this context have predominantly focused

on “classical models,” i.e., models whose Euclidean action

is real. Here we will focus on models whose action con-

tains a Berry phase term, and the resulting critical points

do not necessarily have a classical statistical mechanics in-

terpretation. From an experimental perspective, long-range

interactions similar to the present work can arise in “hybrid-

dimensionality” Kondo lattice systems such as Yb2Pt2Pb

[39–41], and engineered Kondo lattice systems [42–46]. In

such systems, local moments effectively live in a lower di-

mension compared to the conduction electrons. In the limit

of weak Kondo coupling, one may integrate out the conduc-

tion electrons resulting in long-range interactions between

the local moments along the time direction [2,3,14,17,18].

Yb2Pt2Pb in particular exhibits signatures of one-dimensional

spinon-like excitations [39–41], and it is natural to ask

whether the fractionalized excitations seen here are identical

to those in an isolated spin chain, or if they could be a signa-

ture of new physics where the coupling with the surrounding

metal is crucial. A different setup relevant to our discussion

is that of nondissipative systems where spatially long-range

interactions arise due to cavity-mediated interactions, or due

to dipole-dipole interactions [47–51]. The relation between

these two different classes of systems, namely dissipative

spin chains and spatially long-range interacting spin chains,

is space-time rotation—e.g., Ohmic dissipation maps to 1/r2

interaction after space-time rotation.

Our focus in this work will be on (1 + 1)D SU(N )k

Wess-Zumino-Witten (WZW) CFTs [52–56] perturbed by a

dissipative term that can arise in models of solid-state systems

[57–63]. Further, as discussed below, the RG analysis for this
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problem can be controlled using a large-k expansion, similar

to the nondissipative case [55]. Recent work on (0 + 1)D

dissipative spin impurities has shown the presence of multiple

fixed points due to the interplay of Berry phase and dissipation

[20–24], and it is natural to wonder about the fate of models

in higher dimensions where both dissipation and Berry phase

effects exist. Lastly, analogous to the long-range Ising or

O(N ) models [29], a relativistic version of our model (which

we also study) can potentially lead to an infinite number of

new conformal field theories labeled by (N, k).

II. MODEL AND ITS SYMMETRIES

We will first consider a nonrelativistic setup where dis-

sipation induces interactions that are nonlocal only in time,

analogous to the standard Hertz-Millis theory for antifer-

romagnets [2,3] (the induced nonlocality in space due to

dissipative bath is assumed to be subleading compared to

the spatial kinetic energy term, and hence neglected [18]).

We consider a system which in the absence of dissipation is

described by the (1 + 1)D SU(N )k WZW CFT [52–55]. The

(Euclidean) action is

S[g] = SGrad[g] + SWZ[g] + SDis[g]. (1)

In this equation,

SGrad[g] = 1

λ

∫

dτdx tr

(

1

c2
∂τ g∂τ g−1 + ∂xg∂xg−1

)

(2)

is the standard kinetic energy term for the matrix-valued field

g ∈ SU(N ), transforming in the bifundamental representation

of SU(N )L ⊗ SU(N )R. c is a velocity which will run under

RG as discussed below. Next,

SWZ[g] = ik

12π

∫

B3

dτ dx du εi jktr (g̃−1∂ig̃ g̃−1∂ j g̃ g̃−1∂k g̃)

(3)

is the Wess-Zumino (WZ) Berry-phase term, defined in terms

of g̃(τ, x, u), which is an extension of the field g(τ, x) to a

three-ball B3 so that g̃(τ, x, u = 0) = g0 is any chosen refer-

ence value, and g̃(τ, x, u = 1) = g(τ, x) is the physical value

of g at (τ, x) (= boundary S2 of B3). Finally,

SDis[g] = k2³

∫

dτdτ ′dx K (τ−τ ′) tr [1− g(τ, x)g−1(τ ′, x)],

(4)

where ³ > 0 is the dissipation term. The kernel K is de-

fined as K (τ − τ ′) = A
|τ−τ ′|3−´ with the normalization A =

(´−2)

16π	(´−1) cos(π´/2)
chosen so that the Fourier transform K̃ (ω)

of K (τ ) has a simple form suited for our RG analysis. We

restrict ´ to the range 0 < ´ < 2 so that the Fourier trans-

form K̃ (ω) of K (τ ) goes to zero as ω → 0, and 1/A is not

divergent. The global continuous symmetry of this model is

SU(N )L ⊗ SU(N )R, where under SU(N )L, g → Ug, and

under SU(N )R, g → gV , where U,V are arbitrary SU(N )

matrices. Since SGrad[g] + SWZ[g] is Lorentz invariant, after

interchanging space and imaginary time, the action S[g] de-

scribes a nondissipative closed system with long-range spatial

interactions (a dynamical exponent z in the dissipative system

corresponds to a dynamic exponent 1/z in its space-time in-

terchanged counterpart).

The exponent 3 − ´ for the kernel K (τ ) is chosen so that

´ = ˜́/k � 1, with ˜́ an O(1) number, allows for a controlled

1/k expansion. Relatedly, the couplings λ and ³ will be of the

order 1/k at all the RG fixed points, which implies that the

three terms in the action S[g] all scale as k. It will be useful to

introduce the O(k0) couplings λ̃ = kλ and ³̃ = k³ . The dy-

namical exponent z will be defined as part of the RG scheme,

and will deviate from unity only by O(1/k), and therefore we

also introduce an O(k0) variable z̃ such that z = 1 + z̃
k
.

III. RENORMALIZATION GROUP

To set up our RG calculation, we decompose the matrix-

valued field g as g = gse
W , where gs denotes “slow” variables,

and W denotes “fast” variables [55]. The renormalization of

λ̃, ³̃ , and c is induced by integrating out the fast variables. At

the leading order in 1/k (i.e., one-loop Feynman diagrams),

we obtain the following β functions for λ̃, ³̃ , and c (see

Appendix A for a detailed derivation):

β(λ̃) = 1

k

[

−z̃λ̃ + Ncλ̃2

8π

(

w − c2λ̃2

(8π )2
w

3

)]

, (5)

β(³̃ ) = 1

k

[

(˜́ − z̃)³̃ − CF

2π
cλ̃³̃w

]

, (6)

β(c) = 1

k

[

z̃c − Nc2λ̃

16π

(

1 + c2λ̃2

(8π )2

)

(w − w
3)

− CF

32π2
c4λ̃2³̃w + N

(8π )2

(

1 + c2λ̃³̃

16π

)

c4λ̃2³̃w
3

]

,

(7)

where w = (1 + 1
8π

c2λ̃³̃ )
−1/2

, and CF = N2−1
2N

is the

quadratic Casimir for SU(N ) in the fundamental

representation. The main outcomes of these RG equations are

as follows:

(i) When 0 < ˜́ < 4CF [Fig. 1(a)], the WZW CFT fixed

point is perturbatively stable against dissipation, which can

also be deduced using the scaling dimension �g ≈ 2CF /k of

the primary field g at the WZW fixed point at large k. In

this range of ˜́ , as the magnitude ³̃ of dissipation increases,

the system eventually undergoes a single-parameter tuned

second-order phase transition beyond which ³̃ flows to infin-

ity. Based on energetic considerations, we expect that at large

³̃ , the field g acquires a nonzero expectation value, so that

the SU(N )L ⊗ SU(N )R symmetry is spontaneously broken to

diagonal SU(N ), akin to the chiral symmetry-broken phase in

QCD with massless quarks [64], and we make this assumption

in drawing the phase diagram in Fig. 1. Qualitatively, this

scenario is similar to the one discussed in Ref. [12] for a

Heisenberg chain perturbed by long-range interactions [whose

action can be thought of as a space-time rotated version of our

action, Eq. (1)].

Writing g ∼ ei
∑

a πaTa , where πa are the Goldstone modes

and Ta are the SU(N ) generators, the low-energy theory in the

ordered phase is given by L = |πa(k, ω)|2(k2 + ω2−´ ) + · · · ,

where “· · · ” denotes interactions between the Goldstone

modes. These interactions are irrelevant at low-energy, and
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FIG. 1. Schematic phase diagrams (left) and associated RG flows

(right) in terms of the inverse “spin stiffness” (λ̃ ∼ x) and the dis-

sipation strength (³̃ ∼ y) for three different regimes, parametrized

by ˜́ = k´. All the RG flows have been obtained using N = 2, and

thus 4CF = 3, ˜́
Max ≈ 3.0429. (a) For 0 < ˜́ < 4CF , a dissipative,

critical fixed point separates the WZW CFT from a symmetry-broken

(ordered) phase (³̃ 	 1). The RG flow is plotted for ˜́ = 1. (b) For

4CF < ˜́ < ˜́
Max, one obtains a stable, dissipative phase that is sep-

arated from the ordered phase by a dissipative critical point. For

visualization purposes, we have zoomed on the interesting region of

the RG flow, and we plotted 1

8
β(x), 4β(y). The RG flow has been

obtained by setting ˜́ = 3.04. At ˜́ = ˜́
Max, the two dissipative fixed

points annihilate each other. (c) For ˜́ > ˜́
Max, there is no dissipative

fixed point and the WZW CFT is unstable towards the broken sym-

metry (ordered) phase. The RG flow is plotted for ˜́ = 4.

spontaneous symmetry breaking stable, precisely due to

long-range interactions that lead to the aforementioned non-

relativistic dispersion for the Goldstone modes [this is

ultimately related to the fact that the integral
∫

dkdω(k2 +
ω2−´ )−1 for ´ > 0 converges in the infrared] [9–19]. In con-

trast, for a relativistic theory in (1 + 1)D with short-range

interactions, Goldstone modes interact strongly and destabi-

lize spontaneous symmetry breaking [4,5,65]. The universal

FIG. 2. Two physical solutions of the cubic equation for u(x, y)

in terms of ˜́ . The blue curve is the solution associated with the

unstable dissipative critical point, while the red curve is the solu-

tion associated with the stable dissipative phase. Physical solutions

must satisfy 0 � u(x, y) � 1 (see Appendix A 5 a). One of the three

solutions is always negative and is thus not shown. Moreover, for

0 < ˜́ < 4CF , the dissipative stable phase is located in y < 0 and is

thus also unphysical. The WZW fixed point (green curve) and the

broken symmetry (ordered) phase [orange curve along u(x, y) = 0

in the left figure] are also shown. The right part of the figure is a

zoom on the interesting regime containing the two dissipative fixed

points, with the stability of the various fixed points represented by

arrows. This figure was obtained by setting N = 2, and similar plots

are obtained for other values of N .

properties of the critical point separating the WZW CFT

and the symmetry-broken phase are further discussed

below.

(ii) When ˜́ > ˜́
Max = 2

3
√

3

√

(4CF +N )3

N
[Fig. 1(c)], the WZW

fixed point is unstable towards the aforementioned ordered

phase for infinitesimal ³̃ .

(iii) Most interestingly, in the intermediate regime, namely,

when 4CF < ˜́ < ˜́
Max, the WZW CFT is unstable towards a

nonrelativistic, dissipative, critical phase which has no rel-

evant perturbations if we only allow terms that respect the

SU(N )L ⊗ SU(N )R symmetry [Fig. 1(b)]. This phase is

separated from the ordered phase by a single-parameter-tuned

phase transition. At ˜́ = ˜́
Max, one encounters a fixed-point

annihilation between the fixed point corresponding to this

stable phase and the fixed point corresponding to the phase

transition out of this phase to the ordered phase.

The aforementioned analytical expression for ˜́
Max follows

from solving β(λ̃) = β(³̃ ) = 0, which leads to the following

cubic equation for the variables x = cλ̃ and y = c³̃ :

Nu3(x, y) − (4CF + N )u(x, y) + ˜́ = 0, (8)

where u(x, y) = x
8π

1√
1+ 1

8π
xy

. This cubic equation has three

(one) real solutions for u(x, y) when its discriminant is

positive (negative), and the change of sign of the discrim-

inant precisely corresponds to the fixed-point annihilation.

As shown in Appendix A 5 a, physical solutions must respect

0 � u(x, y) � 1. Since one of the three solutions always has

u(x, y) < 0, it can be dropped and is thus not shown in Fig. 2.

Furthermore, in the regime (0 < ˜́ < 4CF ), the solution
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FIG. 3. Coefficients of the O(1/k) contribution to the scaling

dimensions �g and �ε of the primary field g and the energy density

operator ε as well as the dynamical critical exponent z at the dissi-

pative critical point (left) and the dissipative critical phase (right) in

terms of ˜́ . The plots have been obtained using N = 2, for which

4CF = 3 and ˜́
Max ≈ 3.0429, which is represented by the vertical

dashed line.

associated with the stable dissipative phase has u(x, y) > 1

and is also unphysical.

By adding a “magnetic field” term to the action,

Sh = h

∫

dτ dx tr (g + g−1), (9)

we obtain the β function for h (see Appendix A 5 b for the

derivation): β(h) = ehh, where eh = (2 + z̃
k

) − CF

4πk
cλ̃ w +

O(1/k2) is the RG eigenvalue associated with h. The scaling

dimension �g of the primary field at a given fixed point is

therefore given by 1 + z − e∗
h, where e∗

h is evaluated at that

fixed point. One may also extract the scaling dimension �ε

of the energy density operator ε = tr ( 1
c2 ∂τ g∂τ g−1 + ∂xg∂xg−1)

using the RG equations. We numerically solve the RG equa-

tions for the fixed points, and we plot the dynamical exponent

z and the scaling dimensions �g,�ε at the two dissipative

fixed points in terms of ˜́ in Fig. 3. Moreover, by using

the RG equations for h and ³̃ , one can show that at either

of these fixed points, the following equality holds: z̃ = ˜́ −
2k�g, which corresponds to the expansion at order O(1/k)

of z = 2−η

2−´
, where η is the anomalous dimension of g (see

Appendix A 6). This relation can be argued to hold on the

general grounds that an RG transformation leaves the nonlo-

cal term
∫

dτdτ
∫

dxK (τ − τ ′) tr [g(τ, x)g−1(τ ′, x)] invariant

[21] and has also been seen in previous studies on nonrela-

tivistic quantum criticality [15,66,67]. Note that at either of

the dissipative fixed points, the two-point correlation function

〈tr [g(τ, x)g−1(0, 0)]〉 has a nontrivial scaling behavior both

along space and time, with equal-time, unequal-space cor-

relations decaying as 1/x2�g , and unequal-time, equal-space

correlations decaying as 1/τ 2�g/z.

We note a technical subtlety about our RG calcula-

tion: the total action S[g] respects the discrete symme-

try g(τ, x) → g−1(τ,−x), which rules out terms such as
∫

dτdx tr (∂τ g∂xg−1). However, the aforementioned decom-

position g = gse
W “fractionalizes” the action of this discrete

symmetry, and integrating out W can and does generate

an unphysical term
∫

dτdx tr (∂τ gs∂xg−1
s ) which should be

discarded on symmetry grounds. One way to keep the sym-

metry manifest is by defining a symmetrized effective action

SEff[gs] = 1
2
(S

(1)
Eff[gs] + S

(2)
Eff[gs]), where (1) and (2) correspond

to the following two decompositions: g = gse
W and g = eW gs.

The two decompositions yield exactly the same RG for all the

physical (i.e., symmetry allowed) terms, while the aforemen-

FIG. 4. RG flows for the relativistic theory for the two different

regimes parametrized by ˜́ = k´. For both cases, N = 2 has been

used, which means that 4CF = 3. (a) For ˜́ < 4CF , the WZW CFT is

separated from the dissipation-induced ordered phase by a dissipative

critical point. The plot has been obtained using ˜́ = 0.4. (b) For
˜́ > 4CF , there is no dissipative fixed point and the WZW CFT is

unstable to infinitely small dissipation. The plot has been obtained

using ˜́ = 6.

tioned unphysical term has a relative opposite sign. Due to

this, SEff[gs] only contains terms allowed by symmetries.

IV. A RELATIVISTIC VERSION

As mentioned in the Introduction, we also study a

relativistic-invariant version of our model. The kinetic energy

term and the WZW term are unchanged (we set c = 1), while

the dissipation is now chosen as Lorentz invariant,

SDis = k2³

∫

d2rd2r′ K (|r − r′|) tr (1− g(r)g−1(r′)), (10)

where r = (τ, x) denotes Euclidean space-time, and the kernel

is now K (r) = B
r4−´ with B = − 1

21+´π2

	(2−´/2)

	( ´
2
−1)

and r = |r|. The

normalization of the kernel is such that its Fourier transform

is K̃ (p) = − 1
8π

|p|2−´ , with p = |p|, p = (ω, q).

