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Motivated by experiments on spin chains embedded in a metallic bath, as well as closed quantum systems
described by long-range interacting Hamiltonians, we study a critical SU(V) spin chain perturbed by dissipation,
or equivalently, after space-time rotation, long-range spatial interactions. The interplay of dissipation and the
Wess-Zumino (Berry phase) term results in a rich phase diagram with multiple renormalization-group fixed
points. For a range of the exponent that characterizes the dissipative bath, we find a second-order phase transition
between the fixed point that describes an isolated critical spin chain and a dissipation-induced-ordered phase.
More interestingly, for a different range of the exponent, we find a stable, gapless, nonrelativistic phase of matter
whose existence necessarily requires coupling to the dissipative bath. Upon tuning the exponent, we find that the
fixed point corresponding to this gapless, stable phase “annihilates” the fixed point that describes the transition
out of this phase to the ordered phase. We also study a relativistic version of our model, and we identify a new
critical point. We discuss the implications of our work for Kondo lattice systems and engineered long-range

interacting quantum systems.

DOL: 10.1103/PhysRevResearch.5.043270

I. INTRODUCTION

Two recurring themes in many-body quantum physics,
especially in the context of quantum phases and phase tran-
sitions, are Berry phase effects and long-range interactions
induced by coupling to gapless modes. For example, Berry
phase effects can lead to critical states in systems where one
might naively expect a gap to excitations [1], while coupling
to gapless modes can effectively generate nonlocal interac-
tions that can influence the nature of quantum criticality [2,3],
and can also help circumvent the Mermin-Wagner-Hohenberg
theorem [4,5] for systems with local interactions [6—19]. In
this paper, we will revisit the problem of one-dimensional
dissipative quantum systems, which, in the special case of
dissipative Luttinger liquids, has been extensively studied
in the past [9,13,14,17,18]. One common feature of various
setups for dissipative Luttinger liquids is the possibility of
long-range order in one dimension and the associated order-
disorder transition. Here we will show that in a class of
one-dimensional systems with a non-Abelian symmetry, an
interplay of Berry-phase effects and dissipation can result
in a new possibility: a stable, dissipative phase with power-
law correlations in both space and time, and which has no
counterpart in a one-dimensional, nondissipative system with
short-range interactions. We will also demonstrate the phe-
nomena of fixed-point annihilation in this system, which is
reminiscent of that seen in a zero-dimensional quantum impu-
rity coupled to a dissipative bath [20-24].
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It is well known that long-range interactions can lead to
new critical points that are neither mean-field nor related to
critical points in short-ranged interacting systems [25-38].
Previous studies in this context have predominantly focused
on “classical models,” i.e., models whose Euclidean action
is real. Here we will focus on models whose action con-
tains a Berry phase term, and the resulting critical points
do not necessarily have a classical statistical mechanics in-
terpretation. From an experimental perspective, long-range
interactions similar to the present work can arise in “hybrid-
dimensionality” Kondo lattice systems such as Yb,Pt,Pb
[39—41], and engineered Kondo lattice systems [42—46]. In
such systems, local moments effectively live in a lower di-
mension compared to the conduction electrons. In the limit
of weak Kondo coupling, one may integrate out the conduc-
tion electrons resulting in long-range interactions between
the local moments along the time direction [2,3,14,17,18].
Yb,Pt,Pb in particular exhibits signatures of one-dimensional
spinon-like excitations [39-41], and it is natural to ask
whether the fractionalized excitations seen here are identical
to those in an isolated spin chain, or if they could be a signa-
ture of new physics where the coupling with the surrounding
metal is crucial. A different setup relevant to our discussion
is that of nondissipative systems where spatially long-range
interactions arise due to cavity-mediated interactions, or due
to dipole-dipole interactions [47-51]. The relation between
these two different classes of systems, namely dissipative
spin chains and spatially long-range interacting spin chains,
is space-time rotation—e.g., Ohmic dissipation maps to 1/r?
interaction after space-time rotation.

Our focus in this work will be on (1 + 1)D SU(N),
Wess-Zumino-Witten (WZW) CFTs [52-56] perturbed by a
dissipative term that can arise in models of solid-state systems
[57-63]. Further, as discussed below, the RG analysis for this
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problem can be controlled using a large-k expansion, similar
to the nondissipative case [55]. Recent work on (0 + 1)D
dissipative spin impurities has shown the presence of multiple
fixed points due to the interplay of Berry phase and dissipation
[20-24], and it is natural to wonder about the fate of models
in higher dimensions where both dissipation and Berry phase
effects exist. Lastly, analogous to the long-range Ising or
O(N) models [29], a relativistic version of our model (which
we also study) can potentially lead to an infinite number of
new conformal field theories labeled by (N, k).

II. MODEL AND ITS SYMMETRIES

We will first consider a nonrelativistic setup where dis-
sipation induces interactions that are nonlocal only in time,
analogous to the standard Hertz-Millis theory for antifer-
romagnets [2,3] (the induced nonlocality in space due to
dissipative bath is assumed to be subleading compared to
the spatial kinetic energy term, and hence neglected [18]).
We consider a system which in the absence of dissipation is
described by the (1 + 1)D SU(N), WZW CFT [52-55]. The
(Euclidean) action is

S[gl = Sgraalgl + Swzlgl + Spislgl- (D

In this equation,

1 1
SGraalgl = 5 / drdxtr (C_zargarg—l + 3xgaxg_l> @)

is the standard kinetic energy term for the matrix-valued field
g € SU(N), transforming in the bifundamental representation
of SUWN), ® SU(N)g. c is a velocity which will run under
RG as discussed below. Next,

ik .
Swzlgl = 15— | drdx due (g 9,88 '9;28 ')
B,
3)

is the Wess-Zumino (WZ) Berry-phase term, defined in terms
of g(t, x, u), which is an extension of the field g(z, x) to a
three-ball B> so that 8(t,x,u = 0) = go is any chosen refer-
ence value, and g(t, x, u = 1) = g(t, x) is the physical value
of g at (7, x) (= boundary S? of BY). Finally,

Spislgl = k*y / drdt'dxK(t—t)tr[1 — g(t, x)g” ' (/, )],
“4)

where y > 0 is the dissipation term. The kernel K is de-
fined as K(t — t/) = # with the normalization A =

(6-2) ; >
T6xTG-T) cos(md /) chosen so that the Fourier transform K(w)

of K(t) has a simple form suited for our RG analysis. We
restrict § to the range 0 < § < 2 so that the Fourier trans-
form K(w) of K(t) goes to zero as w — 0, and 1/A is not
divergent. The global continuous symmetry of this model is
SUWN)., ® SU(N)g, where under SU(N),, g — Ug, and
under SUN)g, g — gV, where U,V are arbitrary SU(N)
matrices. Since Sgralg] + Swzlg] is Lorentz invariant, after
interchanging space and imaginary time, the action S[g] de-
scribes a nondissipative closed system with long-range spatial
interactions (a dynamical exponent z in the dissipative system
corresponds to a dynamic exponent 1/z in its space-time in-
terchanged counterpart).

The exponent 3 — § for the kernel K(t) is chosen so that
8 = 8/k <« 1, with § an O(1) number, allows for a controlled
1/k expansion. Relatedly, the couplings A and y will be of the
order 1/k at all the RG fixed points, which implies that the
three terms in the action S[g] all scale as k. It will be useful to
introduce the O(k°) couplings A = kA and 7 = ky. The dy-
namical exponent z will be defined as part of the RG scheme,
and will deviate from unity only by O(1/k), and therefore we
also introduce an O(k°) variable 7 such thatz = 1 + f

III. RENORMALIZATION GROUP

To set up our RG calculation, we decompose the matrix-
valued field g as g = g,e", where g, denotes “slow” variables,
and W denotes “fast” variables [55]. The renormalization of
X, 7, and c is induced by integrating out the fast variables. At
the leading order in 1/k (i.e., one-loop Feynman diagrams),
we obtain the following B functions for X, 7, and ¢ (see
Appendix A for a detailed derivation):

1 L NeR 2R,
ﬁ(k)—%[—zk—i- 8 <w— (Sn)2w >:|, (®)]

1] - Cr .
B(7) = ;[(6 —3)y - ﬁcz\f/w], (6)

1| N 22 5
/3(0)=E|:ZC—E<1+W)(W—W

Y
where w= (14 g&c?Ay) , and CF:Z% is the

quadratic Casimir for SU(N) in the fundamental
representation. The main outcomes of these RG equations are
as follows:

(i) When 0 < § < 4Cr [Fig. 1(a)], the WZW CFT fixed
point is perturbatively stable against dissipation, which can
also be deduced using the scaling dimension Ay ~ 2Cr /k of
the primary field g at the WZW fixed point at large k. In
this range of 8, as the magnitude 7 of dissipation increases,
the system eventually undergoes a single-parameter tuned
second-order phase transition beyond which 7 flows to infin-
ity. Based on energetic considerations, we expect that at large
7, the field g acquires a nonzero expectation value, so that
the SUN), ® SU(N)g symmetry is spontaneously broken to
diagonal SU(N), akin to the chiral symmetry-broken phase in
QCD with massless quarks [64], and we make this assumption
in drawing the phase diagram in Fig. 1. Qualitatively, this
scenario is similar to the one discussed in Ref. [12] for a
Heisenberg chain perturbed by long-range interactions [whose
action can be thought of as a space-time rotated version of our
action, Eq. (1)].

Writing g ~ ¢/ 2« where 7, are the Goldstone modes
and T, are the SU(N) generators, the low-energy theory in the
ordered phase is given by £ = |7, (k, 0)|>(k* + @* ) + - - -,
where “---” denotes interactions between the Goldstone
modes. These interactions are irrelevant at low-energy, and
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FIG. 1. Schematic phase diagrams (left) and associated RG flows
(right) in terms of the inverse “spin stiffness” (* ~ x) and the dis-
sipation strength ( ~ y) for three different regimes, parametrized
by § = k8. All the RG flows have been obtained using N = 2, and
thus 4Cr = 3, Sy & 3.0429. (a) For 0 < § < 4Cy, a dissipative,
critical fixed point separates the WZW CFT from a symmetry-broken
(ordered) phase (# > 1). The RG flow is plotted for § = 1. (b) For
ACr < § < Smax, One obtains a stable, dissipative phase that is sep-
arated from the ordered phase by a dissipative critical point. For
visualization purposes, we have zoomed on the interesting region of
the RG flow, and we plotted é B (3c), étﬂ(y). The RG flow has been
obtained by setting § = 3.04. At § = dmux, the two dissipative fixed
points annihilate each other. (c) For 8 > Suux, there is no dissipative
fixed point and the WZW CFT is unstable towards the broken sym-
metry (ordered) phase. The RG flow is plotted for § = 4.

spontaneous symmetry breaking stable, precisely due to
long-range interactions that lead to the aforementioned non-
relativistic dispersion for the Goldstone modes [this is
ultimately related to the fact that the integral [ dkdw(k* +
¥ for§ >0 converges in the infrared] [9-19]. In con-
trast, for a relativistic theory in (1 4+ 1)D with short-range
interactions, Goldstone modes interact strongly and destabi-
lize spontaneous symmetry breaking [4,5,65]. The universal
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FIG. 2. Two physical solutions of the cubic equation for u(x, y)
in terms of §. The blue curve is the solution associated with the
unstable dissipative critical point, while the red curve is the solu-
tion associated with the stable dissipative phase. Physical solutions
must satisfy 0 < u(x, y) < 1 (see Appendix A5 a). One of the three
solutions is always negative and is thus not shown. Moreover, for
0 < & < 4Cr, the dissipative stable phase is located in y < 0 and is
thus also unphysical. The WZW fixed point (green curve) and the
broken symmetry (ordered) phase [orange curve along u(x,y) =0
in the left figure] are also shown. The right part of the figure is a
zoom on the interesting regime containing the two dissipative fixed
points, with the stability of the various fixed points represented by
arrows. This figure was obtained by setting N = 2, and similar plots
are obtained for other values of N.

properties of the critical point separating the WZW CFT
and the symmetry-broken phase are further discussed
below.

