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We study quantum many-body mixed states with a symmetry from the perspective of separability,

i.e., whether a mixed state can be expressed as an ensemble of short-range-entangled symmetric pure

states. We provide evidence for “symmetry-enforced separability transitions” in a variety of states, where

in one regime the mixed state is expressible as a convex sum of symmetric short-range-entangled pure

states, while in the other regime, such a representation is not feasible. We first discuss the Gibbs state

of Hamiltonians that exhibit spontaneous breaking of a discrete symmetry, and argue that the associated

thermal phase transition can be thought of as a symmetry-enforced separability transition. Next we study

cluster states in various dimensions subjected to local decoherence, and identify several distinct mixed-

state phases and associated separability phase transitions, which also provides an alternative perspective

on recently discussed “average symmetry-protected topological order.” We also study decohered p + ip

superconductors, and find that if the decoherence breaks the fermion parity explicitly, then the resulting

mixed state can be expressed as a convex sum of nonchiral states, while a fermion parity–preserving

decoherence results in a phase transition at a nonzero threshold that corresponds to spontaneous breaking

of fermion parity. Finally, we briefly discuss systems that satisfy the no low-energy trivial state property,

such as the recently discovered good low-density parity-check codes, and argue that the Gibbs state of

such systems exhibits a temperature-tuned separability transition.

DOI: 10.1103/PRXQuantum.5.030310

I. INTRODUCTION

Suppose one has the ability to apply unitary gates that

act in a geometrically local fashion on a many-body sys-

tem. Starting from a product state, a specific circuit com-

posed of such gates results in a specific pure state, and an

ensemble of such circuits can therefore be associated with

the mixed state ρ =
∑

i pi|ψi〉〈ψi|, where the pure state

|ψi〉 is prepared with probability pi. If one is limited to

only constant-depth unitary circuits, then the correspond-

ing mixed state can be regarded as “short-range entangled”

(SRE) or “trivial” [1,2], which generalizes the notion of a

short-range-entangled pure state [3–8]. In parallel with the

notion of symmetry-protected topological (SPT) phases for

pure states [9–12], it is then natural to define a trivial or

SRE symmetric mixed state [a symmetric and SRE (sym-

SRE) state] as one that can be obtained from an ensemble

of pure states, where each element of the ensemble is pre-

pared with only a constant-depth circuit consisting of local,
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symmetric gates under some given symmetry. Motivated

by experimental progress in controllable quantum devices

where both unitary quantum dynamics and decoherence

play an important role [13–16], we explore in this paper

mixed-state phase diagrams where in one regime a mixed

state is sym-SRE, and in the other regime, it is not. We

call such phase transitions “symmetry-enforced separa-

bility transitions,” since a sym-SRE state is essentially

separable [1] (i.e., a convex sum of unentangled states)

up to short-distance correlations generated by constant-

depth unitaries. In the absence of any symmetry constraint,

analogues of such transitions were recently studied in

Ref. [17] in the context of decohered topologically ordered

mixed states [18–22]. To make progress, we try to lever-

age our understanding of the complexity of preparing pure

many-body states using unitaries. Some of the questions

that will motivate our discussion are as follows: Do there

exist separability phase transitions when pure-state SPT

phases are subjected to decoherence, and if the answers

is “yes,” what is the universality class of such transition?

When a 2D chiral pure state (e.g., the ground state of an

integer quantum Hall phase) is subjected to local deco-

herence, can the resulting density matrix be expressed

as a convex sum of nonchiral states? Can the conven-

tional, finite-temperature phase transitions corresponding

to the spontaneous breaking of a global symmetry be also

thought of as separability transitions?

2691-3399/24/5(3)/030310(32) 030310-1 Published by the American Physical Society



YU-HSUEH CHEN and TARUN GROVER PRX QUANTUM 5, 030310 (2024)

As an example, consider the transverse-field Ising model

on a square lattice. We provide an argument (Sec. III)

that the Gibbs state for this model can be prepared with

use of an ensemble of finite-depth local unitary circuits

at all temperatures, including at T ≤ Tc, where Tc is the

critical temperature for spontaneous symmetry breaking.

It is crucial here that one is not imposing any symmetry

constraint on the unitaries. This is consistent with pre-

vious work [23–25] where evidence was provided that

the mixed-state entanglement corresponding to a Gibbs

state that exhibits spontaneous symmetry breaking remains

short-ranged at all nonzero temperatures, including at the

finite-temperature critical point (assuming the absence of

any coexisting finite-temperature topological order). How-

ever, if one allows access to an ensemble of short-depth

unitary circuits composed of only Ising symmetric local

gates, then using results from Ref. [21], we provide a rig-

orous argument that the Gibbs state cannot be prepared

for any T ≤ Tc. We expect similar results to hold for

other symmetry-broken Gibbs states as well. Therefore, the

conventional, finite-temperature symmetry-breaking phase

transition in a transverse-field Ising model can be thought

of as a symmetry-enforced separability transition. This

statement is true even when the transverse field is zero (i.e.,

for a classical Ising model)—the quantum mechanics still

plays a role since the imposition of symmetry implies that

one is forced to work with “cat” (GHZ) states, which are

long-range entangled (LRE).

In the context of pure states, a well-known example

of symmetry-enforced complexity is an SPT phase whose

ground state cannot be prepared with use of a finite-depth

circuit composed of symmetric local gates [9–12]. Recent

studies have provided a detailed classification of SPT

phases protected by zero-form symmetries that are being

subjected to decoherence with use of spectral sequences

and obstruction to an SRE purification [26,27]. Progress

has also been made in understanding nontrivial decohered

SPT orders with use of string operators [28] and “strange

correlators” [29,30], concepts that were originally intro-

duced to characterize pure SPT states [10,31,32]. Here

we are interested in understanding decohered SPT states

from the viewpoint of separability, which, as we discuss

in Sec. II, is a notion of entanglement of mixed states

different from that based on SRE purification considered

in Refs. [26,27]. As hinted above, we define a symmet-

ric, LRE (sym-LRE) state as one that does not admit a

decomposition as a convex sum of pure states that can all

be prepared via a finite-depth circuit made of symmetric

local gates. If this is the case, it is interesting to ask if

there exist separability transitions between sym-LRE and

sym-SRE states as a function of the decoherence rate, anal-

ogous to the phase transitions in mixed states with intrinsic

topological order [17]. We will not consider a general SPT

state, and will focus primarily on cluster states in vari-

ous dimensions to illustrate the broad idea. A key step in

our analysis is the following result, which was also briefly

mentioned in Ref. [17] and which we discuss in detail in

Sec. IV: for a large class of SPT orders, including the

cluster states in various dimensions, a Kitaev chain in on

dimension, and several 2D topological phases protected

by zero-form Z2 symmetry, one can find local, finite-depth

channels that map the pure state to a Gibbs state. We dis-

cuss decoherence-induced separability transitions due to

such channels in Sec. IV.

When trying to understand the complexity of mixed SPT

states, we will often find the following line of inquiry help-

ful. One first asks whether our assuming that a mixed state

is trivial (i.e., decomposable as a convex sum of SRE pure

states) leads to an obvious contradiction. If the answer is

that it does, then we already know that the mixed state

is necessarily nontrivial. In this case, there may still exist

interesting transitions between two different kinds of non-

trivial mixed state, and we will consider a couple of such

examples as well. On the other hand, if the answer is that

it does not, we will attempt to find an explicit decomposi-

tion of the mixed state as a convex sum of SRE states. The

aforementioned relation between local and thermal deco-

herence will again be instrumental in making analytical

progress.

As an example, consider the ground state of the 2D

cluster-state Hamiltonian H subjected to a local channel

that locally anticommutes with the terms in the Hamilto-

nian. One can show that the resulting decohered state ρd

takes the Gibbs form: ρ ∝ e−βH , where tanh β = 1 − 2p

and p is the decoherence rate. In this example, H has

both a zero-form and a one-form Ising symmetry. We

will provide arguments that this system undergoes a sep-

arability transition as a function of p: for 0 < p < pc,

ρ cannot be decomposed as a sum of pure states that

respect the aforementioned two symmetries, while for

p > pc, such a decomposition is feasible. Moreover, for

p > pc we will express ρd explicitly as
∑

m pm|ψm〉〈ψm|,
where |ψm〉 are pure, symmetric states that are statisti-

cally SRE. More precisely, one can define an ensemble-

averaged string correlation, [〈SC〉2] ≡
∑

m pm〈SC〉2
m, where

〈SC〉m = 〈ψm|SC|ψm〉/〈ψm|ψm〉 and SC is a string opera-

tor whose nonzero expectation value implies long-range

entanglement. We will show that [〈SC〉2] precisely corre-

sponds to a disorder-averaged correlation function in the

2D random-bond Ising model (RBIM) along the Nishi-

mori line [33]. Therefore, in this example, the separa-

bility transition maps to the ferromagnetic transition in

the random-bond Ising model. For the 3D cluster state,

we will find an analogous relation between separability

and 3D random-plaquette Ising gauge theory. We note

that similar order parameters and connections to statisti-

cal mechanics models also appear in the setting of mea-

surement protocols to prepare long-range-entangled SPT

states [34,35]. We briefly discuss the connection to these

studies.
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As another by-product of the relation between local

decoherence and Gibbs states, we also study a recently

introduced nontrivial class of mixed states that are

protected by a tensor product of “exact” and “average”

symmetries [26–29]. One says that a density matrix ρ

has an “exact symmetry” if UEρ ∝ ρ for some unitary

UE , while it has an “average symmetry” if U
†
AρUA = ρ

for some unitary UA. References [26–29] provide several

nontrivial examples of such mixed-state SPT orders by

showing that they possess nontrivial correlation functions

and/or cannot be purified to an SRE pure state. Here we

focus on examples of such states that are based on cluster

states in various dimensions, and using locality/the Lieb-

Robinson bound [36–38], we show that the corresponding

mixed states cannot be written as a convex sum of sym-

metric, pure states. For a 1D cluster state, we also provide

an alternative proof of nonseparability by using the result

from Ref. [39] that in one dimension if a state has an aver-

age Z2 symmetry, and its connected correlation functions

are short-ranged, then the corresponding “order parame-

ter” and the “disorder parameter” cannot both be zero or

nonzero at the same time.

In Sec. V we consider fermionic chiral states subjected

to local decoherence. We primarily focus on the ground

state of a 2D px + ipy superconductor (p + ip SC) as our

initial state (we expect integer quantum Hall states to have

qualitatively similar behavior). We first consider subject-

ing this pure state to a finite-depth channel with Kraus

operators that are linear in fermion creation/annihilation

operators, so that the decoherence breaks the fermion-

parity symmetry. In the pure-state classification of topo-

logical superconductors, fermion parity is precisely the

symmetry responsible for the nontrivial topological char-

acter of the p + ip SC [40,41]. Therefore, it is natural

to wonder about the fate of the mixed state obtained

by breaking this symmetry from exact down to average.

One potential path to make progress on this problem is

to map the mixed state to a pure state in the doubled

Hilbert space by means of the Choi-Jamiołkowski (CJ)

map [42,43] (we call such a state the “double state,”

similar to the nomenclature in Ref. [20]). There are inter-

esting subtleties in applying the CJ map to fermionic

Kraus operators that we clarify. Following the ideas in

Refs. [18,20,22,29], one may then map the double state

to a (1 + 1) D theory of counterpropagating free confor-

mal field theories (CFTs) coupled via a fermion bilinear

term, which is clearly relevant and gaps out the edge

states in this doubled picture. However, a short-depth chan-

nel cannot qualitatively change the expectation value of

state-independent operators [i.e., tr(ρO), where O is inde-

pendent of ρ] [18,19], and it is not obvious what the

gapping of edge modes implies for the actual mixed state.

We conjecture that the physical implication of the gapping

of the edge states in the doubled formulation is that the

actual mixed state can now be expressed as a convex sum

of SRE states with zero Chern number, which is equiva-

lent to the statement that they can be obtained as a Slater

determinant of Wannier states, unlike the pure p + ip

state, where such a representation is not possible [44–46].

Therefore, the transition from the pure state to the mixed

state can be thought of as a “Wannierizability transition.”

We consider an explicit ansatz of such a decomposition,

and provide numerical support for our conjecture by calcu-

lating the entanglement spectrum and modular commutator

of the pure states whose convex sum corresponds to the

decohered density matrix.

A more interesting channel that acts on the 2D p + ip

SC corresponds to Kraus operators that are bilinear in

fermion creation/annihilation operators. To make progress

on this problem, we use the CJ map to obtain a field-

theoretic description for this problem in terms of two

counterpropagating chiral Majorana CFTs interacting via a

four-fermion interaction, where the strength of the interac-

tion is related to the strength of the interacting decohering

channel. This theory admits a phase transition at a criti-

cal interaction strength in the supersymmeteric tricritical

Ising universality class, which can be thought of as cor-

responding to spontaneous breaking of the fermion parity.

Although we do not have an understanding of this transi-

tion directly in terms of the mixed state in the nondoubled

(i.e., original) Hilbert space, it seems reasonable to conjec-

ture that at weak decoherence, the density matrix cannot be

expressed as a convex sum of area law–entangled nonchi-

ral states, while at strong decoherence, it is most naturally

expressible as a convex sum of states with GHZ-like char-

acter that originates from the aforementioned spontaneous

breaking of the fermion parity.

Incidentally, the kind of arguments we consider to rule

out sym-SRE mixed states in the context of symmetry-

broken phases or SPT phases also finds an application

in an exotic separability transition where symmetry plays

no role. In particular, we consider separability aspects

of the Gibbs state of Hamiltonians that satisfy the “no

low-energy trivial state” (NLTS) condition introduced by

Freedman and Hastings [47]. Colloquially, if a Hamilto-

nian satisfies the NLTS condition, then any pure state with

energy density less than a critical nonzero threshold cannot

be prepared by a constant-depth circuit. Recently, Anshu

et al. [48] showed that the “good low-density parity-check

(LDPC) code” constructed in Ref. [49] satisfies the NLTS

condition (we note that “good LDPC codes” [49–51] have

the remarkable property that both the code distance and the

number of logical qubits scale linearly with the number of

physical qubits). Anshu et al. [48] showed that the NLTS

condition holds also for mixed states, if one defines the

circuit depth of a mixed state as the minimum depth of the

unitary needed to prepare it by acting on system ⊗ ancillae,

both initially in a product state, where the ancillae are

traced out afterwards [52]. Under such a definition of a

nontrivial mixed state (namely, a mixed state that cannot
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be prepared by a constant-depth circuit under the afore-

mentioned protocol), even mixed states with long-range

classical correlations (e.g., the Gibbs state of 3D classical

Ising model) would be considered nontrivial. In contrast,

under our definition of a nontrivial mixed state, such clas-

sical states will be trivial since they can be written as a

convex sum of SRE states. Therefore, we ask the following

question: assuming that one defines a trivial (nontrivial)

mixed state as one that can (cannot) be expressed as a

convex sum of SRE states, is the Gibbs state of a Hamil-

tonian that satisfies the NLTS property nontrivial at a low

but nonzero temperature? Under reasonable assumptions,

in Sec. VI we provide a short argument that this is indeed

the case. This implies that one should expect a nonzero

temperature separability transition in such Gibbs states.

In Sec. VII we briefly discuss connections between sep-

arability criteria and other measures of the complexity of a

mixed state such as the ability to purify a mixed state to an

SRE pure state, entanglement of the doubled state using a

CJ map, and strange correlators.

Finally, in Sec. VIII we summarize our results and

discuss a few open questions.

II. SEPARABILITY CRITERIA WITH AND

WITHOUT SYMMETRY

Motivated by Werner and Hastings [1,2], we call a

mixed state ρ “short-range entangled” if and only if it can

be decomposed as a convex sum of pure states,

ρ =
∑

m

pm|ψm〉〈ψm|, (1)

where each |ψm〉 is SRE, i.e., it can be prepared by one

applying a constant-depth local unitary circuit to some

product state. The physical motivation for this definition

is rather transparent: if a mixed state can be expressed as

Eq. (1), only then it can be prepared with use of an ensem-

ble of unitary circuits (acting on the Hilbert space of ρ)

whose depth does not scale with the system size. We note

that this definition of an SRE mixed state has been used

to understand phase transitions in systems with intrinsic

topological order subjected to thermal or local decoherence

[17,53].

One can generalize the notion of an SRE mixed state

in the presence of a symmetry. Specifically, we say that a

mixed state ρ satisfying U(g)ρU†(g) = ρ for all g ∈ G is

a sym-SRE state if and only if one can decompose it as a

convex sum of pure states, where each of these pure states

can be prepared by one applying a finite-depth quantum

circuit made of local gates that all commute with U to a

symmetric product state.

Several comments follow:

(1) The “only if” clause in our definition for a sym-

SRE state or SRE state is a bit subtle. For example,

consider a density matrix where there exists no

decomposition that satisfies Eq. (1) but there exists

a decomposition ρ =
∑

m,|ψm〉∈SRE pm|ψm〉〈ψm| +
∑

m,|φm〉/∈SRE qm|φm〉〈φm| such that the relative

weight of the non-SRE states is zero in the thermo-

dynamic limit [i.e.,
∑

m qm/
∑

m (pm + qm) → 0 in

the thermodynamic limit]. In this case, it might seem

reasonable to regard ρ as SRE. One may also define

an average circuit complexity of a density matrix as

〈C〉 = inf{
∑

m pmC(ψm)}, where C(|ψm〉) is the min-

imum depth of a circuit composed of local gates to

prepare the state |ψm〉 and the infimum is taken over

all possible decompositions of the mixed state ρ.