The RG analysis can be carried out using a scheme similar

to that for the nonrelativistic case (see Appendix B). It will

again be useful to introduce O(k0) couplings λ̃ = kλ and ³̃ =
k³ . The corresponding β functions to the leading order in 1/k

are

β(λ̃) = 1

k

[

N λ̃2

8π

(

1 − λ̃2

(8π )2

)

F 2(λ̃³̃ ) − CF

16π2
λ̃3³̃ F (λ̃³̃ )

+ N

(8π )3
λ̃4³̃ 2F 2(λ̃³̃ ) + N

32π2
λ̃3³̃ F 2(λ̃³̃ )

]

, (11)

β(³̃ ) = 1

k

[

˜́ ³̃ − CF

2π
λ̃³̃ F (λ̃³̃ )

]

, (12)

with F (λ̃³̃ ) = 1

1+ 1
8π

λ̃³̃
.

In contrast to the nonrelativistic case, we now find only

two qualitatively different phase diagrams as a function of ˜́ ,

as illustrated by the RG flows in Fig. 4: when ˜́ < 4CF , the

WZW CFT is stable against dissipation and is separated from

the large ³̃ fixed point (which presumably again corresponds
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to the symmetry-broken phase) by a single-parameter tuned

quantum phase transition, while when ˜́ > 4CF , the WZW

fixed point is unstable towards the large ³̃ fixed point at

infinitesimal dissipation. Furthermore, we find the following

scaling dimensions for the primary field g and the energy den-

sity operator ε at the dissipative fixed point: �g = ˜́

2k
,�ε =

2 + ˜́

64C3
F k

[N ˜́2 −
√

N (1024C5
F − 64C3

F
˜́2 + N ˜́4)]. The scal-

ing dimensions at the WZW fixed point of course match

the known exact results in the large-k limit, namely, �g =
2CF /k,�ε = 2 + 2N/k. Analogous to the long-range Ising or

O(N) models [29], it will be interesting to explore whether

these theories potentially correspond to an infinite number of

new conformal field theories labeled by the integers (N, k).

V. SUMMARY AND DISCUSSION

We carried out an RG study of a class of (1 + 1)D CFTs

perturbed by long-range interactions along space and/or time,

and we identified several RG fixed points (see Fig. 1). For

a range of the exponent ´ that characterizes long-range in-

teractions, we found that the CFT becomes unstable towards

a stable, gapless dissipative phase that exhibits nontrivial

scaling both along space and time. Upon tuning ´, one en-

counters a fixed-point annihilation between the fixed point

corresponding to the aforementioned stable, gapless phase,

and another dissipative fixed point with one relevant direction.

Compared to relativistic systems with long-range interactions

and no WZW term [25–38], the novelty here is the presence of

an intermediate coupling stable phase. We characterized this

critical phase via the scaling dimensions of a few prominent

operators and the dynamical critical exponent. We also studied

a relativistic version of our theory that shows a novel quantum

critical point between the WZW CFT and a dissipation-

induced symmetry-broken phase (see Fig. 4).

It is important to ask what lattice models may give

rise to the nontrivial intermediate coupling dissipative phase

[Fig. 1(b)]. In our analysis, we assumed SU(N )L ⊗ SU(N )R

symmetry at low energies, which may be difficult to achieve

starting from a lattice model. Although one can certainly

find fine-tuned lattice models that realize SU(N )k CFTs for

any N, k [68–70], when k > 1 there generically exist relevant

terms that explicitly break the SU(N )L ⊗ SU(N )R symmetry

down to the diagonal SU(N ) [59]. A natural way to realize

SU(N )L ⊗ SU(N )R without any fine-tuning is to consider a

spin chain that corresponds to the edge mode of a 2D symme-

try protected topological (SPT) phase [71]. Further, (1 + 1)D

models with k = 1 for any N are also stable (assuming trans-

lation symmetry) since anomaly-based arguments imply that

under RG flow the parity of the level cannot change [72–74].

On that note, for a single impurity coupled to a dissipative

bath, one also finds a phase diagram broadly similar to our

problem [20–24], and although the corresponding calculation

is justified only in a semiclassical limit somewhat analo-

gous to ours (large spin S for a single impurity versus large

level k for WZW CFT), numerical studies have shown that

the qualitative aspects carry over even to spin-1/2 impuri-

ties [23,24]. Therefore, it will be interesting to explore the

effect of long-range interactions on (1 + 1)D lattice models

corresponding to SU(N )k CFTs even at k = 1 using quantum

Monte Carlo (QMC) [10,12,15,17,75,76], or in engineered

systems [42–45,47–51]. Another direction worth exploring

is the potential relation to models of deconfined quantum

critical points that also have WZW terms and show fixed-point

annihilation in fractional dimensions [77,78].

Returning to the topic of hybrid-dimensionality Kondo

lattice models, we speculate that the dissipative phase can

potentially be a novel “fractionalized Fermi liquid” with a

small Fermi surface. This is because the physics of Kondo

singlet formation, and relatedly, that of a “large Fermi sur-

face” heavy Fermi liquid phase [79] where local moments

contribute to the Fermi surface volume, is nonperturbative in

the Kondo coupling JK with an effective energy scale e−c/JK ,

where c is a constant. If one imagines that our action S[g]

was obtained by integrating out a fermionic bath, then such

physics is likely not operative in the dissipative phase since the

Kondo coupling JK appears only perturbatively (with dissipa-

tion ³ ∼ J2
K ). In contrast to the “conventional” small Fermi

surface fractionalized phases [80,81], in such a dissipation-

induced non-Fermi-liquid, here the electrons and spins do not

completely decouple at low energies since nonzero dissipa-

tion must imply nontrivial entanglement between spins and

electrons. At the same time, one can still inquire whether the

fixed points we obtained are perturbatively stable against flow

to a large Fermi surface phase. For example, as discussed in

Ref. [82], for a spin-chain embedded in a Dirac semimetal,

the electronic bath completely decouples from the spin-chain

at weak Kondo coupling, resulting in a hybrid-dimensionality

small-Fermi-surface fractionalized Fermi liquid [80,81]. An-

other example is provided by “Fermi-Bose Kondo impurity”

models [83–87], where one finds an intermediate dissipation

fixed point which is again stable against Kondo singlet for-

mation with the fermionic bath [23]. The existence of either

of these fixed points can be inferred solely using a dissipa-

tive bosonic bath similar to our calculation [20–22,24]. In

a similar vein, we expect that the WZW CFT fixed point

[Fig. 1(a)], and more interestingly, the stable, dissipative fixed

point [Fig. 1(b)], are also both stable against flow towards a

large Fermi surface phase. The heuristic reasoning behind this

expectation is that perturbatively, the dissipation coefficient ³

is proportional to J2
K , and since the RG flow at either of these

fixed points is attractive along the ³ direction, one expects that

it will be attractive along the JK direction as well. We leave the

further exploration of this topic to the future.
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APPENDIX A: RG ANALYSIS OF THE

NONRELATIVISTIC THEORY

This Appendix presents the detailed RG calculation of the

nonrelativistic theory presented in the main text.
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1. Expanding in slow/fast modes

The RG calculation is performed by splitting g into slow

and fast degrees of freedom: g(τ, x) = gs(τ, x)g f (τ, x), where

gs is a slow-varying background field, while g f constitutes fast

fluctuations about gs [55]. The goal is to obtain the effective

action for the slow fields gs due to the integration of the fast

modes g f . g f is thus expanded to quadratic order with the

following decomposition:

g f = eW ≈ 1+ W + W 2

2
+ · · · , (A1)

with W (τ, x) = iT aφa(τ, x), where T a are the N2 − 1 gen-

erators of SU(N ) in the fundamental representation, which

respect the algebra [T a, T b] = i f abcT c and are normalized

according to tr (T aT b) = 1
2
´ab, while φa are N2 − 1 real scalar

fields. Below we analyze the three terms in the action S[g] =
SGrad[g] + SWZ[g] + SDis[g] with such a decomposition. Over-

all, the main simplification in the large k limit is that at

each order in 1/k, there are only a finite number of Feyn-

man diagrams that contribute to the RG flow, as explained in

Appendix A 3.

a. Gradient term

Let us start with the gradient term. For μ = τ or μ = x (no sum over μ), we have

tr (∂μg∂μg−1) = tr
(

∂μ(gsg f )∂μ

(

g−1
f g−1

s

))

= tr
(

∂μgsg f ∂μg−1
f g−1

s + ∂μgsg f g−1
f ∂μg−1

s + gs∂μg f ∂μg−1
f g−1

s + gs∂μg f g−1
f ∂μg−1

s

)

= tr
(

∂μgs∂μg−1
s

)

+ tr
(

∂μg f ∂μg−1
f

)

+ 2 tr
(

g−1
s ∂μgsg f ∂μg−1

f

)

, (A2)

where we have used the fact that gsg
−1
s = g f g−1

f
= 1, which implies that ∂μgsg

−1
s = −gs∂μg−1

s (same thing for g f ). Expanding

the second term to quadratic order in W yields

tr
[

∂μg f ∂μg−1
f

]

= −tr [∂μW ∂μW ] + O(W 3). (A3)

For the third term, we get

2 tr
(

g−1
s ∂μgsg f ∂μg−1

f

)

= 2 tr

[

g−1
s ∂μgs

(

1+ W + W 2

2

)

∂μ

(

1− W + W 2

2

)]

+ · · ·

= 2 tr

[

g−1
s ∂μgs

(

1

2
W ∂μW + 1

2
∂μWW − W ∂μW

)]

+ Terms linear in W + O(W 2)

= tr
(

g−1
s ∂μgs[∂μW,W ]

)

+ · · · , (A4)

where the terms linear in W can be dropped, since these will yield vanishing contributions when computing loop diagrams over

fast modes (no momentum exchange between slow and fast modes is compatible with momentum conservation).

Therefore, using the results derived above, the gradient term becomes

SGrad[gsg f ] = SGrad[gs] + S
(2)
Grad[W ] + S

(2)
Int,Grad[gs,W ], (A5)

with

SGrad[gs] = 1

λ

∫

dτdx tr

(

1

c2
∂τ gs∂τ g−1

s + ∂xgs∂xg−1
s

)

, (A6)

S
(2)
Grad[W ] = −1

λ

∫

dτdx tr

(

1

c2
∂τW ∂τW + ∂xW ∂xW

)

= 1

2

∫

dωdq

(2π )2
φ̃a(ω, q)�−1(ω, q)φ̃a(−ω,−q), �(ω, q) = λ

ω2

c2 + q2
, (A7)

S
(2)
Int,Grad[gs,W ] = 1

λ

∫

dτdx tr

(

1

c2
g−1

s ∂τ gs[∂τW,W ] + g−1
s ∂xgs[∂xW,W ]

)

. (A8)

Note that the second term has been written in Fourier space, after having taken the trace over the generators. This term will

contribute to the fast propagator.

b. WZ term

Let us now split the degrees of freedom in the WZ term. To do so, note that

g−1dg = g−1
f g−1

s d
(

gsg
−1
f

)

= g−1
f g−1

s dgsg f + g−1
f dg f . (A9)

Therefore, the trace becomes

tr [g−1dg ∧ g−1dg ∧ g−1dg] = tr
[(

g−1
f g−1

s dgsg f + g−1
f dg f

)

∧
(

g−1
f g−1

s dgsg f + g−1
f dg f

)

∧
(

g−1
f g−1

s dgsg f + g−1
f dg f

)]

. (A10)

043270-6



CRITICAL PHASE INDUCED BY BERRY PHASE AND … PHYSICAL REVIEW RESEARCH 5, 043270 (2023)

Expanding this expression yields eight terms, which can be combined to give

tr [g−1dg ∧ g−1dg ∧ g−1dg] = tr
[

g−1
s dgs ∧ g−1

s dgs ∧ g−1
s dgs

]

+ 3 tr
[

dg−1
s ∧ dgs ∧ g f dg−1

f

]

− 3 tr
[

g−1
s dgs ∧ dg f ∧ dg−1

f

]

+ O(W 3). (A11)

Expanding the second term to quadratic order in W yields

3 tr
[

dg−1
s ∧ dgs ∧ g f dg−1

f

]

≈ 3 tr

[

dg−1
s ∧ dgs ∧

(

1+ W + W 2

2

)

d

(

1− W + W 2

2

)]

= 3 tr

(

dg−1
s ∧ dgs ∧ 1

2
[dW,W ]

)

+ Linear term in W + O(W 3), (A12)

while we get for the third term

−3 tr
[

g−1
s dgs ∧ dg f ∧ dg−1

f

]

= 3 tr
(

g−1
s dgs ∧ dW ∧ dW

)

+ O(W 3). (A13)

Hence, combining everything leads to

tr [g−1dg ∧ g−1dg ∧ g−1dg] = tr
[

g−1
s dgs ∧ g−1

s dgs ∧ g−1
s dgs

]

+ 3
2

tr
(

dg−1
s ∧ dgs ∧ [dW,W ]

)

+ 3 tr
(

g−1
s dgs ∧ dW ∧ dW

)

= tr
[

g−1
s dgs ∧ g−1

s dgs ∧ g−1
s dgs

]

+ 3
2

tr d
(

g−1
s dgs ∧ [dW,W ]

)

, (A14)

where the second and the third terms have been combined in a total derivative in the last step. Hence, applying Stoke’s theorem,

the WZ action becomes

SWZ[gsg f ] = SWZ[gs] + S
(2)
Int,WZ[gs,W ] = SWZ[gs] + ik

8π

∫

dτdx εμν tr
(

g−1
s ∂μgs[∂νW,W ]

)

. (A15)

The relativistic notation μ = (τ, x) is used here.

c. Dissipation term

Finally, we focus on the dissipation term. The trace becomes

tr (1− gg′ −1) = tr
(

1− gsg f g′ −1
f g′ −1

s

)

≈ tr

[

1− gs

(

1+ W + W 2

2

)(

1− W ′ + W ′2

2

)

g′ −1
s

]

= tr
(

1− g′ −1
s gs

)

− tr

(

W 2

2
+ W ′2

2
− WW ′

)

+ tr

[

(1− g′ −1
s gs)

(

W 2

2
+ W ′2

2
− WW ′

)]

+ O(W 3), (A16)

where a prime means evaluated at (τ ′, x). Once again, the linear terms in W are dropped. In this case, the dissipation action takes

the following form:

SDis[gsg f ] = SDis[gs] + S
(2)
Dis[W ] + S

(2)
Int,Dis[gs,W ], (A17)

with

SDis[gs] = k2³

∫

dτdτ ′dx K (τ − τ ′) tr
(

1− gs(τ, x)g−1
s (τ ′, x)

)

, (A18)

S
(2)
Dis[W ] = −k2³

∫

dτdτ ′
∫

dxK (τ − τ ′) tr

(

W 2

2
+ W ′ 2

2
− WW ′

)

, (A19)

S
(2)
Int,Dis[gs,W ] = k2³

∫

dτdτ ′
∫

dxK (τ − τ ′) tr

[

(

1− g′ −1
s gs

)

(

W 2

2
+ W ′ 2

2
− WW ′

)]

. (A20)

The second term (purely fast part) can be written in Fourier space,

S
(2)
Dis[W ] = k2³

2

∫

dτdτ ′dx

∫

ω,ω′,ω′′

∫

q,q′
K̃ (ω′′)φ̃a(ω, q)φ̃a(ω′, q′)eiω′′(τ−τ ′ )

×
[

1

2
ei(ωτ+qx)ei(ω′τ+q′x) + 1

2
ei(ωτ ′+qx)ei(ω′τ ′+q′x) − ei(ωτ+qx)ei(ω′τ ′+q′x)

]

= k2³

2

∫

ω,q

(K̃ (0) − K̃ (−ω))φ̃a(ω, q)φ̃a(−ω,−q), (A21)
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where
∫

ω
=

∫

dω
2π

,
∫

q
=

∫

dq

2π
. In the first equality, the trace over the generators has been performed, while in the second equality,

integrals over momentum/frequency ´ functions have been carried out. The Fourier transform of the kernel is obtained using the

general formula

∫

dd x
e−ip·x

|x|β = 	
(

d
2

− β

2

)

πd/22β	(β/2)
(2π )d 1

|p|d−β
(A22)

for d Euclidean dimensions. In our case, d = 1 and β = 3 − ´ for the Fourier transform of the kernel, which yields K̃ (ω) =
− 1

8π
|ω|2−´ . This shows that K̃ (0) = 0 and the fast part of the dissipation action thus becomes

S
(2)
Dis[W ] = −k2³

2

∫

ω,q

K̃ (ω)φ̃a(ω, q)φ̃a(−ω,−q) = −k2³

2

∫

ω,q

(

− 1

8π
|ω|2−´

)

φ̃a(ω, q)φ̃a(−ω,−q). (A23)

d. Recap

As a recap, the action expanded at quadratic order in W can be grouped in three terms: S[gsg f ] = S[gs] + S(2)[W ] +
S

(2)
Int [gs,W ]. The first term is simply the initial action evaluated at g = gs,

S[gs] = SGrad[gs] + SWZ[gs] + SDis[gs]

= 1

λ

∫

dτdx tr

(

1

c2
∂τ gs∂τ g−1

s + ∂xgs∂xg−1
s

)