(il) When 8 > Syjax = 32f BC V)’ [Fig. 1(c)], the WZW
fixed point is unstable towards the aforementioned ordered
phase for infinitesimal .

(iii) Most interestingly, in the intermediate regime, namely,
when 4Cr < § < 8yax, the WZW CFT is unstable towards a
nonrelativistic, dissipative, critical phase which has no rel-
evant perturbations if we only allow terms that respect the
SUN), ® SU(N)g symmetry [Fig. 1(b)]. This phase is
separated from the ordered phase by a single-parameter-tuned
phase transition. At § = Sy, one encounters a fixed-point
annihilation between the fixed point corresponding to this
stable phase and the fixed point corresponding to the phase
transition out of this phase to the ordered phase.

The aforementioned analytical expression for Sy, follows
from solving B(1) = B(#) = 0, which leads to the following
cubic equation for the variables x = cA and y = c:

Nu(x,y) — (4Cp + N)u(x,y) +8 =0, (8)

1
(one) real solutlons for u(x, y) when its discriminant is
positive (negative), and the change of sign of the discrim-
inant precisely corresponds to the fixed-point annihilation.
As shown in Appendix A5 a, physical solutions must respect
0 < u(x,y) < 1. Since one of the three solutions always has
u(x,y) < 0, it can be dropped and is thus not shown in Fig. 2.
Furthermore, in the regime (0 < 8 < 4Cr), the solution

where u(x,y) = . This cubic equation has three
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FIG. 3. Coefficients of the O(1/k) contribution to the scaling
dimensions A, and A, of the primary field g and the energy density
operator € as well as the dynamical critical exponent z at the dissi-
pative critical point (left) and the dissipative critical phase (right) in
terms of 8. The plots have been obtained using N = 2, for which
ACr =3 and Sy ~ 3.0429, which is represented by the vertical
dashed line.

associated with the stable dissipative phase has u(x,y) > 1
and is also unphysical.
By adding a “magnetic field” term to the action,

S, =h/drdxtr<g+g*1), )

we obtain the § function for 2 (see Appendix A S5b for the
derivation): B(h) = e,h, where e, = (2 + %) - 4ﬂkck w+
O(1/k?) is the RG eigenvalue associated with 4. The scaling
dimension A, of the primary field at a given fixed point is
therefore given by 1+ z — e}, where e} is evaluated at that
fixed point. One may also extract the scaling dimension A,
of the energy density operator € = tr (6—128I 207" + 9,808 ")
using the RG equations. We numerically solve the RG equa-
tions for the fixed points, and we plot the dynamical exponent
z and the scaling dimensions Ag, A, at the two dissipative
fixed points in terms of § in Fig. 3. Moreover, by using
the RG equations for # and ¥, one can show that at either
of these fixed points, the following equality holds: z = § —
2kAg, which corresponds to the expansion at order O(1/k)

of z= 2_ 5, Where 7 is the anomalous dimension of g (see
Appendix A 6). This relation can be argued to hold on the
general grounds that an RG transformation leaves the nonlo-
cal term [ dtdt [ dxK(x — t/)tr[g(z, x)g" ' (r/, x)] invariant
[21] and has also been seen in previous studies on nonrela-
tivistic quantum criticality [15,66,67]. Note that at either of
the dissipative fixed points, the two-point correlation function
(tr [g(t, x)g~'(0, 0)]) has a nontrivial scaling behavior both
along space and time, with equal-time, unequal-space cor-
relations decaying as 1/x*“¢, and unequal-time, equal-space
correlations decaying as 1/7%2¢/%,

We note a technical subtlety about our RG calcula-
tion: the total action S[g] respects the discrete symme-
try g(r,x) — g '(tr, —x), which rules out terms such as
f drdxtr(d,9,g~"). However, the aforementioned decom-
position g = g,e" “fractionalizes” the action of this discrete
symmetry, and integrating out W can and does generate
an unphysical term f dtdx tr(argsaxggl) which should be
discarded on symmetry grounds. One way to keep the sym-
metry manifest is by defining a symmetrized effective action
Seirlgs] = 5(Stylgs] + Stxles)), where (1) and (2) correspond
to the following two decompositions: g = gse" and g = €% g,.
The two decompositions yield exactly the same RG for all the
physical (i.e., symmetry allowed) terms, while the aforemen-
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FIG. 4. RG flows for the relativistic theory for the two different
regimes parametrized by § = k8. For both cases, N = 2 has been
used, which means that 4Cr = 3. (a) For § < 4Cr, the WZW CFT is
separated from the dissipation-induced ordered phase by a dissipative
critical point. The plot has been obtained using 8 = 0.4. (b) For
8 > ACr, there is no dissipative fixed point and the WZW CFT is
unstable to infinitely small dissipation. The plot has been obtained
using § = 6.

tioned unphysical term has a relative opposite sign. Due to
this, Sggr[gs] only contains terms allowed by symmetries.

IV. A RELATIVISTIC VERSION

As mentioned in the Introduction, we also study a
relativistic-invariant version of our model. The kinetic energy
term and the WZW term are unchanged (we set ¢ = 1), while
the dissipation is now chosen as Lorentz invariant,

Spis = k*y / d’rd’r K(Jr — ') tr (1 — g(r)g~' (), (10)

wherer = (7, x) denotes Euclidean space-time, and the kernel

isnow K(r) = = with B = 21&;,,2 ”(26 3/2)) and r = |r|. The

normalization of the kernel is such that its Fourier transform
is K(p) = —g=|pl*®, with p = |pl, p = (@, ¢).

The RG analysis can be carried out using a scheme similar
to that for the nonrelativistic case (see Appendix B). It will
again be useful to introduce O(k°) couplings A = kA and y =
ky. The corresponding 8 functions to the leading order in 1/k
are

(X_lzv)izl_ A2 ~_C)\3F)h
ﬁ)—%g W () VF(AY)

X W(i?)}, (11)

T Bapt? 3272
Cr
B(y) = —[ V- 2—M/F(M/)} (12)
with F(Ay) 1+ el

In contrast to the nonrelativistic case, we now find only
two qualitatively different phase diagrams as a function of 8,
as illustrated by the RG flows in Fig. 4: when § < 4Cr, the
WZW CFT is stable against dissipation and is separated from
the large 7 fixed point (which presumably again corresponds
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to the symmetry-broken phase) by a single-parameter tuned
quantum phase transition, while when § > 4Cp, the WZW
fixed point is unstable towards the large y fixed point at
infinitesimal dissipation. Furthermore, we find the following

scaling dimensions for the primary field g and the energy den-

sity operator € at the dissipative fixed point: A, = 2‘S—k, A =
2+ g[S — VN(1024C5 — 64C; 8% + N&*)]. The scal-
ing dimensions at the WZW fixed point of course match
the known exact results in the large-k limit, namely, A, =
2Cr/k, A¢ =2+ 2N/k. Analogous to the long-range Ising or
O(N) models [29], it will be interesting to explore whether
these theories potentially correspond to an infinite number of
new conformal field theories labeled by the integers (N, k).

V. SUMMARY AND DISCUSSION

We carried out an RG study of a class of (1 4+ 1)D CFTs
perturbed by long-range interactions along space and/or time,
and we identified several RG fixed points (see Fig. 1). For
a range of the exponent & that characterizes long-range in-
teractions, we found that the CFT becomes unstable towards
a stable, gapless dissipative phase that exhibits nontrivial
scaling both along space and time. Upon tuning §, one en-
counters a fixed-point annihilation between the fixed point
corresponding to the aforementioned stable, gapless phase,
and another dissipative fixed point with one relevant direction.
Compared to relativistic systems with long-range interactions
and no WZW term [25-38], the novelty here is the presence of
an intermediate coupling stable phase. We characterized this
critical phase via the scaling dimensions of a few prominent
operators and the dynamical critical exponent. We also studied
arelativistic version of our theory that shows a novel quantum
critical point between the WZW CFT and a dissipation-
induced symmetry-broken phase (see Fig. 4).

It is important to ask what lattice models may give
rise to the nontrivial intermediate coupling dissipative phase
[Fig. 1(b)]. In our analysis, we assumed SU(N), ® SU(N)g
symmetry at low energies, which may be difficult to achieve
starting from a lattice model. Although one can certainly
find fine-tuned lattice models that realize SU(N), CFTs for
any N, k [68-70], when k > 1 there generically exist relevant
terms that explicitly break the SU(N), ® SU(N)g symmetry
down to the diagonal SU(N) [59]. A natural way to realize
SU(N). ® SU(N)g without any fine-tuning is to consider a
spin chain that corresponds to the edge mode of a 2D symme-
try protected topological (SPT) phase [71]. Further, (1 + 1)D
models with k = 1 for any N are also stable (assuming trans-
lation symmetry) since anomaly-based arguments imply that
under RG flow the parity of the level cannot change [72-74].
On that note, for a single impurity coupled to a dissipative
bath, one also finds a phase diagram broadly similar to our
problem [20-24], and although the corresponding calculation
is justified only in a semiclassical limit somewhat analo-
gous to ours (large spin S for a single impurity versus large
level k for WZW CFT), numerical studies have shown that
the qualitative aspects carry over even to spin-1/2 impuri-
ties [23,24]. Therefore, it will be interesting to explore the
effect of long-range interactions on (1 + 1)D lattice models
corresponding to SU(N); CFTs even at k = 1 using quantum

Monte Carlo (QMC) [10,12,15,17,75,76], or in engineered
systems [42—45,47-51]. Another direction worth exploring
is the potential relation to models of deconfined quantum
critical points that also have WZW terms and show fixed-point
annihilation in fractional dimensions [77,78].

Returning to the topic of hybrid-dimensionality Kondo
lattice models, we speculate that the dissipative phase can
potentially be a novel “fractionalized Fermi liquid” with a
small Fermi surface. This is because the physics of Kondo
singlet formation, and relatedly, that of a “large Fermi sur-
face” heavy Fermi liquid phase [79] where local moments
contribute to the Fermi surface volume, is nonperturbative in
the Kondo coupling Jx with an effective energy scale e“//x,
where ¢ is a constant. If one imagines that our action S[g]
was obtained by integrating out a fermionic bath, then such
physics is likely not operative in the dissipative phase since the
Kondo coupling Jx appears only perturbatively (with dissipa-
tion y ~ J,%). In contrast to the “conventional” small Fermi
surface fractionalized phases [80,81], in such a dissipation-
induced non-Fermi-liquid, here the electrons and spins do not
completely decouple at low energies since nonzero dissipa-
tion must imply nontrivial entanglement between spins and
electrons. At the same time, one can still inquire whether the
fixed points we obtained are perturbatively stable against flow
to a large Fermi surface phase. For example, as discussed in
Ref. [82], for a spin-chain embedded in a Dirac semimetal,
the electronic bath completely decouples from the spin-chain
at weak Kondo coupling, resulting in a hybrid-dimensionality
small-Fermi-surface fractionalized Fermi liquid [80,81]. An-
other example is provided by “Fermi-Bose Kondo impurity”
models [83-87], where one finds an intermediate dissipation
fixed point which is again stable against Kondo singlet for-
mation with the fermionic bath [23]. The existence of either
of these fixed points can be inferred solely using a dissipa-
tive bosonic bath similar to our calculation [20-22,24]. In
a similar vein, we expect that the WZW CFT fixed point
[Fig. 1(a)], and more interestingly, the stable, dissipative fixed
point [Fig. 1(b)], are also both stable against flow towards a
large Fermi surface phase. The heuristic reasoning behind this
expectation is that perturbatively, the dissipation coefficient y
is proportional to JZ, and since the RG flow at either of these
fixed points is attractive along the y direction, one expects that
it will be attractive along the Jx direction as well. We leave the
further exploration of this topic to the future.
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APPENDIX A: RG ANALYSIS OF THE
NONRELATIVISTIC THEORY

This Appendix presents the detailed RG calculation of the
nonrelativistic theory presented in the main text.
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1. Expanding in slow/fast modes