One may then consider calling a mixed state ρ SRE

if and only if 〈C〉 does not scale with the system size.

But even then, there may be special cases where the

average behavior is not representative of a typical

behavior. We will not dwell on this subtlety further

at this point, and will use physical intuition to quan-

tify the separability of a density matrix should we

encounter such a situation.

(2) Reference [2] also introduced a seemingly different

definition of an SRE mixed state: Consider a “clas-

sical” state ρcl ∝ e−Hcl , where Hcl is a Hamiltonian

composed of terms that are all diagonal in a prod-

uct basis, and that acts on an enlarged Hilbert space

a ⊗ s, where s denotes the system of interest and

a denotes ancillae. Then a mixed state ρ may be

regarded as SRE if it can be obtained from ρcl by one

applying a finite-depth unitary on s ⊗ a, followed by

one tracing out a. That is, one may consider ρ as

SRE if

ρ = tra

(

U†e−Hcl , U/Z
)

(2)

where U is a finite-depth circuit and Z = tr
(

e−Hcl
)

.

We are unable to show that the definition in Eq. (1)

is equivalent to Eq. (2). Although we will primar-

ily use the former definition [Eq. (1)], in Sec. VII

we briefly discuss potential connections between

the two definitions, and also the relation with other

diagnostics of mixed-state entanglement.

(3) The symmetry [(U(g)ρU†(g) = ρ for all g ∈ G)]

we consider is called “weak symmetry” in Ref. [28]

and “average symmetry” in Ref. [26], which high-

lights its difference from the stronger symme-

try U(g)ρ = ρU(g) = eiθ(g)ρ for all g ∈ G termed

“strong symmetry” in Ref. [28] and “exact sym-

metry” in Ref. [26]. Physically, exact symmetry

enforces the constraint that the density matrix must

be written as an incoherent sum of pure states, where

each of them is an eigenstate of U(g) with the

same eigenvalue eiθ(g). On the other hand, while the

mixed state ρ with only average symmetry can be

written as a convex sum of symmetric pure states
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having different charge under G, one may as well

express ρ as a convex sum of nonsymmetric pure

states. Therefore, our requirement that each of the

pure states respects the symmetry puts a further

constraint on a mixed state with only average sym-

metry.On that note, Ref. [54] defined a sym-SRE

state for a symmetry U as one that satisfies Eq. (2)

where e−Hcl is replaced by Pθ(g)e
−Hcl , where Pθ(g)

is a projector onto a given symmetry charge θ(g).

Therefore, in this definition one is always working

with a density matrix that has an exact symme-

try. As already mentioned, we will instead impose

the average symmetry only in our definition of a

sym-SRE state (of course, there may be special

quantum channels that happen to preserve an exact

symmetry).

(4) An alternative definition of an SRE mixed state was

considered in Refs. [26,27,52], whereby a mixed

density matrix is considered SRE if it can be

obtained from a pure product state in a system ⊗
ancillae Hilbert space via a finite-depth unitary fol-

lowed by one tracing out ancillae. In contrast, as

already mentioned in comment (2), Ref. [2] defines

a mixed density matrix as SRE if it can be obtained

from the “classical mixed state” ρcl ∝ e−Hcl of

system ⊗ ancillae via a finite-depth local quantum

channel. Therefore, a mixed state can be trivial/SRE

if one uses the definition in Ref. [2] while remain-

ing nontrivial/LRE if one uses the definition in

Refs. [26,27,52]. The physical distinction between

these two definitions is most apparent when one

considers a mixed state for qubits of the form

ρ = 1
2
(| ↑〉〈↑ | + | ↓〉〈↓ |), where | ↑〉 =

∏

i | ↑〉i

and | ↓〉 =
∏

i | ↓〉i. This state is clearly separable

(unentangled). However, any short-depth purifica-

tion of this state must be long-range entangled. This

is because tr(ρZiZj ) − tr(ρZi)tr(ρZj ) is nonzero and

the purified state cannot change this correlation

function due to the Lieb-Robinson bound [36,37]

(this is also related to the fact the entanglement

of purification [55] is sensitive to both quantum

and classical correlations, and therefore is not a

good mixed-state entanglement measure). Thus, the

aforementioned ρ will be SRE if one uses the

definition in Ref. [2] and will be LRE if one uses

the definition in Refs. [26,27,52]. Of course, it will

also be SRE via Eq. (1), which is the definition we

will use throughout this paper.

III. ILLUSTRATIVE EXAMPLE: SEPARABILITY

TRANSITION IN THE GIBBS STATE OF THE 2D

QUANTUM ISING MODEL

Let us consider an example to illustrate the difference

between an SRE mixed state and a sym-SRE mixed state,

which will also provide one of the simplest examples

of a separability transition. Consider the density matrix

ρ for qubits [i.e., objects transforming in the spin-1/2

representation of SU(2)] given by ρ(β) = e−βH/Z, where

H is a local Hamiltonian that satisfies U†HU = H , with

U =
∏

i Xi being the generator of the Ising symmetry, and

Z = tre−βH is the partition function. Let us further assume

that ρ(β) exhibits spontaneous symmetry breaking for

β > βc, where 0 < βc < ∞ (for a range of other param-

eters that specify the Hamiltonian). For concreteness, one

may choose H as the nearest-neighbor transverse-field

Ising model on the square lattice, i.e., H = −
∑

〈i,j 〉 ZiZj −
h
∑

i Xi although the only aspect that will matter in the

following discussion is that H is local with a zero-form

Ising symmetry, and the order parameter in the symmetry-

breaking phase is a real scalar (e.g., one may also consider

a transverse-field Ising model on a cubic lattice). There-

fore, for a range of the transverse-field h and β > βc

(where βc depends on h), the two-point correlation func-

tion tr
(

ρZiZj

)

is nonzero for |i − j | → ∞. We will argue

that ρ is SRE for all nonzero temperatures, while it is sym-

SRE only for β < βc. Partial support for ρ being an SRE

at all nonzero temperatures was provided in Refs. [23–25],

and we will argue for an explicit decomposition of ρ in

terms of SRE states.

The statement that ρ is not sym-SRE for β ≥ βc was

also hinted at in Ref. [54], and intuitively follows from

the fact that for β > βc, spontaneous symmetry breaking

implies that if one decomposes ρ as a convex sum of sym-

metric, pure states, those pure states must have GHZ-like

entanglement. Let us first consider a rigorous argument

for this statement that, up to small modifications, essen-

tially follows the argument in Ref. [21] for a closely related

problem of nontriviality of a density matrix with an exact

symmetry and long-range order.

To show that for β > βc, ρ cannot be a sym-SRE

state, we first decompose ρ as ρ = ρ+ + ρ−, where ρ+ =
(1 + U/2)ρ and ρ− = (1 − U/2)ρ are the projections of

ρ onto even and odd charge of the Ising symmetry. ρ+
and ρ− are valid density matrices with an exact Ising

symmetry; that is, they satisfy Uρ± = ±ρ±. Now let us

make the assumption that for β > βc, ρ is a sym-SRE

state. We will show that this assumption leads to a contra-

diction. Therefore, we write ρ± =
∑

α pα,±|ψα,±〉〈ψα,±|,
where pα,± are positive numbers, and |ψα,±〉 are SRE states

for all values of α that satisfy U|ψα,±〉 = ±|ψα,±〉. Since U

anticommutes with Zi, 〈ψα,±|Zi|ψα,±〉 = 0. Further, since

|ψα,±〉 are all SRE states, correlation functions of all

local operators decay exponentially (notably, we assume

that the associated correlation length is bounded by a

system-size-independent constant for all |ψα,±〉), and there-

fore 〈ψα,±|Zj Zk|ψα,±〉 − 〈ψα,±|Zj |ψα,±〉〈ψα,±|Zk|ψα,±〉 =
〈ψα,±|Zj Zk|ψα,±〉 vanishes as |j − k| → ∞. However,

this leads to a contradiction, because this implies that

tr
(

ρZj Zk

)

=
∑

±
∑

α pα,±〈ψα,±|Zj Zk|ψα,±〉 itself vanishes,
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which we know cannot be true since as mentioned above,

for β > βc, the system is in a spontaneous-symmetry-

breaking phase with long-range order. Therefore, our

assumption that ρ is a sym-SRE state for β > βc must be

incorrect. The same conclusion also holds for β = βc since

the correlations at the critical point decay as a power law.

As mentioned in Sec. I, our general approach would be

to first look for general constraints that lead to a mixed

state being necessarily nontrivial. If we are unable to

find such a constraint, we will attempt to find an explicit

decomposition of the density matrix as a convex sum of

SRE states. For example, above we noted that ρ cannot be

a sym-SRE state for β ≥ βc, and we also claimed that ρ

is an SRE state for all nonzero temperatures. Let us there-

fore try to find an explicit decomposition of ρ as a convex

sum of SRE pure states for any nonzero temperature, and

as a convex sum of symmetric, pure SRE states for β < βc.

The key player in our argument will be a particular convex

decomposition ansatz (CDA) that is motivated by the con-

struction of “minimally entangled typical thermal states”

(METTSs) introduced in Ref. [56], and which was used in

Ref. [53] to show that the Gibbs state of 2D and 3D toric

code is SRE for all nonzero temperatures. Note that despite

the nomenclature, construction of METTSs as introduced

in Ref. [56] does not involve minimization of entanglement

over all possible decompositions, and is simply an ansatz

that is physically motivated (which is why we prefer the

nomenclature “CDA over METTSs” for our discussion).

First, let us specialize to zero transverse field. In this

case, ρ is clearly an SRE state at any temperature since

ρ ∝
∑

m e−βEm |zm〉〈zm|, where |zm〉 denotes a product state

in the Z basis and Em = 〈zm|H |zm〉. To obtain a symmetric

convex decomposition, we write

ρ =
∑

m e−βH/2|xm〉〈xm|e−βH/2

Z
=

∑

m

|ψm〉〈ψm|, (3)

where the set {|xm〉} corresponds to the complete set of

states in the X basis and |ψm〉 = e−βH/2|xm〉/
√

Z is the

unnormalized wave function. The states |ψm〉 are clearly

symmetric under the Ising symmetry, and their symmetry

charge (= ±1) is determined by the parity of the number

of sites in the product state |xm〉 where spins point along

the negative-x direction. We will now argue that the states

|ψm〉 are SRE for β < βc and LRE for β ≥ βc. To see

this, we first consider the “partition function with respect

to |ψm〉” defined as Zm = 〈ψm|ψm〉 and study its analytic-

ity as a function of β. In this specific example, since the

transverse field is set to zero, one finds that for all m, Zm is

simply proportional to the partition function of the 2D clas-

sical Ising model at inverse temperature β, and therefore

is nonanalytic across the phase transition. Similarly, the

two-point correlation function 〈ψm|ZiZj |ψm〉/〈ψm|ψm〉 is

just the two-point spin-spin correlation function in the 2D

classical Ising model, which is long-ranged for β ≥ βc and

exponentially decaying for β < βc. These observations

strongly indicate that |ψm〉 is SRE (and correspondingly,

ρ is sym-SRE) if and only if β < βc. Note that the states

|ψm〉 are expected to be area-law entangled for all β. This

is because one may represent the imaginary time evolu-

tion e−βH |m〉 as a tensor network of depth β acting on |m〉
(which is a product state), which can generate only an area-

law worth of entanglement. Further, even the state at β =
∞ is area-law entangled (which is the ground state of H ).

Therefore, short-range correlations are strongly suggestive

of short-range entanglement.

Now let us consider a nonzero transverse field. To

argue that ρ is SRE for any nonzero temperature, we

again decompose it as ρ =
∑

m |ψm〉〈ψm|, where |ψm〉 =
e−βH/2|zm〉/

√
Z. The corresponding Zm = 〈ψm|ψm〉 can

now be expressed in the continuum limit as an imaginary-

time path integral Zm ∼
∫

φ(τ=0)=φ(τ=β)=φ0
Dφ e−S,

where S =
∑

n

∫

kx ,ky
|φ(kx, ky , n)|2(k2

x + k2
y + ω2

n) +
∫ β

τ=0
∫

x,y

(

r|φ|2 + u|φ|4
)

, ωn = 2πn/β are the Matsubara fre-

quencies, and, crucially, the Dirichlet boundary conditions

φ(x, y, τ = 0) = φ(x, y, τ = β) = φ0(x, y) are imposed

by the “initial” state zm ∼ φ0(x, y). Since β �= ∞, the

discrete sum over the Matsubara frequencies will be

dominated by ωn = 0, which corresponds to space-time

configurations that are translationally invariant along

the imaginary-time direction. Furthermore, the Dirichlet

boundary conditions imply that there is just one such con-

figuration, namely, φ(x, y, τ) = φ0(x, y), such that Zm ∼
eS[φ0(x,y)], and thus the fluctuations of φ will be com-

pletely suppressed at all nonzero temperatures (including

at the finite-temperature critical point that corresponds to

renormalized r = 0). Therefore, we expect that Zm will

not exhibit singularity across the finite-temperature critical

point, which indicates that the states |φm〉 are SRE.

To argue that ρ is sym-SRE for β < βc, we now

decompose ρ as ρ =
∑

m |ψm〉〈ψm|, where |ψm〉 =
e−βH/2|xm〉/

√
Z. The corresponding Zm = 〈ψm|ψm〉 can

again be expressed in the continuum limit as an

imaginary-time path integral Zm ∼
∫

Dφ e−S, where S =
∑

n

∫

kx ,ky
|φ(kx, ky , n)|2(k2

x + k2
y + ω2

n) +
∫ β

τ=0

∫

x,y

(

r|φ|2 +
u|φ|4

)

. Crucially, since the initial state is now a product

state in the X basis, the fields at the two boundaries τ =
0, β are integrated over all possible configurations Again,

the path integral will be dominated by ωn = 0, which

implies that the dominant contribution comes only from

configurations φ(τ , x, y) = φ(x, y). Therefore, unlike the

aforementioned case when the CDA states corresponded

to e−βH/2|zm〉/
√

Z, here the dominant contribution to Zm

precisely corresponds to the partition function of the 2D

classical Ising model, which is in the paramagnetic phase

for β < βc. The correspondence with the 2D classical Ising

model makes physical sense since the universality class of

the phase transition at any nonzero temperature is indeed
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that of the 2D classical Ising model. Therefore, we expect

that the states |ψm〉 = e−βH/2|xm〉/
√

Z are SRE for β < βc

and LRE for β ≥ βc. Correspondingly, we expect that

the Gibbs state is sym-SRE for β < βc and sym-LRE for

β > βc.

To summarize, we have provided arguments that the

Gibbs state of a transverse-field Ising model is an SRE

state at any nonzero temperature and is a sym-SRE state

only for β < βc. Therefore, we expect that it undergoes

a separability transition as a function of temperature if

one is allowed to expand the density matrix only as a

convex sum of symmetric states. We expect similar state-

ments for other models that exhibit a finite-temperature

zero-form symmetry-breaking phase transition. In the fol-

lowing sections, we use logic broadly similar to that in

this example, with the primary focus on topological phases

of matter subjected to local decoherence. Specifically, we

write ρ = ��† and use the following CDA:

ρ =
∑

m

�|m〉〈m|�†=
∑

m

|ψm〉〈ψm| =
∑

m

pm|ψ̃m〉〈ψ̃m|,

(4)

where |ψm〉 = �|m〉, pm = 〈m|�†�|m〉 = 〈ψm|ψm〉, and

|ψ̃m〉 = |ψm〉/
√

〈ψm|ψm〉 are normalized versions of |ψm〉.
We note that here � is not unique (note that � is not

restricted to being a square matrix; see, e.g., Ref. [17]), and

the CDA in Eq. (3) corresponds to our choosing � = ρ1/2

for the Gibbs state ρ. We will sometimes call states {|ψm〉}
that enter a particular CDA “CDA states.” We further note

that, in general, we do not know how to find the matrix �

that is “optimal,” i.e., a matrix � that guarantees that the

states �|m〉 are SRE whenever ρ is SRE. However, as we

will see in the rest of the paper, for a large class of prob-

lems, after a judicious choice of the basis {|m〉}, the decom-

position in the form of Eq. (4) turns out to be optimal.

IV. SEPARABILITY TRANSITIONS IN SPT

STATES

The fundamental property of a nontrivial SPT phase is

that it cannot be prepared with use of a short-depth cir-

cuit consisting of local, symmetric, unitary gates [9–12].

Therefore, it is natural to ask whether if an SPT phase is

subjected to local decoherence whether the resulting mixed

state is sym-SRE, i.e., can it be expressed as a convex sum

of symmetric, SRE pure states? This is clearly a very chal-

lenging question for many-body mixed states, since to our

knowledge, there does not exist an easily calculable mea-

sure of mixed-state entanglement that is nonzero if and

only if the mixed state is unentangled [57] (if such a mea-

sure did exist, then it would be useful to study its universal,

long-distance component, which is similar to the topologi-

cal part of negativity [19,53,58]). As hinted at in Sec. I, our

general scheme will be to first seek sufficient conditions

that make a given mixed state sym-LRE (i.e., not sym-

SRE). We will do this by decomposing the decohered state

into its distinct symmetry sectors as ρ =
∑

Q ρQ, with ρQ

the projection of the density matrix onto symmetry charge

Q, and then examining whether the assumption of each

ρQ being SRE leads to a contradiction. If we are unable

to find an obvious contradiction, we will attempt to use

the decomposition outlined in Eq. (4) to express ρ as a

convex sum of sym-SRE states. In either of these steps,

we will exploit the connection between local and thermal

decoherence for cluster states that was briefly mentioned

in Ref. [17], and which is described in the next subsection

in detail.