+ ik

12π

∫

B3

tr
(

g−1
s dgs ∧ g−1

s dgs ∧ g−1
s dgs

)

+ k2³

∫

dτdτ ′dx K (τ − τ ′) tr
(

1− gs(τ, x)g−1
s (τ ′, x)

)

. (A24)

It contributes to the β functions only via the final rescaling step. The second contribution to the expanded action regroups the

two terms which only contain fast fields:

S(2)[W ] = S
(2)
Grad[W ] + S

(2)
Dis[W ]

= −1

λ

∫

dτdx tr

(

1

c2
∂τW ∂τW + ∂xW ∂xW

)

− k2³

∫

dτdτ ′
∫

dxK (τ − τ ′) tr

(

W 2

2
+ W ′ 2

2
− WW ′

)

= 1

2

∫

dωdq

(2π )2
φ̃a(ω, q)(�−1(ω, q) − k2³ K̃ (ω))φ̃a(−ω,−q)

= 1

2

∫

dωdq

(2π )2
φ̃a(ω, φ)G̃−1(ω, q)φ̃a(−ω,−q), (A25)

where we have identified the fast propagator

G̃(ω, q) = λ

q2 + ω2

c2 + k2

8π
λ³ |ω|2−´

. (A26)

Finally, the last piece contains all the terms mixing slow and fast modes, which are denoted as interaction terms

S
(2)
Int [gs,W ] = S

(2)
Int,Grad[gs,W ] + S

(2)
Int,WZ[gs,W ] + S

(2)
Int,Dis[gs,W ]

= 1

λ

∫

dτdx tr

(

1

c2
g−1

s ∂τ gs[∂τW,W ] + g−1
s ∂xgs[∂xW,W ]

)

+ ik

8π

∫

dτdx εμν tr
(

g−1
s ∂μgs[∂νW,W ]

)

+ k2³

∫

dτdτ ′
∫

dxK (τ − τ ′) tr

[

(

1− g′ −1
s gs

)

(

W 2

2
+ W ′ 2

2
− WW ′

)]

. (A27)

The first two terms can be combined into a “WZW interaction term” S
(2)
Int,WZW:

S
(2)
Int,WZW[gs,W ] = S

(2)
Int,Grad[gs,W ] + S

(2)
Int,WZ[gs,W ] =

∫

dτdx tr (�μ(τ, x)[∂μW,W ]), (A28)

where

�τ (τ, x) = g−1
s

(

1

c2λ
∂τ − ik

8π
∂x

)

gs, �x(τ, x) = g−1
s

(

1

λ
∂x + ik

8π
∂τ

)

gs. (A29)

2. Fourier representation of interaction terms

We now express the interaction terms, which we will average over with respect to the fast propagator, in Fourier space.
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a. WZW interaction term

S
(2)
Int,WZW[gs,W ] =

∫

dτdx tr (�μ(τ, x)[∂μW,W ])

= i

∫

dτdx

∫

ps

∫

p,p′
ei(p+p′+ps )·x(pμ − p′

μ) tr [�̃μ(ps)W̃ (p)W̃ (p′)]

= i

∫

ps

∫

p

(2pμ + ps μ) tr [�̃μ(ps)W̃ (p)W̃ (−p − ps)], (A30)

where p = (ω, q) is a fast 2-momentum and ps = (ωs, qs) is a slow 2-momentum.

b. Dissipation interaction term

To treat the dissipation interaction term S
(2)
Int,Dis, let us define

Ds(τ, τ
′, x) = 1− g−1

s (τ ′, x)gs(τ, x) =
∫

dωs

2π

dω′
s

2π

∫

dqs

2π
D̃s(ωs, ω

′
s, qs)ei(ωsτ+ω′

sτ
′+qsx). (A31)

Therefore, by Fourier transforming, we get

S
(2)
Int,Dis[gs,W ] = k2³

∫

dτdτ ′dx

∫

ωs,ω′
s,qs

∫

ω,ω′,�

∫

q,q′
K̃ (�)ei�(τ−τ ′ ) tr

[

D̃s(ωs, ω
′
s, qs)ei(ωsτ+ω′

sτ
′+qsx)

×
(

1

2
W̃ (ω, q)W̃ (ω′, q′)ei(ωτ+qx)ei(ω′τ+q′x) + 1

2
W̃ (ω, q)W̃ (ω′, q′)ei(ωτ ′+qx)ei(ω′τ ′+q′x)

− W̃ (ω, q)W̃ (ω′, q′)ei(ωτ+qx)ei(ω′τ ′+q′x)

)]

, (A32)

where frequencies and momenta with a subscript “s” are slow modes, while the others are fast modes, except for �, which is

unspecified for now. The space and time integrals yield ´ functions over frequencies and momenta. Performing them, we arrive at

S
(2)
Int,Dis[gs,W ] = T1 + T2 + T3, (A33)

where

T1 = k2³

2

∫

ωs,ω′
s,qs

∫

ω,q

K̃ (ω′
s) tr [D̃s(ωs, ω

′
s, qs)W̃ (ω, q)W̃ (−ωs − ω′

s − ω,−q − qs)], (A34)

T2 = k2³

2

∫

ωs,ω′
s,qs

∫

ω,q

K̃ (ωs) tr [D̃s(ωs, ω
′
s, qs)W̃ (ω, q)W̃ (−ωs − ω′

s − ω,−q − qs)], (A35)

T3 = −k2³

∫

ωs,ω′
s,qs

∫

ω,q

K̃ (ωs + ω) tr [D̃s(ωs, ω
′
s, qs)W̃ (ω, q)W̃ (−ωs − ω′

s − ω,−q − qs)]. (A36)

c. Diagrammatic representation

The interaction terms presented in the two previous sec-

tions can be represented diagrammatically in terms of the

vertices presented in Fig. 5.

In each vertex, the square represents the part of the interac-

tion action containing slow modes. Since the action has been

expanded to quadratic order in W , each vertex contains two W

insertions, represented as double lines, which can be seen as

the two matrix indices of W .

3. Integration of fast modes

We are now in a position to integrate the fast modes. To do

so, we proceed with a cumulant expansion.

SEff[gs] ≈ S[gs] +
〈

S
(2)
Int [gs,W ]

〉

f
− 1

2

〈(

S
(2)
Int [gs,W ]

)2〉c

f
+ · · · ,

(A37)

where the expectation value is taken with respect to the fast

modes, while c stands for connected correlation function. We

perform the RG calculation at 1-loop, which is controlled

using a large-k expansion. This requires the couplings λ and ³

to be of order 1/k as well as ´, which justifies the introduction

of the O(k0) parameters λ̃ = kλ, ³̃ = k³ , and ˜́ = k´.

With eW expanded to quadratic order in W , only one-loop

diagrams are generated, as we can see from the vertices of

Fig. 5. Moreover, it is clear that diagrams at order n in the

cumulant expansion contain n vertices. Two-loop diagrams

can be obtained by expanding to higher powers in W . How-

ever, these terms will be suppressed with additional powers

of 1/k. This comes from the fact that every vertex is of order

k, but the propagator is of order 1/k. Hence, the order in 1/k

of a diagram is given by np − nv (respectively the number of

propagators and the number of vertices). However, np − nv =
nl − 1, where nl is the number of loops in a given diagram.
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FIG. 5. Diagrammatic representation of the three different types of terms in the interaction action. (a) Representation of S
(2)
Int,WZW[gs,W ],

where the square corresponds to the slow object �μ. (b) Representation of T1 and T2. These two terms are essentially the same, since the

Fourier transform of their kernel only contains slow modes. The square depicts an insertion of the kernel from either T1 or T2, times the purely

slow object Ds. (c) Representation of T3. The square corresponds to an insertion of the kernel in T3, which mixes slow and fast modes, times

Ds.

Therefore, the order in 1/k of a diagram is directly related to

the number of loops it has.

a. Order 1 in interaction action

Let us start by evaluating the first expectation value,
〈

S
(2)
Int [gs,W ]

〉

f
=

〈

S
(2)
Int,Dis[gs,W ]

〉

f
+

〈

S
(2)
Int,WZW[gs,W ]

〉

f
.

(A38)

Dissipation term: The expectation value of the dissipation

term is separated into the expectation value of its three pieces

[see Eq. (A33) above],
〈

S
(2)
Int,Dis[gs,W ]

〉

f
= 〈T1〉 f + 〈T2〉 f + 〈T3〉 f , (A39)

which can be represented by the three Feynman diagrams

shown in Fig. 6.

For the first term, we have

〈T1〉 f = k2³

2

∫

ωsω′
sqs

∫

ω,q

K̃ (ω′
s) tr [D̃s(ωs, ω

′
s, qs)

× 〈W̃ (ω, q)W̃ (−ω − ωs − ω′
s,−q − qs)〉 f ]

= i2 k2³

2

∫

ωsω′
sqs

∫

ω,q

K̃ (ω′
s) tr [D̃s(ωs, ω

′
s, qs)T aT b]

× 〈φ̃a(ω, q)φ̃b(−ω − ωs − ω′
s,−q − qs)〉 f . (A40)

The expectation value yields a single Wick contraction

〈φ̃a(ω, q)φ̃b(−ω − ωs − ω′
s,−q − qs)〉 f

= ´abG̃(ω, q)(2π )2´(ωs + ω′
s)´(qs), (A41)

from which we get

〈T1〉 f =−k2³

2

∫

ω,q

G̃(ω, q)

∫

ωs

K̃ (ωs) tr [D̃s(ωs,−ωs, 0)T aT a]

= −k2³

4

(

N − 1

N

) ∫

ω,k

G̃(ω, k)

∫

ωs

K̃ (ωs) tr

× [D̃s(ωs,−ωs, 0)]

= −k2³

2
CF I1

∫

dτdτ ′
∫

dx K (τ − τ ′) tr
(

1− g′ −1
s gs

)

,

(A42)

where the trace has been simplified using the SU(N )

completeness relation T a
i j T

a
kl = 1

2
(´il´ jk − 1

N
´i j´kl ). We

have also defined the SU(N ) quadratic Casimir in the

fundamental representation CF = N2−1
2N

and the fast

integral

I1 =
∫

dωdq

(2π )2
G̃(ω, q) =

∫

dωdq

(2π )2

λ

q2 + ω2

c2 + k2

8π
λ³ |ω|2−´

.

(A43)

In the last step, the following inverse Fourier transform has

been employed:

∫

ωs

K̃ (ωs) tr [D̃s(ωs,−ωs, 0)]

=
∫

dτdτ ′dτ ′′dx

∫

ωs

K (τ ′′) tr (Ds(τ, τ
′, x))eiωs (τ ′−τ−τ ′′ )

FIG. 6. One-loop Feynman diagrams contributing to 〈S(2)

Int,Dis[gs,W ]〉 f . Parts (a), (b), and (c) correspond, respectively, to 〈T1〉 f , 〈T2〉 f ,

and 〈T3〉 f .
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=
∫

dτdτ ′dxK (τ − τ ′) tr (D(τ, τ ′, x))

=
∫

dτdτ ′
∫

dx K (τ − τ ′) tr
(

1− g′ −1
s gs

)

. (A44)

By performing a very similar calculation, one can show that

〈T2〉 f = 〈T1〉 f . For T3, using the above result for the expecta-

tion value of the fast modes, we get

〈T3〉 f = k2³

2

(

N − 1

N

)∫

ω,q

G̃(ω, q)

∫

ωs

K̃ (ω + ωs) tr

× [D̃s(ωs,−ωs, 0)]. (A45)

The kernel is now expanded to quadratic order in ωs,

K̃ (ω + ωs) = − 1

8π

(

|ω|2−´ + (2 − ´)
ω

|ω|´ ωs

+ 1

2
(2 − ´)(1 − ´)

ω2
s

|ω|´
)

+ O
(

ω3
s

)

. (A46)

Clearly, the contribution from the second term vanishes

since the fast integrand is odd under ω → −ω. Moreover,

the contribution from the first term can also be shown to

vanish,

∫

ωs

tr (D̃s(ωs,−ωs, 0))

=
∫

dτdτ ′dx

∫

ωs

tr (Ds(τ, τ
′, x))eiωs (τ ′−τ )

=
∫

dτdx tr (Ds(τ, τ, x))

= 0, (A47)

since Ds(τ, τ, x) = 1− gs(τ, x)g−1
s (τ, x) = 0. Hence, only

the quadratic term in ωs survives. Therefore,

〈T3〉 f = −k2³CF

16π
(2 − ´)(1 − ´)

×
∫

ω,q

G̃(ω, q)

|ω|´
∫

ωs

ω2
s tr (D̃s(ωs,−ωs, 0)). (A48)

FIG. 7. One-loop Feynman diagram contributing to

〈S(2)
Int,WZW[gs,W ]〉 f .

This is proportional to
∫

dτdx tr (∂τ gs∂τ g−1
s ), as can be seen

from the following manipulations:
∫

ωs

ω2
s tr (D̃s(ωs,−ωs, 0))

=
∫

dτdτ ′dx

∫

ωs

tr (Ds(τ, τ
′, x))ω2

s eiωs (τ ′−τ )

= −
∫

dτdτ ′dx

∫

ωs

tr (Ds(τ, τ
′, x))∂2

τ eiωs (τ ′−τ )

= −
∫

dτdτ ′dx

∫

ωs

tr
(

∂2
τ Ds(τ, τ

′, x)
)

eiωs (τ ′−τ )

= −
∫

dτdτ ′dx tr
(

∂2
τ Ds(τ, τ

′, x)
)

´(τ ′ − τ )

=
∫

dτdτ ′dx tr
(

g−1
s (τ ′, x)∂2

τ gs(τ, x)
)

´(τ ′ − τ )

= −
∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

, (A49)

where ω2
s has been replaced by −∂2

τ acting on the exponential,

while integration by parts has also been used twice. Therefore,

〈T3〉 f = k2³CF

16π
(2 − ´)(1 − ´)

×
∫

ω,q

G̃(ω, q)

|ω|´
∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

. (A50)

WZW term: We now move to the expectation value of

the WZW interaction term, corresponding to the Feynman

diagram shown in Fig. 7.

The calculation of the diagram yields

〈

S
(2)
Int,WZW[gs,W ]

〉

f
= i

∫

ps

∫

p

(2pμ + ps μ) tr (〈�̃μ(ps)W̃ (p)W̃ (−p − ps)〉 f )

= −i

∫

ps

∫

p

(2pμ + ps μ) tr (�̃μ(ps)T aT b)〈φ̃a(p)φ̃b(−p − ps)〉

= −i

∫

ps

∫

p

(2pμ + ps μ) tr (�̃μ(ps)T aT a)(2π )2´(2)(ps)G̃(p)

= −2i

∫

p

pμG̃(p) tr (�̃μ(0)T aT a)

= 0, (A51)
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FIG. 8. One-loop Feynman diagram contributing to 〈(S(2)
Int,WZW)2〉c

f .

where we still have p = (ω, q), ps = (ωs, qs). The above ex-

pression vanishes for two reasons. First, the integral over fast

modes vanishes due to an odd integrand. Second, simplify-

ing the trace using the SU(N ) completeness relation yields a

trace of �μ, which vanishes. This can be shown by writing

g = v1+ iNaT a, with �n = (v, �N )T , �n · �n = 1. In this case,

tr �μ ∼ �n · ∂μ�n = 0, since �n is perpendicular to its derivative.

Recap: Therefore, the expectation value of the interaction

action is
〈

S
(2)
Int [gs,W ]

〉

f

= 〈T1〉 f + 〈T2〉 f + 〈T3〉 f

= −k2³CF I1

∫

dτdτ ′
∫

dx K (τ − τ ′) tr
(

1− g′ −1
s gs

)

+ k2³CF

16π
(2 − ´)(1 − ´)

∫

ω,q

G̃(ω, q)

|ω|´

×
∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

. (A52)

b. Order 2 in interaction action

We now move to the term quadratic in the interaction

action in the cumulant expansion. There are three terms to

consider:

〈(

S
(2)
Int [gs,W ]

)2〉c

f
=

〈(

S
(2)
Int,WZW

)2〉c

f
+

〈(

S
(2)
Int,Dis

)2〉c

f

+ 2
〈

S
(2)
Int,DisS

(2)
Int,WZW

〉c

f
. (A53)

Squared WZW term: We start with the expectation value of

the squared WZW interaction term, the diagrammatic repre-

sentation of which is shown in Fig. 8.