The RG calculation is performed by splitting g into slow
and fast degrees of freedom: g(z, x) = g,(t, x)gs(7, x), where
g5 is a slow-varying background field, while g constitutes fast
fluctuations about g; [55]. The goal is to obtain the effective
action for the slow fields g, due to the integration of the fast
modes gy. gr is thus expanded to quadratic order with the
following decomposition:

2
g W (AD)

J

with W (t, x) = iT%¢“(t, x), where T are the N> — 1 gen-
erators of SU(N) in the fundamental representation, which
respect the algebra [T¢, T?] = if®‘T° and are normalized
according to tr (T°T?) = %S“b, while ¢¢ are N> — 1 real scalar
fields. Below we analyze the three terms in the action S[g] =
Scradlg] + Swzlg] + Spis[g] with such a decomposition. Over-
all, the main simplification in the large k limit is that at
each order in 1/k, there are only a finite number of Feyn-
man diagrams that contribute to the RG flow, as explained in
Appendix A 3.

a. Gradient term

Let us start with the gradient term. For & = t or £ = x (no sum over ), we have

tr (9,89,8") = tr (3. (8581)9u (g5 87 "))

= tr (0,8:8/018;' 8" + 04858787 0u8y " + 850,870,885 " + 8508787 gy ")
= tr (3,8508, ') +tr (3.878,8;") +21r (80858798 ) (A2)

where we have used the fact that g,g;7! = gfg;l = 1, which implies that 9,,g;g;' = —g,0,¢; ' (same thing for g;). Expanding

the second term to quadratic order in W yields

tr[0,80,8,' | = —tr [0, W3, W]+ OW?). (A3)

For the third term, we get

2

1
=2tr [g;'augs<-wauw +

= tr (g; "' 0,85[0, W, W1) + -

w w?
a(1-w+ =
2)’( +2>}+

2tr (g;laugsgfaug;l) =2tr [gslaﬂgs(ll +W+ —

1
9, WW — W8MW>i| + Terms linear in W + O(W?)

(A4)

where the terms linear in W can be dropped, since these will yield vanishing contributions when computing loop diagrams over
fast modes (no momentum exchange between slow and fast modes is compatible with momentum conservation).
Therefore, using the results derived above, the gradient term becomes

S6rad[8585] = Scraalgs] + Sa W1+ Star raal8s: W1, (AS)
with
1 1 » »
Scradlgs] = 3 drdxtr gafgsargs + 0:850:8; ) (A6)
1 1
SO W] = - / drdxtr (C—zafwafw + 8XW8xW>

1 dwdq - —1 - A
= = 4 3 H 3 49— s 5 l_[ 5 =5 A7
2/(2n)2¢ (0, )T (0, Q)¢ (—w, —q) (0, q) 2y g (A7)

1 1

SI(I?l),Grad[gS’ W] = X / drdxtr <C_285_131gs[8rws W] + gs_laxgs[axwy W]> (AS)

Note that the second term has been written in Fourier space, after having taken the trace over the generators. This term will

contribute to the fast propagator.

b. WZ term

Let us now split the degrees of freedom in the WZ term. To do so, note that

g 'dg=g;'¢;'d(ee}") = &;'¢; ' dggr + g ' dgy. (A9)

Therefore, the trace becomes

(g 'dgngldgngldgl = (g, e, ' dasgy + g7 dgs) A (85 e5 dgsgr + &5 dar) A (g7 e ' desgr + 85 dgys)]. (A10)
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Expanding this expression yields eight terms, which can be combined to give
(g 'dgngldgngldgl = g dgs A g g A g g + 3 [dgt Adgo A grdg;]
—3tr[g; ' dgs ndgy Adg; ]+ OW?). (A11)

Expanding the second term to quadratic order in W yields

w2 w2
3tr [dg;1 Adgs N gfdg;]] ~3tr |:ng1 ANdgs N (11 +W 4+ 7>d<]1 -W+ 7)]

1
=3tr (dgs_1 Adgs A E[dW’ W]) + Linear term in W + O(W?), (A12)

while we get for the third term
=3t (g dgs ndgr Adg;'] =3t (g7 dge AdW A dW) + O(W?). (A13)
Hence, combining everything leads to
trig'dgngldgngldgl = tr [gs_ldgs A gs_ldgs A gs_ldgs] + %tr (a’gs_l Adgs N [dW, W])
+3tr (g, 'dgs AdW A dW)
=tr [g;ldgs A g;ldgs A g;ldgs] + %tr d(g;ldgs A [dW, W]), (A14)

where the second and the third terms have been combined in a total derivative in the last step. Hence, applying Stoke’s theorem,
the WZ action becomes

ik
Swzlg:gr] = Swzlgs] + Strwzlgs: W1 = Swzlgs] + o f drdx e, tr (g7 9,85[0,W, W1). (A15)
The relativistic notation & = (7, x) is used here.

c. Dissipation term

Finally, we focus on the dissipation term. The trace becomes

tr(l—gd ) =tr(l—ggg;'g")

W2 W/2
~tr |:IL — gs(]l + W+ 7) (ﬂ —-W + T)g/s_li|

W2 W/2 W2 22
=tr (]l - gf;lgs) —tr (7 + - - WW/> + tr |:(]l — gélgs)(T + 5~ WW’)] +0W?), (Al6)

where a prime means evaluated at (z’, x). Once again, the linear terms in W are dropped. In this case, the dissipation action takes
the following form:

Spislgsgs] = Spislgs] + SpalW1+ St pislgs: W1, (A17)
with
Spislgs] = K>y f drdt'dxK(t — t')tr (1 — gy(z,x)g; ' (1, 1)), (A18)
(2) 2 / / W2 W/z /
SpilWl= —k*y | dvdt’ | dxK(t — ') tr - + 7~ ww), (A19)
W2 W/2
St nislgs, W1 =Ky / drdt / dxK(t — t)tr [(11 - g'slgs)(T + 5 - WW/ﬂ. (A20)

The second term (purely fast part) can be written in Fourier space,

k2 ~ ~ ~ o/ ’
SSUW] = T” / dvdt'dx / / R(0")$" (@, )¢" (', g T
w0 Jag

X [_et(errqx)et(w T+4'x) + _ez(wr +qx)ez(w T'+q'x) _ ez(mrJrqx)ez(w T'4q'x)

k*y _ _ ~ ~
= (K(0) — K(—w))p" (v, )" (-0, —q), (A21)

w,q
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where fw =/ ”2&, [ =T 99 Tn the first equality, the trace over the generators has been performed, while in the second equality,
w’Jq 2

integrals over momentum/frequency § functions have been carried out. The Fourier transform of the kernel is obtained using the

general formula

Qr)? ! (A22)
|pld=F

for d Euclidean dimensions.}n our case, d = 1 and B = 3 — § for the Fourier transform of the kernel, which yields K(w) =
— # |w|>~%. This shows that K(0) = 0 and the fast part of the dissipation action thus becomes

[ T

XIP ~ 7922PT(B/2)

(2) _ kzy O Ta Ta _ kzy 1 2—-8\ Za Ta
SpisWl=——= [ K(w)¢(w, )¢ (-0, —q) = ——— — =107 )9, 99 (—w, —q). (A23)
2 Jog 2 Jog 8
d. Recap
As a recap, the action expanded at quadratic order in W can be grouped in three terms: S[gsg/] = Slg,] + SP[W] +

s@

nt L85> W 1. The first term is simply the initial action evaluated at g = g,

S[gs] = SGradlgs] + Swzlgs] + Spis[gs]

_ 1 1 1 1 ik —1 —1 —1
= — | drdxtr | —0.8,0:8," + 0:8,0:8, ' | + —— [ tr(g,'dgs ng ' dg, ng;'dgy)
)\. C2 127'[ B3

+ kzy/drdt’dx K(t — )t (1 — g(t, x)g; ' (7', x)). (A24)

It contributes to the 8 functions only via the final rescaling step. The second contribution to the expanded action regroups the
two terms which only contain fast fields:

SPIW] = Sgg W1+ SpW]

1 1 2 ’ ’ W2 W/z ’
= Y dtdxtr —ZBTWBTW + oWo,W ) —k“y | dtdt’ | dxK(t — ') tr N + - - ww
c
1 dwdq Ta —1 2,7 Ta
=3 (271)24) (w, )(II" (@, ) — k7Y K(0))¢*(—w, —q)
1 [dwdq - ~ 1 ~
= = a 5 G ) (- T ) AZS
> (271)205 (0, 9)G™ (0, )¢ (—w, —q) (A25)
where we have identified the fast propagator
Glw. 9) ’ (A26)
w,q) = > .
P+ %+ EryloP?
Finally, the last piece contains all the terms mixing slow and fast modes, which are denoted as interaction terms
Stwlgss W1 = St raalgs: W1+ Siatwzlgs, W1+ Si i [gs, W1
1 1 ik
= x/drdxtr (—zg;‘atgs[afw, W1+ g, 'd.g,[0.W, W]) + é—/drdxe,w tr (g, 0,.8,[0,W, W1)
c b4
W2 W/Z
+ K%y / drdr’/de(r —)tr [(]l - g's_lgs)<7 +5 - WW’>:|. (A27)
The first two terms can be combined into a “WZW interaction term” Sfi) WZW-
s LW =82 W+ S len Wl = | drdxtr (@ W, W A28
Im’wzw[gb’ ] [nt’Grad[gw ]+ Im,wz[gu ] Tax r( /I.(T7x)[ 12 ’ ])a ( )
where
&, (1,x) =g la ika O (t,x) =g ! la+ika (A29)
, X) = 5.0t — 5 0x )8ss T, X) = T Ox o s
’ S\ " g ™ )8 &\ 877 )®

2. Fourier representation of interaction terms

We now express the interaction terms, which we will average over with respect to the fast propagator, in Fourier space.
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a. WZW interaction term

St wzwles W1 = /drdxtr(@M(r,x)[BMW, W)

i / drdx / / ST (e [, (p)W ()W ()]

=i/ /(217“+pw)tr[5>u(ps)W(p)W(—p—ps)],
PsYp

where p = (w, ¢) is a fast 2-momentum and p; =

b. Dissipation interaction term

To treat the dissipation interaction term SInt Dis?

Dy(z, 7/, x) =1 — g, ' (v/, x)gs (1, x) = /

Therefore, by Fourier transforming, we get

let us define

Stnipislgs W1 = "ZV/ d’d"d"/ / / R@e® [Dsws, ], gy)e el
Wy, 0,qs J 0,0, Q /

(A30)
(wy, g5) 1s a slow 2-momentum.
dogdw, [ dg '
s s SD ., , i(wsT+wT +qsx). A3l
37 2x | 2 D@ @b ds)e (é31)
1. - : o 1. - o i
x <§W(a), q)W((,()/, q/)et(a)rJrqx)et(w T4+4q'x) + EW(('()’ q)W(a)/, q/)et(wr +qx)el(a) '+q'x)

(A32)

_ W(a), C[)W (w/’ q/)ei(wt+qx)ei(w’r/+q’x)>i| ,

[Tt}

where frequencies and momenta with a subscript “s

are slow modes, while the others are fast modes, except for €2, which is

unspecified for now. The space and time integrals yield é functions over frequencies and momenta. Performing them, we arrive at

Stuislgs WI=Ti + T+ T, (A33)
where
k2y N B . ~
== / / R (@) wIDy(os, 5, g)W (@, W (=05 — o =0, =4 = 4,)] (A34)
s, 04,45 Y ©,q
kzy 7 . . .
L= - / / K (wy) tr [Dy(wy, @t, g )W (0, W (-5 — 0, — ®, —q — g5)], (A35)
w5, 0;,qs Y 0.9
/ / (a)s + w)tr [Ds((l)s7 w:., qs)W(a), q)W(—a)s — a): —w,—q — qy)]. (A36)

c¢. Diagrammatic representation

The interaction terms presented in the two previous sec-
tions can be represented diagrammatically in terms of the
vertices presented in Fig. 5.