A. A relation between local and thermal decoherence

Systems with intrinsic topological order typically

behave rather differently when they are coupled to a ther-

mal bath compared with when they are subjected to deco-

herence induced by a short-depth quantum channel. For

example, when 2D and 3D toric codes are embedded in

a thermal bath, so that the mixed state is described by a

Gibbs state, the topological order is lost at any nonzero

temperature [2,53,59,60]. In contrast, when 2D or 3D

toric codes are subjected to local decoherence, the error-

threshold theorems [61–66] imply that the mixed-state

topological order is stable up to a nonzero decoherence rate

[17–20,59,67]. Given this, it is interesting to ask if there

exist situations where a local short-depth channel maps a

ground state to a Gibbs state. Here we show that this is

indeed the case if the corresponding Hamiltonian satisfies

the following properties:

(1) It can be written as a sum of local commuting terms

where each of them squares to identity:

H =
∑

j

hj , [hj , hk] = 0, h2
j = I , for all j , k.

(5)

(2) There exists a local unitary Oj that anticommutes

(commutes) with hk if j = k (j �= k):

Oj hj O
†
j = −hj ,

Oj hkO
†
j = hk (j �= k).

(6)

Specifically, if we denore the total system size as N ,

the channel E = E1 ◦ · · · ◦ EN with

Ej [ρ] = (1 − p)ρ + pOj ρO
†
j (7)

maps the ground-state density matrix ρ0 to a Gibbs

state for H .

To verify the claim, we first note that Eq. (5) implies

that ρ0 can be written as the product of the projectors
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on all sites ρ0 = 1/2N
∏

j (I − hj ). With use of Eq. (6),

it is straightforward to show that Ej [ρ0] = 1/2N [I − (1 −
2p)hj ]

∏

k �=j (I − hk). It then follows that the composition

of Ej on all sites gives

E[ρ0] =
1

2N

∏

j

[I − (1 − 2p)hj ]. (8)

Since h2
j = I , which implies e−βhj = cosh(β)I − sinh(β)

hj , one may now exponentiate Eq. (8) to obtain E[ρ0] =
(1/Z)e−βH , where tanh β = (1 − 2p) and Z = tr(e−βH ).

In Sec. VIII, we also discuss a ZN generalization of this

construction. For the rest of the paper, the aforementioned

Z2 version will suffice. In Secs. IV B–IV D, we exploit

the connection between local and thermal decoherence

to study decoherence-induced separability transitions for

the cluster states in various dimensions. In Sec. IV E, we

briefly discuss a couple of examples where the pure state

is protected by a single zero-form symmetry.

B. One-dimensional cluster state

The Hamiltonian for the 1D cluster state is given by

H = −
N

∑

j =1

(Zb,j −1Xa,j Zb,j + Za,j Xb,j Za,j +1)

=
N

∑

j =1

ha,j + hb,j , (9)

where a and b denote the two sublattices of the 1D

chain [see Fig. 1(a)]. H has a global Z2 × Z2 symmetry

generated by

Ua =
∏

j

Xa,j , Ub =
∏

j

Xb,j . (10)

We assume periodic boundary conditions, so that there is

a unique, symmetric, ground state of H that is separated

from the rest of the spectrum with a finite gap. It is obvious

that H satisfies Eq. (5). To satisfy Eq. (6), we choose Kraus

operators Oa/b,j = Za/b,j . Therefore, under the composition

of the channel Ea/b,j [ρ] = (1 − pa/b)ρ + pa/bZa/b,j ρZa/b,j

on all sites, the pure-state density matrix becomes

ρ(pa, pb) =
( 1

Za

e−βa
∑

j ha,j

)( 1

Zb

e−βb
∑

j hb,j

)

= ρa(pa)ρb(pb), (11)

with tanh βa/b = (1 − 2pa/b) and Za/b = tr(e−βa/b
∑

j ha/b,j ).

In the following, we suppress the arguments pa and

pb in ρa(pa) and ρb(pb) if there is no ambiguity. Note

that ρa and ρb commute with each other. To decom-

pose ρ as a convex sum of symmetric states, we write

ρ =
∑

Qa,Qb
ρQa,Qb

, where each ρQa,Qb
is an unnormalized

density matrix that carries exact symmetry: Ua ρQa,Qb
=

(−1)QaρQa,Qb
, Ub ρQa,Qb

= (−1)QbρQa,Qb
, with Qa = 0, 1

and Qb = 0, 1, so the sum over Qa, Qb contains four

terms. The explicit expression for ρQa,Qb
is given as

ρQa,Qb
= ρQaρQb

, where ρQa = ρaPQa and ρQb
= ρbPQb

,

and PQa/b
= (I + (−1)Qa/bUa/b)/2 are projectors. Note

that the probability for a given sector (Qa, Qb) is given

by tr
(

ρQa,Qb

)

, which can be used to obtain the normal-

ized density matrix ρ̃Qa,Qb
for a sector (Qa, Qb) as ρ̃Qa,Qb

=
ρQa,Qb

/tr
(

ρQa,Qb

)

.

To discuss whether the decohered mixed state ρ is triv-

ial on the basis of our definition of a sym-SRE mixed state,

we start by considering the special case pa > 0, pb = 0,

i.e., the mixed state obtained by application of the afore-

mentioned quantum channel only on sublattice a. This case

was studied in detail in Ref. [27] from a different perspec-

tive and is an example of an “average-SPT-order phase”

[26,27,29,30]. In particular, it was shown in Ref. [27] that

this mixed state cannot be purified to an SRE pure state

with use of a finite-depth local quantum channel. As dis-

cussed in Sec. II, our definition of an SRE mixed state is a

bit different (namely, whether a mixed state can be written

as a convex sum of SRE pure states), and therefore it is

worth examining whether this state continues to remain an

LRE mixed state with our definition.

When pa > 0, pb = 0, only the sector corresponding

to Qb = 0 survives, and in this sector, ρQa,Qb
∝

∏

j (I −
hb,j )e

−βa
∑

j ha,j PQa . We now provide two separate argu-

ments that show that ρQa,Qb
is a sym-LRE (i.e., not a

sym-SRE) mixed state when pa > 0, pb = 0.

1. First argument

We want to show that ρQa,Qb
∝

∏

j (I − hb,j)e
−βa

∑

j ha,j PQa

cannot be written as
∑

m pm|ψm〉〈ψm|, where |ψm〉 are SRE

states that can be prepared via a short-depth circuit con-

sisting of symmetric, local gates. We use the result in

Ref. [39], which shows that for an area law–entangled state

in one dimension (which we take to be |ψm〉) that is sym-

metric under an Ising symmetry (which we take here to

be Ua =
∏

j Xa,j), the order and disorder parameters can-

not both vanish simultaneously. Note that we are assuming

that |ψm〉 has an area-law entanglement, as otherwise it is

certainly not SRE and there is nothing more to prove.

Therefore, following the results in Ref. [39], |ψm〉
must either (1) have a nonzero order parameter corre-

sponding to the symmetry Ua, i.e., 〈ψm|Z̃j Z̃k|ψm〉 �= 0,

where |j − k| � 1 and Z̃ is an operator that is odd

under Ua, e.g., Z̃i = Za,i, or (2) have a nonzero “disor-

der parameter” corresponding to the symmetry Ua, i.e.,

〈ψm|OL

(

∏k
l=j Xa,l

)

OR|ψm〉 �= 0, where |j − k| � 1, and
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FIG. 1. Cluster states under decoherence in (a) one dimension, (b) two dimensions, and (c) three dimensions. In (a)–(c), the diagram
on the left depicts the Hamiltonian of cluster states. The diagram in the middle in (a)–(c) divides the decohered mixed state as a function

of error rates into several regimes that have qualitatively different behaviors. The white regions [region (4)] in the three phase diagrams

denote phases where the mixed state is “sym-SRE” (“trivial”), i.e., it is expressible as a convex sum of symmetric, short-range-
entangled pure states. In contrast, the colored regions or lines [regions (1), (2), and (3)] denote phases where such a decomposition is

not possible (“sym-LRE”). There can be phase transitions from one kind of sym-LRE phase to a different kind of sym-LRE phase as

depicted by different colors. The phase diagram is obtained by our calculating objects of the form [〈O〉2] =
∑

Q P(Q)
(

〈O〉Q

)2
, where

O corresponds to an appropriate observable that characterizes symmetry-enforced long-range entanglement and P(Q) is the probability
for obtaining the symmetry charge q. pc ≈ 0.109 in (b) corresponds to the ferromagnetic to paramagnetic phase transition in the 2D

random-bond Ising model along the Nishimori line, while pc ≈ 0.029 in (c) corresponds to the critical point in the 3D random-plaquette

gauge model along the Nishimori line. The diagram on the right in (a)–(c) shows the phase diagram obtained by our expressing ρ as a
convex sum of symmetric states, where each symmetric state |ψm〉 = ρ1/2|m〉, with |m〉 the product state in the Pauli X basis. See the

main text for more details.

OL and OR are operators localized close to site j and

site k, respectively, that are either both even or both odd

under Ua. In case (1), the system has a long-range GHZ-

type order since the state |ψm〉 is symmetric under Ua. In

case (2), we now argue that the system has an SPT order.

For 〈ψm|OL

(

∏k
l=j Xa,l

)

OR|ψm〉 to be nonzero, the oper-

ator OL ⊗ OR must carry no charge under the symmetry

Ub as |ψm〉 is an eigenstate of Ub. Therefore, there are two

disjoint possibilities for the operators OL and OR: they are

either both charged under the symmetry Ub or neither of

them is charged under Ub. If neither of them is charged

under Ub, then 〈ψm|OL

(

∏k
l=j Xa,l

)

OR|ψm〉 must vanish.

This is because |ψm〉 is an eigenstate of the string operator

Sb(l, r) = Za,l

(

∏r
j =l Xb,j

)

Za,r+1 [this follows from the fact

that ρQa,Qb
∝

∏

j (I − hb,j )], which anticommutes with

OL

(

∏k
l=j Xa,l

)

OR for an appropriate choice of (l, r) when-

ever neither OL nor OR is charged under Ub. As a con-

sequence, for 〈ψm|OL

(

∏k
l=j Xa,l

)

OR|ψm〉 to be nonzero,

OL and OR must both be odd under Ub. If this is so, then

the disorder parameter precisely corresponds to one of

the two SPT string order parameters, namely, Sa(j , k) =
Zb,j −1

(

∏k
l=j Xa,l

)

Zb,k+1 up to finite-depth symmetric

unitary transformation. At the same time, the other SPT
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string order parameter 〈ψm|Sb(j , k)|ψm〉 is also nonzero

[due to ρQa,Qb
∝

∏

j (I − hb,j )], and therefore we arrive at

the conclusion that in case (2), |ψm〉 must possess non-

trivial SPT order since the string order parameters on both

sublattices are nonzero. Therefore, in either case (1) or case

(2), |ψm〉 cannot be prepared by a short-depth circuit com-

posed of local gates that respect both Ua and Ub, starting

with a symmetric product state.

2. Second argument

This argument is essentially the same as the argument

introduced in Ref. [38] to show that the circuit depth of var-

ious states with a nontrivial string order parameter cannot

be a system-size-independent constant due to locality/the

Lieb-Robinson bound [36,37]. Again, recall that we want

to show that ρQa,Qb
∝

∏

j (I − hb,j )e
−βa

∑

j ha,j PQa cannot

be written as
∑

m pm|ψm〉〈ψm|, where |ψm〉 are SRE. Since

ρQa,Qb
carries an exact symmetry charge of Ua, Ub, so

do each of the pure states |ψm〉. As discussed above, the

expectation value of the string order parameter Sb(j , k) =
∏k

l=j (−hb,l) = Za,j

(

∏k
l=j Xb,l

)

Za,k+1 is unity with respect

to ρQa,Qb
, which implies that its expectation value is

also unity with respect to each of the states |ψm〉. Let

us assume that |ψm〉 can be obtained from a symmet-

ric product state (i.e., an eigenstate of Pauli X on all

sites) that we denote as |xa,b〉 = ⊗j |xa,j , xb,j 〉, i.e., |ψm〉 =
V|xa,b〉 (here xa/b,j = ±1 are chosen so as to satisfy the

symmetry Ua/b|ψm〉 = (−1)Qa/b |ψm〉). Note that |xa,b〉 sat-

isfy not only the global symmetry Ua/b but the “local”

ones as well, i.e.,
∏

j ∈l Xj |xa,b〉 ∝ |xa,b〉 for any string l.

Since each end point of Sb is charged under Ua (i.e.,

UaZa,j /k+1U
†
a = −Za,j /k+1), the local symmetry of |xa,b〉

implies 〈xa,b|Sb(j , k)|xa,b〉 = 0. Moreover, since V is a

finite-depth unitary, the operator V†Sb(j , k)V is still a string

operator with each “end-point operator” V†Za,j /k+1V a

sum of local operators (due to the locality of V) that are

charged under Ua (due to V being a symmetric unitary,

i.e., [V, Ua] = [V, Ub] = 0). Because of these properties,

the expectation value 〈xa,b|V†Sb(j , k)V|xa,b〉 will be iden-

tically zero. However, 〈xa,b|V†Sb(j , k)V|xa,b〉 is nothing

but 〈ψm|Sb(j , k)|ψm〉, which is unity, as discussed above.

Therefore, we arrive at a contradiction. This implies that

our assumption that |ψm〉 is a symmetric SRE state must

be incorrect.

We now discuss the general case of both pa and pb

being nonzero. On the basis of our discussion above, it

is instructive to evaluate the string order parameter with

respect to each ρQa,Qb
, i.e., tr(ρQa,Qb

Sa/b)/tr(ρQa,Qb
). One

finds (see Appendix A) that both string order parame-

ters can be mapped to two-point correlation functions of

spins in the 1D classical Ising model at nonzero tem-

perature and hence they decay exponentially with the

length of the strings. This result merely implies that the

corresponding mixed state ρ =
∑

Qa,Qb
ρQa,Qb

does not

satisfy the aforementioned sufficient condition for being a

nontrivial sym-SRE state, and does not guarantee that ρ

must be trivial. We now use the CDA in Eq. (4) to argue

that ρ is indeed sym-SRE. In particular, we choose � =
ρ1/2 so that ρ =

∑

m �|m〉〈m|�† =
∑

m |ψm〉〈ψm|, with

|ψm〉 ∝ e−(βa
∑

j ha,j +βb
∑

j hb,j )/2|m〉. To ensure that each

|ψm〉 respects the global Z2 × Z2 symmetry, we choose

the set {|m〉} = {|xa, xb〉m}. When βa = βb = 0, |ψm〉 =
|xa, xb〉m is a product state. To check whether |ψm〉 remains

SRE for any noninfinite βa and βb, let us consider the

“partition function with respect to |ψm〉”

Zm(βa, βb) = 〈ψm|ψm〉 (12)

as a function of β. As βa and βb are increased from zero, if

the state |ψm〉 becomes long-range entangled, one expects

that it will lead to a nonanalytic behavior of Zm(β) as

a function of βa and βb. The calculation for Zm(β) =
〈xa, xb|ρ|xa, xb〉 is quite similar to the one for tr(ρQa,Qb

)

detailed in Appendix A, and one finds that Zm(β) is pro-

portional to the product of two partition functions for the

1D classical Ising model at inverse temperatures βa and βb.

Therefore, we expect that |ψm(β)〉 remains an SRE state

as long as both βa < ∞ and βb < ∞, which confirms our

expectation that ρ is sym-SRE for noninfinite βa and βb

(i.e. pa, pb > 0).

One can also compute the string order parameters

Sa (Sb) for |ψm〉 and show its equivalence to 〈zj zk〉1D Ising

at inverse temperature βa (βb). Therefore, |ψm〉 does

not develop string order as long as βa/b < ∞. The

triviality of |ψm〉 is also manifested by the nonzero

expectation value of the disorder operator Ua/b(k, j ) =
∏k

l=j Xa/b,l. For example, consider the expectation value

of the disorder operator on the a sublattice: 〈Ua(k, j )〉m =
〈ψm|Ua(k, j )|ψm〉/〈ψm|ψm〉. Using the fact that the only

terms in e−(βa
∑

j ha,j +βb
∑

j hb,j )/2 that anticommute with

Ua(k, j ) are hb,j −1 and hb,k, we find that 〈Ua(k, j )〉m =
(
∏k

l=j xl) sec h2(βa), which is nonvanishing except for

βa = ∞. This is, of course, expected on the basis of the

result in Ref. [39], since |ψm〉 does not have any GHZ-type

order. The result for Ub(k, j ) is similar.