The diagram corresponds to

〈(

S
(2)
Int,WZW

)2〉c

f
= −

∫

ps,p′
s

∫

p,p′
(2pμ + ps μ)(2p′

ν + p′
s ν )〈tr (�̃μ(ps)W̃ (p)W̃ (−p − ps))tr (�̃ν (p′

s)W̃ (p′)W̃ (−p′ − p′
s))〉c

f

≈ −4

∫

ps,p′
s

∫

p,p′
pμ p′

ν〈tr (�̃μ(ps)W̃ (p)W̃ (−p − ps))tr (�̃ν (p′
s)W̃ (p′)W̃ (−p′ − p′

s))〉c
f , (A54)

where p = (ω, q), ps = (ωs, qs), p′ = (ω′, q′), p′
s = (ω′

s, q′
s). Note that ps μ and p′

s ν have been dropped since the expression is

already quadratic in derivatives (from the two �μ). Slow modes, when expressed in real space, correspond to derivatives, which

means even more irrelevant terms. Let us focus our attention on the expectation value

〈tr (�̃μ(ps)W̃ (p)W̃ (−p − ps)) tr (�̃ν (p′
s)W̃ (p′)W̃ (−p′ − p′

s))〉c
f

= 〈φ̃a(p)φ̃b(−p − ps)φ̃c(p′)φ̃d (−p′ − p′
s)〉c

f tr (�̃μ(ps)T aT b) tr (�̃ν (p′
s)T cT d ). (A55)

The expectation value is computed using Wick contractions. There are two connected pieces, denoted as W1 and W2. First, let us

consider W1,

W1 = (2π )4´(2)(p + p′)´(2)(p + p′ + ps + p′
s)´ac´bd G̃(p)G̃(p + ps) tr (�̃μ(ps)T aT b) tr (�̃ν (p′

s)T cT d )

= (2π )4´(2)(p + p′)´(2)(p + p′ + ps + p′
s)G̃(p)G̃(p + ps) tr (�̃μ(ps)T aT b) tr (�̃ν (p′

s)T aT b). (A56)

The traces are computed using the the completeness relation for the SU(N ) generators, which leads to

tr (�̃μ(ps)T aT b) tr (�̃ν (p′
s)T aT b) = �̃i j

μ (ps)�̃lm
ν (p′

s)

(

1

2
´ jn´km − 1

2N
´ jk´mn

)(

1

2
´kl´in − 1

2
´ik´nl

)

= − 1

2N
tr (�̃μ(ps)�̃ν (p′

s))+1

4

(

1+ 1

N2

)

tr (�̃μ(ps)) tr (�̃ν (p′
s)) = − 1

2N
tr (�̃μ(ps)�̃ν (p′

s)),

(A57)

Next, consider W2,

W2 = (2π )4´(2)(p − p′ − p′
s)´(2)(p′ − p − ps)´ad´bcG̃(p + ps)G̃(p) tr (�̃μ(ps)T aT b) tr (�̃ν (p′

s)T cT d )

= (2π )4´(2)(p − p′ − p′
s)´(2)(p′ − p − ps)G̃(p + ps)G̃(p) tr (�̃μ(ps)T aT b) tr (�̃ν (p′

s)T bT a). (A58)
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Computing the traces leads to

tr (�̃μ(ps)T aT b) tr (�̃ν (p′
s)T bT a) = �̃i j

μ (ps)�̃lm
ν (p′

s)

(

1

2
´ jl´kn − 1

2N
´ jk´nl

)(

1

2
´kn´im − 1

2N
´ki´mn

)

=
(

N

4
− 1

2N

)

tr (�̃μ(ps)�̃ν (p′
s)) + 1

4N2
tr (�̃μ(ps)) tr (�̃ν (p′

s))

=
(

N

4
− 1

2N

)

tr (�̃μ(ps)�̃ν (p′
s)). (A59)

Combining everything and integrating over the ´ functions yields

〈(

S
(2)
Int,WZW

)2〉c

f
= −4

∫

ps

∫

p

pμG̃(p)G̃(p + ps) tr (�̃μ(ps)�̃ν (−ps))

[

1

2N
pν +

(

N

4
− 1

2N

)

(pν + ps ν )

]

≈ −N

∫

ps

∫

p

pμ pνG̃2(p) tr (�̃μ(ps)�̃ν (−ps))

= −N

∫

dωdq

(2π )2
(ω, q)μ(ω, q)νG̃2(ω, q)

∫

dτdx tr (�μ(τ, x)�ν (τ, x)), (A60)

where slow modes have once again been neglected compared to fast modes. Note that the fast integral vanishes if μ �= ν.

Therefore,

〈(

S
(2)
Int,WZW

)2〉c

f
= −N

∫

dωdq

(2π )2
ω2G̃2(ω, q)

∫

dτdx tr (�τ (τ, x)�τ (τ, x)) − N

∫

dωdq

(2π )2
q2G̃2(ω, q)

∫

dτdx tr (�x(τ, x)�x(τ, x))

= −NI2

∫

dτdx tr(�τ (τ, x)�τ (τ, x)) − NI3

∫

dτdx tr (�x(τ, x)�x(τ, x)), (A61)

where we have defined the following fast integrals:

I2 =
∫

dωdq

(2π )2
ω2G̃2(ω, q) =

∫

dωdq

(2π )2
ω2 λ2

(

q2 + ω2/c2 + k2

8π
λ³ |ω|2−´

)2
,

I3 =
∫

dωdq

(2π )2
q2G̃2(ω, q) =

∫

dωdq

(2π )2
q2 λ2

(

q2 + ω2/c2 + k2

8π
λ³ |ω|2−´

)2
. (A62)

Using the expressions for �τ and �x to simplify the traces

and regrouping similar terms, we get
〈

(

S
(2)
Int,WZW

)2
〉c

f

= N

c4λ2

(

I2−
k2c4λ2

(8π )2
I3

)

∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

+ N

λ2

(

I3−
k2λ2

(8π )2
I2

)

∫

dτdx tr
(

∂xgs∂xg−1
s

)

+ N
Ik

4π

(

1

λ
I3−

1

c2λ
I2

)

∫

dτdx tr
(

∂τ gs∂xg−1
s

)

. (A63)

The first two terms contribute to the renormalization of

the gradient term in the action. However, the third term is

unphysical. Indeed, as pointed out in the main text, the opera-

tor tr (∂τ gs∂xg−1
s ) breaks a symmetry from the original action,

since it is not invariant under g(τ, x) → g−1(τ,−x). This term

is generated due to the fact that when performing the splitting

of the degrees of freedom using the decomposition g = gsg f ,

this symmetry is “fractionalized” between the slow and fast

modes and is effectively lost when the latter are integrated

out. For the purpose of the RG analysis, this unphysical term

can thus be dropped from the effective action.

However, by doing the “opposite” decomposition, that is,

g = g f gs, one can easily show that the expanded action to

quadratic order in W is essentially the same as the one de-

rived above, but with the important difference that the sign of

S
(2)
Int,WZ[gs,W ] reverses, that is,

SWZ[g f gs]

= SWZ[gs] + S
′ (2)
Int,WZ[gs,W ]

= SWZ[gs] − ik

8π

∫

dτdx εμν tr
(

gs∂μg−1
s [∂νW,W ]

)

,

(A64)

which is equivalent to the replacement k → −k (strictly

speaking, there are also a few other minor differences, such

as gs∂μg−1
s instead of g−1

s ∂μgs, but these do not affect the

renormalization of any physical term). Hence, doing the RG

with this new decomposition yields the same expression as

Eq. (A63), but with a relative negative sign in the third

term. Therefore, by defining the symmetrized effective action

SEff[gs] = 1
2
(S

(1)
Eff[gs] + S

(2)
Eff[gs]), where S

(1)
Eff[gs] is obtained

using g = gsg f and S
(2)
Eff[gs] comes from using g = g f gs, the

unphysical terms cancel, leaving an effective action contain-

ing only terms allowed by symmetries.
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FIG. 9. One-loop Feynman diagrams contributing to 〈(S(2)

Int,Dis)
2〉c

f .

Squared dissipation term: Let us next consider the square

of the dissipation term,

〈(

S
(2)
Int,Dis

)2〉c

f
= 〈(T1 + T2 + T3)2〉c

f

=
〈

T 2
1

〉c

f
+

〈

T 2
2

〉c

f
+

〈

T 2
3

〉c

f
+ 2〈T1T2〉c

f

+ 2〈T1T3〉c
f + 2〈T2T3〉c

f , (A65)

which can be represented diagrammatically by Fig. 9.

From the Fourier-space expressions of T1 and T2, we see

that the first three terms will contain two slow kernels. There-

fore, terms with three time integrals and two kernels will be

generated. An example of such a term is

∫

dτdτ ′dτ ′′dxK (τ )K (τ ′) tr
[(

1− g−1
s (τ ′′ − τ )gs(τ

′′)
)

×
(

1− g−1
s (τ ′′ + τ ′)gs(τ

′′)
)]

, (A66)

where the fields’ x-dependence is implicit. Let us now analyze

the relevance of this term compared to the terms in the initial

action. To do so, we apply the rescaling x → bx, τ → bzτ ,

where b > 0 and z is the dynamical critical exponent. Using

this, we have
∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

∼ b1−z,

∫

dτdx tr
(

∂xgs∂xg−1
s

)

∼ bz−1

∫

dτdτ ′dx
1

|τ − τ ′|3−´
tr

(

1− g′ −1
s gs

)

∼ b1+z(´−1) (A67)

(we can take the naive vanishing scaling dimension for the

fields since �g > 0 makes terms even more irrelevant). By

performing the same rescaling for Eq. (A66), we see that it

goes as b1+z(2´−3). Therefore, for ´ < 1 (which is required for

our controlled large-k expansion), this term is less relevant

than the terms in the initial action and thus can be neglected.

Let us now move on to the two terms 〈T1T3〉c
f and 〈T2T3〉c

f .

T1 and T2 contribute with a slow kernel, while T3 gives a mixed

kernel containing slow and fast modes. The mixed kernel

needs to be expanded in powers of ωs as in the calculation

of 〈T3〉 f . Therefore, the resulting contributions will be like the

initial dissipation term, but with additional time derivatives.

For example, at order ω2
s (the first nonvanishing order), we

would have something of the form
∫

dτdτ ′dx ∂2
τ K (τ − τ ′) tr (1− gs(τ

′, x)gs(τ, x)), (A68)

which is of course very irrelevant and can be dropped.

Finally, let us compute the expectation value of T 2
3 ,

〈

T 2
3

〉c

f
= k4³ 2

∫

ωs,ω′
s,qs

∫

ω,q

∫

�s,�′
s,ls

∫

�,l

K̃ (ω + ωs)K̃ (� + �s)〈tr (D̃s(ωs, ω
′
s, qs)W̃ (ω, q)W̃ (−ω − ωs − ω′

s,−q − qs))

× tr (D̃s(�s,�
′
s, ls)W̃ (�, l )W̃ (−� − �s − �′

s,−l − ls))〉c
f , (A69)

where l and ls are, respectively, fast and slow momenta. Once again, we start by considering the expectation value

〈tr (D̃s(ωs, ω
′
s, qs)W̃ (ω, q)W̃ (−ω − ωs − ω′

s,−q − qs)) tr (D̃s(�s,�
′
s, ls)W̃ (�, l )W̃ (−� − �s − �′

s,−l − ls))〉c
f

= 〈φ̃a(ω, q)φ̃b(−ω − ωs − ω′
s,−q − qs)φ̃c(�, l )φ̃d (−� − �s − �′

s,−l − ls)〉c
f

× tr (D̃s(ωs, ω
′
s, qs)T aT b) tr (D̃s(�s,�

′
s, ls)T cT d ). (A70)
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The calculation of this expectation value is quite similar to the one performed before [see Eqs. (A55)–(A59)]. Let us denote

the two connected pieces as W1 and W2, where

W1 = (2π )4´(ω + �)´(q + l )´(ω + ωs + ω′
s + � + �s + �′

s)´(q + qs + l + ls)G̃(ω, q)G̃(ω + ωs + ω′
s, q + qs)

×
[

− 1

2N
tr (D̃s(ωs, ω

′
s, qs)D̃s(�s,�

′
s, ls)) + 1

4

(

1 + 1

N2

)

tr (D̃s(ωs, ω
′
s, qs)) tr (D̃s(�s,�

′
s, ls))

]

(A71)

and

W2 = (2π )4´(ω − � − �s − �′
s)´(q − l − ls)´(� − ω − ωs − ω′

s)´(l − q − qs)G̃(ω, q)G̃(ω + ωs + ω′
s, q + qs)

×
[

1

4

(

N − 2

N

)

tr (D̃s(ωs, ω
′
s, qs)D̃s(�s,�

′
s, ls)) + 1

4N2
tr (D̃s(ωs, ω

′
s, qs)) tr (D̃s(�s,�

′
s, ls))

]

. (A72)

By adding the two Wick contractions and integrating over the ´ functions, we get

〈

T 2
3

〉c

f
= k4³ 2

∫

ωs,ω′
s,�s,qs

∫

ω,q

K̃ (ω + ωs)G̃(ω, q)G̃(ω + ωs + ω′
s, q + qs)

×
[(

− 1

2N
K̃ (ω − �s) + 1

4

(

N − 2

N

)

K̃ (ω + ωs + ω′
s + �s)

)

tr (D̃s(ωs, ω
′
s, qs)D̃s(�s,−ωs − ω′

s − �s,−qs))

+
(

1

4

(

1 + 1

N2

)

K̃ (ω − �s) + 1

4N2
K̃ (ω + ωs + ω′

s + �s)

)

tr (D̃s(ωs, ω
′
s, qs)) tr (D̃s(�s,−ωs − ω′

s − �s,−qs))

]

.

(A73)

We now need to expand the kernels as well as the second propagator in powers of the slow modes ωs, ω
′
s, �s, and qs. Instead of

expanding directly, which would yield a huge number of terms, let us analyze the various possible slow contributions that can be

generated. We will only focus on the term which contains tr (D̃s(ωs, ω
′
s, qs)D̃s(�s,−ωs − ω′

s − �s,−qs)), since the structure of

the other term which is proportional to tr (D̃s(ωs, ω
′
s, qs)) tr (D̃s(�s,−ωs − ω′

s − �s,−qs)) follows from a very similar analysis

(in fact, it turns out that the contribution from this latter term vanishes as discussed below). At leading order in the slow mode

expansion, the contribution from Eq. (A73) to the effective action for the slow field gs is proportional to
∫

ωs,ω′
s,�s,qs

tr (D̃s(ωs, ω
′
s, qs)D̃s(�s,−ωs − ω′

s − �s,−qs))

=
∫

dτ1dτ2dτ3dτ4

∫

dxdy

∫

ωs,ω′
s,�s,qs

tr (Ds(τ1, τ2, x)Ds(τ3, τ4, y))e−iωsτ1 e−iω′
sτ2 e−iqsxe−i�sτs ei(ωs+ω′

s+�s )τ4 eiqsy

=
∫

dτ1dτ2dτ3dτ4

∫

dxdy tr (Ds(τ1, τ2, x)Ds(τ3, τ4, y))´(τ4 − τ1)´(τ4 − τ2)´(τ4 − τ3)´(y − x)

= 0, (A74)

which vanishes since Ds(τ, τ, x) = 0. Next, at linear order in slow modes, all the contributions vanish, since these terms will

also be linear in fast modes, which will yield an odd fast integrand. Therefore, to get a nonzero contribution, we must go to

quadratic order in fast modes. There are various possible combinations. Let us analyze them. First, we could have a term with

ω2
s . Its contribution to the effective action will be proportional to

∫

ωs,ω′
s,�s,qs

ω2
s tr (D̃s(ωs, ω

′
s, qs)D̃s(�s,−ωs − ω′

s − �s,−qs))

=
∫

dτ1dτ2dτ3dτ4

∫

dxdy

∫

ωs,ω′
s,�s,qs

ω2
s tr (Ds(τ1, τ2, x)Ds(τ3, τ4, y))e−iωsτ1 e−iω′

sτ2 e−iqsxe−i�sτs ei(ωs+ω′
s+�s )τ4 eiqsy

= −
∫

dτ1dτ2dτ3dτ4

∫

dxdy

∫

ωs,ω′
s,�s,qs

tr (Ds(τ1, τ2, x)Ds(τ3, τ4, y))∂2
τ1

eiωs (τ4−τ1 )eiω′
s (τ4−τ2 )ei�s (τ4−τ3 )eiqs (y−x)

= −
∫

dτ1dτ2dτ3dτ4

∫

dxdy tr
(

∂2
τ1

Ds(τ1, τ2, x)Ds(τ3, τ4, y)
)

´(τ4 − τ1)´(τ4 − τ2)´(τ4 − τ3)´(y − x)

= −
∫

dτ1dτ2dτ3

∫

dx tr
(

∂2
τ1

Ds(τ1, τ2, x)Ds(τ3, τ3, x)
)

´(τ3 − τ1)´(τ3 − τ2)

= 0, (A75)

where integration by parts has been used. With an identical calculation, terms with ω′2
s will be the same as above, except with

∂2
τ2

instead of ∂2
τ1

, while terms with �2
s will contain ∂2

τ3
. Clearly, these terms also vanish for the same reason as above. Therefore,
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we recognize a pattern here: a term with a T3 vanishes if there is no time derivative that acts on the associated Ds. Hence, we see

that terms with ωsω
′
s also vanish, since no derivatives will be acting on Ds(τ3, τ4, x).