In each vertex, the square represents the part of the interac-
tion action containing slow modes. Since the action has been
expanded to quadratic order in W, each vertex contains two W
insertions, represented as double lines, which can be seen as
the two matrix indices of W.

3. Integration of fast modes

We are now in a position to integrate the fast modes. To do
so, we proceed with a cumulant expansion.

Serlg.] ~ Slgsl + (S s W1), — H{(Si g WI) T+
(A37)

(

where the expectation value is taken with respect to the fast
modes, while ¢ stands for connected correlation function. We
perform the RG calculation at 1-loop, which is controlled
using a large-k expansion. This requires the couplings A and y
to be of order 1/k as well as §, which justifies the introduction
of the O(k") parameters A = kA, 7 = ky, and § = k.

With eV expanded to quadratic order in W, only one-loop
diagrams are generated, as we can see from the vertices of
Fig. 5. Moreover, it is clear that diagrams at order n in the
cumulant expansion contain n vertices. Two-loop diagrams
can be obtained by expanding to higher powers in W. How-
ever, these terms will be suppressed with additional powers
of 1/k. This comes from the fact that every vertex is of order
k, but the propagator is of order 1/k. Hence, the order in 1/k
of a diagram is given by n, — n, (respectively the number of
propagators and the number of vertices). However, n, — n, =
n; — 1, where n; is the number of loops in a given diagram.
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(a) (b)
|44

(b'u' K]/‘ZD";

14

(c)
W W

KD,

|44 w

FIG. 5. Diagrammatic representation of the three different types of terms in the interaction action. (a) Representation of SIm wzwl&s> W1,
where the square corresponds to the slow object ®,,. (b) Representation of 7; and 7,. These two terms are essentially the same, since the
Fourier transform of their kernel only contains slow modes. The square depicts an insertion of the kernel from either 7; or 75, times the purely
slow object D;. (c) Representation of T3. The square corresponds to an insertion of the kernel in 73, which mixes slow and fast modes, times

D,.

Therefore, the order in 1/k of a diagram is directly related to
the number of loops it has.

a. Order 1 in interaction action
Let us start by evaluating the first expectation value,
(2) (2) (2)
(Slnt L& W]> ( nt,Dis [+ W]> < mewzw (8 W]>f'
(A38)
Dissipation term: The expectation value of the dissipation

term is separated into the expectation value of its three pieces
[see Eq. (A33) above],

(Sl(it)DlS[gx’ W]>f

which can be represented by the three Feynman diagrams
shown in Fig. 6.
For the first term, we have

— (T\); + (D) + (T, (A39)

(i), / / R@))tr [Dy(ws, o 45)
wlw qA
x (W (w, QW (—0 — w; — @, —q — ¢5)) 7]
2
=Y / / K(w)) tr [Dy(wy, @, g)TT"]
wswLqs Y 0,q

x (% (w, )" (—w — wy — &, —q — qy)) .

The expectation value yields a single Wick contraction

(A40)

(w0, PP’ (—w — s — @, —q — ) ¢

= §G(w, )27 )*8 (w5 + )8 (qy), (A41)
(@) (b)
w w
KD, K, Dy
w w

from which we get

k2 i ~ _
(1), =_77’/ Glw, q)/ R(wy) tr [Dy(ws, —w5, 0)TT]
w,q ;

s

k2 ! G(w, k K(wy)t

X [D-((,{)S, — Wy, 0)]

:——CFII/drdr /de(T—T)tr(]l )
(A42)

where the trace has been simplified using the SU(N)
completeness relation le’Tk”l‘ = %(8,-181-1( — [iV(SijBkl). We
have also defined the SU(N) quadratic Casimir in the
N> -1

representation Cp = =5~ and the fast

fundamental N

integral
I / dwdq & )
= —_— (1), =
1 (27 ) q

In the last step, the following inverse Fourier transform has
been employed:

dwdq A
QT @+ % + Erylo
(A43)

/ K(ws)tr [Ds(wsa — Wy, 0)]

z/drdt/dt“dx K(t")tr (Dy(t, T/, x))e =7
(c)
W
K3D,
W

FIG. 6. One-loop Feynman diagrams contributing to <SI(§1),Dis[g5’ W1). Parts (a), (b), and (c) correspond, respectively, to (Ti)s, (T2)y,

and (T3) .
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= /drdr’de(r —Htr (D(r, T/, %))

= /drdr//de(r —tHw(l—g 'g). (A44)

By performing a very similar calculation, one can show that
(Th) s = (1) . For T3, using the above result for the expecta-
tion value of the fast modes, we get

2
1), =Y (vt G, q) | R+o)t
= N) Jog "

X [Dx(a)m — Wy, 0)] (A45)

The kernel is now expanded to quadratic order in wy,

~ 1
R+ w,) = ‘g?(""'” +2- 8)ﬁws
rleosa-ne ) +0(w}).  (A46)
2 PR @s)-

Clearly, the contribution from the second term vanishes
since the fast integrand is odd under w — —w. Moreover,
the contribution from the first term can also be shown to
vanish,

/ tr (Dy(ws, —w;, 0))

s

= /d‘[df/d.x/ tr (D_y(f, .[/’x))eiwA(T/—I)

s

/ dtdxtr (Dg(t, 7, x))

0, (A47)

since Dy(t,7,x)=1 — gs(r,x)ggl(r,x) = 0. Hence, only
the quadratic term in wy survives. Therefore,

k*yCr
167

(T3)y = — (2-8)(1-9)

G 9 D
x/ % ] tr (Dy(wy, —;,0)). (A48)
wgq 1@ @s

FIG. 7. One-loop
(Sl(it),WZW[gSv W1y.

Feynman

diagram

contributing  to

This is proportional to f drdxtr (0,850, g;l), as can be seen
from the following manipulations:

/ & 1t (Dy(s, — 5, 0))

= / drdt'dx / tr (Dy(7, 7', x))wle )

s

== / drdt'dx / tr (Dy(x, T/, x))d2e )

s

= —/drdr’dx/ tr (97D,(t, t’,x))e"“’f(fl_”

= —/drdr’dxtr (92Dy(z, T/, x))8(¢' — 1)

/dtdt’dx tr (g, (x/, x)32g,(t, )8 (' — 7)

=— / drdxtr (3.8,0:8; "), (A49)

where w? has been replaced by —d?2 acting on the exponential,
while integration by parts has also been used twice. Therefore,

kZVCF
), = 2-8)(1—36
(T3) ¢ 6 ( ) )
G )
x / T“’lf) drdxtr (d:g,0:8;").  (A50)
w,q w

WZW term: We now move to the expectation value of
the WZW interaction term, corresponding to the Feynman
diagram shown in Fig. 7.

The calculation of the diagram yields

(Stowzwles: W), = i / / Q2pu + pe) it (@u(p)W (PW (—p — py)) 5)
Ps P

s

S / / (2 + po) 5 (@, (P TTHF (P)F (—p — o)
PsYp

=—i / / 2Py + ps) (@, (p)T T2 )8 (ps)G(p)
Ps Jp

=—2i / puG(p)tr (D,(O)TTY)
P

:0’

(AS1)
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FIG. 8. One-loop Feynman diagram contributing to ((Sfﬁ&WZW)Q);.

where we still have p = (w, q), ps = (wy, ¢;). The above ex-
pression vanishes for two reasons. First, the integral over fast
modes vanishes due to an odd integrand. Second, simplify-
ing the trace using the SU(N) completeness relation yields a
trace of ®,, which vanishes. This can be shown by writing
g= vl +iN°T? with ii = (v, N)T, 7i-7i= 1. In this case,
tr®, ~7- 9,7 = 0, since 7 is perpendicular to its derivative.

Recap: Therefore, the expectation value of the interaction
action is

(5218, W),
=Ny + (L) + (D)

= —k*yCr I /drdr’ / dxK(t —t)tr (1 — g 'g)

VCF G(w q)

2-6)1 —5)/

X f drdxtr (3.8,0:8;"). (A52)

b. Order 2 in interaction action
We now move to the term quadratic in the interaction
action in the cumulant expansion. There are three terms to
consider:

((SiaLee W1}y = ((Siawzw) )5+ ((Siamss) )

(2) (2) ¢
<Slm DlsSInt,WZW)f . (A53)
Squared WZW term: We start with the expectation value of
the squared WZW interaction term, the diagrammatic repre-
sentation of which is shown in Fig. 8.
The diagram corresponds to

(i) = - / | / QP+ PP+ P (@, ()W (PW (—p = p)tr (PO (P (—p' = pO))§
Ps:Ps Y PP

~ot [ e @R I —p — pe B W - = P,
Ds» P /

Where p = (w7 q)’ pS = (wS7 CIs), P/ = (CL)/, q,)’ pfy =

(A54)

(w, q.). Note that p, and p),, have been dropped since the expression is

already quadratic in derivatives (from the two ®,,). Slow modes, when expressed in real space, correspond to derivatives, which
means even more irrelevant terms. Let us focus our attention on the expectation value

{tr (D (POW (D)W (=p — p) tr (D, (POW (P )W (=" — P))§

= (“(P)P"(—p — p)P (P! (—p' — PG tr (Pu(p)T TP tr (D, (PTTY).

(A55)

The expectation value is computed using Wick contractions. There are two connected pieces, denoted as W, and W,. First, let us

consider Wy,

Wi = ) 8P (p+ P8P (p + P + ps + P)8acbaG(p)G(p + po) tr (D, (p)T T tr (B, (p,)TT?)

= )P (p+ P8P (p+ p' + ps + PGP)G(p + po) tr (D (p)TT?) tr (O, (p)TT?).

(A56)

The traces are computed using the the completeness relation for the SU(N) generators, which leads to

tr (D, (p)TT?) tr (D, (P)TT") = ’f(m)@“"(p)( 8 jnStm —

1 1 1
Wﬁjkzﬁm,, Eaklfsin - E‘Sik(;nl

1 - - 1 1 . - 1 - -
= _ﬁ tr (Q;L(ps)cbv(p:))‘i‘z (l‘i‘m) tr ((Dy_(ps))tr (q)v(P:)) = _ﬁ tr (CD;L(P;)(DV(P:)),

Next, consider W>,
Wy = 2m)*P(p— p' — ps?(p/

= 2m)'sP(p - pf

— P8P W = p— p)G(p + p)G(p) tr (D, (p)TT?) tr (D, (PHT’T).

(AS57)

— P = P)8aadncG(p + p)G(p) tr (D, (p)TT?) tr (B, (p)TT?)

(A58)
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Computing the traces leads to

F agb 7 / bra 1 Im 1
tr (D, (p)TT") tr (D (PTT) = & (ps) ] (Ps)< 8j18kn —

(N 1
“\4 2N

(N 1
“\4 2N

Combining everything and integrating over the § functions yields

)tr(CDM(P )P, (P))-

168 188 158
N jkOnl 2kn im N kiOmn

1
)tr(<1> (ps)®, (pé))—i- tr(@u(l%)) tr (D, ()

(A59)

¢ ~ ~ . - 1 N 1
(Strowzw) ) = —4 f S fp puG(P)G(p + m)tr(%(p»d%(—ps»[ﬁpv + (Z - ﬁ)m + pw)}

~ N / / Db G tr (®,,(p) B0 (—py))

= —N/M(w, D@, 9,6 (@, q) /dfdxtr(qh(f,X)d)u(f,X)),

@2n)?

(A60)

where slow modes have once again been neglected compared to fast modes. Note that the fast integral vanishes if p # v.

Therefore,
2) 2\c dwdq WG w FG(w
((Stewzw) )y = =N 2 ® G’ (w,q) | drdxtr (P.(7, x)P.(7,x)) — N (2 )2 G (w,q) [drdxtr (P.(1,x)Px(1, X))
= —N12/drdxtr(@,(t,x)@,(t,x))—NIg/drdxtr (D, (7, x)D, (7, x)), (A61)
where we have defined the following fast integrals:
dwdq W22 dwdq 2 A2
h= 23 )2 Glw.q) = 2 )2 2 272 4 K 2-8\2’
) (24 /e + S ay|oPP)
dod dwd e
/(2 )Zq2 Gl.0) = (2 )Zq2 2 2702 4 R 2-8)\2" (A62)
T (¢ + 0?2+ hylw*d)

Using the expressions for @, and ®, to simplify the traces
and regrouping similar terms, we get

2\¢
(i)’
k2c*a?