It is also instructive to apply the aforementioned con-

vex decomposition to the case βb = ∞, βa �= ∞, i.e., the

above-discussed case of “average SPT order.” In this case

we find that the corresponding state |ψm〉 develops GHZ-

type long-range entanglement. To see this, one can rewrite

|ψm〉 as |ψm〉 ∼ e−βa
∑

k ha,j /2|χm〉, where |χm〉 ∼
∏

j (I −
hb,j )|m〉 = |xb〉 ⊗

∏

j (I − xb,j Za,j Za,j +1)|xa〉 exhibits

GHZ-type long-range entanglement characterized by

|〈χm|Za,j Za,k|χm〉| = 1. Using the fact that the only

terms in e−βa
∑

j ha,j /2 that anticommute with Za,j Za,k

are ha,j and ha,k, one finds that |〈ψm|Za,j Za,k|ψm〉| =
sec h2(βa)|〈χm|Za,j Za,k|χm〉| = sec h2(βa), which is nonva-

nishing except for βa = ∞.
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To summarize the results in this subsection, the deco-

hered state ρ as a function of pa and pb can be divided into

four regimes (see Fig. 1):

(1) pa = pb = 0: tr(ρQa,Qb
Sa(j , k)) = 1 (in the Qa = 0

sector) and tr(ρQa,Qb
Sb(j , k)) = 1 (in the Qb = 0

sector). This is just the pure-state SPT-order phase.

(2) pa > 0 and pb = 0: tr(ρQa,Qb
Sa(j , k)) decays expo-

nentially with |j − k| and tr(ρQa,Qb
Sb(j , k)) = 1 (in

the Qb = 0 sector). This regime is sym-LRE, i.e.,

a nontrivial mixed state, in agreement with the

nontrivial “average-SPT-order phase” discussed in

Ref. [27].

(3) pa = 0 and pb > 0: this is similar to case (2) with

a ↔ b and is again a sym-LRE state.

(4) pa, pb > 0: both tr(ρQa,Qb
Sa(j , k)) and tr(ρQa,Qb

Sb(j , k)) decay exponentially with |j − k|. This is a

sym-SRE state.

On the basis of our discussion above, we also provide one

possible “phase diagram” to express ρ as a convex sum of

symmetric states using CDA states |ψm〉 = ρ1/2|xa, xb〉, as

summarized on the right in Fig. 1(a). Note that the bound-

ary of the phase diagram obtained with the CDA matches

the boundary of regimes (1)–(4), and therefore the CDA is

optimal in this sense. However, it is worth noting that the

decomposition we chose is just one possible choice, and

the label “GHZ” on the x and y axes in plot on the right

in Fig. 1(a) is tied to this choice. One may also chose to

expand ρ as a convex sum of SPT states. Therefore, the

result that is independent of any specific choice of CDA

is that regime (4) is sym-SRE, while regimes (1)–(3) are

sym-LRE.

C. Two-dimensional cluster state

The 2D cluster state Hamiltonian H2D cluster is given by

H2D cluster = −
∑

v

Xv

(

∏

e�v

Ze

)

−
∑

e

Xe(
∏

v∈e

Zv)

=
∑

v

hv +
∑

e

he. (13)

Here the Hilbert space consists of qubits residing on both

the vertices v and the edges e of a 2D square lattice

[see Fig. 1(b)]. The Hamiltonian has both a zero-form

symmetry Z
(0)

2 and a one-form symmetry Z
(1)

2 with the

corresponding generators

U(0) =
∏

v

Xv , U(1)
p =

∏

e∈∂p

Xe, (14)

where p labels the plaquette on the lattice and ∂p is the

boundary of p . We assume periodic boundary conditions,

so that H has a unique, symmetric, gapped ground state.

Using Eqs. (5) and (6), if one subjects the ground state

of H2D cluster to Kraus operators Ov/e = Zv/e with respec-

tive probabilities pv/e, the resulting decohered density

matrix is given as ρ = (1/Z)e
−

(

βv
∑

v h
(0)
v +βe

∑

e h
(1)
e

)

, with

tanh βe/v = (1 − 2pe/v).

Let us decompose ρ as a convex sum of sym-

metric states by writing ρ =
∑

Q(0),Q(1) ρQ(0),Q(1) , where

each ρQ(0),Q(1) carries the exact symmetry: U(0)ρQ(0),Q(1) =
(−1)Q(0)

ρQ(0),Q(1) , U(1)
p ρQ(0),Q(1) = (−1)Q

(0)
p ρQ(0),Q(1) . Here,

the one-form symmetry charge is labeled by the set Q(1) =
{Q(1)

p }, with Q(1)
p = 0, 1 defined on each plaquette p . Cru-

cially, the number of one-form symmetry sectors grows

exponentially as a function of the system size, and this

implies that the probability for a given sector (Q(0), Q(1)),

i.e., tr(ρQ(0),Q(1)), is exponentially small in general. It fol-

lows that even if there exists some ρQ(0),Q(1) that is not

sym-SRE, the decohered state ρ may still be well approx-

imated by a sym-SRE mixed state as long as the total

probability corresponding to the nontrivial sectors is expo-

nentially small. Therefore, the notion of ρ being sym-SRE

must take into account the probability for each symmetry

sector, and can be made precise only in a statistical sense

(a similar situation arises for a certain nonoptimal decom-

position for decohered toric code [17]. We will return to

this point in detail below. For now, let us focus on the

physical observables in each symmetry sector.

The observables that characterize the 2D cluster ground

state are the expectation value of the membrane opera-

tor MS =
∏

v∈S(−h(0)
v ), with S a surface (for simplicity,

we assume that the boundary ∂S of this surface is con-

tractible), and the string operator SC =
∏

e∈C(−h(1)
e ), with

C a curve (the expectation value of either of these opera-

tors equals unity in the 2D cluster ground state). To detect

whether ρQ(0),Q(1) is sym-SRE, i.e., it can be expanded

as a convex sum of pure SRE states that each carries a

definite symmetry charge (Q(0), Q(1)), it is instructive to

calculate the expectation value of these operators with

respect to ρQ(0),Q(1) , i.e., tr(ρQ(0),Q(1)MS)/tr(ρQ(0),Q(1)) and

tr(ρQ(0),Q(1)SC)/tr(ρQ(0),Q(1)). To proceed, we first compute

the denominator in these expressions, i.e., tr(ρQ(0),Q(1)).

Similarly to the 1D cluster state, this can be easily done

by insertion of the complete basis {|xe,v〉} and {|ze,v〉},
where |xe,v〉 = ⊗e,v|xe, xv〉 and |ze,v〉 = ⊗e,v|ze, zv〉 denote

the product state in the Pauli X basis and the Pauli Z

basis, respectively. Following a calculation quite similar to

that in the 1D cluster state, one finds that tr(ρQ(0),Q(1)) ∝
∑

xv∈Q(0) Z2D gauge,xv

∑

xe∈Q(1) Z2D Ising,xe . Here Z2D gauge,xv

=
∑

ze
eβv

∑

v xv(
∏

e�v ze) is the partition function of the 2D

Ising gauge theory with the sign of interaction on each

vertex given by xv, while Z2D Ising,xe =
∑

zv
eβe

∑

e xe(
∏

v∈e zv)

is the partition function of the 2D Ising model with the

sign of Ising interaction given by xe. In the summa-

tion, the notation xv ∈ Q(0) denotes all possible xv that
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satisfy
∏

v xv = (−1)Q(0)
, while xe ∈ Q(1) denotes all pos-

sible xe that satisfy
∏

e∈∂p xe = (−1)Q
(1)
p for all p . For

a system with periodic boundary conditions, all possi-

ble xv ∈ Q(0)(xe ∈ Q(1)) can be reached by the transfor-

mation xv → xv

∏

e�v σe, σe = ±1 (xe → xe

∏

v∈e sv , sv =
±1). One may verify that Z2D gauge,xv (Z2D Ising,xe) is

invariant under the aforementioned transformation by

changing the dummy variables ze → σeze (zv → svzv).

It follows that Z2D gauge,xv (Z2D Ising,xe) is a function of

only the charge Q(0)(Q(1)), and therefore we label it

as Z2D gauge,Q(0) (Z2D Ising,Q(1)). Therefore, tr(ρQ(0),Q(1)) ∝
Z2D gauge,Q(0)Z2D Ising,Q(1) [68].

One may similarly compute tr(ρQ(0),Q(1)MS) and tr

(ρQ(0),Q(1)SC), the numerators in the expectation value for

the membrane and the string operators. Let us first con-

sider the membrane order parameter in the sector (Q0, Q1),

which we denote as 〈MS〉Q0,Q1
. One finds

〈MS〉Q0,Q1
=

tr(ρQ(0),Q(1)MS)

tr(ρQ(0),Q(1))

=
∑

ze

(
∏

v∈S xv

∏

e∈∂S ze

)

eβv
∑

v xv(
∏

e�v ze)

Z2D gauge,Q(0)

∣

∣

∣

∣

xv∈Q(0)

=
(

∏

v∈S

xv

)

〈W∂S〉2D gauge,xv

∣

∣

∣

xv∈Q(0)

∼ e−κA(S) for βv < ∞, (15)

where 〈W∂S〉2D gauge,xv is the expectation value of the Wil-

son loop operator along the curve ∂S for the 2D Ising gauge

theory with interaction xv while A(S) is the area enclosed

by the surface S. The area law follows because the 2D Ising

gauge theory is confining at any nonzero temperature. We

conclude that ρQ(0),Q(1) has no membrane order as long as

pv > 0.

On the other hand, the string order parameter 〈SC〉Q0,Q1

is given by

〈SC〉Q0,Q1
=

tr(ρQ(0),Q(1)SC)

tr(ρQ(0),Q(1))

=
∑

zv

(
∏

e∈C xe

)

zv1
zv2

eβe
∑

e xe(
∏

v∈e zv)

Z2D Ising,Q(1)

∣

∣

∣

∣

xe∈Q(1)

=
(

∏

e∈C

xe

)

〈zv1
zv2

〉2D Ising,xe

∣

∣

∣

xe∈Q(1)
, (16)

where v1 and v2 label the end points of the curve C and

〈zv1
zv2

〉2D Ising,xe is the spin-spin correlation function of the

2D Ising model with the sign of the Ising interaction deter-

mined by xe. Clearly, 〈SC〉Q0,Q1
can show long-range order

at low temperature, and following the same argument as

for the 1D cluster state, long-range order for a given sector

implies that the (unnormalized) density matrix ρQ(0),Q(1) is

sym-LRE. For example, in the sector corresponding to all

xe = 1, the long-range order sets in below the 2D Ising

critical temperature. However, since the ordering temper-

ature clearly depends on the sector Q(1), to understand

whether the full density matrix ρ =
∑

Q(0),Q(1) ρQ(0),Q(1) is

sym-LRE, one needs to statistically quantify the string

order as a function of the error rate. To do so, we introduce

the following “average string order parameter”:

[〈SC〉2] =
∑

Q(0),Q(1)

tr(ρQ(0),Q(1))
(

〈SC〉Q0,Q1

)2
. (17)

Equation (17) is equivalent to the disorder-averaged spin-

spin correlation function of the RBIM along the Nishimori

line [33]. It follows that [〈SC〉2] decays exponentially as a

function of |C| when pe > pc ≈ 0.109 [69].

On the basis of the above analysis, the decohered state ρ

as a function of pe and pv can be divided into four regimes

with use of the qualitative behavior of the expectation val-

ues of membrane and average string order operators [see

Fig. 1(b)]:

(1) pv = 0 and pc > pe ≥ 0: 〈MS〉Q0,Q1
= 1 (in the sec-

tor Q(0) = 0) and [〈SC〉2] is a nonzero constant as

|C| → ∞. In this regime, ρ must be sym-LRE.

(2) pv = 0 and pe > pc: 〈MS〉Q0,Q1
= 1 (in the sector

Q(0) = 0) and [〈SC〉2] decays exponentially as a

function of |C|. In this regime, ρ must again be

sym-LRE.

(3) pv > 0 and pc > pe ≥ 0: 〈MS〉Q0,Q1
∼ e−A(S) and

[〈SC〉2] is a nonzero constant as |C| → ∞. In this

regime, ρ must also be (statistically) sym-LRE.

(4) pv > 0 and pe > pc: 〈MS〉Q0,Q1
∼ e−A(S) and

[〈SC〉2] ∼ e−|C|. This is suggestive that in this

regime ρ is (statistically) sym-SRE, and we provide

an argument in favor of this conclusion below using

an explicit convex decomposition.

We now use the CDA in Eq. (4) with � = √
ρ to argue

that regime (4), namely, pv > 0 and pe > pc, is indeed

sym-SRE. To ensure that each CDA state |ψm〉 satis-

fies the Z
(0)

2 × Z
(1)

2 symmetry, we choose {|m〉 = |xv, xe〉}.
Similarly to the 1D case, we consider the singularity

of the “partition function” Zm = 〈ψm|ψm〉 as a diagnos-

tic for transition from SRE to LRE as β is increased

from zero. Since Zm = 〈xe, xv|ρ|xe, xv〉, a calculation simi-

lar to that for tr(ρQ(0),Q(1)) shows that Zm is proportional

to Z2D Ising gauge,xvZ2D Ising,xe . One can also compute the

expectation values of membrane and average string order

operators with respect to |ψm〉 and find that 〈MS〉m is pro-

portional to the expression in Eq. (15), while [〈SC〉2
m] is

proportional to the expression in Eq. (17), and therefore

both vanish when pv > 0 and pe > pc.

Alternatively, one may define an “average free energy”

[lnZ] =
∑

m Pm ln(Zm) ∝
∑

m Zm ln(Zm) with respect to
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|ψm〉 to detect whether the ensemble {ψm〉} encounters a

phase transition as a function of the error rate. When β =
0, |ψm〉 = |xa, xb〉m is the trivial product state. On the other

hand, |ψm〉 becomes the 2D cluster state when β → ∞.

One expects that the phase transition point can be located

by the singular behavior of [lnZ]. Since [lnZ] is propor-

tional to the disorder-averaged free energy of the 2D RBIM

along the Nishimori line, it is singular at pe ≈ 0.109. This

leads to the same conclusion that {|ψm〉} remains SRE in

regime (4) above.

Interestingly, if one adopts the aforementioned CDA

in regimes (2) and (3), then |ψm〉 hosts intrinsic topo-

logical order and GHZ order, respectively. This can be

argued by one first considering the extreme case (pv , pe) =
(0, 0.5) in regime (2) and (pv , pe) = (0.5, 0) in regime

(3). When (pv , pe) = (0, 0.5), |ψm〉 ∝
∏

v(I + h(0)
v )|m〉 ∝

(|xv〉 ⊗
∏

v(I + xv

∏

e�v Ze)|xe〉), which is an eigenstate of

toric code. On the other hand, when (pv , pe) = (0.5, 0),

|ψm〉∝
∏

e(I + h(1)
e )|m〉 ∝ (|xe〉⊗

∏

e(I + xe

∏

v∈e Zv)|xv〉)
is the 2D GHZ state. The argument based on the ana-

lyticity of the average free energy [lnZ] then indicates

that regimes (2) and (3) continue to host topological

order and GHZ order, respectively. The phase diagram

obtained with the current decomposition is summarized in

Fig. 1(b).

Finally, we note that order parameters similar to [〈SC〉2]

[Eq. (17)] and the connections between the decohered

cluster states and the RBIM have also appeared in the

context of preparing long-range-entangled states by means

of measurement protocols in Refs. [34,35]. In particular,

our phase diagram [Fig. 1(b)] along the line pv = 0.5 is

similar to the finite-time measurement-induced phase tran-

sitions in Ref. [34,35]. However, one crucial difference is

that the mixed states in Refs. [34,35] do not respect the

Z
(1)

2 symmetry and therefore the corresponding transitions

cannot be interpreted as separability transitions protected

by Z
(0)

2 × Z
(1)

2 symmetry between a sym-LRE phase and

a sym-SRE phase. Instead, the role of different sectors

corresponding to the Z
(1)

2 symmetry is played by the flux

fp =
∏

e∈p se through a plaquette p , where se is the mea-

surement outcome. One may then regard the transition in

Refs. [34,35] as a separability transition where in the non-

trivial phase it is impossible to decompose the density

matrix as a convex sum of SRE states that carry both def-

inite Z
(0)

2 charge and flux fp . Similar statements hold true

for the case of a 3D cluster state, which we discuss next.

D. Three-dimensional cluster state

The 3D cluster state Hamiltonian H3D cluster is given by

H3D cluster = −
∑

e

Xe

∏

f �e

Zf −
∑

f

Xf

∏

e∈f

Ze

=
∑

e

he +
∑

f

hf . (18)

The Hilbert space consists of qubits residing at both the

faces f and the edges e of a cubic lattice [see Fig. 1(c)]

or, equivalently, at the edges of a cubic lattice and the

edges of its dual lattice [recall that each edge (plaquette)

of the original lattice is in one-to-one correspondence with

a plaquatte (edge) of the dual lattice]. We assume peri-

odic boundary conditions. This model has a Z
(1)

2 × Z
(1′)
2

symmetry whose generators are given by

U(1′)
c =

∏

f ∈∂c

Xf , U
(1)

c̃
=

∏

e∈∂ c̃

Xe, (19)

where c (c̃) specifies the cube in the lattice (dual lat-

tice) and ∂c (∂ c̃) denotes the faces on the boundary of

c (c̃). Choosing Kraus operators Oe/f = Ze/f with respec-

tive probabilities pe/f , using Eqs. (5) and (6), one obtains

the decohered state ρ = 1/Ze
−βe

∑

e h
(1)
e −βf

∑

f h
(1′)
f , with

tanh βe/f = 1 − 2pe/f .