Let us now look at the contribution from terms with ωs�s, which will contain ∂τ1
and ∂τ3

. This will be proportional to
∫

ωs,ω′
s,�s,qs

ωs�s tr (D̃s(ωs, ω
′
s, qs)D̃s(�s,−ωs − ω′

s − �s,−qs))

= −
∫

dτ1dτ2dτ3dτ4

∫

dxdy tr
(

∂τ1
Ds(τ1, τ2, x)∂τ3

Ds(τ3, τ4, y)
)

´(τ4 − τ1)´(τ4 − τ2)´(τ4 − τ3)´(y − x)

= −
∫

dτ1dτ2dτ3dτ4

∫

dx tr
(

g−1
s (τ2, x)∂τ1

gs(τ1, x)g−1
s (τ4, x)∂τ3

gs(τ3, x)
)

´(τ4 − τ1)´(τ4 − τ2)´(τ4 − τ3)

= −
∫

dτdx tr
(

g−1
s ∂τ gsg

−1
s ∂τ gs

)

=
∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

. (A76)

The contribution from terms with ω′
s�s is quite similar,

∫

ωs,ω′
s,�s,qs

ω′
s�s tr (D̃s(ωs, ω

′
s, qs)D̃s(�s,−ωs − ω′

s − �s,−qs))

= −
∫

dτ1dτ2dτ3dτ4

∫

dxdy tr
(

∂τ2
Ds(τ1, τ2, x)∂τ3

Ds(τ3, τ4, y)
)

´(τ4 − τ1)´(τ4 − τ2)´(τ4 − τ3)´(y − x)

= −
∫

dτ1dτ2dτ3dτ4

∫

dx tr
(

∂τ2
g−1

s (τ2, x)gs(τ1, x)g−1
s (τ4, x)∂τ3

gs(τ3, x)
)

´(τ4 − τ1)´(τ4 − τ2)´(τ4 − τ3)

= −
∫

dτdx tr
(

∂τ g−1
s gsg

−1
s ∂τ gs

)

= −
∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

. (A77)

All the other possible quadratic terms contain at least a momentum qs. All of these terms will vanish, since qs will yield a

space derivative, which does not prevent the two time coordinates in Ds from being the same.

Therefore, we only need to keep track of the terms with ωs�s and ω′
s�s in the expansion of Eq. (A73). However, since these

two terms have an opposite sign, any contribution from the combination (ωs + ω′
s)�s vanishes when expanding Eq. (A73).

Knowing this, we can set ωs + ω′
s = qs = 0 in G̃(ω + ωs + ω′

s, q + qs) as well as ωs + ω′
s = 0 in K̃ (ω + ωs + ω′

s + �s).

Moreover, for the remaining nonvanishing contributions, since each Ds becomes g−1
s ∂τ gs (up to an integration by parts), we

see that the term proportional to tr (D̃s(ωs, ω
′
s, qs)) tr (D̃s(�s,−ωs − ω′

s − �s,−qs)) also vanishes, since as argued before,

tr (g−1
s ∂μgs) = 0. Therefore, we are left with

〈

T 2
3

〉c

f
≈ k4³ 2

∫

ωs,ω′
s,�s,qs

∫

ω,q

K̃ (ω + ωs)G̃2(ω, q)

[(

− 1

2N
K̃ (ω − �s) + 1

4

(

N − 2

N

)

K̃ (ω + �s)

)

× tr (D̃s(ωs, ω
′
s, qs)D̃s(�s,−ωs − ω′

s − �s,−qs))

]

. (A78)

Expanding the kernels yields

K̃ (ω + ωs)K̃ (ω − �s) ≈ − (2 − ´)2

(8π )2

ω2

|ω|2´
ωs�s + · · · ,

K̃ (ω + ωs)K̃ (ω + �s) ≈ (2 − ´)2

(8π )2

ω2

|ω|2´
ωs�s + · · · . (A79)

Hence, by using Eq. (A76), we finally get

〈(

S
(2)
Int,Dis

)2〉c

f
=

〈

T 2
3

〉c

f
+ · · · = N (2 − ´)2

4(8π )2
k4³ 2

∫

ω,q

ω2

|ω|2´
G̃2(ω, q)

∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

+ · · · , (A80)

where the ellipsis denote irrelevant terms.

Mixed WZW-dissipation term: Finally, we must compute the mixed WZW-dissipation contribution

2
〈

S
(2)
Int,WZWS

(2)
Int,Dis

〉c

f
= 2

〈

S
(2)
Int,WZWT1

〉c

f
+ 2

〈

S
(2)
Int,WZWT2

〉c

f
+ 2

〈

S
(2)
Int,WZWT3

〉c

f
, (A81)

which can be represented by Fig. 10.
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FIG. 10. 1-loop Feynman diagrams contributing to 〈S(2)
Int,WZWS

(2)

Int,Dis〉c
f .

Let us focus on the first term,

2
〈

S
(2)
Int,WZWT1

〉c

f
= ik2³

∫

ωs,ω′
s,qs

∫

ω,q

∫

�s,ls

∫

�,l

K̃ (ωs)(2� + �s, 2l + ls)μ

× 〈tr (D̃s(ωs, ω
′
s, qs)W̃ (ω, q)W̃ (−ω − ωs − ω′

s,−q − qs))tr (�̃μ(�s, ls)W̃ (�, l )W̃ (−� − �s,−l − ls))〉c
f .

(A82)

The computation of the expectation value is quite similar to the one in 〈T 2
3 〉c

f , involving two connected Wick contractions.

After integrating over the ´ functions, we get

2
〈

S
(2)
Int,WZWT1

〉c

f
= i

N

4
k2³

∫

ωs,ω′
s,qs

∫

ω,q

K̃ (ω′
s)(2ω + ωs + ω′

s, 2q + qs)μG̃(ω, q)

× G̃(ω + ωs + ω′
s, q + qs) tr (D̃s(ωs, ω

′
s, qs)�̃μ(−ωs − ω′

s,−qs)). (A83)

Since there is a slow kernel and a derivative coming from �μ, we can take the leading order term in the slow modes expansion

2
〈

S
(2)
Int,WZWT1

〉c

f
≈ i

N

2
k2³

∫

ωs,ω′
s,qs

∫

ω,q

K̃ (ω′
s)(ω, q)μG̃2(ω, q) tr (D̃s(ωs, ω

′
s, qs)�̃μ(−ωs − ω′

s,−qs)) = 0. (A84)

The expression vanishes due to the fact that the fast integrand is odd. Clearly, the exact same thing happens with T2. Therefore,

let us analyze the third term

2
〈

S
(2)
Int,WZWT3

〉c

f
= −2ik2³

∫

ωs,ω′
s,qs

∫

ω,q

∫

�s,ls

∫

�,l

K̃ (ω + ωs)(2� + �s, 2l + ls)μ

× 〈tr (D̃s(ωs, ω
′
s, qs)W̃ (ω, q)W̃ (−ω − ωs − ω′

s,−q − qs))tr (�̃μ(�s, ls)W̃ (�, l )W̃ (−� − �s,−l − ls))〉c
f .

(A85)

Computing the expectation value and the integrals over the ´ functions yields

2
〈

S
(2)
Int,WZWT3

〉c

f
= −i

N

2
k2³

∫

ωs,ω′
s,qs

∫

ω,q

K̃ (ω + ωs)(2ω + ωs + ω′
s, 2q + qs)μG̃(ω, q)

× G̃(ω + ωs + ω′
s, q + qs) tr (D̃s(ω,ω′

s, qs)�̃μ(−ωs − ω′
s,−qs)). (A86)

This time, we need to expand to linear order in the various slow modes, since there is already a derivative in �μ (the leading

order contribution of course vanishes). As we did before, let us look at the various possibilities one encounters when expanding

Eq. (A86). First, linear terms in ωs yield contributions to the effective action for gs proportional to
∫

ωs,ω′
s,qs

ωs tr (D̃s(ωs, ω
′
s, qs)�̃μ(−ωs − ω′

s,−qs))

=
∫

dτ1dτ2dτ3

∫

dxdy

∫

ωs,ω′
s,qs

ωs tr (Ds(τ1, τ2, x)�μ(τ3, y))e−iωsτ1 e−iω′
sτ2 e−iqsxei(ωs+ω′

s )τ3 eiqsy

= i

∫

dτ1dτ2dτ3

∫

dxdy

∫

ωs,ω′
s,qs

tr (Ds(τ1, τ2, x)�μ(τ3, y))∂τ1
eiωs (τ3−τ1 )eiω′

s (τ3−τ2 )eiqs (y−x)

= −i

∫

dτ1dτ2dτ3

∫

dxdy tr
(

∂τ1
Ds(τ1, τ2, x)�μ(τ3, x)

)

´(τ3 − τ1)´(τ3 − τ2)´(x − y)

= i

∫

dτ1dτ2dτ3

∫

dx tr
(

g−1
s (τ2)∂τ1

gs(τ1)�μ(τ3, x)
)

´(τ3 − τ1)´(τ3 − τ2)

= −i

∫

dτdx tr
(

∂τ g−1
s gs�μ(τ, x)

)

. (A87)
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For linear terms in ω′
s, the situation is identical, but with ∂τ2

instead of ∂τ1
,

∫

ωs,ω′
s,qs

ω′
s tr (D̃s(ωs, ω

′
s, qs)�̃μ(−ωs − ω′

s,−qs))

= i

∫

dτ1dτ2dτ3

∫

dx tr
(

∂τ2
g−1

s (τ2)gs(τ1)�μ(τ3, x)
)

´(τ3 − τ1)´(τ3 − τ2)

= i

∫

dτdx tr
(

∂τ g−1
s gs�μ(τ, x)

)

. (A88)

Finally, it is clear that terms with qs vanish, since they will be proportional to tr (∂xDs(τ, τ, x)�μ(τ, x)) = 0. Hence, since the

terms with ωs and ω′
s have an opposite sign, Eq. (A86) becomes

2
〈

S
(2)
Int,WZWT3

〉c

f
≈ −iNk2³

∫

ωs,ω′
s,qs

∫

ω,q

K̃ (ω + ωs)(ω, q)μG̃2(ω, q) tr (D̃s(ω,ω′
s, qs)�̃μ(−ωs − ω′

s,−qs)) + · · · . (A89)

The expansion of the kernel at linear order in ωs yields

K̃ (ω + ωs) ≈ − (2 − ´)

8π

ω

|ω|´ ωs + · · · , (A90)

from which we get, using Eq. (A87),

2
〈

S
(2)
Int,WZWT3

〉c

f
= N (2 − ´)

8π
k2³

∫

ω,q

ω

|ω|´ (ω, q)μG̃2(ω, q)

∫

dτdx tr
(

∂τ g−1
s gs�μ(τ, x)

)

= N (2 − ´)

8π
k2³

∫

ω,q

ω2

|ω|´ G̃2(ω, q)

∫

dτdx tr
(

∂τ g−1
s gs�τ (τ, x)

)

, (A91)

where in the second equality, the fast integral is only nonzero if μ = τ . Using the expression for �τ , this becomes

2
〈

S
(2)
Int,WZWT3

〉c

f
= N (2 − ´)

8π

k2³

c2λ

∫

ω,q

ω2

|ω|´ G̃2(ω, q)

∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

− i
N (2 − ´)

(8π )2
k3³

∫

ω,q

ω2

|ω|´ G̃2(ω, q)

∫

dτdx tr
(

∂τ gs∂xg−1
s

)

. (A92)

Once again, an unphysical term with mixed partial derivatives is generated. It can again be ignored for the rest of the RG

calculation since it drops out from a symmetrized version of the RG [see the discussion right after Eq. (A63)].

Recap: Combining all the contributions we found above, the expectation value of the squared interaction action is

〈(

S
(2)
Int [gs,W ]

)2〉c

f
= N

c4λ2

(

I2 − k2c4λ2

(8π )2
I3

) ∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

+ N

λ2

(

I3 − k2λ2

(8π )2
I2

) ∫

dτdx tr
(

∂xgs∂xg−1
s

)

+ N (2 − ´)2

4(8π )2
k4³ 2

∫

ω,q

ω2

|ω|2´
G̃2(ω, q)

∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

+ N (2 − ´)

8π

k2³

c2λ

∫

ω,q

ω2

|ω|´ G̃2(ω, q)

∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

+ · · · , (A93)

where the ellipsis denotes the unphysical terms with mixed partial derivatives (which are neglected, as justified above).

c. Higher-order terms in the cumulant expansion

Higher-order terms in the cumulant expansion, that is, expectation values of higher powers of the interaction action, will yield

other one-loop contributions. However, only irrelevant terms with more derivatives and kernels will be generated, and we can

then stop at quadratic order in the interaction action.

d. Effective action full expression

Therefore, by collecting all potentially relevant terms that have been computed above, the effective action is thus

SEff[gs] = 1

λ

∫

dτdx tr

(

1

c2
∂τ gs∂τ g−1

s + ∂xgs∂xg−1
s

)

+ ik

12π

∫

B3

tr
(

g−1
s dgs ∧ g−1

s dgs ∧ g−1
s dgs

)

+ k2³

∫

dτdτ ′dx K (τ − τ ′) tr
(

1− gs(τ, x)g−1
s (τ ′, x)

)

− k2³ CF I1

∫

dτdτ ′dx K (τ − τ ′) tr
(

1− gs(τ, x)g−1
s (τ ′, x)

)
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+ k2³CF

16π
(2 − ´)(1 − ´)

∫

ω,q

G̃(ω, q)

|ω|´
∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

− N

2c4λ2

(

I2 − k2c4λ2

(8π )2
I3

) ∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

− N

2λ2

(

I3 − k2λ2

(8π )2
I2

)∫

dτdx tr
(

∂xgs∂xg−1
s

)

− N
(2 − ´)2

8(8π )2
k4³ 2

∫

ω,q

ω2

|ω|2´
G̃2(ω, q)

∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

− N (2 − ´)

16π

k2³

c2λ

∫

ω,q

ω2

|ω|´ G̃2(ω, q)

∫

dτdx tr
(

∂τ gs∂τ g−1
s

)

. (A94)

4. β functions calculation

Having obtained the effective action, we are now in a

position to compute the β functions. There will be three of

these, from the three terms that are getting renormalized:

∂τ g∂τ g−1, ∂xg∂xg−1, and the dissipation K (τ − τ ′) tr (1−
g(τ, x)g−1(τ ′, x)). Note that the WZ term does not get renor-

malized, as expected, since its coefficient k is quantized to be

an integer.

The β functions are obtained by rescaling space and time

according to

x → bx = edlx, τ → bzτ = ezdlτ, (A95)

where b = edl , with dl an infinitesimal positive quantity and z

is the dynamical critical exponent. As we will see eventually,

all the terms containing fast integrals (obtained from the one-

loop analysis) will be proportional to dl , so we only need to

rescale terms coming from S[gs] in the effective action. From

a simple power-counting, the following rescaling factors are

deduced for the three β functions:

Spatial derivatives term:

SGrad, spatial∼
∫

dτdx∂2
x ⇒ Factor of bz−1 ≈ 1 + (z − 1)dl.

(A96)

Time derivatives term:

SGrad, time ∼
∫

dτdx∂2
τ ⇒ Factor of b1−z ≈ 1 + (1 − z)dl.

(A97)

Dissipation term:

SDis ∼
∫

dτdτ ′
∫

dx
1

|τ − τ ′|3−´

⇒ Factor of b1+(´−1)z ≈ 1 + [1 + (´ − 1)z]dl. (A98)

Therefore, after applying the rescaling, comparing the ef-

fective action with the initial action yields the following

renormalized couplings:

1

λR

= 1

λ
+ z − 1

λ
dl − N

2λ2

(

I3 − k2λ2

(8π )2
I2

)

, (A99)

1

(c2λ)R

= 1

c2λ
+ 1 − z

c2λ
dl + k2³CF

16π
(2 − ´)(1 − ´)

×
∫

ω,q

G̃(ω, q)

|ω|´ − N

2c4λ2

(

I2 − k2c4λ2

(8π )2
I3

)

− N
(2 − ´)2

8(8π )2
k4³ 2

∫

ω,q

ω2

|ω|2´
G̃2(ω, q)

− N (2 − ´)

16π

k2³

c2λ

∫

ω,q

ω2

|ω|´ G̃2(ω, q), (A100)

k2³R = k2³ + k2[1 + (´ − 1)z]³ dl − k2³ CF I1. (A101)

The β function of a given coupling g is then defined to be

β(g) = gR−g

dl
= dg

dl
. Therefore, the next step is to evaluate the

fast integrals over a frequency/momentum-shell.