T2\ B

LN, k232
A2\ 82

+N1k lI 1
z\2° 2

I3> /drdxtr <3tg‘v8fg;1>
)/drdxtr ( 0:850x8 )
) f drdxtr <Brgx8xg;1). (A63)

The first two terms contribute to the renormalization of
the gradient term in the action. However, the third term is
unphysical. Indeed, as pointed out in the main text, the opera-
tor tr (0; g 8xg;1) breaks a symmetry from the original action,
since it is not invariant under g(t, x) — g~'(t, —x). This term
is generated due to the fact that when performing the splitting
of the degrees of freedom using the decomposition g = g.gy,
this symmetry is “fractionalized” between the slow and fast
modes and is effectively lost when the latter are integrated
out. For the purpose of the RG analysis, this unphysical term
can thus be dropped from the effective action.

However, by doing the “opposite” decomposition, that is,
g = gr&s» one can easily show that the expanded action to
quadratic order in W is essentially the same as the one de-
rived above, but with the important difference that the sign of

Sl(ﬁt)wz [gs, W] reverses, that is,

Swzlgrgs]
= Swzlgs] + Spowz[8s: W1

ik
= Swzlgs] — g/drdxe,w (gs 18 [8 W, W])
(A64)

which is equivalent to the replacement k — —k (strictly
speaking, there are also a few other minor differences, such
as g;0,g;" instead of g;'9,g,, but these do not affect the
renormalization of any physical term). Hence, doing the RG
with this new decomposition yields the same expression as
Eq. (A63), but with a relative negative sign in the third
term. Therefore, by deﬁnmg the symmetrlzed effective action
Serlgs] = Z(ngz[gg] +S( +lgs]), where S( +[gs] is obtained
using g = g,gr and SEff[gs] comes from using g = grgy, the
unphysical terms cancel, leaving an effective action contain-
ing only terms allowed by symmetries.
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(2)

(d) (e)

(©)

FIG. 9. One-loop Feynman diagrams contributing to ((SI(;)’DB )2);.

Squared dissipation term: Let us next consider the square
of the dissipation term,

((Sl(jt),Dis)z); = (N + L+ )

= (1) + (1)

Pt (Tf); + 2T D)5

+2ATT) + 2BT), (A65)

which can be represented diagrammatically by Fig. 9.

From the Fourier-space expressions of 77 and 75, we see
that the first three terms will contain two slow kernels. There-
fore, terms with three time integrals and two kernels will be
generated. An example of such a term is

/drdr’dr”de(r)K(r’)tr [(1—g'(r" —1)gs(r")

x (1—g ' (x"+1)8(")]. (A66)

where the fields’ x-dependence is implicit. Let us now analyze
the relevance of this term compared to the terms in the initial
action. To do so, we apply the rescaling x — bx, T — b,
where b > 0 and z is the dynamical critical exponent. Using

J

this, we have

fdrdxtr (3:850:8,") ~ b'%,
/dtdx tr (3:8,0:8, ') ~ b*!

1
/‘drdt’dxm tr(l—g"'g) ~ b (A67)
T— 13

(we can take the naive vanishing scaling dimension for the
fields since A, > 0 makes terms even more irrelevant). By
performing the same rescaling for Eq. (A66), we see that it
goes as b' 77233 Therefore, for § < 1 (which is required for
our controlled large-k expansion), this term is less relevant
than the terms in the initial action and thus can be neglected.

Let us now move on to the two terms (7} T3);. and (T2T3)§¢.
T) and T, contribute with a slow kernel, while 73 gives a mixed
kernel containing slow and fast modes. The mixed kernel
needs to be expanded in powers of w; as in the calculation
of (T3) y. Therefore, the resulting contributions will be like the
initial dissipation term, but with additional time derivatives.
For example, at order wf (the first nonvanishing order), we
would have something of the form

/dtdt’dx 2K (t — ') tr (1 — go(7/, x)gs(7, x)), (A68)

which is of course very irrelevant and can be dropped.
Finally, let us compute the expectation value of 7.2,

(1), = kty? / f / f R (o + 0)K(Q + Q,)(tr (Dy(wy, 0}, )W (@, W (-0 — 0; — o], —q — qy))
ws,w},qs Jo,q J R, QL SR,

x tr (Dy(Q, QL W (Q W (—Q — @, — QL —1

— 1))

(A69)

where [ and /; are, respectively, fast and slow momenta. Once again, we start by considering the expectation value

{tr (Ds(ws, @;, go)W (@, YW (0 — 0y — o, =g — g)) tr (Ds(2s, @, LW (Q, DW (=2 — Q5 — @, —1 = 1))}

= (¢ (. PP (0 — 0y — W, —q — 45)P (R, NP (—Q — Qs —
x tr (Dy(wy, !, g)T*T?) tr (Ds(2, Q, I)TTY).

—1— 1)
(A70)
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The calculation of this expectation value is quite similar to the one performed before [see Eqgs. (A55)—(A59)]. Let us denote
the two connected pieces as W) and W,, where

Wi = 2r)*'8(w + Q)8(q + Dé(@ + ws + @, + Q@+ Q + )8(q + g5 + 1 + 1)G(w, 9)G(w + w, + @, g+ q5)
1 3 . 1 1 3 3
X I:_ﬁ tr (Ds(wsv w;7 q&‘)DS(QS? Q;s ls)) + Z (1 + ﬁ) tr (Ds(ws’ w;’ QX)) tr (DS(QS’ Q;’ lS)):| (A71)

and

Wr = )80 — Q= Q,— QD8(g— 1 — )8R — 0 — 0, — @)S( — q — ¢5)G(w, )G(w + w; + ), g + q5)

1 2 - - 1 - -
X I:Z <N - ]v) tr (Ds(wSa w;’ q‘v)D‘v(Qs» Q/ga lv)) + 4_]\,2 tr (Ds(a)sa (1);, qv)) tr (DS(QS, Q;, lv))] . (A72)

By adding the two Wick contractions and integrating over the § functions, we get

(Tf); _ k4y2/

wy, 0}, 2,45

/ K(a)+a)s)G(wa Q)G(a)+a)s+w;vq4‘%)
w.q

1 1 2\ . - -
X |:<_WK(Q) - QY) + Z( - ﬁ)K(a) + Wy + (1); + Szx))tr (D‘v(wxv wf@ qs)DS(QSa —Ws — a)/y - st _qv))

1 1\~ | - -
+ (Z(l + m)K(a) - Qs) + WK(CU + Wy + CL); + Qs))tr (Ds(ws’ w;’ qs)) tr (DS(QS’ —Ws — w: - Qs’ _qs))]
(A73)

We now need to expand the kernels as well as the second propagator in powers of the slow modes w;, w/, €2, and ¢,. Instead of
expanding directly, which would yield a huge number of terms, let us analyze the various possible slow contributions that can be
generated. We will only focus on the term which contains tr (Ds(ws, @, g;)Ds(S2, —w5 — @, — 5, —¢5)), since the structure of

the other term which is proportional to tr (Dy(ws, w,, gs))tr (Dy(R4, —5 — w; — Qj, —qg5)) follows from a very similar analysis

(in fact, it turns out that the contribution from this latter term vanishes as discussed below). At leading order in the slow mode
expansion, the contribution from Eq. (A73) to the effective action for the slow field g; is proportional to

/ tr (D.Y(ws’ w;, q.v)Ds(Qxa —Ws — a); — 4, —q5))
wssw.ﬁ-sﬂm%
— / dridndtidt / dxdy/ tr (Dy(t1, T2, X)Dy(T3, Ta, y))e—iwm e—iw;rze—iq;xe—iﬁstsei(ws+wﬂ+ﬂs)r4eiqjy
@5, 0;,25,q5

- f dridedrdrs f dxdy tr (Dy(t1, T2 XDy (T3, T, 1))8(2s — 71)8(2s — 12)8(ts — 138 — X)

-0, (A74)

which vanishes since Dg(t, T, x) = 0. Next, at linear order in slow modes, all the contributions vanish, since these terms will
also be linear in fast modes, which will yield an odd fast integrand. Therefore, to get a nonzero contribution, we must go to
quadratic order in fast modes. There are various possible combinations. Let us analyze them. First, we could have a term with
w?. Its contribution to the effective action will be proportional to

5. .
/ w; tr (Dy(wy, w;, qs)Dy (824, —wy — a); — Q, —4q5))
s, 0;,25,q5
— / dT[dTQdT3dT4 / d.xdy/ 6032 tr (Ds(fly o, X)DS(T:{, 7, y))e—iwme—iwf\-tze—iqsxe—iﬂmei(ws-&-w.(--&-ﬁs)ueiq;y
Wy, @,y g
_ 2 Lios(t—11) i (Ta—T2) i (1a—T3) ,iqs(y—X)
= dtidtydtidty | dxdy tr (Ds(71, T2, X)Ds(73, 14, )7 € e e e
5,004,245

=— / dtridtdtdt, / dxdytr (Bf]Ds(rl, T, X)Dy(13, T4, ¥))8 (14 — T1)8(1s — T2)8(t4 — T3)8(y — X)

= [ dndudn [ dve @ Do mo0Dm 7 0)50 - M@ - )

-0, (A75)

where integration by parts has been used. With an identical calculation, terms with w/? will be the same as above, except with
832 instead of Btzl , while terms with Q% will contain 833 . Clearly, these terms also vanish for the same reason as above. Therefore,
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we recognize a pattern here: a term with a 73 vanishes if there is no time derivative that acts on the associated D,. Hence, we see
that terms with w,w;, also vanish, since no derivatives will be acting on D,(t3, T4, x).
Let us now look at the contribution from terms with w2, which will contain o, and 9.,. This will be proportional to

/ a)sszs tr (Ds(w_w w;’ qS)DS(QSS —Ws — w; - Q:, _q_v))
Wy, @, 2y, qs
=— / dridrdrdr, / dxdy tr (3, Ds(T1, T2, X)07, Dy (13, T4, ¥))8 (14 — T1)8(14 — 12)8(t4 — 3)8(y — X)

=- / dtidtydtidry, / dxtr (g5 (12, X)0r, g5 (t1, )8y (T4, X)r, 85(13, X)) 8(14 — 1) (T4 — 12)8(4 — T3)

—/drdxtr (g,'9:8:8, " 0:85)

= / drdxtr (3,898, ") (A76)
The contribution from terms with w/€2; is quite similar,

/ i W, tr (Dy(ws, 0}, 4:)Ds(Q5, —0; — @), — Qy, —q5))

@5, 05, 825,45
= — / dtidtdtdr, / dxdytr (arzDs(rl, T2, X)07, Dy (13, T4, y))8(r4 —11)8(t4 — 72)8(14 — 13)8(y — x)
. / dridrydrsdrs / At (B, g7 (12, )2, (71, X085 (T4, 1), (23, 20)8(ts — 18T — T2)8(T4 — T3)
= —/dtdxtr (-8, " g5, ' 9:85)

= —/drdxtr (0:850:8,"). (A77)

All the other possible quadratic terms contain at least a momentum g,. All of these terms will vanish, since g, will yield a
space derivative, which does not prevent the two time coordinates in D, from being the same.