We now decompose ρ as a convex sum of sym-

metric states by writing ρ =
∑

Q(1′),Q(1) ρ
Q(1′),Q(1) , where

each ρ
Q(1′),Q(1) carries exact symmetry: U(1′)

c ρ
Q(1′),Q(1) =

(−1)Q
(1′)
c ρ

Q(1′),Q(1) , U
(1)

c̃
ρ

Q(1′),Q(1) = (−1)Q
(1)

c̃ ρ
Q(1′),Q(1) .

Here two one-form symmetry charges are labeled by

Q(1′) = {Q(1′)
c }, with Q(1′)

c = 0, 1 defined on each cube

c, and Q(1) = {Q(1)

c̃
}, with Q

(1)

c̃
= 0, 1 defined on each

cube c̃ in the dual lattice. Let us focus on the physical

observables that characterize each sector. These are the

membrane operators MS =
∏

f ∈S(−h
(1′)
f ), with S a con-

tractible surface on the original lattice (by “contractible

surface” we mean an open membrane whose boundary ∂S

is nonzero and is a closed loop) and MS̃ =
∏

e∈S̃(−h(1′)
e ),

with S̃ a noncontractible surface on the dual lattice. Thus,

we want to compute tr(ρ
Q(1′),Q(1)MS)/tr(ρ

Q(1′),Q(1)) and

tr(ρ
Q(1′),Q(1)MS̃)/tr(ρ

Q(1′),Q(1)).

Similarly to the cases in previous sections, we first com-

pute the denominator tr(ρ
Q(1′),Q(1)) in these expressions by

inserting the complete basis {|xf,e〉} and {|zf,e〉}, and obtain

tr(ρ
Q(1′),Q(1)) ∼

∑

xf∈Q(1′) Z3D gauge,xf

∑

xe∈Q(1) Z3D gauge,xe .

Here Z3D gauge,xf
=

∑

ze
eβf

∑

f xf (
∏

e∈f ze) is the partition

function of the 3D Ising guage theory with the sign of

the interaction on each face labeled by xf, and xf ∈ Q(1′)

denotes all possible xf satisfying
∏

f ∈∂c xf = (−1)Q
(1′)
c .

For a system with periodic boundary conditions, all pos-

sible xf ∈ Q(1′) can be reached by the transformation

xf → xf

∏

e�f σe, σe = ±1. Further, one may verify that

Z3D gauge,xf
is invariant under the aforementioned trans-

formation by changing the dummy variables ze → σeze.

It follows that Z3D gauge,xf
= Z

3D gauge,Q(1′) is a function

of only charge Q(1′). Analogous statements hold true for

Z3D gauge,xe . Therefore, we write

tr(ρ
Q(1′),Q(1)) ∝ Z

3D gauge,Q(1′)Z3D gauge,Q(1) . (20)
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One may similarly compute tr(ρ
Q(1′),Q(1)MS), and obtain the following expressions:

〈MS〉Q(1′),Q(1) =
tr(ρ

Q(1′),Q(1)MS)

tr(ρQ(0),Q(1))
=

∑

ze

(

∏

f ∈S xf

∏

e∈∂S ze

)

eβf
∑

f xf (
∏

e∈f ze)

Z
3D gauge,Q(1′)

∣

∣

∣

∣

xf∈Q(1′)

=

⎛

¿

∏

f ∈S

xf

À

⎠ 〈W∂S〉3D gauge,xf

∣

∣

∣

xf∈Q(1′)
, (21)

where 〈W∂S〉3D gauge,xf
is the expectation value of the Wil-

son loop operator (corresponding to
∏

e ze along a closed

curve) along the boundary of S for the 3D classical Ising

gauge theory whose Hamiltonian is defined by the term

that multiplies βf in the exponential in the second line

of Eq. (21). Since the plaquette interaction term in this

Ising gauge theory depends on xf ∈ Q(1′), similarly to the

discussion for 2D cluster state, we introduce an average

membrane order parameter

[〈MS〉2] =
∑

Q(1′),Q(1)

tr(ρ
Q(1′),Q(1))

(

〈MS〉Q′
1
,Q1

)2

. (22)

Equation (22) precisely corresponds to the disorder-

averaged Wilson loop of the 3D random-plaquette gauge

model along the Nishimori line [67]. It follows that

[〈MS〉2] ∼ e−κ|∂S| (“perimeter law”) when pf < pc ≈
0.029, while [〈MS〉2] ∼ e−κ|S| (“area law”) when pf > pc.

One can also define the average membrane order parame-

ter [〈MS̃〉2] for MS̃, and the results are analogous with the

same critical error rate pc.

Therefore, using the qualitative behaviors of [〈MS〉2]

and [〈MS̃〉2], one can divide the decohered state ρ as a

function of pf and pe into four regimes [see Fig. 1(c)]:

(1) pf , pe < pc: both [〈MS〉2] and [〈MS̃〉2] satisfy the

perimeter law.

(2) pf < pc, pe > pc: [〈MS〉2] satisfies he perimeter law,

while [〈MS̃〉2] satisfies the area law.

(3) pf > pc, pe < pc: [〈MS〉2] satisfies the area law,

while [〈MS̃〉2] satisfies the perimeter law.

(4) pf , pe > pc: both [〈MS〉2] and [〈MS̃〉2] satisfy the

area law.

Using an argument similar to the argument in Ref. [21],

and also similar to arguments used in previous subsec-

tions for 1D and 2D cluster states, one can show that in

regimes (1)–(3), ρ cannot be a convex sum of symmetric

pure states where membrane operators exhibit only an area

law. This suggests that these three regimes are sym-LRE.

In regime (4), ρ does not develop any average membrane

orders, which strongly suggests that it is a sym-SRE state.

We now use a CDA to support this expectation.

We again choose a CDA [Eq. (4)] with � = √
ρ.

To ensure that each |ψm〉 that enters the CDA satis-

fies Z
(1)

2 × Z
(1′)
2 symmetry, we choose the basis {|m〉 =

|xe, xf〉}. Similarly to the previous cases, we consider

the “partition function” Zm = 〈ψm|ψm〉, whose singu-

larities are expected to indicate the presence of a

phase transition. The evaluation of Zm = 〈xf, xe|ρ|xf, xe〉
is quite similar to that for tr(ρ

Q(1′),Q(1)), and one finds

that Zm ∼ Z3D gauge,xf
Z3D gauge,xe . One may also compute

the expectation values of the two membrane opera-

tors and find 〈ψm|MS|ψm〉 = (
∏

f ∈S xf )〈W∂S〉3D gauge,xf
and

〈ψm|MS̃|ψm〉 = (
∏

e∈S̃ xe)〈W∂ S̃〉3D gauge,xe . Using these, one

may then define average membrane order parameters

[〈MS〉2] =
∑

m Pm〈ψm|MS|ψm〉2 and [〈MS̃〉2] =
∑

m Pm

〈ψm|MS̃|ψm〉2. Using the same arguments as those fol-

lowing Eq. (22), one concludes that both these order

parameters vanish in regime (4).

One may also conclude that the aforementioned

decomposition in regimes (2) and (3) corresponds

to topologically ordered phases. This can be argued

by one first considering the extreme case (pf , pe) =
(0, 0.5) in regime (2) and (pf , pe) = (0.5, 0) in regime

(3). When (pf , pe) = (0, 0.5), |ψm〉 ∼
∏

f (I + h
(0)

f )|m〉 ∼
(|xf〉 ⊗

∏

f (I + xf

∏

e∈f Ze)|xe〉), which is an eigenstate of

the 3D toric code. The argument based on the singularity of

the average free energy [lnZ] then indicates that in regime

(2) CDA states are topologically ordered. Similar argu-

ments hold for regime (3). The phase diagram obtained

with such a convex decomposition is summarized in the

plot on the right in Fig. 1(c).

It is interesting to compare our results with the results

in Ref. [70], where the Gibbs state of the 3D cluster

Hamiltonian was studied. The main difference between

the decohered state we study, which also takes the Gibbs

form, and the state studied in Ref. [60] is that in Ref. [60],

the Gibbs state is projected to a single charge sector

of both one-form symmetries [and therefore possesses

an exact symmetry, see comment (3) in Sec. II], which

results in a phase transition as a function of tempera-

ture that is in the 3D Ising universality. In contrast, the

decoherence we are considering leads only to an average

(instead of an exact) symmetry, and therefore we obtain an
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ensemble of density matrices ρ
Q(1′),Q(1) labeled by the

symmetry charges Q(1′), Q(1). As discussed above, this

implies that the universality class of the transition is related

to the 3D random-plaquette gauge model (and not the 3D

Ising transition).

E. One-dimensional and two-dimensional topological

phases protected by a Z
(0)

2 symmetry

Aside from the cluster states in several dimensions,

Eqs. (5) and (6) also hold for various stabilizer models

realizing 1D and 2D SPT phases protected by a Z
(0)

2 sym-

metry, which we now discuss briefly. An example in one

dimension is the nontrivial phase of the Kitaev chain [71]:

H = −i
∑

j

³2j −1³2j , (23)

where ³j denotes the Majorana operator satisfying

{³j , ³k} = 2´ij . It is straightforward to see that the Hamilto-

nian satisfies Eq. (5), and one can choose Oj as ³2j −1 or ³2j

such that Eq. (6) is satisfied. Therefore, under the composi-

tion of the channel Ej [ρ] = (1 − p)ρ + p³2j −1ρ³2j −1, the

pure-state density matrix becomes the finite-temperature

Gibbs state with tanh β = 1 − 2p . A 2D example is the

Levin-Gu state [72], where the Hamiltonian is defined on

the triangular lattice and can be written as

H = −
∑

p

Bp , Bp = −Xp

∏

〈pqq′〉

i
(1−ZqZq′ )/2

, (24)

where the product runs over the six triangles 〈pqq′〉 con-

taining the site p . The ground state has nontrivial SPT

order for the Z
(0)

2 symmetry generated by U =
∏

p Xp .

One can verify that [Bp , Bp ′] = 0 and B2
p = 1 by straight-

forward algebra, and thus Eq. (5) is satisfied. Besides,

one can choose Oj = Zj such that Eq. (6) is satisfied.

Therefore, under the composition of the channel Ej [ρ] =
(1 − p)ρ + pZj ρZj , the pure-state density matrix becomes

the finite-temperature Gibbs state with tanh β = 1 − 2p .

Using the CDA in Eq. (4), one may then argue that both

the decohered Kitaev chain and the Levin-Gu state are

sym-SRE for any nonzero p (we assume periodic boundary

conditions so that there are no boundary modes).

V. SEPARABILITY TRANSITIONS FOR 2D

CHIRAL TOPOLOGICAL STATES

A. Setup and motivation

In this subsection, we consider subjecting chiral

fermions in two dimensions to local decoherence. The

starting pure state we consider is the ground state of a p +
ip SC, although we expect that the results will qualitatively

carry over to other noninteracting chiral states.

Our motivation is as follows: It is generally believed

that the 2D p + ip SC cannot be prepared from a prod-

uct state with use of a constant-depth unitary circuit (as

suggested by the fact that the thermal Hall conductance

of a p + ip SC is nonzero, while that for a trivial, gapped

paramagnet is zero). Indeed, one may think of a p + ip

SC as an SPT phase protected by the conservation of

fermion parity [40]. Therefore, it is natural to ask what

happens if one applies a quantum channel to this sys-

tem where Kraus operators anticommute with the fermion

parity. This is conceptually similar to our discussion in

Sec. IV, where we subjected a nontrivial SPT ground state

to Kraus operators odd under the symmetry responsible for

the existence of a (pure) SPT ground state. An example of

such a Kraus operator is the fermion creation/annihilation

operator, and we study this case in detail. Alternatively,

one may consider subjecting a p + ip ground state to

decoherence with Kraus operators bilinear in fermion cre-

ation/annihilation operators. In this latter case, the fermion

parity remains an exact symmetry. From our discussion in

Sec. IV, one may expect a qualitative difference in these

two cases, namely, Kraus operators linear versus bilinear in

fermion creation/annihilation operators. We briefly outline

such a qualitative difference as suggested by field-theoretic

considerations, whose details are presented in Sec. V D.

Let us first consider Kraus operators linear in fermion

operators. This is equivalent to one bringing in auxil-

iary fermions and entangling them with the fermions of

the p + ip SC by a finite-depth unitary. Since this is a

finite depth unitary operation on the enlarged Hilbert space

(including both the system and auxiliary qubits), the expec-

tation value of any observable, including nonlocal ones

that detect chiral topological order [73,74], cannot become

zero. At the same time, intuitively, the resulting mixed

state for the electrons belonging to the original p + ip SC

must somehow “lose its chirality” at infinitesimal coupling

to the ancillae. This is indicated by our treating the den-

sity matrix as a pure state in the doubled Hilbert space

using CJ isomorphism, which we discuss below in detail,

where we also clarify subtleties pertinent to the mapping of

Kraus operators linear in fermion operators. Under the CJ

map, the effect of the channel becomes a coupling bilinear

in fermion operators between two chiral Ising CFTs with

opposite chirality, and which, therefore, gaps out the coun-

terpropagating chiral CFTs. The gapping out of the edge

states in the double state is also manifested in the entan-

glement spectrum of the double state, which we also study.

In particular, we show that infinitesimal decoherence leads

to a gap in the entanglement spectrum.

Although working with the double state obtained via the

CJ map is insightful, it does not directly tell us the nature

of the decohered mixed state. One of our central aims is to

understand the difference between the original pure (non-

decohered) state and the decohered state not in terms of

the double state obtained via the CJ map, or in terms of
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nonlinear functions of the density matrix, but directly in

terms of the separability properties of the mixed state.

Our main result is that the resulting mixed state can be

expressed as a convex sum of nonchiral states, and in this

sense, it is nonchiral (i.e., it can be prepared with use of

an ensemble of finite-depth unitaries that commute with

fermion parity).

We next consider Kraus operators bilinear in the fermion

operators. We study this problem using only the double-

state formalism (i.e., the aforementioned CJ map), and

obtain an effective action consisting of two counterprop-

agating free, chiral Majorana CFTs coupled via a four-

fermion interaction. Such a Hamiltonian has already been

studied (see, e.g., Refs. [75,76]), and we simply borrow

the previous results to conclude that unlike the case for

Kraus operators linear in Majorana operators, this system

is stable against infinitesimal decoherence. Furthermore,

the field theory corresponding to the double state indicates

that this system undergoes a spontaneous symmetry break-

ing where the gapless modes corresponding to the CFT are

gapped out. The universality class for this transition lies

in the (supersymmetric) c = 7/10 tricritical Ising model.

We discuss this in detail in Sec. V D. We note that recently

Su et al. [22] studied chiral topological phases subjected to

decoherence using a generalization of a strange correlator

[32] to mixed states [29,30]. Although they did not study

the problem of our interest (namely, p + ip SC subjected to

Kraus operators bilinear in Majorana fermions), the overall

structure of the field theories obtained in Ref. [22] using a

strange correlator bears resemblance to the one we derive

using an entanglement spectrum in Sec. V D.

B. Separability of a p + ip SC subjected to fermionic

Kraus operators

Our starting point is the ground state of the p + ip super-

conductor [45] described by the following Hamiltonian on

a square lattice:

H =
∑

x,y

−t(c
†
x+1,ycx,y + c

†
x,y+1cx,y + H.c.)

+ �(c
†
x+1,yc†

x,y + ic
†
x,y+1c†

x,y + H.c.)

− (μ − 4t)c†
x,ycx,y . (25)

When t = � = 1/2 and the chemical potential μ = 1, the

system is in the topologically nontrivial phase. This can

be diagnosed, for example, by one studying the entan-

glement spectrum, which will exhibit chiral propagating

modes [77,78], or by one studying the modular commu-

tator [79–82], which is proportional to the chiral central

charge of the edge modes that appear if the system had

boundaries. Relatedly, in the topological phase, the ground

state cannot be written as a Slater determinant of exponen-

tially localized Wannier single-particle states [44–46]. In

our discussion, we assume periodic boundary conditions,

so that there are no physical edge modes.

We are interested in subjecting the ground state of

Eq. (25) to the composition of the following single-

Majorana-fermion channel on all sites:

Ej [ρ] = (1 − p)ρ + p³j ρ³j . (26)

Is the chiral nature of the ground state ρ0 stable under the

channel? More precisely, can we express the decohered

density matrix as a convex sum of pure states, where each

of these pure states now does not exhibit chiral states in

its entanglement spectrum, and relatedly, has a vanishing

modular commutator in the thermodynamic limit?

Under the aforementioned channel [Eq. (26)], the den-

sity matrix will continue to remain Gaussian, and is fully

determined by the covariance matrix M defined as Mjk =
−itr(ρ(³j ³k − ´jk)). As shown in Appendix B 1, under the

channel in Eq. (26), M evolves as E(M ) = (1 − 2p)2M .

We write the decohered density matrix ρ as ρ(p) =
e−Hρ (p), where Hρ(p) can be determined explicitly in terms

of E(M ) = (1 − 2p)2M as detailed in Appendix B 1.