However, before doing that, the above expressions can be

greatly simplified in the context of the 1/k expansion. Indeed,

at large-k, all the fixed points should be located at values of

λ and ³ of order 1/k, which is why we introduced the O(k0)

couplings λ̃ and ³̃ . Since the Gaussian fixed point (λ = ³ =
0) is relativistic, it has z = 1. Therefore, all the nontrivial fixed

points should have z = 1 + z̃
k
. Knowing this, we see that all

the terms on the right-hand side of the above three equations,

except the first one in each case, are all of order k0 [recalling

that G̃(ω, q) ∼ λ ∼ 1/k]. Hence, since ´ = ˜́

k
, we can set ´ =

0 in all three fast integrals I1, I2, and I3 as well as in all the

prefactors appearing in Eq. (A100). Keeping ´ would simply

add corrections of higher power in 1/k to the β functions. In

this case, the second equation reduces to

1

(c2λ)R

= 1

c2λ
+ 1 − z

c2λ
dl + k2³CF

8π
I1

− N

2c4λ2

(

I2 − k2c4λ2

(8π )2
I3

)

− N

2(8π )2
k4³ 2 I2

− N

8π

k2³

c2λ
I2. (A102)

a. Evaluation of the fast integrals

Let us now evaluate the fast integrals. We have for I1

I1 =
∫

ω,q

G̃(ω, q) =
∫

dωdq

(2π )2

λ

q2 + ω2

c2 + k2

8π
λ³ω2

+ O(´).

(A103)

We now rescale ω → c ω, which means that the integral

becomes

I1 = cλ

∫

dωdq

(2π )2

1

q2 + ω2 + k2

8π
c2λ³ω2

. (A104)

This integral is performed using polar coordinates (ω, q) =
p(cos θ, sin θ ) over the shell b−1 = e−dl < p < 1. Hence

I1 = cλ

4π2

∫ 2π

0

dθ

∫ 1

e−dl

d p
p

p2 + k2

8π
c2λ³ p2 cos2 θ

= cλ

4π2
dl

∫ 2π

0

dθ
1

1 + k2

8π
c2λ³ cos2 θ
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= cλ

2π

dl
√

1 + k2

8π
c2λ³

= cλ

2π
w(c2λ³ )dl, (A105)

where we have introduced the quantity w(c2λ³ ) = 1
√

1+ k2

8π
c2λ³

.

The two other integrals are computed using the same method,

I2 = λ2

∫

dωdq

(2π )2

ω2

(

q2 + ω2

c2 + k2

8π
c2λ³ω2

)2
+ O(´)

= c3λ2

4π2

∫ 2π

0

dθ

∫ 1

e−dl

d p
p3 cos2 θ

(

p2 + k2

8π
c2λ³ p2 cos2 θ

)2

= c3λ2

4π

dl
(

1 + k2

8π
c2λ³

)3/2

= c3λ2

4π
w

3(c2λ³ )dl, (A106)

I3 = λ2

∫

dωdq

(2π )2

q2

(

q2 + ω2

c2 + k2

8π
c2λ³ω2

)2
+ O(´)

= cλ2

4π2

∫ 2π

0

dθ

∫ 1

e−dl

d p
p3 sin2 θ

(

p2 + k2

8π
c2λ³ p2 cos2 θ

)2

= cλ2

4π

dl
√

1 + k2

8π
c2λ³

= cλ2

4π
w(c2λ³ )dl. (A107)

b. β functions

Using the results of the previous section, we thus get

β

(

1

λ

)

= z − 1

λ
− Nc

8π

(

w − k2c2λ2

(8π )2
w

3

)

, (A108)

β

(

1

c2λ

)

= 1 − z

c2λ
+ CF

16π2
k2cλ³w − N

8πc

(

w
3 − k2c2λ2

(8π )2
w

)

− N

(8π )3
k4c3λ2³ 2

w
3 − N

32π2
k2cλ³w

3,

(A109)

β(³ ) = [1 + (´ − 1)z]³ − CF

2π
cλ³w. (A110)

Using the chain rule, one can write β(λ) = −λ2β( 1
k

) and

β(c) = − c3λ
2

β( 1
c2λ

) + cλ
2
β( 1

λ
). By using the O(k0) variables

introduced previously, we finally get the three β functions in

their final form,

β(λ̃) = 1

k

[

−z̃λ̃ + Ncλ̃2

8π

(

w − c2λ̃2

(8π )2
w

3

)]

+ O(1/k2),

(A111)

β(c) = 1

k

[

z̃c − Nc2λ̃

16π

(

1 + c2λ̃2

(8π )2

)

(w − w
3)

− CF

32π2
c4λ̃2³̃w + N

2(8π )3
c6λ̃3³̃ 2

w
3

+ N

(8π )2
c4λ̃2³̃w

3

]

+ O(1/k2), (A112)

β(³̃ ) = 1

k

[

(˜́ − z̃)³̃ − CF

2π
cλ̃³̃w

]

+ O(1/k2). (A113)

Apparently, we have four unknowns to solve for, namely, the

fixed point(s) values of λ̃, ³̃ , c, and z̃ and only three equa-

tions. However, the fixed point value of the velocity c is not a

universal characteristic of a fixed point, and in fact, each fixed

point should be thought of as a line of fixed points labeled by

a different value of the velocity c. This is similar to the renor-

malization group in other systems; e.g., see Refs. [66,88].

The fact that universal exponents do not depend on c can be

seen by introducing the variables x = cλ̃ and y = c³̃ . Their

respective β function is then β(x) = cβ(λ̃) + λ̃β(c), β(y) =
cβ(³̃ ) + ³̃ β(c),

β(x) = 1

k

[

Nx2

16π

(

1 − x2

(8π )2

)

(w(xy) + w
3(xy))

− CF

32π2
x3yw(xy)

+ N

2(8π )3
x4y2

w
3(xy) + N

(8π )2
x3yw3(xy)

]

+ O(1/k2), (A114)

β(y) = 1

k

[

˜́y − CF

2π
xyw(xy)

− N

16π
xy

(

1 + x2

(8π )2

)

(w(xy) − w
3(xy))

− CF

32π2
x2y2

w(xy) + N

2(8π )3
x3y3

w
3(xy)

+ N

(8π )2
x2y2

w
3(xy)

]

+ O(1/k2), (A115)

while β(c) is unchanged. β(x) and β(y) are now independent

of c and z̃ and can thus be plotted in the x-y plane to locate the

fixed points.

5. Fixed point analysis

a. Solving for fixed points

Let us now find the fixed points of the RG flow equations.

Consider first the relativistic case, where ³̃ = 0. Since the

theory is relativistic, z̃ = 0. For this case, it is more illuminat-

ing to work with the three β functions β(λ̃), β(c), and β(³̃ ).

We need to solve β(λ̃) = β(c) = β(³̃ ) = 0. The last two β

functions vanish, while the condition from the first β function

becomes

0 = Ncλ̃2

8π

(

1 − c2λ̃2

(8π )2

)

. (A116)

There are thus two relativistic fixed points, the first one

being the trivial Gaussian fixed point in λ̃ = 0. There is also

a nontrivial fixed point in λ̃ = 8π
c

. This is in fact a line of

fixed points, as argued previously. This is nothing less than the

WZW fixed point, which can easily be seen by setting c = 1.

We now move on to the case of nonrelativistic fixed points,

for which ³̃ > 0 and z̃ �= 0. Note that in this case, there is no

043270-20



CRITICAL PHASE INDUCED BY BERRY PHASE AND … PHYSICAL REVIEW RESEARCH 5, 043270 (2023)

fixed point for λ̃ = 0. Therefore, we get the expression for z̃

from β(λ̃) = 0,

z̃ = Ncλ̃

8π

(

w(c2λ̃³̃ ) − c2λ̃2

(8π )2
w

3(c2λ̃³̃ )

)

= Nx

8π

(

w(xy) − x2

(8π )2
w

3(xy)

)

. (A117)

By replacing the expression for z̃ in β(³̃ ) = 0, we get the

cubic equation presented in the main text, namely

0 = ˜́ − Nx

8π

(

w(xy) − x2

(8π )2
w

3(xy)

)

− CF

2π
xw(xy)

= ˜́ − (4CF + N )u(x, y) + Nu3(x, y), (A118)

where we have introduced u(x, y) = x
8π

w(xy) = x
8π

(1 +
1

8π
xy)

−1/2
. By setting β(c) = 0 and using the expression for

z̃, we get the following second equation:

0 = N

16π

(

1 − x2

(8π )2

)

(w(xy) + w
3(xy)) − CF

32π2
xyw(xy)

+ N

2(8π )3
x2y2

w
3(xy) + N

(8π )2
xyw3(xy). (A119)

Hence, fixed points are solutions of the above two equa-

tions. This system of equations does not have a compact

solution, and therefore we obtain the positions of the fixed

point(s) numerically (in principle, one may obtain analytical

expressions for the fixed-point values of x and y, but they are

very long and not particularly illuminating).

Let us now focus our attention on the second equation.

By writing xy = 8π ( 1
w

2 − 1), x2 = (8π )2 u2

w
2 , u(x, y) can be

expressed solely in terms of w(xy),

u(x, y) =
√

1 − 4CF

N

1 − w
2(xy)

1 + w
2(xy)

. (A120)

Since x, y � 0, w(xy) respects 0 � w(xy) � 1. From the

above expression, we then see that u(x, y) also respects 0 �

u(x, y) � 1, which puts constraints on the three solutions of

Eq. (A118). Again, the closed-form expressions are not very

illuminating and therefore we do not write them down ex-

plicitly. Nevertheless, one can easily see that one solution is

always negative and is thus unphysical. The two other solu-

tions are always non-negative, as we can see from Fig. 2 in the

main text, and correspond to the two possible dissipative fixed

points. However, there are three different regimes, depending

on the value of ˜́: (i) For 0 < ˜́ < 4CF , one of the solutions

has u(x, y) > 1, and is therefore unphysical since the asso-

ciated fixed point has y < 0. This corresponds to the regime

with only a dissipative critical point. (ii) When ˜́ > ˜́
Max =

2

3
√

3

√

(4CF +N )3

N
, the two solutions of the cubic equations are

complex and there are thus no dissipative fixed points. ˜́
Max

is the value of ˜́ where the discriminant of the cubic equa-

tion vanishes and where the fixed point annihilation occurs.

(iii) Finally, for 4CF < ˜́ < ˜́
Max, the two solutions of the

cubic equation are physical, which corresponds to the regime

with two dissipative fixed points: the unstable dissipative crit-

ical point and a new stable dissipative phase.

b. Adding a magnetic field

Our goal is now to compute universal quantities at the

aforementioned fixed points. To obtain the scaling dimension

of the primary field g, a “magnetic field” term is added to the

action

Sh[g] = h

∫

dτdx tr (g + g−1), (A121)

which breaks the SU(N )L ⊗ SU(N )R symmetry down to its

diagonal SU(N ) subgroup. Splitting slow and fast modes and

expanding to quadratic order in W , it is easy to see that

Sh[g] = Sh[gs] + S
(2)
Int,h[gs,W ] = h

∫

dτdx tr
(

gs + g−1
s

)

+ h

2

∫

dτdx tr
((

gs + g−1
s

)

W 2
)

. (A122)

Writing the interaction action in Fourier space yields

S
(2)
Int,h

[gs,W ] = h

2

∫

ps

∫

p

tr (B̃s(ps)W̃ (p)W̃ (−p − ps)),

(A123)

where Bs(τ, x) = gs + g−1
s . Let us then find the renormaliza-

tion equation for h. At 1-loop, we have

Sh,Eff[gs] = Sh[gs] +
〈

S
(2)
Int,h

[gs,W ]
〉

f
+ · · · . (A124)

The computation of the expectation value is straightfor-

ward,

〈

S
(2)
Int,h

[gs,W ]
〉

f

= −h

2

∫

pS

∫

p

tr (B̃s(ps)T aT b)〈φ̃a(p)φ̃b(−p − ps)〉 f

= −h

2

∫

p

G̃(p) tr (B̃s(0)T aT a)

= −h

2
CF I1

∫

dτdx tr
(

gs + g−1
s

)

. (A125)

After rescaling by bz+1 ≈ 1 + (1 + z)dl and using the ex-

pression for I1 derived before, we get the following β function

for h:

β(h) =
(

2 + z̃

k

)

h − CF

4πk
cλ̃h w(c2λ̃³̃ ) + O(1/k2)

=
(

2 + z̃

k

)

h − CF

4πk
xh w(xy) + O(1/k2). (A126)

c. Dynamical critical exponent and scaling dimensions

We are now in a position to compute universal quantities

at the different fixed points. We will focus on the dynami-

cal critical exponent z, the scaling dimension of g, �g and

the scaling dimension of the energy density operator ε =
tr ( 1

c2 ∂τ g∂τ g−1 + ∂xg∂xg−1), �ε .

First, the dynamical critical exponent z = 1 + z̃
k

is ob-

tained directly using Eq. (A117), evaluated at the various fixed

points. Next, to compute �g, we need the eigenvalue eh, which

is computed using β(h). By replacing the expression for z̃ in
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Eq. (A126), we get

eh = 2 + 1

k

[

Nx

8π

(

w(xy) − x2

(8π )2
w

3(xy)

)

− CF x

4π
w(xy)

]

+ O(1/k2), (A127)

which needs to be evaluated at the various fixed points. The

scaling dimension �g is then given by �g = 1 + z − eh =
1
k
(z̃ − ẽh), where we have defined eh = 2 + ẽh

k
. Finally, the

calculation of �ε requires the diagonalization of the following

2 × 2 matrix:

Mxy =
(

∂xβ(x) ∂yβ(x)

∂xβ(y) ∂yβ(y)

)∣

∣

∣

∣

∣

(x,y)=(x∗,y∗ )

. (A128)

In general, this matrix does not have vanishing entries,

which means that the energy density operator ε (associated

with coupling x) and the dissipation operator (associated with

coupling y) mix among themselves. Therefore, the energy

density operator is a linear combination of the two scaling

operators O+ and O− (eigenvectors of the above matrix),

which have an associated eigenvalue e+ and e−, respectively,

where e+ > e−. Following [89], the scaling dimension of the

energy density operator is then given by �ε = 1 + z − e+ =
2 + 1

k
(z̃ − ẽ+) with e+ = ẽ+

k
.

Let us compute these quantities at the various fixed points.

We start with the trivial Gaussian fixed point, which has x∗ =
y∗ = 0. Since it is relativistic, z = 1 (z̃ = 0). For the scaling

dimensions, we get �g = 0 and �ε = 2. We now move to

the WZW fixed point, located at x = 8π , y = 0. It is also a

relativistic fixed point, thus z = 1. The scaling dimensions

are �g = 2CF

k
= N2−1

Nk
and �ε = 2 + 2N

k
. These two results

of course agree with the large-k expansion of the exact ex-

pressions, �g = N2−1
N (N+k)

and �ε = 4N+2k
N+k

, as they should [55].

Moreover, note that for these two relativistic fixed points, the

energy density operator is a scaling operator.

Finally, we must proceed numerically for the two dis-

sipative fixed points since their position cannot be easily

obtained analytically. Figure 3 in the main text depicts critical

exponents accurate to O(1/k) at these two fixed points. As

already mentioned, due to operator mixing, the biggest of the

two eigenvalues must be selected to compute �ε . The limit
˜́ → 4CF (when the stable dissipative fixed point approaches

the WZW fixed point) is interesting since �ε at the stable

fixed point seemingly approaches 2, accurate to O(1/k). This

may seem contradictory with the fact that �ε = 2 + 2N
k

at

the WZW fixed point. The resolution of this is as follows:

as ˜́ → 4CF , the overlap between the energy density operator

ε (associated with coupling x) and the scaling operator with

the dominant eigenvalue (i.e., O+ in our notation) approaches

zero, and exactly at ´ = 4CF , ε = O−. Therefore, only at
˜́ = 4CF , �ε = 1 + z − e− = 2 + 2N

k
, which agrees with the

expression for the scaling dimension of the energy operator at

the WZW fixed point.

6. Relation between η and z

One can derive the relation between z̃ and �g presented in

the main text using β(³̃ ) and β(h). Indeed, by setting β(³̃ ) =

0, we get

0 = ˜́ − z̃ − CF

2π
cλ̃w(c2λ̃³̃ ). (A129)

Moreover, as illustrated in the previous section, β(h) al-

lows us to compute the eigenvalue eh, which is itself related

with the scaling dimension of g,

�g = 1 + z − eh = 2 + z̃

k
− 2 −

[

z̃

k
− CF

4πk
cλ̃w(c2λ̃³̃ )

]

= CF

4πk
cλ̃w(c2λ̃³̃ ). (A130)

By isolating w and replacing in Eq. (A129), we arrive at

the desired expression

z̃ = ˜́ − 2k�g. (A131)

This relation only holds at O(1/k). An exact expression

valid to all orders can be argued for by requiring the dissi-

pation term to be scale-invariant. By applying the rescaling

x → bx, τ → bzτ , the following condition must be satisfied:

0 = 1 + z(´ − 1) − 2�g. (A132)

Using the fact that eh = 1 + z − �g and η = 1 + z + 2 −
2eh, where η is the anomalous dimension of g, one arrives at

z = 2 − η

2 − ´
. (A133)

Expanding Eq. (A132) [or Eq. (A133)] to leading order 1/k

yields Eq. (A131).