Therefore, we only need to keep track of the terms with w,€2, and ;<2 in the expansion of Eq. (A73). However, since these
two terms have an opposite sign, any contribution from the combination (w; + w})S2; vanishes when expanding Eq. (A73).
Knowing this, we can set w; + w, = g; =0 in G(w+ ws + w;, q+gs) as well as w; + o, =0 in K+ ws + w; + Q).
Moreover, for the remaining nonvanishing contributions, since each D; becomes g; !9, g, (up to an integration by parts), we
see that the term proportional to tr (Dy(ws, Wi, gs))tr (Dy(Q, —w5 — w) — S, —¢q)) also vanishes, since as argued before,
tr(g; ! 0,8s) = 0. Therefore, we are left with

(1), = ky? R0+ )G (@, q) —LI?(w - Q)+ Ywv-2 R(o+ %)
3f g 2N 4 N

@s,04,25,q
X tr (Ds(a)s’ w;, qS)DS(QS7 —QWy — a); - Qsa —%))] (A78)
Expanding the kernels yields
R+ 0)R (0 — Q) @-87 @ oy
(O} a)f w — s %_—_a)ﬁ' N T
‘ @B7) |o?
. N N 2 —8)7 w?
Hence, by using Eq. (A76), we finally get
@) \2\¢ 2\¢ N2=87 4 , @ ~1
<(Slnt,Dis) >f = <T3 >f + .= Wk 14 |a)|2‘3 G (w, Q) drdxtr (8zgsargs ) +---, (A80)
w.q

where the ellipsis denote irrelevant terms.
Mixed WZW-dissipation term: Finally, we must compute the mixed WZW-dissipation contribution
(2) 2 \¢ (2) ¢ (2) ¢ (2) ¢
2<Slnt,WZWSInt,Dis> = 2(Slm,wszl ) I + 2(Slm,WZWT2) I + 2(Slm,WZWT3) I (A81)
which can be represented by Fig. 10.
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(a) (b)

FIG. 10. 1-loop Feynman diagrams contributing to (SI(ELTWZWS&)’DB);.

Let us focus on the first term,

sty =y [ [ [ [ Reoee+a.a,
Wy, W, s v 0,q 55 bs 5

X (tl' (Ds(a)ss C!);, QS)W(CU’ Q)W(—w — Wy — 0);, —-q— Qs))tr (&)M(Qsa lS)W(Q’ Z)W(_Q - Qs: -1 - ls)))?
(A82)

The computation of the expectation value is quite similar to the one in (Tf)?, involving two connected Wick contractions.
After integrating over the § functions, we get ‘

N > .
2Siewaw i), = i Ky / / R(0)Q20 + o + ). 29 + 4,),G(w. q)
4 s, 0, g5 J ,q
X G(Cl) + Wy + (1);, q + CIV) tr (D‘v(wsv a);a CIS)&);L(_C‘)S - w;» _QY)) (A83)
Since there is a slow kernel and a derivative coming from ®,,, we can take the leading order term in the slow modes expansion

c N ~ ~ - -
Z(Sl(gt)’wszl)f ~ lEkzy / / K(a);)(a), CI)MGZ(G), 61) tr (Ds(a)ss a);» CIX)q);L(_a)x - a);, _QS)) =0. (A84)
5,045 Y ©,q

The expression vanishes due to the fact that the fast integrand is odd. Clearly, the exact same thing happens with 7;. Therefore,
let us analyze the third term

sl =2 [ [ [ Rerepeataiai,
Ws,Wg,qs 4 0,4 ssbs s

x (tr (Dy(@y, @}, go)W (@, W (0 — 0y — o, —q = g (D, (2, W (2, DW (=2 — Q, —1 — 1))

(A85)
Computing the expectation value and the integrals over the § functions yields
@) ¢ N o p / X
2<Slnt,WZWT3>f = _lak Y K(w + a)v)(za) + ws + @, 2q + qu);LG(w» q)
www;wq.v w,q
X G(a) + Wy + a);a 61 + CIY) tr (Ds(wa w;» q.v)&)u(_a)x - a);, _q‘v))- (A86)

This time, we need to expand to linear order in the various slow modes, since there is already a derivative in ®,, (the leading
order contribution of course vanishes). As we did before, let us look at the various possibilities one encounters when expanding
Eq. (A86). First, linear terms in w, yield contributions to the effective action for g; proportional to

/ w; tr (Dy(wy, @, ¢5) P, (—w5 — ), —q5))
@5, @G5

= /drldrzdt3fdxdy/ ws tr (Dy(11, rg,x)CDM(Q,y))e”""”"e”"";’ze’iq*"‘ei("’>‘+"’;)’3e’my

W5, qs
=i / dtidtdts / dxdy / tr (Dy(t1, T, X)® (T3, 1))y, €7 @73 772) i =)
@535, 4

= —i/dtldrzdr3 / dxdytr (BTIDS(‘L'l, rz,x)®ﬂ(r3,x))8(r3 —11)8(13 — )8 (x — y)

= i/drldrzd7:3 / dxtr (g;l(tz)angs(tl)QJM(m, x))8(13 —11)8(13 — T0)

= —i/dtdxtr (3:8,"'8:®, (7, x)). (A87)
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For linear terms in w/, the situation is identical, but with 9, instead of 9;,,
/ ) tr (Dy(wy, o), g)P,(—wy — @), —qy))
g, ,qs
=i / dndudrs f dxtr (0,87 (0)ga(2) @ (13, 1)(Ts — T)(Ts — 12)

= ifdrdxtr (8,g;1gx<l>ﬂ(t,x)). (A88)

Finally, it is clear that terms with g vanish, since they will be proportional to tr (9,D,(7, 7, x)®, (7, x)) = 0. Hence, since the
terms with w, and | have an opposite sign, Eq. (A86) becomes

2Stwzw ), & —iNK'y / / K@+ o), 9),G* (@, ) tr (Dy(, 0}, g:)Pyu(—05 — ), —g)) +--+ . (A89)
' @5, 0,45 Y 0,9
The expansion of the kernel at linear order in w; yields
_ 2-9%) o
Ko+w)~-—————wy+---, (A90)
87 |w|®
from which we get, using Eq. (A87),
¢ N@2-=9) 1) ~ -
2(Stawzw D), = 8 kz)// o @ 0 G (o, q)/drdx tr (3.7 ' g5 P (7, X))
®.q
N2-3$ 2
— ¥ka[ 2 o, q)/drdxtr (3:87" 2P+ (7, 1)), (A91)
8m w.q o] ‘
where in the second equality, the fast integral is only nonzero if 4 = 7. Using the expression for @, this becomes
¢ NQ-=8)Kky w? . _
(2) _ 2 1
(St wzw T3) vy fw . |w|5G (, q) / drdxtr (3:8,0-8,")
NQ2-=96) , / 0 / 4
—i——k —G(w, dtdxtr (0 g0y . A92
e C ) Ter (@.q) [ drdxtr(9.8:0.8;") (A92)

Once again, an unphysical term with mixed partial derivatives is generated. It can again be ignored for the rest of the RG
calculation since it drops out from a symmetrized version of the RG [see the discussion right after Eq. (A63)].
Recap: Combining all the contributions we found above, the expectation value of the squared interaction action is
2,452
2) 2 N k=c™x -1
(S lgs W1)7) F = T <12 ~ @y L) | dvdxtr (9.8:0:8,")

N k222 NQ —5) o
— | — ——I. drdxt 8)(?8,(71 —— it 2/ G (o, /ddt 81Y3171
+A2(3 87y 2)/ vt (it ) + S K| e @ (@) | drdxi (usidig)
NQ2 —8) k*y o* .5 i
e G [ drdre @ugang )+ (A93)

where the ellipsis denotes the unphysical terms with mixed partial derivatives (which are neglected, as justified above).

c. Higher-order terms in the cumulant expansion

Higher-order terms in the cumulant expansion, that is, expectation values of higher powers of the interaction action, will yield
other one-loop contributions. However, only irrelevant terms with more derivatives and kernels will be generated, and we can
then stop at quadratic order in the interaction action.

d. Effective action full expression

Therefore, by collecting all potentially relevant terms that have been computed above, the effective action is thus

1 1 B B _ B
Senlgs] = / drdxtr (gargsatgsl + 0:850:8; 1) tr(gy dgs A gy 'dgs A g, 'dgs)

T x
+ kzy/ drdt'dxK(t — t')tr (1 — gy(z,x)g; ' (v/,x)) =K’y Cr I, fdrdr’de(r —t)tr (1 — gy(z,x)g, ' (', %))
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kZJ/CF G(a)v Q)
+—R;42—ma—ayéﬂ :

/drdxtr (3:850:8,") —

e 4A2
(8m)?

)fdrdxtr( 0 850:85 ")

N L —
2c4A2

—ﬁ I—EI /dtdxtr( gagl) N—) by / Gz(w q)/dtdxtr( 8s0:8, )
712 3 (8JT)2 2 x&sO0x&¢ 8(87'[)2 - | | 185018
N2 —9) k2y w? 2 -1
— WZ/ WG (a), q)/drdxtr (Brgsargs ) (A94)
4. B functions calculation NQ2 -8 k?
& Plunctons calenl: | —i—llfﬁwwm,mM>
Having obtained the effective action, we are now in a 16 A |w|?
position to compute the S functions. There will be three of 5 5 5 )
kfyr =ky +k7[1 + (6 — Dzlydl —k“y Ce 1. (A101)

these, from the three terms that are getting renormalized:
9,80.g7", 0,80,g", and the dissipation K(t —t/)tr (1 —
g(t, x)g~ (', x)). Note that the WZ term does not get renor-
malized, as expected, since its coefficient k is quantized to be
an integer.

The B functions are obtained by rescaling space and time
according to

dl

x— bx=ex, 1> b=, (A95)

where b = ¢, with d[ an infinitesimal positive quantity and z
is the dynamical critical exponent. As we will see eventually,
all the terms containing fast integrals (obtained from the one-
loop analysis) will be proportional to d/, so we only need to
rescale terms coming from S[g,] in the effective action. From
a simple power-counting, the following rescaling factors are
deduced for the three § functions:
Spatial derivatives term:

SGrad, spatial ~ / dtdxd? = Factorof b '~ 1+ (z— 1)dl.
(A96)

Time derivatives term:

SGrad, time ™~ /drdxaf = Factorof b'™% = 14 (1 —z)dl.

(A97)
Dissipation term:
Sbis ~ fdrdr’/dx;_
|t — /]38
= Factor of b'TCD7~ 1 4 [14 (85— 1)z]dl. (A98)

Therefore, after applying the rescaling, comparing the ef-
fective action with the initial action yields the following
renormalized couplings:

L_byely N e (A99)
A A 22\7 7 @r)p?
1 1 11—z k*yCr
— = — dl 2—-6)(1-56
(Mg 2 + i + 167 ( X )
G(w, q) N k2c*a?
x i yrel ol e
wq |0l 2¢* A 8m)
2-87 4, /
—N k G?

The B function of a given coupling g is then defined to be
B(g) = &% = dg . Therefore, the next step is to evaluate the
fast 1ntegrals over a frequency /momentum-shell.

However, before doing that, the above expressions can be
greatly simplified in the context of the 1/k expansion. Indeed,
at large-k, all the fixed points should be located at values of
) and y of order 1/k, which is why we introduced the O(k?)
couplings A and 7. Since the Gaussian fixed point (A = y =
0) is relativistic, it has z = 1. Therefore, all the nontrivial fixed
points should have z =1+ % Knowing this, we see that all
the terms on the right-hand side of the above three equations,
except the first one in each case, are all of order k° [recalling
that G(w, q) ~ A ~ 1/k]. Hence, since § = %, we can set § =
0 in all three fast integrals I;, I, and I3 as well as in all the
prefactors appearing in Eq. (A100). Keeping § would simply
add corrections of higher power in 1/k to the B functions. In
this case, the second equation reduces to

1 11—z, kyCr
= dl I
@on T Mt gy
N (, k2c4k21 N _ a2,
26002\ Brr ) T 2@t U
N k*y
— ek (A102)

a. Evaluation of the fast integrals

Let us now evaluate the fast integrals. We have for /,

~ dwd A
I :/ G(w, q) = a
w,q

2 2 k2
Cr)y @ +% + Sryo
We now rescale @ — ¢ w, which means that the integral
becomes

>+ 0(6).

(A103)

dwdq 1

I] =cCcA .
Q) @ + 0 + L2y a?