To write the decohered mixed state ρ as a convex sum

of pure states, we consider the decomposition in Eq. (4),

and write

ρ(p) =
∑

m

e−Hρ (p)/2|m〉〈m|e−Hρ (p)/2

=
∑

m

|ψm〉〈ψm|, (27)

where |m〉 are product states in the occupation-number

basis, |m〉 = |m1, . . . , mN 〉, mj = 0, 1, and |ψm〉 = √
ρ|m〉

= e−Hρ (p)/2|m〉. To build intuition for the states |ψm〉, let

us consider the particular state |ψ0〉 = √
ρ|0〉, where |0〉

is a state with no fermions. One can analytically show at

any nonzero decoherence that the real-space wave function

for this state is a Slater determinant of localized Wannier

orbitals, unlike the (undecohered) ground state of the p +
ip SC [44–46]. The argument is as follows. One may write

|ψ0〉 ∝ e−β
∑

k α
†
k
αk |0〉, where tanh β = (1 − 2p)2 and α

†
k =

ukc
†
k + v∗

kc−k are the same (complex) fermionic opera-

tors that diagonalize the original p + ip BCS Hamiltonian

(see Appendix B 1), with |uk|2 + |vk|2 = 1 due to unitarity.

Since ck|0〉 = 0, this implies that

|ψ0〉 ∝
∏

k

[

1 +
(

e−β − 1
)

(

|vk|2 + ukvkc
†
kc

†
−k

)]

|0〉.

(28)

This expression may then be exponentiated to obtain the

standard BCS-like form for |ψ0〉 ∝ e
∑

k h(k)c
†
k

c
†
−k |0〉, where

h(k) =
ukvk

(

e−β − 1
)

|uk|2 + |vk|2e−β
. (29)

030310-16



SYMMETRY-ENFORCED MANY-BODY... PRX QUANTUM 5, 030310 (2024)

As p → 0, β → ∞ [recall tanh β = (1 − 2p)2], and one

recovers the p + ip ground state where h(k) ∼ vk/uk

diverges as 1/(kx + iky) and results in a power-law decay

of Wannier orbitals [45]. In contrast, at any noninfinite β

(i.e., nonzero decoherence rate p), h(k) is noninfinite for

any k (since |uk|2 + |vk|2 = 1), and therefore the Wannier

orbitals corresponding to the state |ψ0〉 are exponentially

localized. As an aside, this same argument also applies to

the decohered 1D Kitaev chain (Sec. IV E), and more gen-

erally to other decohered noninteracting fermionic topo-

logical superconductors.

The above argument applies only to the translation-

ally invariant state |ψ0〉 that enters the convex decom-

position in Eq. (27). To make progress for general

|ψm〉, we found it more helpful to consider diagnostics

that directly access the topological character (or lack

thereof) of a wave function, and which are also more

amenable to finite-size scaling. In particular, we use the

“modular commutator” introduced in Refs. [79–82]. The

modular commutator is a multipartite entanglement mea-

sure that quantifies the chiral central charge for a pure

state, and can be completely determined by the many-

body wave funtion [79–82]. Specifically, it is defined as

JABC := itr(ρABC[ln ρAC, ln ρBC]), with ρX the reduced den-

sity matrix in region X obtained from a pure state |ψ〉 (i.e.,

ρX = trX |ψ〉〈ψ |).
In the absence of decoherence, the modular commutator

of |ψm〉 for this setup is J0,ABC = πc/3 = π/6, as the chi-

ral central charge c = 1/2 for the p + ip superconductor.

Figure 2 shows the modular commutator JABC/J0,ABC on a

L × L torus as a function of L. We choose the error rate p =
0.04 and several different initial states, including |m〉 =
|0, . . . , 0〉 (uniform), |0, 1, 0, 1, . . . , 0, 1〉 (staggered), and

also a random bit string in the occupation-number basis.

We find that in all cases, JABC vanishes in the thermo-

dynamic limit. We also studied other values of p , and

our results are again consistent with the claim that at any

nonzero p , the modular commutator for the states |ψm〉
vanishes in the thermodynamic limit. This provides numer-

ical evidence that at any nonzero error rate, the decohered

mixed state can be expressed as a convex sum of states that

do not have any chiral topological order, and hence must

be representable as Slater determinants of single-particle

localized Wannier states [44] (note that all states |ψm〉 are

area-law entangled).

It is important to note that in contrast to the pure states

|ψm〉, the modular commutator for the decohered mixed

state ρ does not show any abrupt behavior change at

p = 0 (dashed line in Fig. 2). This is consistent with the

fact that the arguments relating the modular commutator to

the chiral central charge rely on the overall state being pure

[79–82], and therefore we do not expect that the modular

commutator for the mixed state ρ captures the separability

transition at p = 0. This again highlights the utility of the

convex decomposition of ρ into pure states.

FIG. 2. Modular commutator JABC/J0,ABC on an L × L torus as

a function of L corresponding to several different pure states |ψm〉
that enter the convex decomposition of the p + ip SC subjected
to decoherence with Kraus operators linear in Majorana fermions

[Eq. (27)], as well as the modular commutator of the decohered

mixed state itself. We choose error rate p = 0.04, and the fol-
lowing initial states |m〉 in Eq. (27): |m〉 = |0, . . . , 0〉 (uniform),

|0, 1, 0, 1, . . . , 0, 1〉 (staggered), and |m〉 = a random bit string in

the occupational number basis. The inset shows the geometry
of regions A, B, and C used to define the modular commutator.

We use antiperiodic boundary conditions along both directions

so that the ground state is unique.

In addition, we also numerically compute the

entanglement spectrum of |ψm〉, with |m〉 the uniform

product state (so that momentum along the entanglement

bipartition is a good quantum number). For a chiral topo-

logical state, one expects that the edge spectrum of a

physical edge will be imprinted on the entanglement spec-

trum of a subregion [77]. Since |ψm〉 is Gaussian, the

entanglement spectrum is encoded in the spectrum of the

matrix iMA, where MA is the restriction of the covari-

ance matrix M to the region A in the inset in Fig. 3.

Figure 3 shows the spectrum of iMABC (denoted as ν) as

a function of the momentum ky with error rate p = 0 and

p = 0.04. The geometry is again chosen as a torus, with

length Lx = 60, and height Ly = 30. In the absence of

error (p = 0), all states |ψm〉 are projected to the p + ip

ground state, and thus the spectrum shows chirality, resem-

bling the edge states of the p + ip SC (note that we have

two entanglement boundaries, resulting in counterpropa-

gating chiral states in the entanglement spectrum). After

the decoherence is introduced, one finds that the chiral

mode in the entanglement spectrum is gapped out (see

Fig. 3). We also confirmed that the gap between the two

“bands” of the entanglement spectrum increases with the

system size (not shown). Overall, both the modular com-

mutator and the entanglement spectrum provide numerical

evidence that the decohered density matrix can be written

as a convex sum of free-fermion, pure states that have no

chiral topological order.

030310-17



YU-HSUEH CHEN and TARUN GROVER PRX QUANTUM 5, 030310 (2024)

FIG. 3. Spectrum of iMA (equals the restriction of the covari-
ance matrix to region A in the inset) for a state |ψm〉 obtained

from |m〉 = |0, . . . , 0〉 [see Eq. (27)] as a function of the momen-

tum ky for error rates p = 0 (i.e., nondecohered) and p = 0.04
(i.e., decohered). Here we put the system on an Lx × Ly torus

with Lx = 60 and Ly = 30.

C. Double-state formalism for fermions

The previous subsection focused on the single-Majorana

channel that breaks the fermion-parity symmetry of the

initial density matrix from exact (Uρ = ρU = ρ) down to

average (U†ρU = ρ). As briefly mentioned above, if one

instead uses a channel where Kraus operators are bilinear

in Majorana operators (so that the fermion parity remains

an exact symmetry), one might expect a more interesting

behavior, in particular the possibility of a phase transi-

tion between different nontrivial mixed states. One way to

make progress on this case is to study appropriate non-

linear functions of the density matrix [18–20,22,29,83].

Relatedly, one may use the double state obtained with the

CJ map, which was used in Refs. [18,20] to study deco-

herence in bosonic problems. Specifically, given a density

matrix ρH acting on the Hilbert space H, one can define a

state vector |ρ〉H⊗H̄ in the doubled Hilbert space H ⊗ H̄

(with H̄ having the same dimension as H) using the CJ

map [42,43,84]:

|ρ〉H⊗H̄ = ρH ⊗ IH̄|�〉H⊗H̄. (30)

Here IH̄ denotes the identity in H̄ and |�〉H⊗H̄ is the

product of (unnormalized) maximally entangled pairs

connecting H and H̄, i.e., |�〉H⊗H̄ = ⊗j |φ〉j ,H⊗H̄, with

|φ〉j ,H⊗H̄ = ⊗j (
∑d

p=1 |pH, pH̄〉j ) and d the Hilbert space

dimension on a single site. Henceforth, for notational sim-

plicity, we omit the subscript labeling the Hilbert space

if there is no confusion. For bosons, it is straightfor-

ward to see that under Eq. (30), the density matrix ρ =
∑

p ,q ρ
p
q |p〉〈q| is mapped to |ρ〉 =

∑

p ,q ρ
p
q |p , q〉. On the

other hand, the channel E[·] =
∑

α Kα(·)K†
α is mapped to

the operator

NE =
∑

α

Kα ⊗ K̄α . (31)

This can be derived by one expressing |E[ρ]〉 as an oper-

ator acting on |ρ〉, i.e., |E[ρ]〉 = NE |ρ〉. See Appendix

B 2 for details. However, a similar correspondence for

fermions is a bit subtle. For example, naively applying

Eq. (31) to the single-Majorana channel in Eq. (26), one

obtains

Ej |ρ〉 ?= [(1 − p)Ij ⊗ Ij + p³j ⊗ ³̄j )]|ρ〉
= [(1 − p)I + p³j ηj )]|ρ〉

∼ e−iμ(i³j ηj )|ρ〉, μ = tan(p/(1 − p)), (32)

where we denote η = ³̄ as the Majorana operators in the

Hilbert space H̄. Equation (32) suggests that the channel

generates a real time evolution for the double state, which

contradicts our intuition that the channel instead gives rise

to an imaginary time evolution. Another hint that Eq. (32)

is incorrect comes from our setting p = 1/2, where the

relation Ej [Ej [ρ]] = Ej [ρ] holds. However, Eq. (32) gives

Ej Ej |ρ〉 = ³j ηj |ρ〉/2, which is not equal to Ej |ρ〉. There-

fore, to find the correct correspondence between E[·] and

NE for fermions, one should begin with the more funda-

mental definition of the double state, i.e„ |ρ〉 = ρ ⊗ I |�〉.
Because of the linearity of Eq. (30), one can consider

each Kα(·)K†
α individually. Using |KαρK

†
α〉 = (KαρK

†
α) ⊗

I |�〉 = Kα(ρK
†
α ⊗ I |�〉) = Kα|ρK

†
α〉, one finds Kα is

unchanged under Eq. (30). On the other hand, since

one can always write K
†
α as a function of c and c†, it

suffices to consider how to express |ρc〉 and |ρc†〉 as

an operator applying to |ρ〉. In Appendix B 2, we find

that

|ρc〉 = d†|ρ〉, |ρc†〉 = −d|ρ〉. (33)

One can then use Eq. (33) to derive NE given E[·]. For

example, for the Kraus operator given by K = ³1 ≡ (c +
c†), one finds

|(c + c†)ρ(c + c†)〉 = (c + c†)|ρ(c + c†)〉

= (c + c†)(d†−d)|ρ〉. (34)

This implies the CJ transformed operator NE = (c +
c†)(d† − d) = −i³1η1, where η1 = (d − d†)/i [85].

D. Phase transition induced by an interacting channel

in a p + ip SC

Being equipped with the correspondence between E[·]
and NE , we now return to our discussion of decoherence-

induced transitions in chiral topological states of fermions.
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We first revisit the problem discussed in Sec. V B, and then

consider a more interesting problem where the Kraus oper-

ators are bilinear in fermions so that the decohered density

matrix is not Gaussian.

There are different ways to use the double state to probe

the effect of decoherence. For example, one may consider

nonlinear functions such as the normalization of the dou-

ble state [18,20,29,83]. Here we will use the entanglement

spectrum of a state obtained from the double state |ρ〉 (after

space-time rotation) as a probe of the decoherence-induced

phase transitions.

To begin with, consider the normalization of the double

state

〈ρ|ρ〉 = 〈ρ0|E†E |ρ0〉. (35)

If the bulk action describing |ρ0〉 = |�0, �∗
0 〉 is rotation-

ally invariant, one can map 〈ρ|ρ〉 to the path integral of

the (1 + 1) D boundary fields following the procedure in

Ref. [20]:

〈ρ|ρ〉 =
∫

D(ψL, ψ∗
L , ψR, ψ∗

R)

× e−S0,L(ψL,ψ∗
L )−S0,R(ψR,ψ∗

R)−Sint(ψL,ψ∗
L ,ψR,ψ∗

R). (36)

Here ψL and ψ∗
L denote the low-energy field variables in

H and H̄, respectively. S0,L is the partition function on the

left side of the spatial interface x = 0− [the meanings of

(ψR, ψ∗
R) and S0,R are similar]. Sint describes the effect of

the channel E†E and has two contributions:

Sint = S1 + SE , (37)

where S1 denotes the action that exists even in the absence

of decoherence. In particular, S1 strongly couples the fields

ψL (ψ∗
L ) and ψR (ψ∗

R) such that ψL = ψR (ψ∗
L = ψ∗

R)

in the absence of decoherence. On the other hand, SE

describes the action that merely comes from the decoher-

ence and vanishes when the error rate p = 0. We note that

a similar field theory was discussed in Ref. [86] in a dif-

ferent context in the evaluation of the system-environment

entanglement in the (1 + 1) D system. In general, the

exact form of SE involves four fields (ψL, ψ∗
L , ψR, ψ∗

R) and

may be schematically captured by the following Hamilto-

nian:

H = (H0,L + HE ,L) + (H0,R + HE ,R) + H1, (38)

where H1 strongly couples the left and right fields. One

may then consider the reduced density matrix for left fields

that is obtained after one has traced out the right fields.

One expects [87,88] that the corresponding entanglement

Hamiltonian (i.e., logarithm of the reduced density matrix)

will essentially correspond to H0,L + HE ,L. Working with

the entanglement Hamiltonian has the advantage that the

number of fields one needs to keep track of is now halved.

Similar simplification occurs if one considers the fidelity

tr(ρd ρ0) between the decohered density matrix ρd and

the nondecohered density matrix ρ0; see Ref. [22]. Since

we are now working only with the left fields, in the

following we omit the subscript L for notational simplic-

ity.

As an example, let us first revisit the case of a p + ip

superconductor perturbed by a channel that is linear in

Majorana fermions (Sec. V B). Recall that here the Kraus

map corresponds to the composition of the following map

on all sites: Ex[ρ] = (1 − p)ρ + p³xρ³x. From our dis-

cussion above on the CJ map for fermions, this translates

to a term of the form HE = ig
∫

dy ³ η, where p ∼ g

and where ³ and η, respectively, denote the fields corre-

sponding to H and H̄ of the left fields. In the absence

of any decoherence, the spatial boundary of the p + ip

superconductor has a simple description in terms of a

chiral Majorana fermion. The entanglement Hamiltonian

in the doubled Hilbert space then corresponds to stack-

ing the boundary of p + ip and p − ip superconductors,

and is given by H0 = i
∫

dy(³ ∂y³ − η∂yη). Therefore,

one expects that the entanglement Hamiltonian for the

left fields in the presence of decoherence will take the

form

HE = i

∫

dy(³ ∂y³ − η∂yη) + ig

∫

dy³ η. (39)

The counterpropagating edge modes are gapped out for

any nonzero g (∝ p), in line with our earlier discussion

where we provided evidence that at any nonzero p the

density matrix can be written as a convex sum of pure

states that are SRE. The gapping out of the edge modes

can also be seen by pne numerically evaluating the entan-

glement spectrum of the double state obtained via the

CJ map. Figure 4 shows the spectrum of iML (denoted

as ν) as a function of the momentum ky with differ-

ent error rates p . Here we put the system on a cylinder

with circumference Lx = 60 and height Ly = 16. In the

absence of error (p = 0), there are two counterpropa-

gating modes, resembling the edge states of the initial

double state |ρ0〉. After the decoherence is introduced,

one can clearly see from Fig. 4 that these counterprop-

agating modes are gapped out for an arbitrarily small

error rate. Note that we did not perform any space-

time rotation to obtain Fig. 4. This suggests that the

entanglement Hamiltonian of the double state |ρ〉 may

already have the same qualitative behavior as the entan-

glement Hamiltonian obtained after space-time rotation.

We leave further investigation of this point for future

work.

Let us return to the problem of our main interest in this

subsection—namely, that of Kraus operators that commute
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FIG. 4. Spectrum of iML for the double state |ρ〉, where ML

is the restriction of the covariance matrix M to the region L, as

a function of the momentum ky for different error rates p . Here

we put the system on a cylinder with circumference Lx = 60 and
height Ly = 16.

with the fermion-parity operator. The simplest possibil-

ity is the composition of the following Kraus map on all

nearest-neighbor bonds 〈x, y〉 of the square lattice:

E〈x,y〉[ρ] = (1 − p)ρ + p³x³yρ³y³x. (40)

The interaction term HE induced by such a Kraus map

in the double state should respect the following Z2 × Z2

symmetries: ³ → −³ and/or η → −η. Since Majorana

fermions square to identity, the simplest term that is bilin-

ear in both ³ and η and respects all the symmetries

involves derivatives:

HE = g

∫

dy(³ ∂y³ )(η∂yη), (41)

where g ∝ p . Therefore, the full entanglement Hamilto-

nian for the left fields in the presence of decoherence is

given by

HE = i

∫

dy(³ ∂y³ − η∂yη) + g

∫

dy(³ ∂y³ )(η∂yη).