APPENDIX B: RG ANALYSIS OF

THE RELATIVISTIC THEORY

This Appendix details the RG analysis for the relativistic

theory. The calculation is very similar to the nonrelativistic

case, so only the main differences and key points are dis-

cussed.

1. Expanding in slow and fast modes

The expansion in slow and fast modes proceeds exactly

as in the nonrelativistic case. Once again, the resulting ac-

tion is grouped into three terms: S[gsg f ] = S[gs] + S(2)[W ] +
S

(2)
Int [gs,W ]. The first term is the initial action evaluated at

g = gs,

S[gs] = SGrad[gs] + SWZ[gs] + SDis[gs]

= 1

λ

∫

d2r tr
(

∂μgs∂μg−1
s

)

+ ik

12π

∫

B3

tr
(

g−1
s dgs ∧ g−1

s dgs ∧ g−1
s dgs

)

+ k2³

∫

d2rd2r′ K (r − r′) tr
(

1− gs(r)g−1
s (r′)

)

.

(B1)

The second term is purely quadratic in W ,

S(2)[W ] = S
(2)
Grad[W ] + S

(2)
Dis[W ]

= −1

λ

∫

d2r tr (∂μW ∂μW ) − k2³

∫

d2rd2r′K (r − r′)
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× tr

(

W 2

2
+ W ′ 2

2
− WW ′

)

= 1

2

∫

d2 p

(2π )2
φ̃a(p)(�−1(p) − k2³ K̃ (p))φ̃a(−p)

= 1

2

∫

d2 p

(2π )2
φ̃a(p)G̃−1(p)φ̃a(−p), (B2)

where

�(p) = �(p) = λ

p2
, K̃ (p) = K̃ (p) = − 1

8π
p2−´, (B3)

and the fast propagator is then

G̃(p) = λ

p2 + k2

8π
λ³ p2−´

. (B4)

Note that the prime notation now stands for W ′ = W (r′),
with r′ = (τ ′, x′). Finally, the interaction term is

S
(2)
Int [gs,W ] = S

(2)
Int,WZW[gs,W ] + S

(2)
Int,Dis[gs,W ]

=
∫

d2r tr (�μ(r)[∂μW,W ])

+ k2³

∫

d2rd2r′K (r − r′) tr

×
[

(

1− g′ −1
s gs

)

(

W 2

2
+ W ′ 2

2
− WW ′

)]

,

(B5)

where

�μ = g−1
s

(

1

λ
∂μ − ik

8π
εμν∂ν

)

gs. (B6)

2. Fourier representation of interaction terms

The Fourier representation of the two interaction terms is

almost identical to that in the nonrelativistic case,

S
(2)
Int,WZW[gs,W ]

= i

∫

ps

∫

p

(2pμ + ps μ) tr (�̃μ(ps)W̃ (p)W̃ (−p − ps)),

(B7)

S
(2)
Int,Dis[gs,W ]

= T1 + T2 + T3 = k2³

∫

p

∫

ps,p′
s

tr (D̃s(ps, p′
s)W̃ (p)

× W̃ (−p−ps−p′
s))

(

1

2
K̃ (p′

S ) + 1

2
K̃ (ps) − K̃ (p + ps)

)

,

(B8)

where we have defined Ds(r, r′) = 1− g−1
s (r′)gs(r), while

∫

p

is a shorthand for
∫

d2 p

(2π )2 .

3. Integration of fast modes

We proceed with the cumulant expansion as in the nonrel-

ativistic case.

a. Order 1 in interaction action

We start with the expectation value of the interaction

action. Let us focus first on the dissipative terms. The expec-

tation values of T1 and T2 are essentially the same as before,

〈T1〉 f = 〈T2〉 f = −k2³

2
CF I1

×
∫

d2rd2r′ K (r − r′) tr
(

1− g′ −1
s gs

)

, (B9)

where I1 =
∫

p
G̃(p). For T3, the main difference is the expan-

sion of the mixed kernel. Expanding to quadratic order in ps,

we get

K̃ (p + ps) ≈ − 1

8π

[

p2−´ + 2 − ´

2

p2
s

p´
− ´(2 − ´)

2

(p · ps)2

p2+´

]

+ · · · , (B10)

where the ellipsis denote higher-order terms in ps as well as

linear terms, which have a vanishing fast integral. As in the

nonrelativistic case, the contribution to 〈T3〉 f from the leading-

order term vanishes. Since we still need ´ ∼ 1/k to control the

expansion, the third term is of higher order in 1/k and is thus

dropped. In this case, we get

〈T3〉 f = (2 − ´)

16π
CF k2³

∫

p

G̃(p)

p´

∫

d2r tr
(

∂μgs∂μg−1
s

)

.

(B11)

Naturally, we still have 〈S(2)
Int,WZW[gs,W ]〉 f = 0. Hence, the

expectation value of the interaction action is

〈

S
(2)
Int [gs,W ]

〉

f

≈ −k2³CF I1

∫

d2rd2r′ K (r − r′) tr
(

1− gsg
′ −1
s

)

+ k2³CF

8π
I1

∫

d2r tr
(

∂μgs∂μg−1
s

)

+ O(´), (B12)

where the higher-order terms in ´ have been dropped.

b. Order 2 in interaction action

We now move to the expectation value of the square of the

interaction action. We only need to focus on the same three

contributions as in the nonrelativistic case, since all the other

terms either vanish or are irrelevant. For the square of the

WZW action, we get

〈(

S
(2)
Int,WZW

)2〉c

f
= −N

∫

p

pμ pνG̃2(p)

∫

d2r tr (�μ(r)�ν (r))

= −N

2

∫

p

p2G̃2(p)

∫

d2r tr (�μ(r)�μ(r))

= −N

2
I2

∫

d2r tr (�μ(r)�μ(r)), (B13)

where rotational invariance has been used, while I2 =
∫

p
p2G̃2(p). Using the expression for �μ, the trace

043270-23



SIMON MARTIN AND TARUN GROVER PHYSICAL REVIEW RESEARCH 5, 043270 (2023)

yields

tr (�μ�μ) = tr

[(

1

λ
g−1

s ∂μgs − ik

8π
εμνg−1

s ∂νgs

)(

1

λ
g−1

s ∂μgs − ik

8π
εμρg−1

s ∂ρgs

)]

= tr

[

1

λ2
g−1

s ∂μgsg
−1
s ∂μgs − ik

8πk
εμν

(

g−1
s ∂μgsg

−1
s ∂νgs + g−1

s ∂νgsg
−1
s ∂μgs

)

− k2

(8π )2
εμνεμρg−1

s ∂νgsg
−1
s ∂ρgs

]

= − 1

λ2

(

1 − k2λ2

(8π )2

)

tr
(

∂μgs∂μg−1
s

)

. (B14)

Hence

〈(

S
(2)
Int,WZW

)2〉c

f
= N

2λ2

(

1 − k2λ2

(8π )2

)

I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

. (B15)

We now move on to the expectation value of the square of the dissipation term. As in the nonrelativistic case, only 〈T 2
3 〉c

f

contributes. Following the same steps as before, one finds that

〈

T 2
3

〉c

f
≈ k4³ 2

∫

ps,p′
s,p′′

s

∫

p

K̃ (p + ps)G̃2(p)

×
[(

− 1

2N
K̃ (p − p′′

s ) +
(

N

4
− 1

2N

)

K̃ (p + p′′
s )

)

tr(D̃s(ps, p′
s)D̃s(p′′

s ,−ps − p′
s − p′′

s ))

]

. (B16)

Similar to the nonrelativistic case, the nonvanishing contributions, when expanding in terms of the slow modes, are proportional

to

∫

ps,p′
s,p′′

s

ps μ p′′
s ν tr (D̃s(ps, p′

s)D̃s(p′′
s ,−ps − p′

s − p′′
s )) =

∫

d2r tr
(

∂μgs∂νg−1
s

)

, (B17)

∫

ps,p′
s,p′′

s

p′
s μ p′′

s ν tr (D̃s(ps, p′
s)D̃s(p′′

s ,−ps − p′
s − p′′

s )) = −
∫

d2r tr
(

∂μgs∂νg−1
s

)

. (B18)

From this, we get

〈

T 2
3

〉c

f
= N (2 − ´)2

4(8π )2
k4³ 2

∫

p

pμ pν

p2´
G̃(p)

∫

d2r tr
(

∂μgs∂νg−1
s

)

= N

2(8π )2
k4³ 2I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

+ O(´), (B19)

where rotational invariance has been used.

Finally, the last contribution comes from the mixed term 2〈S(2)
Int,WZWT3〉c

f ,

2
〈

S
(2)
Int,WZWT3

〉c

f
= −i

N

2
k2³

∫

p

∫

ps,p′
s

K̃ (p + ps)(2pμ + ps μ + p′
s μ)G̃(p)G̃(p + ps + p′

s) tr (D̃s(ps, p′
s)�̃μ(−ps − p′

s)). (B20)

The nonzero contributions when expanding to linear order in the slow modes are proportional to

∫

ps,p′
s

ps ν tr (D̃s(ps, p′
s)�̃μ(−ps − p′

s)) = −i

∫

d2r tr
(

∂νg−1
s gs�μ

)

, (B21)

∫

ps,p′
s

p′
s ν tr (D̃s(ps, p′

s)�̃μ(−ps − p′
s)) = i

∫

d2r tr
(

∂νg−1
s gs�μ

)

. (B22)

Performing the slow mode expansion then yields

2
〈

S
(2)
Int,WZWT3

〉c

f
= N (2 − ´)

8π
k2³

∫

p

pμ pν

p´
G̃2(p)

∫

d2r tr
(

∂νg−1
s gs�μ

)

= N

8π
k2³ I2

∫

d2r tr
(

∂μg−1
s gs�μ

)

+ O(´), (B23)

where rotational invariance has once again been used in the fast integral. Let us simplify the trace

tr
(

∂μg−1
s gs�μ

)

= tr

[

∂μg−1
s gs

(

1

λ
g−1

s ∂μgs − ik

8π
εμνg−1

s ∂νgs

)]

= 1

λ
tr

(

∂μgs∂μg−1
s

)

− ik

8π
εμν tr

(

∂μg−1
s ∂νgs

)

= 1

λ
tr

(

∂μgs∂μg−1
s

)

, (B24)
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where the second term vanishes since tr (∂μg−1
s ∂νgs) = tr (∂νg−1

s ∂μgs). Hence

2
〈

S
(2)
Int,WZWT3

〉c

f
= N

8π

k2³

λ
I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

. (B25)

Therefore, the expectation value of the square of the interaction action is

〈(

S
(2)
Int [gs,W ]

)2〉c

f
= N

2λ2

(

1 − k2λ2

(8π )2

)

I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

+ N

2(8π )2
k4³ 2I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

+ N

8π

k2³

λ
I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

. (B26)

Note that in the relativistic case, the unphysical terms with mixed partial derivatives are not generated, since these would break

Lorentz invariance.

c. Effective action full expression

The effective action at 1-loop is thus

SEff[gs] = 1

λ

∫

d2r tr
(

∂μgs∂μg−1
s

)

+ ik

12π

∫

B3

tr
(

g−1
s dgs ∧ g−1

s dgs ∧ g−1
s dgs

)

+ k2³

∫

d2rd2r′ K (r − r′) tr
(

1− gs(r)g−1
s (r′)

)

− CF k2³ I1

∫

d2rd2r′ K (r − r′) tr
(

1− gs(r)g−1
s (r′)

)

+ CF k2³

8π
I1

∫

d2r tr
(

∂μgs∂μg−1
s

)

− N

4λ2

(

1 − k2λ2

(8π )2

)

I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

− N

4(8π )2
k4³ 2I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

− N

16π

k2³

λ
I2

∫

d2r tr
(

∂μgs∂μg−1
s

)

. (B27)

As in the nonrelativistic case, higher-order terms in the cumu-

lant expansion yield irrelevant terms which can be neglected.

4. β functions calculation

From the effective action, we see that tr (∂μg∂μg−1) and

K (r − r′) tr (1− g(r)g−1(r′)) will be renormalized. The β

functions for λ and ³ are obtained by rescaling r → br,

with b = edl . Once again, only terms coming from S[gs] are

rescaled, since the fast integrals will be proportional to dl .

The gradient term is scale invariant and does not pick up any

factor of b, while the dissipation term picks up a factor of

b´ ≈ 1 + ´dl .

a. Fast integrals

The fast integrals are evaluated over a shell b−1 = e−dl <

p < 1. For I1, we have

I1 =
∫

d2 p

(2π )2

λ

p2 + k2

8π
λ³ p2

+ O(´)

= λ

4π2

∫ 2π

0

dθ

∫ 1

e−dl

d p
p

p2 + k2

8π
λ³ p2

= λ

2π

1

1 + k2

8π
λ³

dl

= λ

2π
F (λ³ )dl, (B28)

where F (λ³ ) = 1

1+ k2

8π
λ³

. On the other hand, I2 yields

I2 =
∫

d2 p

(2π )2

λ2 p2

(

p2 + k2

8π
λ³ p2

)2
+ O(´)

= λ2

4π2

∫ 2π

0

dθ

∫ 1

e−dl

d p
p3

(

p2 + k2

8π
λ³ p2

)2

= λ2

2π

1
(

1 + k2

8π
λ³

)2
dl = λ2

2π
F 2(λ³ )dl. (B29)

b. β functions

The β functions for the two couplings are obtained fol-

lowing the same procedure as in the nonrelativistic case. It

will be again useful to introduce O(k0) couplings λ̃ = kλ and

³̃ = k³ . One finds

β(λ̃) = 1

k

[

N λ̃2

8π

(

1 − λ̃2

(8π )2

)

F 2(λ̃³̃ ) − CF

16π2
λ̃3³̃ F (λ̃³̃ )

+ N

(8π )3
λ̃4³̃ 2F 2(λ̃³̃ ) + N

32π2
λ̃3³̃ F 2(λ̃³̃ )

]

+ O(1/k2), (B30)

β(³̃ ) = 1

k

[

˜́ ³̃ − CF

2π
λ̃³̃ F (λ̃³̃ )

]

+ O(1/k2), (B31)

with F (λ̃³̃ ) = 1

1+ 1
8π

λ̃³̃
.

5. Fixed point analysis

a. Solving for fixed points

Solving β(λ̃) = β(³̃ ) = 0, we find three fixed points.

There is the trivial Gaussian fixed point at λ̃ = ³̃ = 0 and the

WZW fixed point at λ̃ = 8π and ³̃ = 0. The fixed point of our

main interest is the dissipative fixed point located at

λ̃ = 128πC2
F

˜́

64C3
F − 16C2

F N + N ˜́2
, ³̃ =

(

16C2
F − ˜́2

)

N

16C2
F

˜́
. (B32)
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Note that this fixed point only exists for ˜́ < 4CF . When
˜́ > 4CF , the WZW fixed point becomes unstable, similar to

the nonrelativistic theory, the main difference being that now it

becomes unstable towards a fixed point at ³̃ → ∞ in contrast

to the nonrelativistic case, where it became unstable towards

the fixed point corresponding to the stable, dissipative phase

[see Fig. 1(b) of the main text].

b. Scaling dimensions and critical exponents

The calculation of �g is once again done by adding a

magnetic field to the action. The resulting β function for h

is

β(h) = 2h − CF

4πk
λ̃hF (λ̃³̃ ) + O(1/k2), (B33)

from which we get the magnetic field eigenvalue

eh = 2 − CF

4πk
λ̃F (λ̃³̃ ), (B34)

which must be evaluated at the various fixed points. For

the scaling dimension of the energy density operator ε =
tr (∂μg∂μg−1), we must obtain the eigenvalues of the following

2 × 2 matrix:

Mλ̃³̃ =
(

∂λ̃β(λ̃) ∂³̃ β(λ̃)

∂λ̃β(³̃ ) ∂³̃ β(³̃ )

)∣

∣

∣

∣

∣

(λ̃,³̃ )=(λ̃∗,³̃ ∗ )

. (B35)

At the two relativistic fixed points (Gaussian and WZW),

the two scaling dimensions are identical as in the nonrela-

tivistic theory. However, for the dissipative fixed point, we

can this time obtain closed-form expressions. For the scaling

dimension of g, we get

�g =
˜́

2k
, (B36)

while the eigenvalues of the above 2 × 2 matrix are

e± =
−N ˜́3 ± ˜́

√

N
(

1024C5
F − 64C3

F
˜́2 + N ˜́4

)

64C3
F k

. (B37)

As in the nonrelativistic case, the eigenvalue contributing

to the scaling dimension of the energy density operator is the

biggest, that is e+. Therefore, we find

�ε = 2 − e+ = 2 +
˜́

64C3
F k

[

N ˜́2

−
√

N
(

1024C5
F − 64C3

F
˜́2 + N ˜́4

)]

. (B38)

Once again, as ˜́ → 4CF , we see that �ε approaches 2 �=
2 + 2N

k
, the value at the WZW fixed point. The reason is

identical to the nonrelativistic case: as ˜́ → 4CF , the overlap

between the energy density operator and the scaling operator

with the dominant eigenvalue approaches zero, and therefore

at ˜́ = 4CF the scaling dimension of the energy operator

matches with what is expected for the WZW CFT, namely

2 + 2N
k

.