(A104)

This integral is performed using polar coordinates (w, g) =
p(cos 6, sin B) over the shell b~' = ¢~¥ < p < 1. Hence

2 p
11 2/ d@/ dp
4 - P+z C2Ayp cos? 6

cA 2 1
LTl Ry — _
4n 0 1+ -c?hy cos® 0
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ch dl

27 N = 02)\)/

cA 2
= —w(cAy)dl,

Al
o (A105)

1

\/ l+gc2)\y

The two other integrals are computed using the same method,

where we have introduced the quantity w(c’*Ay) =
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b. B functions

Using the results of the previous section, we thus get
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Using the chain rule, one can write B(A) = —A?8 (%) and

B(c) = —637*,3(62%\) + 2B(+). By using the O(k") variables
introduced previously, we finally get the three 8 functions in
their final form,
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Apparently, we have four unknowns to solve for, namely, the
fixed point(s) values of x, 7, ¢, and Z and only three equa-
tions. However, the fixed point value of the velocity c is not a
universal characteristic of a fixed point, and in fact, each fixed
point should be thought of as a line of fixed points labeled by
a different value of the velocity c. This is similar to the renor-
malization group in other systems; e.g., see Refs. [66,88].
The fact that universal exponents do not depend on ¢ can be
seen by introducing the variables x = ci and y = ¢j. Their
respective B function is then B(x) = cB(X) + AB(c), B(Y) =
cp(7)+ 7B,
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while B(c) is unchanged. S(x) and B(y) are now independent

of ¢ and 7 and can thus be plotted in the x-y plane to locate the

fixed points.

5. Fixed point analysis
a. Solving for fixed points

Let us now find the fixed points of the RG flow equations.
Consider first the relativistic case, where # = 0. Since the
theory is relativistic, Z = 0. For this case, it is more illuminat-
ing to work with the three 8 functions B(), B(c), and B ).
We need to solve (1) = B(c) = B(#) = 0. The last two S
functions vanish, while the condition from the first 8 function

becomes
72 252
0= NcA | cA '
8 (87)?

There are thus two relativistic fixed points, the first one
being the trivial Gaussian fixed point in A = 0. There is also
a nontrivial fixed point in i = 87”. This is in fact a line of
fixed points, as argued previously. This is nothing less than the
WZW fixed point, which can easily be seen by setting ¢ = 1.

We now move on to the case of nonrelativistic fixed points,
for which # > 0 and Z # 0. Note that in this case, there is no

(A116)
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fixed point for % = 0. Therefore, we get the expression for Z
from B(1) =0,

. NcX( (5 — 232 S 2)1"))
ST e \WO) T g e
Nx x2 3
= §<w(xy) — (8n)2w (xy)). (A117)

By replacing the expression for Z in 8(7) = 0, we get the
cubic equation presented in the main text, namely
0=3— 2 (i) - o wen) - L)
=5 — —|wly) — w’(xy) | — —xw(x
g \ ) T gp g Y ) T g Y

=3 — (4Cr + N)u(x, y)+ Nu3(x, y),
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where we have introduced u(x,y) = g-w(xy) = g-(1+

#xy)_l/z. By setting B8(c) = 0 and using the expression for
Z, we get the following second equation:

B i<1 B i><w<xy> ) — o vyw(xy)
167 (87)? 322
2,23 N 3
+ 2(8n)3x yw (xy) + (Sn)zxyw (xy). (A119)

Hence, fixed points are solutions of the above two equa-
tions. This system of equations does not have a compact
solution, and therefore we obtain the positions of the fixed
point(s) numerically (in principle, one may obtain analytical
expressions for the fixed-point values of x and y, but they are
very long and not particularly illuminating).

Let us now focus our attention on the second equation.
By writing xy = Sn(ﬁ -1, x2= (871)21’2—22, u(x,y) can be
expressed solely in terms of w(xy),

. y) = 1_ﬁl—w2(xy)
ey = N 14+ w2(xy)

(A120)

Since x,y > 0, w(xy) respects 0 < w(xy) < 1. From the
above expression, we then see that u(x, y) also respects 0 <
u(x,y) < 1, which puts constraints on the three solutions of
Eq. (A118). Again, the closed-form expressions are not very
illuminating and therefore we do not write them down ex-
plicitly. Nevertheless, one can easily see that one solution is
always negative and is thus unphysical. The two other solu-
tions are always non-negative, as we can see from Fig. 2 in the
main text, and correspond to the two possible dissipative fixed
points. However, there are three different regimes, depending
on the value of §: (i) For 0 < § < 4Cr, one of the solutions
has u(x,y) > 1, and is therefore unphysical since the asso-
ciated fixed point has y < 0. This corresponds to the regime
with only a dissipative critical point. (ii) When § > Syux =

ﬁg “CFN—“V)S, the two solutions of the cubic equations are

complex and there are thus no dissipative fixed points. Sypax
is the value of § where the discriminant of the cubic equa-
tion vanishes and where the fixed point annihilation occurs.
(iii) Finally, for 4Cr < 8 < Smax, the two solutions of the
cubic equation are physical, which corresponds to the regime
with two dissipative fixed points: the unstable dissipative crit-
ical point and a new stable dissipative phase.

b. Adding a magnetic field

Our goal is now to compute universal quantities at the
aforementioned fixed points. To obtain the scaling dimension
of the primary field g, a “magnetic field” term is added to the
action

Sulgl = h/dtdxtr (g+gh, (A121)
which breaks the SUN);, ® SU(N)g symmetry down to its
diagonal SU(N) subgroup. Splitting slow and fast modes and
expanding to quadratic order in W, it is easy to see that

Sulgl = Sulgs] + 52, g0 W1 = / drdxtr (g, +g)

+ g/dtdxtr((gs +g, " YW?). (A122)

Writing the interaction action in Fourier space yields

h 3 L
Stanlgs, W1 = 5/ /tr(Bs(ps)W(p)W(—p—ps)),
s Y P
(A123)

where B,(t, x) = g, + g, '. Let us then find the renormaliza-
tion equation for 4. At 1-loop, we have

S8l = Sulgs] + (Siplalgs W)+ (A124)

The computation of the expectation value is straightfor-
ward,

(Siaoales W1),

[ BT T )d —p = po)y
- 2 ps Yp s ! g " !
__h / G(p) tr (B(O)TT?)

2 4

h
=—5Crh /dtdxtr (g +7')- (A125)
After rescaling by ! ~ 1 + (1 4 z)d! and using the ex-
pression for /; derived before, we get the following § function
for h:

_ Ny CF it 2
B(h) = <2+ k)h o rCHhw (i) + 01 /K

= (2 + i)h — ixh w(xy) + O(1/k%).  (A126)

4k

¢. Dynamical critical exponent and scaling dimensions

We are now in a position to compute universal quantities
at the different fixed points. We will focus on the dynami-
cal critical exponent z, the scaling dimension of g, A, and
the scaling dimension of the energy density operator € =
tr (50:80:87" + 0xg0:g™ "), Ac.

First, the dynamical critical exponent z = 1 +; is ob-
tained directly using Eq. (A117), evaluated at the various fixed
points. Next, to compute A, we need the eigenvalue ¢;, which
is computed using B(4). By replacing the expression for Z in
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Eq. (A126), we get
2 1[ Nx ) x2
e, — | — 1 wlx —
h k| 8z \"" T (8x)2
+ 0(1/K),

C
w%xy)) - gw(xy)}

(A127)

which needs to be evaluated at the various fixed points. The
scaling dimension A, is then given by A, =14z —¢, =
L(z — &), where we have defined ¢, = 2 + 2. Finally, the
calculation of A, requires the diagonalization of the following

2 X 2 matrix:
ay/g (x)
ayﬁ()’)

B (x)
M, =
(axﬂ@)

In general, this matrix does not have vanishing entries,
which means that the energy density operator € (associated
with coupling x) and the dissipation operator (associated with
coupling y) mix among themselves. Therefore, the energy
density operator is a linear combination of the two scaling
operators O, and O_ (eigenvectors of the above matrix),
which have an associated eigenvalue e and e_, respectively,
where e, > e_. Following [89], the scaling dimension of the
energy density operator is then given by A, =14z —e; =
24 Lz —2y) withey = &

Let us compute these quantities at the various fixed points.
We start with the trivial Gaussian fixed point, which has x* =
y* = 0. Since it is relativistic, z = 1 (Z = 0). For the scaling
dimensions, we get A, =0 and A, =2. We now move to
the WZW fixed point, located at x = 8z, y = 0. It is also a
relativistic fixed point thus z = 1. The scaling dimensions
are A, = % = % and A, =2+ 2X. These two results
of course agree with the large-k expansmn of the exact ex-
pressions, A, N(Nj;() and A, = ‘%iik, as they should [55].
Moreover, note that for these two relativistic fixed points, the
energy density operator is a scaling operator.

Finally, we must proceed numerically for the two dis-
sipative fixed points since their position cannot be easily
obtained analytically. Figure 3 in the main text depicts critical
exponents accurate to O(1/k) at these two fixed points. As
already mentioned, due to operator mixing, the biggest of the
two eigenvalues must be selected to compute A.. The limit
8 — 4Cr (when the stable dissipative fixed point approaches
the WZW fixed point) is interesting since A. at the stable
fixed point seemingly approaches 2, accurate to O(1 /k) This
may seem contradictory with the fact that A, =2+ T at
the WZW fixed point. The resolution of this is as follows:
as 8 — 4Cp, the overlap between the energy density operator
€ (associated with coupling x) and the scaling operator with
the dominant eigenvalue (i.e., O, in our notation) approaches
zero, and exactly at § = 4Cp, € = O_. Therefore, only at
§=4Cr, Ac =14+z7—e_ =2+ ZTN, which agrees with the
expression for the scaling dimension of the energy operator at
the WZW fixed point.

(A128)

(e, y)=(x*y*)

6. Relation between 7 and z

One can derive the relation between Z and A, presented in
the main text using 8(#) and B (k). Indeed, by setting S(7) =

0, we get

(o2

Cr - -
0=138—%— —ciw(®ip). (A129)
2
Moreover, as illustrated in the previous section, S(h) al-
lows us to compute the eigenvalue e, which is itself related

with the scaling dimension of g,

Ag=1+z—eh=2+3—2—[5

p C—ckw(czky)i|

k 4wk
Cr -~ -

= L chw(ip). (A130)
drk

By isolating w and replacing in Eq. (A129), we arrive at
the desired expression

7 =3 —2kA,. (A131)

This relation only holds at O(1/k). An exact expression
valid to all orders can be argued for by requiring the dissi-
pation term to be scale-invariant. By applying the rescaling
x — bx, T — b*t, the following condition must be satisfied:

0=14z(—-1)—2A,. (A132)

Using the fact thate, =14+z—Ayand n=1+4+2+2—
2e,, where 7 is the anomalous dimension of g, one arrives at

_2=m (A133)
=55

Expanding Eq. (A132) [or Eq. (A133)] to leading order 1/k
yields Eq. (A131).

APPENDIX B: RG ANALYSIS OF
THE RELATIVISTIC THEORY

This Appendix details the RG analysis for the relativistic
theory. The calculation is very similar to the nonrelativistic
case, so only the main differences and key points are dis-
cussed.