(42)

This field theory was studied in Refs. [75,76]. At a partic-

ular g = gc, the system undergoes a phase transition in the

tricitical Ising universality class with central charge c =
7/10. For g < gc, the interaction term is irrelevant, while

above gc, the system spontaneously breaks the Z2 × Z2

symmetry down to the diagonal Z2 symmetry. Physically,

this means that the exact fermion-parity symmetry (i.e.,

Uρ = ρ, where U is the generator of the fermion parity),

has been spontaneously broken down to an average sym-

metry (i.e., UρU† = ρ). We note that a class of 2D chiral

topological phases subjected to decoherence with fermion-

bilinear Kraus operators was also studied in Ref. [22].

One notable difference between the examples considered

in Ref. [22] and our problem is that in the examples con-

sidered in Ref. [22], the decoherence always reduces the

effective central charge of the action corresponding to the

double state. In contrast, in our problem, the effective

central charge c increases from 1/2 to 7/10.

It is interesting to contemplate the implications of the

phase transition described above in terms of the separa-

bility properties of the original mixed state ρ (instead of

the double state |ρ〉). We conjecture that for p � pc there

exists no decomposition of the density matrix as a convex

sum of area law–entangled pure states without any chi-

rality, while for p > pc the density matrix is expressible

as a convex sum of area law–entangled pure states with

GHZ-like entanglement (due to spontaneous breaking of

fermion parity). Similarly to the case of intrinsic topolog-

ical orders subjected to local decoherence [17,18,20,82],

we anticipate that the universality class and the location of

the critical point obtained from the double-state formalism

will differ from those of the “intrinsic” mixed-state tran-

sition for the density matrix, e.g., when viewed from the

perspective of separability. We do not know the univer-

sality for the latter transition, and we leave it as an open

question.

VI. SEPARABILITY TRANSITION IN GIBBS

STATES OF THE NLTS HAMILTONIAN

In this section we consider an exotic separability tran-

sition in a Gibbs state relevant to certain quantum codes.

Although this transition does not require any symmetry,

which has been a main ingredient in the rest of this work,

the argument below to deduce the existence of a separabil-

ity transition is broadly similar in spirit to that in Secs. III

and IV.

Recently, “good LDPC codes,” where the code distance

and the number of logical qubits scale with the total num-

ber of qubits, have been discovered [49–51]. Moreover,

Anshu et al. [48] showed that the construction of a good

LDPC code in Ref. [49] satisfies the Freedman-Hastings

NLTS conjecture [47], which, when satisfied by a Hamil-

tonian, means that any state |ψ〉 with energy density less

than a nonzero value ec cannot be prepared by a constant-

depth unitary circuit [the energy density e of a state |ψ〉
is defined as e = limN→∞ (〈ψ |H |ψ〉 − E0) /N , where E0

is the groundspace energy of H ]. Here we ask whether the

Gibbs state of an NLTS Hamiltonian shows a separabil-

ity transition at a nonzero temperature. That is, does there

exist Tc > 0 so that for T < Tc the Gibbs state cannot be

written as a convex sum of SRE pure states?

Firstly, we note that Anshu et al. [48] have already

proved that any mixed state whose energy density is less

than a positive number ec cannot be purified to a pure SRE

state by a short-depth channel, i.e., it cannot be prepared
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by one first enlarging the Hilbert space to include ancil-

lae, which are initially all in a product state, followed by

a finite-depth unitary that entangles the “system” qubits

(which are also initially in a product state) with the aux-

iliary qubits, and eventually integrating out the ancillae.

However, as discussed in Sec. II, the inability to purify

to an SRE state via a short-depth channel does not imply

that a mixed state is SRE with our definition (i.e., express-

ibility of a mixed state as a convex sum of SRE pure

states). We briefly reiterate the example discussed in Sec. II

that illustrates these two different notions of mixed-state

entanglement [see comment (4) in Sec. II] by stating that

any Gibbs state that exhibits spontaneous symmetry break-

ing (which therefore has long-range correlations for the

operator corresponding to the order parameter) cannot be

purified to an SRE pure state via a short-depth chan-

nel. Therefore, such a mixed state will be SRE with our

definition and LRE with the definition in Refs. [48,52].

Here we provide a simple argument that the Gibbs state

of an NLTS-satisfying Hamiltonian shows a separability

transition at a nonzero temperature.

Let us assume that the Gibbs state of an NLTS-

satisfying Hamiltonian H can be expressed as a con-

vex sum of SRE pure states for any temperature T >

0, i.e., ρ(T) = e−H/T/Z =
∑

i pi|ψi〉〈ψi|, where each |ψi〉
can be prepared via a unitary whose depth is indepen-

dent of the number of qubits N . For simplicity of nota-

tion, we set the ground-space energy E0 to zero (this

can always be achieved by one adding a constant Nc

to the Hamiltonian, where c is a constant). We show

that this assumption leads to a contradiction. Since all

pure states |ψi〉 are SRE, by the NLTS condition, they

must all satisfy 〈ψi|H |ψi〉/N > ec as N → ∞. There-

fore, tr(ρ(T)H)/N =
∑

i pi〈ψi|H |ψi〉/N >
∑

i piec = ec.

This implies that if the Gibbs state can be expressed as

a convex sum of SRE pure states, then its energy density

is nonzero. However, nonzero energy density necessarily

implies nonzero temperature. This is equivalent to showing

that as T → 0, tr(ρ(T)H)/N → 0. This is indeed the case

because as T → 0, tr(ρ(T)H)/N ≈ E1e−E1/T/N , which

indeed vanishes as T → 0 (E1 denotes the energy of the

first excited state, which is a constant independent of N

since the LDPC code Hamiltonian under discussion is a

sum of commuting projectors). Therefore, if we assume

that the Gibbs state is separable for all nonzero tempera-

tures, we arrive at a contradiction. Hence, the Gibbs state

must be long-range entangled up to a nonzero tempera-

ture T. It seems reasonable to assume that at sufficiently

high temperature, the Gibbs state is SRE. Therefore, one

expects a separability transition at some temperature Tc

that satisfies 0 < Tc < ∞.

It is important to note that the above-argued separability

transition does not necessarily imply that the Gibbs state

has a thermodynamic phase transition, i.e., it need not be

accompanied by a singularity of the partition function.

VII. SOME CONNECTIONS BETWEEN

SEPARABILITY AND OTHER MEASURES OF

MIXED-STATE COMPLEXITY

In this section, we comment on some connections

among the separability criteria, purification, double states,

and strange correlators.

A. Connections among separability, purification, and

double states

In Sec. V C, we used the double-state formalism to probe

decoherence-induced transitions. However, the connection

between ρ being sym-SRE and the double state |ρ〉 being

trivial remains unclear. In this subsection, we attempt to

bridge the gap between them using purification of the

mixed state.

We first recall the idea of purification: given a mixed

state ρH in the Hilbert space H, there exists a purifica-

tion in the double Hilbert space H ⊗ H̄, with H̄ having

the same dimension as H:

|ρ1/2〉 = ρ
1/2
H

⊗ IH̄|�〉H⊗H̄, (43)

where |�〉H⊗H̄ is a maximally entangled state between H

and H̄. It is straightforward to see that trH̄(|ρ1/2〉〈ρ1/2|) =
ρH. Besides, we note that Eq. (43) is somtimes called

“standard purification” [55], and all possible purifications

are equivalent up to an isometry applied merely in H̄. If

one uses Eq. (2) as a definition of an SRE mixed state ρ,

then |ρ1/2〉 being SRE implies that ρ is SRE. However, it

is not obvious to us how to show that this implies that ρ

can be written as a convex sum of SRE states [Eq. (1)].

Instead, we are only able to show that if |ρ1/2〉 is SRE, one

can write the mixed state ρ ⊗ I/dim(H̄) (which lives in

the Hilbert space system ⊗ ancillae) as a convex sum of

SRE states. To see this, we first note that a complete basis

for the Hilbert space H ⊗ H̄ can be obtained from a single

maximally entangled state by application of local unitaries

merely in H̄. Specifically, if we denote the complete basis

of Bell pairs for a spin-1/2 system as {|φm,n〉, m, n = 0, 1},
all of them are related to |φ〉 = (|00〉 + |11〉)/

√
2 through

|φm,n〉 = (ZH̄)m(XH̄)n|φ〉. It then follows that a complete

basis for H ⊗ H̄ can be written as

|�m,n〉 =
∏

j

(Zj ,H̄)mj (Xj ,H̄)nj |�〉, (44)

with m = (m1, m2, . . .) and n = (n1, n2, . . .). Since |�m,n〉
are obtained by application of the local unitary in H to

a maximally entangled state, they are all also maximally

entangled. We now use the same idea as we used to

define CDA states [Eq. (4)] by writing ρ ⊗ I/dim(H) as

1/dim(H̄)
∑

m,n

(

ρ1/2 ⊗ I
)

|�m,n〉〈�m,n|
(

ρ1/2 ⊗ I
)

:
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ρ ⊗
I

dim(H̄)
=

1

dim(H̄)

∑

m,n

ρ1/2 ⊗ I
[

∏

j

(Zj ,H̄)mj (Xj ,H̄)nj

]

|�〉〈�|
[

∏

k

(Zk,H̄)mk (Xk,H̄)nk

]

(ρ1/2 ⊗ I)

=
1

dim(H̄)

∑

m,n

[

∏

j

(Zj ,H̄)mj (Xj ,H̄)nj

]

(ρ1/2 ⊗ I)|�〉〈�|(ρ1/2 ⊗ I)
[

∏

k

(Zk,H̄)mk (Xk,H̄)nk

]

=
1

dim(H̄)

∑

m,n

[

∏

j

(Zj ,H̄)mj (Xj ,H̄)nj

]

|ρ1/2〉〈ρ1/2|
[

∏

k

(Zk,H̄)mk (Xk,H̄)nk

]

=
1

dim(H̄)

∑

m,n

|ρ1/2
m,n〉〈ρ1/2

m,n |, |ρ1/2
m,n〉 = (

∏

j

(Zj ,H̄)mj (Xj ,H̄)nj |ρ1/2〉. (45)

In the second line, we use the property that
∏

j (Zj ,H̄)mj (Xj ,H̄)nj and ρ1/2 commute, as they act on dif-

ferent Hilbert spaces. Since |ρ1/2
m,n〉 is related to |ρ1/2〉 by

a unitary acting solely in H̄ , if |ρ1/2〉 is SRE, then so is

|ρ1/2
m,n〉. Therefore, if there exists an SRE purification for ρ

[Eq. (43)], then ρ ⊗ I/dim(H̄) can be written as a convex

sum of SRE pure states [Eq. (45)].

However, we emphasize that the converse is not true: if

|ρ1/2〉 is not SRE, it does not rule out the possibility that

the mixed state ρ is still SRE. This can be most easily seen

by one considering the following counterexample that also

appears in Sec. II. Let ρ be the convex sum of two product

states |0〉N and |1〉N , i.e.,

ρ =
1

2
[(|0〉〈0|)⊗N + (|1〉〈1|)⊗N ]. (46)

It follows that the purified state is the GHZ state:

|ρ1/2〉 =
1

√
2

[|00〉⊗N + |11〉⊗N ], (47)

which is clearly long-range entangled. This implies that

|ρ1/2〉 being trivial is a sufficient but not necessary con-

dition for ρ ⊗ I/dim(H̄) being trivial.

The advantage of studying ρ using its purification is

obvious: instead of finding the decomposition in Eq. (4),

one needs to deal with only a single pure state |ρ1/2〉. How-

ever, it is, in general, difficult to compute |ρ1/2〉, as taking

a square root of ρ is nontrivial if Hρ = − ln(ρ) does not

admit a simple compact form. An alternative is to consider

the double state |ρ〉 = ρ ⊗ I |�〉 in Eq. (30) (note that if

the original density is pure, i.e., ρ2 = ρ, then the double

state |ρ〉 is equivalent to the purified state |ρ1/2〉). Heuris-

tically, since the coefficient in front of Hρ for |ρ〉 is greater

than the coefficient for |ρ1/2〉, we expect that if |ρ〉 is SRE,

then |ρ1/2〉 is SRE as well, but we do not know how to

prove this. This is consistent with the result in Ref. [20],

where the critical error rate for |ρ〉 being trivial is higher

than the error rate at which the topological entanglement

negativity drops to zero, and is also consistent with the

results in Ref. [17] for the error threshold for separability

of topologically ordered mixed states.

B. Connections between convex decomposition and

strange correlators

In Sec. IV, we studied separability transitions for

cluster-state SPT orders in various dimensions using the

CDA [Eq. (4)] with the initial basis {|m〉} as product states

satisfying the corresponding symmetry of the cluster-state

SPT (which was the Pauli X basis in all the cases we con-

sidered). Fortuitously, as we discussed, the threshold for

the CDA states being sym-SRE exactly corresponded to

the error rate beyond which ρ must be sym-LRE when gen-

eral arguments are used, indicating that our choice of CDA

is optimal.

Intriguingly, the symmetric product state basis to gener-

ate the CDA has an apparently close connection with the

strange correlator [32], which was originally devised as a

diagnosis for the SPT pure states and has recently been

used to probe the nontrivial SPT mixed states [29,30]. To

see the connection between them, we briefly review the

original strange correlator for SPT pure states and two

types of strange correlator introduced in Ref. [29]. If we

choose |m〉 as the disordered product state respecting the

symmetry group G, the strange correlator for a pure state

|ψ〉 is defined as [32]

Cm(j − k) =
〈m|Oj Ok|ψ〉

〈m|ψ〉
, (48)

where O is some operator that transforms nontrivially

under G. The basic idea of the strange correlator is that

the temporal edge of an SPT pure state (when the many-

body wave function is expressed as an imaginary-time

path integral) mimics its spatial edge. Since at least 2D

SPT orders possess nontrivial spatial edge states (in three

dimensions, there also exists a possibility of boundary

topological order), one may also use the temporal corre-

lation defined in Eq. (48) to probe nontrivial SPT-order

phase. To generalize the strange correlator from pure states
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to mixed states, two types of strange correlator were intro-

duced in Ref. [29]. The type-I strange correlator is defined

as

CI
m(j − k) =

〈m|ρOj Ok|m〉
〈m|ρ|m〉

. (49)

In the pure-state limit ρ = |ψ〉〈ψ |, the type-I strange cor-

relator reduces to Eq. (48). Therefore, in the case of one

subjecting local decoherence to an SPT pure state, CI
m can

be intuitively regarded as asking whether the local deco-

herence destroys the temporal edge states. However, it

was shown in Ref. [29] that the type-I strange correlator

is unable to detect the average SPT order mentioned in

Ref. [26]. Instead, it was argued that the nontriviality of

such an SPT order should be detected by the type-II strange

correlator, defined as

CII
m(j − k) =

〈m|O†
kO

†
j ρOj Ok|m〉

〈m|ρ|m〉
. (50)

In the pure-state limit, it reduces to |〈m|Oj Ok|ψ〉|2/〈m|ψ〉.
Roughly speaking, the type-II strange correlator is devised

to capture the case that ρ can be written as an incoherent

sum of pure states |ψp〉, where 〈m|Oj Ok|ψp〉 is nontrivial

but can be either positive or negative depending on |ψp〉.
On the other hand, the necessary condition for the mixed

state to be nontrivial with use of separability criteria is the

nontriviality of CDA states |ψm〉, which may be probed by

several physical observables S as discussed in Sec. IV:

〈ψm|S|ψm〉
〈ψm|ψm〉

=
〈m|ρ1/2Sρ1/2|m〉

〈m|ρ|m〉
. (51)

Comparing Eqs. (49)–(51), one finds that the denominator

is always the fidelity between a symmetric product state

and the mixed state of interest:

Zm = tr(ρ|m〉〈m|)
= 〈m|ρ|m〉 = 〈ψm|ψm〉. (52)

For the numerator, Eq. (51) involves insertion of an oper-

ator between 〈m|ρ1/2 and ρ1/2|m〉, while the strange cor-

relator involves insertion of an operator between 〈m|ρ and

|m〉.

VIII. SUMMARY AND DISCUSSION

In this work we explored the interplay of complexity

and symmetry for many-body mixed states. Specifically,

we asked whether a given mixed state can be expressed

as a convex sum of symmetric short-range-entangled pure

states, which we took as a definition of an SRE mixed state

subjected to a given symmetry (a “sym-SRE” mixed state,

Sec. II). Our primary aim was to identify “many-body

separability transitions” as a function of an appropriate

tuning parameter (e.g., decoherence rate or temperature)

across which the nature of the mixed state changes qual-

itatively—on one side of transition the mixed state is

sym-SRE and on the other side it is sym-LRE (i.e., not

sym-SRE). Analogous phase diagrams for intrinsic topo-

logical orders subjected to local decoherence [18–22] were

recently studied in Ref. [17]. Our general approach was to

first seek constraints that imply that a mixed state is nec-

essarily long-range entangled, and absent such constraints,

we developed tools to find the regime where a mixed state

can be shown to be sym-SRE. One of the tools that allowed

us to make progress was that local decoherence converts

ground states of several SPT orders, e.g., cluster states in

various dimensions, to a Gibbs state.