[1] F. D. M. Haldane, Nonlinear field theory of large-spin Heisen-

berg antiferromagnets: Semiclassically quantized solitons of the

one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50, 1153

(1983).

[2] J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14, 1165

(1976).

[3] A. J. Millis, Effect of a nonzero temperature on quantum critical

points in itinerant fermion systems, Phys. Rev. B 48, 7183

(1993).

[4] P. C. Hohenberg, Existence of long-range order in one and two

dimensions, Phys. Rev. 158, 383 (1967).

[5] N. D. Mermin and H. Wagner, Absence of ferromagnetism

or antiferromagnetism in one- or two-dimensional isotropic

Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).

[6] S. Chakravarty, Quantum fluctuations in the tunneling between

superconductors, Phys. Rev. Lett. 49, 681 (1982).

[7] A. J. Bray and M. A. Moore, Influence of dissipation on quan-

tum coherence, Phys. Rev. Lett. 49, 1545 (1982).

[8] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.

Garg, and W. Zwerger, Dynamics of the dissipative two-state

system, Rev. Mod. Phys. 59, 1 (1987).

[9] A. H. Castro Neto, C. de C. Chamon, and C. Nayak, Open

Luttinger liquids, Phys. Rev. Lett. 79, 4629 (1997).

[10] P. Werner, M. Troyer, and S. Sachdev, Quantum spin chains

with site dissipation, J. Phys. Soc. Jpn. 74, 67 (2005).

[11] P. Werner, K. Völker, M. Troyer, and S. Chakravarty, Phase

diagram and critical exponents of a dissipative Ising spin chain

in a transverse magnetic field, Phys. Rev. Lett. 94, 047201

(2005).

[12] N. Laflorencie, I. Affleck, and M. Berciu, Critical phenomena

and quantum phase transition in long range Heisenberg antifer-

romagnetic chains, J. Stat. Mech. (2005) P12001.

[13] M. A. Cazalilla, F. Sols, and F. Guinea, Dissipation-driven

quantum phase transitions in a Tomonaga-Luttinger liquid elec-

trostatically coupled to a metallic gate, Phys. Rev. Lett. 97,

076401 (2006).

[14] A. M. Lobos, M. A. Cazalilla, and P. Chudzinski, Magnetic

phases in the one-dimensional Kondo chain on a metallic sur-

face, Phys. Rev. B 86, 035455 (2012).

[15] I. B. Sperstad, E. B. Stiansen, and A. Sudbø, Quantum critical-

ity in spin chains with non-Ohmic dissipation, Phys. Rev. B 85,

214302 (2012).

[16] Z. Yan, L. Pollet, J. Lou, X. Wang, Y. Chen, and Z. Cai, In-

teracting lattice systems with quantum dissipation: A quantum

Monte Carlo study, Phys. Rev. B 97, 035148 (2018).

[17] M. Weber, D. J. Luitz, and F. F. Assaad, Dissipation-induced

order: The s = 1/2 quantum spin chain coupled to an Ohmic

bath, Phys. Rev. Lett. 129, 056402 (2022).

[18] B. Danu, M. Vojta, T. Grover, and F. F. Assaad, Spin

chain on a metallic surface: Dissipation-induced order ver-

sus Kondo entanglement, Phys. Rev. B 106, L161103

(2022).

[19] G. Cuomo and S. Zhang, Spontaneous symmetry breaking on

surface defects, arXiv:2306.00085 [hep-th].

043270-26



CRITICAL PHASE INDUCED BY BERRY PHASE AND … PHYSICAL REVIEW RESEARCH 5, 043270 (2023)

[20] G. Cuomo, Z. Komargodski, M. Mezei, and A. Raviv-Moshe,

Spin impurities, Wilson lines and semiclassics, J. High Energy

Phys. 06 (2022) 112.

[21] A. Nahum, Fixed point annihilation for a spin in a fluctuating

field, Phys. Rev. B 106, L081109 (2022).

[22] M. Beccaria, S. Giombi, and A. A. Tseytlin, Wilson loop in

general representation and RG flow in 1d defect QFT, J. Phys.

A 55, 255401 (2022).

[23] H. Hu and Q. Si, Kondo destruction and fixed-point an-

nihilation in a Bose-Fermi Kondo model, arXiv:2207.08744

[cond-mat.str-el].

[24] M. Weber and M. Vojta, SU(2)-symmetric spin-boson model:

Quantum criticality, fixed-point annihilation, and duality, Phys.

Rev. Lett. 130, 186701 (2023).

[25] M. E. Fisher, S.-k. Ma, and B. G. Nickel, Critical exponents for

long-range interactions, Phys. Rev. Lett. 29, 917 (1972).

[26] J. Sak, Recursion relations and fixed points for ferromagnets

with long-range interactions, Phys. Rev. B 8, 281 (1973).

[27] J. Sak, Low-temperature renormalization group for ferromag-

nets with long-range interactions, Phys. Rev. B 15, 4344 (1977).

[28] J. K. Bhattacharjee, J. L. Cardy, and D. J. Scalapino, O(N )

Heisenberg model with long-range interactions, Phys. Rev. B

25, 1681 (1982).

[29] M. F. Paulos, S. Rychkov, B. C. van Rees, and B. Zan, Con-

formal invariance in the long-range Ising model, Nucl. Phys. B

902, 246 (2016).

[30] C. Behan, L. Rastelli, S. Rychkov, and B. Zan, Long-range

critical exponents near the short-range crossover, Phys. Rev.

Lett. 118, 241601 (2017).

[31] C. Behan, L. Rastelli, S. Rychkov, and B. Zan, A scaling theory

for the long-range to short-range crossover and an infrared

duality, J. Phys. A 50, 354002 (2017).

[32] N. Defenu, A. Trombettoni, and S. Ruffo, Criticality and phase

diagram of quantum long-range O(N) models, Phys. Rev. B 96,

104432 (2017).

[33] G. Slade, Critical exponents for long-range O(N ) models below

the upper critical dimension, Commun. Math. Phys. 358, 343

(2018).

[34] S. S. Gubser, C. B. Jepsen, Z. Ji, B. Trundy, and A. Yarom,

Non-local non-linear sigma models, J. High Energy Phys. 09

(2019) 005.

[35] N. Defenu, A. Codello, S. Ruffo, and A. Trombettoni, Critical-

ity of spin systems with weak long-range interactions, J. Phys.

A 53, 143001 (2020).

[36] S. Chakraborty and M. Goykhman, Critical long-range vector

model in the UV, J. High Energy Phys. 10 (2021) 151.

[37] N. Chai, M. Goykhman, and R. Sinha, Long-range vector mod-

els at large N, J. High Energy Phys. 09 (2021) 194.

[38] N. Chai, S. Chakraborty, M. Goykhman, and R. Sinha, Long-

range fermions and critical dualities, J. High Energy Phys. 01

(2022) 172.

[39] L. S. Wu, W. J. Gannon, I. A. Zaliznyak, A. M. Tsvelik, M.

Brockmann, J.-S. Caux, M. S. Kim, Y. Qiu, J. R. D. Copley, G.

Ehlers, A. Podlesnyak, and M. C. Aronson, Orbital-exchange

and fractional quantum number excitations in an f-electron

metal, Yb2Pt2Pb, Science 352, 1206 (2016).

[40] L. Classen, I. Zaliznyak, and A. M. Tsvelik, Three-

dimensional non-Fermi-liquid behavior from one-dimensional

quantum critical local moments, Phys. Rev. Lett. 120, 156404

(2018).

[41] W. J. Gannon, I. A. Zaliznyak, L. S. Wu, A. E. Feiguin, A. M.

Tsvelik, F. Demmel, Y. Qiu, J. R. D. Copley, M. S. Kim, and

M. C. Aronson, Spinon confinement and a sharp longitudinal

mode in Yb2Pt2Pb in magnetic fields, Nat. Commun. 10, 1123

(2019).

[42] R. Toskovic, R. van den Berg, A. Spinelli, I. S. Eliens, B. van

den Toorn, B. Bryant, J. S. Caux, and A. F. Otte, Atomic spin-

chain realization of a model for quantum criticality, Nat. Phys.

12, 656 (2016).

[43] D.-J. Choi, R. Robles, S. Yan, J. A. J. Burgess, S. Rolf-

Pissarczyk, J.-P. Gauyacq, N. Lorente, M. Ternes, and S. Loth,

Building complex Kondo impurities by manipulating entangled

spin chains, Nano Lett. 17, 6203 (2017).

[44] M. Moro-Lagares, R. Korytár, M. Piantek, R. Robles, N.

Lorente, J. I. Pascual, M. R. Ibarra, and D. Serrate, Real space

manifestations of coherent screening in atomic scale Kondo

lattices, Nat. Commun. 10, 2211 (2019).

[45] D.-J. Choi, N. Lorente, J. Wiebe, K. von Bergmann, A. F.

Otte, and A. J. Heinrich, Colloquium: Atomic spin chains on

surfaces, Rev. Mod. Phys. 91, 041001 (2019).

[46] B. Danu, F. F. Assaad, and F. Mila, Exploring the Kondo effect

of an extended impurity with chains of Co adatoms in a mag-

netic field, Phys. Rev. Lett. 123, 176601 (2019).

[47] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-

Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Non-local

propagation of correlations in quantum systems with long-range

interactions, Nature (London) 511, 198 (2014).

[48] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R.

Blatt, and C. F. Roos, Quasiparticle engineering and entan-

glement propagation in a quantum many-body system, Nature

(London) 511, 202 (2014).

[49] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K.

Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Engineered

two-dimensional Ising interactions in a trapped-ion quantum

simulator with hundreds of spins, Nature (London) 484, 489

(2012).

[50] B. Neyenhuis, J. Zhang, P. W. Hess, J. Smith, A. C. Lee, P.

Richerme, Z.-X. Gong, A. V. Gorshkov, and C. Monroe, Ob-

servation of prethermalization in long-range interacting spin

chains, Sci. Adv. 3, e1700672 (2017).

[51] F. Liu, R. Lundgren, P. Titum, G. Pagano, J. Zhang, C. Monroe,

and A. V. Gorshkov, Confined quasiparticle dynamics in long-

range interacting quantum spin chains, Phys. Rev. Lett. 122,

150601 (2019).

[52] J. Wess and B. Zumino, Consequences of anomalous Ward

identities, Phys. Lett. B 37, 95 (1971).

[53] S. P. Novikov, Multivalued functions and functionals. An ana-

logue of the Morse theory, Sov. Math. Dokl. 24, 222 (1981).

[54] E. Witten, Global aspects of current algebra, Nucl. Phys. B 223,

422 (1983).

[55] E. Witten, Nonabelian bosonization in two dimensions,

Commun. Math. Phys. 92, 455 (1984).

[56] A. Polyakov and P. Wiegmann, Theory of nonabelian Goldstone

bosons in two dimensions, Phys. Lett. B 131, 121 (1983).

[57] I. Affleck, Critical behavior of two-dimensional systems

with continuous symmetries, Phys. Rev. Lett. 55, 1355

(1985).

[58] I. Affleck, Exact critical exponents for quantum spin chains,

non-linear sigma-models at θ = π and the quantum Hall effect,

Nucl. Phys. B 265, 409 (1986).

043270-27



SIMON MARTIN AND TARUN GROVER PHYSICAL REVIEW RESEARCH 5, 043270 (2023)

[59] I. Affleck and F. D. M. Haldane, Critical theory of quantum spin

chains, Phys. Rev. B 36, 5291 (1987).

[60] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, Critical be-

haviour of spin-s Heisenberg antiferromagnetic chains: analytic

and numerical results, J. Phys. A 22, 511 (1989).

[61] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field

Theory, Graduate Texts in Contemporary Physics (Springer-

Verlag, New York, 1997).

[62] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Quantum spin

Hamiltonians for the SU(2)k WZW model, J. Stat. Mech.:

Theor. Exp. (2011) P11014.

[63] R. Bondesan, J. Dubail, A. Faribault, and Y. Ikhlef, Chiral

SU(2)k currents as local operators in vertex models and spin

chains, J. Phys. A 48, 065205 (2015).

[64] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum

Field Theory (Westview, Boulder, CO, 1995).

[65] A. Polyakov, Interaction of Goldstone particles in two dimen-

sions. Applications to ferromagnets and massive Yang-Mills

fields, Phys. Lett. B 59, 79 (1975).

[66] A. Gamba, M. Grilli, and C. Castellani, Renormalization group

analysis of the quantum non-linear sigma model with a damping

term, Nucl. Phys. B 556, 463 (1999).

[67] S. Pankov, S. Florens, A. Georges, G. Kotliar, and S.

Sachdev, Non-Fermi-liquid behavior from two-dimensional

antiferromagnetic fluctuations: A renormalization-group and

large-n analysis, Phys. Rev. B 69, 054426 (2004).

[68] H. M. Babujian, Exact solution of the one-dimensional isotropic

Heisenberg chain with arbitrary spins S, Phys. Lett. A 90, 479

(1982).

[69] H. Babujian, Exact solution of the isotropic Heisenberg chain

with arbitrary spins: Thermodynamics of the model, Nucl. Phys.

B 215, 317 (1983).

[70] L. Takhtajan, The picture of low-lying excitations in the

isotropic Heisenberg chain of arbitrary spins, Phys. Lett. A 87,

479 (1982).

[71] Z.-X. Liu and X.-G. Wen, Symmetry-protected quantum spin

Hall phases in two dimensions, Phys. Rev. Lett. 110, 067205

(2013).

[72] D. Gepner and E. Witten, String theory on group manifolds,

Nucl. Phys. B 278, 493 (1986).

[73] S. C. Furuya and M. Oshikawa, Symmetry protection of critical

phases and a global anomaly in 1 + 1 dimensions, Phys. Rev.

Lett. 118, 021601 (2017).

[74] Y. Yao, C.-T. Hsieh, and M. Oshikawa, Anomaly matching and

symmetry-protected critical phases in SU(N ) spin systems in

1 + 1 dimensions, Phys. Rev. Lett. 123, 180201 (2019).

[75] M. Song, J. Zhao, Y. Qi, J. Rong, and Z. Y. Meng, Quantum crit-

icality and entanglement for 2d long-range Heisenberg bilayer,

arXiv:2306.05465 [cond-mat.str-el].

[76] J. Zhao, M. Song, Y. Qi, J. Rong, and Z. Y. Meng, Finite-

temperature critical behaviors in 2d long-range quantum

Heisenberg model, npj Quantum Mater. 8, 59 (2023).

[77] A. Nahum, Note on Wess-Zumino-Witten models and quasiu-

niversality in 2 + 1 dimensions, Phys. Rev. B 102, 201116(R)

(2020).

[78] R. Ma and C. Wang, Theory of deconfined pseudocriticality,

Phys. Rev. B 102, 020407(R) (2020).

[79] M. Oshikawa, Topological approach to Luttinger’s theorem and

the Fermi surface of a Kondo lattice, Phys. Rev. Lett. 84, 3370

(2000).

[80] T. Senthil, S. Sachdev, and M. Vojta, Fractionalized Fermi liq-

uids, Phys. Rev. Lett. 90, 216403 (2003).

[81] T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-

Fermi liquids near heavy-fermion critical points, Phys. Rev. B

69, 035111 (2004).

[82] B. Danu, M. Vojta, F. F. Assaad, and T. Grover, Kondo break-

down in a spin-1/2 chain of adatoms on a Dirac semimetal,

Phys. Rev. Lett. 125, 206602 (2020).

[83] J. L. Smith and Q. Si, Non-Fermi liquids in the two-

band extended Hubbard model, Europhys. Lett. 45, 228

(1999).

[84] A. M. Sengupta, Spin in a fluctuating field: The Bose(+Fermi)

Kondo models, Phys. Rev. B 61, 4041 (2000).

[85] M. Vojta, C. Buragohain, and S. Sachdev, Quantum impurity

dynamics in two-dimensional antiferromagnets and supercon-

ductors, Phys. Rev. B 61, 15152 (2000).

[86] L. Zhu and Q. Si, Critical local-moment fluctuations in the

Bose-Fermi Kondo model, Phys. Rev. B 66, 024426 (2002).

[87] G. Zaránd and E. Demler, Quantum phase transitions in

the Bose-Fermi Kondo model, Phys. Rev. B 66, 024427

(2002).

[88] S.-S. Lee, Emergence of supersymmetry at a critical point of a

lattice model, Phys. Rev. B 76, 075103 (2007).

[89] J. Cardy, Scaling and Renormalization in Statistical Physics,

Cambridge Lecture Notes in Physics (Cambridge University

Press, Cambridge, 1996).

043270-28