1. Expanding in slow and fast modes

The expansion in slow and fast modes proceeds exactly
as in the nonrelativistic case. Once again, the resulting ac-
tion is grouped into three terms: S[g,gs] = Slgs] + SP[W] +

Sl(ft) [gs» W]. The first term is the initial action evaluated at

g g.ﬁ
S[gs] = SGraalgs] + Swzlgs] + Spislgs]

= %/dzrtr (augsaug;l)

ik
+ —

o tr (g, 'dgs A gy dgs A gyl dgy)

+ Ky / d’rd* K(r —r)tr (1 — g,(r)g; " ().
B1)
The second term is purely quadratic in W,

SPW] = SGoalW1+ Sp[W]

__l 2 2 2.2 e
=3 droc(0,WoW)—k’y | drdrK@r—r’)
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1 d*p - - .
= / P 5 ()T (p) — Ky R(p)F (—p)

(27 )?
1 d2p Ta ~—1 Ta
=3 (2ﬂ)2¢ ®G (P (—p), (B2)
where
A > & [
Hp)=N({p)= =, KP)=Kp)=—-5=p~°, B3
P 8

and the fast propagator is then

A

Gp) =55 (B4)
P+ g hyp

Note that the prime notation now stands for W = W (r'),
with ¥ = (7/, x). Finally, the interaction term is

S8 W1 = S{xwawlgs W1+ 810 [85, W1
— [ @re@, W
+ Ky / d’rd’rK(r — r)tr

2 /2
x [(IL - g;‘lgs)<W7 + Wz - WW’)],

(BS)

where

1 ik
o, =g (—3,1 _ l—eMuE)U)gs. (B6)
A 8

2. Fourier representation of interaction terms

The Fourier representation of the two interaction terms is
almost identical to that in the nonrelativistic case,

(2)
SInt,WZW [gs s W]

i / f 2Py + o) (@, (PO (P (—p — p)).
s VP
(B7)
SinoisLs: W1

=T1+T2+T3=k2y

—

[«
PP
~ V2 I ~
X W(—p—p,—p,)) EK(pS) + EK(ps) —K(pp+py) ),
(B8)
where we have defined Dy(r, ') = 1 — g, ' (r')g,(r), while fp

is a shorthand for | %.

3. Integration of fast modes

We proceed with the cumulant expansion as in the nonrel-
ativistic case.

a. Order 1 in interaction action

We start with the expectation value of the interaction
action. Let us focus first on the dissipative terms. The expec-
tation values of 77 and 7> are essentially the same as before,

k2
(T, = (B); = —Tycm

x / d’rd’r Kr—r)uw(l—g'g),  (BY)

where I} = fp G( p). For Tz, the main difference is the expan-
sion of the mixed kernel. Expanding to quadratic order in p;,
we get

2-8pF 82-8)(p-p,)
) E - ) Pt

(B10)

7 IR B
(p+py) |7 +
+ s

where the ellipsis denote higher-order terms in p, as well as
linear terms, which have a vanishing fast integral. As in the
nonrelativistic case, the contribution to (73) ; from the leading-
order term vanishes. Since we still need § ~ 1/k to control the
expansion, the third term is of higher order in 1/k and is thus
dropped. In this case, we get

(2-9) G(p) -
167 Csz)/ /;: 7 / d’rie (altgsaugs 1)'

(B11)

(T3), =

Natur.ally, we still hav.e <S1(r%t),WZW[gS’. W]') ¢ = 0. Hence, the
expectation value of the interaction action is

(s2s.. W),
~ —k*yCr 1, / d’rd’r K(r—r)u (1 — g,8,7")

szCF

+871

I / d’rtr (3,8,9,8,') + 0(8),  (BI2)
where the higher-order terms in § have been dropped.

b. Order 2 in interaction action

We now move to the expectation value of the square of the
interaction action. We only need to focus on the same three
contributions as in the nonrelativistic case, since all the other
terms either vanish or are irrelevant. For the square of the
WZW action, we get

((SI(I?EWZW)2>; = _N/P;LPVGZ(P) fdzrtr (@M(r)d)v(r))
V4
N .
- —E/pszz(p)/dzrtr(GJM(r)dDM(r))
(B13)

_ _’;12 f &ric (0,1, (),

where rotational invariance has been used, while I, =
J,P*G*(p). Using the expression for ®,, the trace
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yields

I ik 1 1 ik 1
tr (¢, ®,) =tr ng 0u8s — 8_7_[6“1)85 0,85 ng 0u8s — S_neupgs 0085

| -1 ik -1 -1 -1 -1 k> —1 —1
=1r Eg; B/Lgsgs a,u,gs - ﬁfuv(g‘y 3Mgsgs 31;85 + 8 3Vgsgs aﬂgé) — Welweﬂﬁgs avgsgs a,ogs
1 k222 .
=1 &)t (0,,8:0,87")- (B14)
Hence
@ e _ N k232 2 i
((Siewaw) [y = 535 ( 1= g )2 | 47rtr (ugidus,”)- (B15)

We now move on to the expectation value of the square of the dissipation term. As in the nonrelativistic case, only (T32);L
contributes. Following the same steps as before, one finds that

(), ~ Ky f f K(p+p)G(p)
P PSP
1 1 N 1 > 1" ~ NS 1" ’ i
X [(-EK([’ _py) + (Z - EV)K(p +p§' )> tr(DS(psv Ps)Ds(PS’ —Ps — Dy — D ))i| (B16)

Similar to the nonrelativistic case, the nonvanishing contributions, when expanding in terms of the slow modes, are proportional
to

/ Psuprott (Ds(py, PODs (P!, —py — P, — P)) = f d’rir (3,8:9,8, "), (B17)
) 2094

/ 7/ S 7\ 1 /7 / 77 2 —1

Pl tr (Dy(py. OB —p, — . — P)) = — / Pric (39,8008, (B18)

PssPsPY

From this, we get

¢ N@Q2-8) PubPv ~ _
2\¢ __ 4,2 [ 2 1

N
T 2(87)?

Ky / drir (9,8:0,87") + 0G),  (BIY)

where rotational invariance has been used.
Finally, the last contribution comes from the mixed term 2(51(33 wzw 3) %

c N 7> / ~ > ’ ~ 4 ’
25Ty = ~i5 K [ [ R+ 0o+ b+ 5,IGICE+ b+ 5 Doy BB p, ~ B, (B20)
P Jps.p;

The nonzero contributions when expanding to linear order in the slow modes are proportional to

/,, R (Ds(py, PO®u(=ps — D)) = —i / d’ri (3,8, '8®,), (B21)
f,, P Dupe PO®(—py = p)) = f d’rir (0,8, 8:®y). (B22)

Performing the slow mode expan;ic;n then yields
2SS T, = N (z;S)kzy /,, P ;f " G2(p) / d’rir (0,87 g,®,,) = %kzylz / d’rir (9,87 g.®,) + 0(),  (B23)

where rotational invariance has once again been used in the fast integral. Let us simplify the trace

B 1 ik
tr (9,8, ' &®y) =tr [augs lgs<;gs 10,8 = g8, ‘3ugs>}

ik
tr (augsaugzl) - Sl_nelw tr (augzlavgs)

tr (8ﬂgsaﬂgs_1), (B24)

> = > =
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where the second term vanishes since tr (3, g;'9,gs) = tr (3,¢;'9,g). Hence

c N kzj/
2 _
2SR wrwTs), = = b / d*rir (9,898, ). (B25)
Therefore, the expectation value of the square of the interaction action is
292
@ 2e _ N k= 2 - 4,2 2 -1
((Stc L W1) >f = m(l T Gny L | drtr (0,8,0,8,") + 2@ )2k y’L | d’rir(0,8,9,8;")
N k
+ S—Tylzfdzrtr (0,.850.8;")- (B26)

Note that in the relativistic case, the unphysical terms with mixed partial derivatives are not generated, since these would break

Lorentz invariance.

c. Effective action full expression

The effective action at 1-loop is thus

1
Seelgs] = / d’rir (9,8:9,8,")

ik
4+ —

o tr(g,'dgs A g, 'dg, A g, 'dgy)

+ K%y / d’rd* K(r —r)tr (]1 - gs(r)gs_l(r’))
— Crk*y I f d’rd*r K(r —r)ir (1 — g,(r)g; ' ()

Crk*y _
o / d’rir (9,8:9,8;")

(1
4(8 2

- — D / d’rtr (8;Lgsaﬂgs_l)'

+

k*)?
(Sn)2>12/d2rtr (9,850,8,")

K 212/d27tr (a,ugsaugs_])

(B27)

As in the nonrelativistic case, higher-order terms in the cumu-
lant expansion yield irrelevant terms which can be neglected.

4. B functions calculation

From the effective action, we see that tr (3,g9,8~") and
K@ —r)tr (1 —gr)g ' (') will be renormalized. The g
functions for A and y are obtained by rescaling r — br,
with b = ¢?. Once again, only terms coming from S[g,] are
rescaled, since the fast integrals will be proportional to d!.
The gradient term is scale invariant and does not pick up any
factor of b, while the dissipation term picks up a factor of
b ~ 1+ 8dl.

a. Fast integrals

—dl

The fast integrals are evaluated over a shell b~! = ¢~ <

p < 1. For I}, we have

d? A
n=| Lt ————+00
27)* p + g Avp

A 2w 1 p A 1
=2 | ap—E— =l
47 0 e—dl p2 + gkypz 2 1+ —)\,y

8
A
= —F(\y)dl, (B28)
2
where F(Ly) = Hé
d’p 222
L= + 0(6)
P @AY (g gy )
2
] [
= 4n? ol P +k)n)/p)
—dl = —F (Ay)dl. (B29)
T (1 + gky) 2

b. B functions

The B functions for the two couplings are obtained fol-
lowing the same procedure as in the nonrelativistic case. It
will be again useful to introduce O(k®) couplings A = kA and
7 = ky. One finds

)= 1[1\/)12 1— i F? Ny F (7
B( )—z g( (871)2) sAVEQY)
Y4 ~2 2
+ (87{)3/\ 7F o VyF (M/)}
+ O(1/k%), (B30)
~ CF 2
B({7) = [8 - EM/F(/W)} + O(1/k7), (B31)
with F (A7) = 1+ixr

T

5. Fixed point analysis
a. Solving for fixed points

Solving B(X) = B(7#) =0, we find three fixed points.
There is the trivial Gaussian fixed point at A = % = 0 and the
WZW fixed point at A = 87 and # = 0. The fixed point of our
main interest is the dissipative fixed point located at

1287C28

B (16C} — 32)N
 64C} — 16CEN + N2’

16C23

‘}/:

>

. (B32)
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Note that this fixed point only exists for § < 4Cr. When
8 > ACp, the WZW fixed point becomes unstable, similar to
the nonrelativistic theory, the main difference being that now it
becomes unstable towards a fixed point at  — oo in contrast
to the nonrelativistic case, where it became unstable towards
the fixed point corresponding to the stable, dissipative phase
[see Fig. 1(b) of the main text].

b. Scaling dimensions and critical exponents

The calculation of A, is once again done by adding a
magnetic field to the action. The resulting 8 function for A
is

Cr ~ _ -
B(h) = 2h — ——FhF (.9) + O(1/k2), (B33)
4k
from which we get the magnetic field eigenvalue
Cr ~ =~
en=2— —3FGy), (B34)
Ark

which must be evaluated at the various fixed points. For
the scaling dimension of the energy density operator € =
tr (3,89,g"), we must obtain the eigenvalues of the following
2 x 2 matrix:

M. =

Ay

(?kﬁ(i) ©35)

3;7/3(5»)>
B8(7)

Ay B(V)

G, p)=x,7%)

At the two relativistic fixed points (Gaussian and WZW),
the two scaling dimensions are identical as in the nonrela-
tivistic theory. However, for the dissipative fixed point, we
can this time obtain closed-form expressions. For the scaling
dimension of g, we get

)
Ay = —, B36
¢ = op (B36)
while the eigenvalues of the above 2 x 2 matrix are
—NB 4 5,/N(1024C} — 64C}52 + N5)
ey = . (B37)

64C3k

As in the nonrelativistic case, the eigenvalue contributing
to the scaling dimension of the energy density operator is the
biggest, that is e. Therefore, we find

Ac=2—e, =2+ [N§*

64C3k

— IN(1024C3 — 64C352 + N3] (B3®)

Once again, as § — 4Cr, we see that A, approaches 2 #
2+ ZTN, the value at the WZW fixed point. The reason is
identical to the nonrelativistic case: as 8 — 4Cp, the overlap
between the energy density operator and the scaling operator
with the dominant eigenvalue approaches zero, and therefore
at § = 4Cr the scaling dimension of the energy operator
matczl}\?s with what is expected for the WZW CFT, namely
2+
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