In the context of SPT orders subjected to local decoher-

ence, we focused on cluster states in various dimensions

and obtained their “separability phase diagram” as shown

in Fig. 1. As evident from Fig. 1, the phase diagram gets

progressively richer as one moves up in spatial dimension-

ality. The paths solely along the x and y axes in these

phase diagrams correspond to the special case of “average

SPT” mixed states where one of the symmetries is exact,

while the other is average [26–30]. It is crucial to note that

although the decohered mixed state takes a Gibbs form,

the corresponding partition function is not singular at any

nonzero temperature for any of these cluster states. This is

because any local channel can be Stinespring dilated as a

local unitary circuit in the enlarged system, and thus any

physical observables tr(ρO) with O acting on a large but

finite region must be a smooth function of the error rate

[18,19,86]. Therefore, the different phases in Fig. 1 arise

only because we are requiring that the density matrix be

expressible as a convex sum of pure, symmetric states.

As a consequence, these transitions are conceptually dis-

tinct from thermal phase transitions, and are more akin to

“complexity phase transitions” for the mixed state, when a

symmetry is enforced. We briefly discussed relation with

other approaches to classifying mixed-state SPT orders

[26–30] in Sec. VII.

It is also interesting to contrast the symmetry-enforced

separability transitions in decohered 2D and 3D cluster

states with decoherence-induced separability transitions in

2D and 3D toric codes, studied in Ref. [17]. In both cases,

one finds the appearance of the same statistical mechanics

models (e.g., RBIM in two dimensions). This similarity

can be traced to the fact that the ground state of toric

codes can be obtained from the ground state of the cluster

states by one performing appropriate projective measure-

ments [89–92], along with the equivalence between local

and thermal decoherence for cluster states (this statement

holds true also for the fractonic X-cube model [93] and its

parent cluster state [91]).

We also studied nonstabilizer topological states sub-

jected to local decoherence. In particular, for free-fermion
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chiral states corresponding to a p + ip superconductor, we

argued that if the quantum channel responsible for deco-

herence breaks the fermion parity, the resulting Gibbs state

can be expressed as a convex sum of nonchiral states, and

is therefore SRE at any nonzero decoherence rate (Sec. V).

We also studied a case where the channel respects the

fermion parity and identified a mixed-state phase transition

as a function of the decoherence rate using the double-state

formalism. This transition can be thought of as correspond-

ing to spontaneous breaking of the fermion parity, and as

far as we know, does not have a pure-state counterpart.

Intuitively, in a pure-state context, breaking fermion par-

ity spontaneously essentially requires assigning a nonzero

expectation value to fermionic operators, which is unphys-

ical. In contrast, in the context of a mixed state, breaking

fermion parity spontaneously means that the environment

can exchange fermions with the system “spontaneously,”

which is not unphysical (in the double-state formalism, this

corresponds to assigning a nonzero expectation value to

the bosonic order parameter η³ , where η and ³ , respec-

tively, denote the fields corresponding to bra and ket

Hilbert spaces).

We also analyzed separability transitions in the Gibbs

state of the quantum Ising model and argued that the Gibbs

state is SRE at any nonzero temperature is and sym-SRE

only for T > Tc, where Tc is the critical temperature corre-

sponding to the spontaneous symmetry breaking (Sec. III).

We expect similar results to hold for other models whose

Gibbs state shows a spontaneous breaking of zero-form

discrete symmetry.

Finally, in Sec. VI, we provided a short argument that

the Gibbs states of Hamiltonians that satisfy the NLTS

condition [47] must exhibit a separability transition at a

nonzero temperature.

In the rest of this section, we discuss various aspects of

our results and discuss questions for further exploration.

A. SPT and chiral states

The technique we used to study phase diagrams of var-

ious cluster states relied on the fact the quantum channel

resulted in Gibbs states [Eqs. (5) and (6)]. It is not obvious

how to generalize it to other SPT states. On that note, the

following ZN generalization may be helpful to study ZN

cluster states and topological orders produced by partial

measurement of such states. Let us consider a commut-

ing projector Hamiltonian of the form H =
∑

Pi, where

Pi are projectors (P2
i = 1) written as Pi = 1/N

∑N−1
n=0 hn

i ,

with hN
i = 1. Let us now introduce the following set of

Kraus operators on each site i: K1(i) =
√

1 − p1, K2(i) =√
p/2K(i), and K3(i) =

√
p/2K†(i), where K†(i)K(i) =

K(i)K†(i) = 1, and K(i) are clock operators that sat-

isfy K(i)hiK
†(i) = e2π i/N hi, K†(i)hiK(i) = e−2π i/N hi. One

may verify that the application of this channel on all sites

again results in a Gibbs state for H .

It might also be interesting to study “intrinsically

mixed” SPT states introduced in Refs. [26,27] from the

point of view of separability. These are SPT states that can

exist only in the presence of decoherence. Conversely, it

will be interesting to understand our results on nontriv-

ial mixed SPT orders protected by higher-form symme-

tries, such as 2D and 3D cluster state, by one using the

techniques in Refs. [26,27], which primarily focused on

zero-form symmetry SPT orders.

In the context of chiral states, we studied a phase tran-

sition driven by a channel where the Kraus operators were

Majorana bilinears (Sec. V C). We analyzed this problem

using only the double-state formalism. As suggested by the

problem of decoherence in toric code, the double state is

likely to overestimate the threshold for the actual transi-

tion, and it will be interesting to find a description of the

aforementioned transition in a p + ip SC directly in terms

of the separability properties of the mixed state.

One important subtlety we point out is that we assumed

periodic boundary conditions in our discussion of the SPT

and chiral states. If instead one considers open bound-

aries such that the boundaries do not break the symmetry

responsible for nontrivial SPT/chiral topological order,

then the pure (nondecohered) state is always LRE, e.g.,

due to propagating edge modes or topolgical order at the

boundary. In the presence of decoherence, our naive expec-

tation is that the resulting mixed state is not sym-SRE, even

if the decoherence breaks the symmetry from exact down

to average. It will be interesting to study this aspect in the

future.

B. Symmetry-broken states

The first example we discussed, primarily to illustrate

the distinction between SRE and sym-SRE states, was

the Gibbs state of the transverse-field Ising model in any

dimension (Sec. III). We discussed an explicit decompo-

sition of this state at a nonzero temperature as a convex

sum of pure states that we argued are SRE at any nonzero

temperature. This conclusion is consistent with numerical

results on Renyi negativity [24] and mean-field arguments

[23,25]. On the other hand, for the case where one imposes

the Ising symmetry on the pure states into which the Gibbs

state is being decomposed, we used an argument from

Ref. [21] to show that these pure states must be long-

range entangled for T < Tc. This implies that the Gibbs

state is sym-LRE for T ≤ Tc. In contrast, for T > Tc, we

provided an explicit sym-SRE decomposition of the Gibbs

state. The basic idea of the argument is to write e−βH as
∑

φ e−βH/2|φ〉〈φ|e−βH/2, where {φ} are chosen as a com-

plete set of states in the z(x) basis if one wants to expand

the Gibbs state as a sum of sym-SRE pure states or SRE

pure states.

There are several open questions along this direction.

Firstly, the argument we provided for the aforementioned

pure states being sym-SRE or SRE is not mathematically
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rigorous. To explicitly show that a state is SRE, one needs

to construct a finite-depth circuit that prepares it start-

ing from a product state. We provided arguments only in

the continuum limit that the pure states under considera-

tion have short-range correlations. It will be worthwhile

to study the entanglement structure of the pure states

we claimed to be SRE with use of numerical methods

(e.g., quantum Monte Carlo methods) or by a detailed

field-theoretic analysis. Secondly, as we discussed, the

transverse-field Ising model for d ≥ 2 must exhibit a sep-

arability transition from a sym-SRE state to a sym-LRE

state as a function of temperature. It will be interesting to

study the symmetry-resolved negativity [94] to quantify

the nature of long-range entanglement across this transi-

tion. Finally, our arguments apply only to Gibbs states

that break a discrete symmetry spontaneously, and it will

be interesting to consider generalization to systems with

spontaneously broken continuous symmetries that host

Goldstone modes at a nonzero temperature.

C. Experimental and numerical implications

It is interesting to contemplate experimental implica-

tions of a symmetry-enforced separability transition. One

perspective is that symmetry-resolved versions of mixed-

state entanglement measures such as entanglement nega-

tivity or entanglement of formation, which are specifically

designed to quantify the lack of separability, would likely

experience a singularity across such a phase transition. For

example, for the Gibbs state ρ of the transverse-field Ising

model (Sec. III), one can, in principle, prepare the states

ρ± = P±ρ, where P± are the projectors onto the even and

odd sectors of the Ising symmetry. This can be done, for

example, by one entangling an auxiliary qubit with the sys-

tem qubits sequentially using controlled NOT gates, and by

one measuring the auxiliary qubit at the end. As discussed

in Sec. III, the resulting mixed state (i.e., ρ+ or ρ−, depend-

ing on the outcome of the measurement on the auxiliary

qubit) will show long-range mixed-state entanglement for

T < Tc, in contrast to the original density matrix ρ, which

will be short-range entangled for any T > 0. The long-

range entanglement of ρ± can, in principle, be quantified

experimentally with use of the Renyi negativity [95].

One may also imagine a very patient, gedanken experi-

mentalist who has access to local unitary gates with a finite

fidelity, so that such an experimentalist has the ability to

prepare only an ensemble of SRE pure states (i.e., pure

states that can be prepared with a constant-depth unitary).

If this is the case, then a separability transition from an

SRE mixed state to an LRE mixed state is equivalent to the

transition from success to failure in preparing the ensemble

corresponding to the mixed state. One may similarly char-

acterize a transition from a sym-SRE state to a sym-LRE

state by putting symmetry constraints on the local gates

that form the circuit.

Perhaps a more practical implication of our results is

that they may allow efficient classical simulation of a class

of mixed states. For example, in the context of the Gibbs

state of the quantum Ising model, we argued that it admits

a convex decomposition in terms of SRE pure states at

any nonzero temperature if one does not impose any sym-

metry constraint on the pure states. Since SRE states are

typically easier to study, such a representation facilitates

the task of simulating the corresponding mixed state. In

contrast, if one tries to prepare the Gibbs state of the quan-

tum Ising model starting with a product state (assisted with

ancillae), then long-range correlations below Tc imply that

one necessarily requires a deep quantum circuit [96]. We

note that the decompositions we study generically involve

an exponentially large number of pure states, which may

lead to another difficulty in preparation. We can imag-

ine at least two distinct ways to address this. Firstly, if

a mixed state is SRE, and does not contain any classi-

cal long-range correlations, then it is reasonable to expect

that it can be purified into an SRE pure state (with use of

auxiliary degrees of freedom). This equivalence between

an SRE mixed state and SRE purification is discussed for

Gibbs states in Ref. [96] and is suggested more generally

in Ref. [2] although we are not aware of an explicit proof

or construction in the non-Gibbs case. If one can indeed

find an SRE purification, then an SRE mixed state can be

prepared by a finite-depth unitary circuit acting on system

and auxiliary degrees of freedom. An alternative route that

is more generally available is to sample from the ensemble

of SRE states that enter a given decomposition (assuming

that the density matrix is SRE) with use of Monte Carlo

algorithms, instead of one preparing each and every SRE

state that enters the SRE decomposition. While the sam-

pling task may still be generally hard even in classical

mechanics [97,98], the decomposition we have provided

clearly simplifies the “quantum hardness” of simulating a

mixed state, analogous to the METTS algorithm [56].

On a different note, one way to prepare an ensemble

of pure states that may show a mixed-state separability

phase transition is via a judicious combination of uni-

taries and measurements [21,34,35,89–92,99]. For exam-

ple, Refs. [34,35] provide a construction of mixed states

that are closely related to the mixed states discussed in

Sec. II, and which have also been implemented in a recent

experiment [100]. It will be interesting to design experi-

ments that probe the phase diagram in Fig. 1 using similar

ideas, although we suspect it may be comparatively more

challenging as it requires measuring nonlocal observables

supplemented with an appropriate decoding scheme [34].
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APPENDIX A: DETAILS OF THE STRING ORDER

PARAMETER FOR A 1D CLUSTER STATE

This appendix provides details of evaluating the string

order parameter for a 1D cluster state with respect to each

ρQa,Qb
, i.e., tr(ρQa,Qb

Sa/b)/tr(ρQa,Qb
). We first compute the

denominator in this expression, namely, the trace of ρQa,Qb

[corresponds to probability of sector with charge (Qa, Qb)],

by inserting the complete basis {|xa,b〉} and {|za,b〉}:

tr(ρQa,Qb
) ∝

∑

xa,b,za,b

〈xa,b|ρQa |za,b〉〈za,b|ρQb
|xa,b〉

∝
∑

xa,b∈Qa,b,za,b

〈xa,b|ρa|za,b〉〈za,b|ρb|xa,b〉, (A1)

where
∑

xa,b∈Qa,b
denotes summation over all possible xa,b

in the Qa and Qb sectors, i.e.,
∏

j (xa,j ) = (−1)Qa and
∏

j (xb,j ) = (−1)Qb . Now,

〈xa,b|ρa|za,b〉 ∝ e−βa
∑

j zb,j −1xa,j zb,j +1〈xa,b|za,b〉

∝ e−βa
∑

j zb,j −1xa,j zb,j +1 . (A2)

Similarly, 〈za,b|ρb|xa,b〉 ∝ e−βb
∑

j za,j xb,j za,j +1 . It follows

that tr(ρQa,Qb
) ∝

∑

xa∈Qa
Z1D Ising,xa

∑

xb∈Qb
Z1D Ising,xb

,

where Z1D Ising,xa =
∑

zb
eβa

∑

j xa,j zb,j −1zb,j is the partition

function of the 1D Ising model with the Ising inter-

action determined by xa (the expression for Z1D Ising,xb

is analogously obtained by one interchanging a and b).

For a system with periodic boundary conditions, one can

parameterize all xa ∈ Qa by performing the transformation

xa,j → xa,j sb,j −1sb,j , sb,j = ±1 from any xa that belongs to

Qa. Besides, one can easily verify that Z1D Ising,xa is invari-

ant under the transformation by changing the dummy vari-

ables zb,j −1 → sb,j −1zb,j −1. In other words, Z1D Ising,xa =
Z1D Ising,Qa depends only on the charge Qa. Therefore,

tr(ρQa,Qb
) ∝ Z1D Ising,QaZ1D Ising,Qb

, (A3)

which is the product of the partition functions of the 1D

Ising model in the Qa and Qb sectors. The evaluation of

the numerator of the string order can be done in a simi-

lar way. The only term that does not cancel out with the

denominator is associated with 〈xa,b|ρSa(j , k)|za,b〉, which

can be evaluated as

〈xa,b|ρSa(j , k)|za,b〉

∝ e−βa
∑

j zb,j −1xa,j zb,j +1zb,j −1

⎛

¿

k
∏

l=j

xa,l

À

⎠ zb,k〈xa,b|za,b〉

∝

⎛

¿

k
∏

l=j

xa,l

À

⎠ e−βa
∑

j zb,j −1xa,j zb,j +1zb,j −1zb,k. (A4)

It follows that

tr(ρQa,Qb
Sa(j , k))

tr(ρQa,Qb
)

=

⎛

¿

k
∏

l=j

xa,l

À

⎠ 〈zj −1zk〉1D Ising,xa

∣

∣

∣

xa∈Qa

,

(A5)

where 〈zj −1zk〉1D Ising,xa∈Qa is the spin-spin correlation func-

tion of the 1D Ising model with the Ising interaction

determined by any xa belonging to the Qa sector. Note

that (
∏k

l=j xa,l)〈zj −1zk〉1D Ising,xa∈Qa is invariant under the

transformation xa,j → xa,j sb,j −1sb,j , sb,j = ±1, and thus

Eq. (A5) is independent of the choice for any xa ∈ Qa.

For example, one can choose xa,j = 1 for all j if Qa = 0.

On the other hand, if Qa = 1, one can choose xa,j = 1 for

all j �= N and xa,N = −1. It follows that the string order

of ρQa,Qb
for both Qa = 0 and Qa = 1 can be mapped to

〈zj −1zk〉1D Ising, the spin-spin correlation function of the 1D

ferromagnetic Ising model. The results for Sb are similar.

Since 〈zj −1zk〉1D Ising decays exponentially with |j − k| for

any β < ∞, we conclude that ρQa,Qb
has no string order as

long as pa, pb > 0.

APPENDIX B: DETAILS OF CALCULATIONS FOR

CHIRAL FERMIONS SUBJECTED TO

DECOHERENCE

1. Covariance matrix under a channel linear in

fermion operators

We are interested in subjecting the ground state ρ0 =
|ψ0〉〈ψ0| of a Gaussian fermionic Hamiltonian H to the

composition of the following single-Majorana channel on

all sites:

Ej [ρ] = (1 − p)ρ + p³j ρ³j . (B1)

The goal in this section is to show that the resulting covari-

ance matrix is E(M ) = (1 − 2p)2M and the resulting den-

sity matrix ρ ∝ e−iβ
∑

j ξ2j −1ξ2j , where tanh β = (1 − 2p)2

and ξj = (OT)jk³k are the Majorana operators that block-

diagonalize the original Hamiltonian H . We note that one

can also pair up two Majorana fermions to get regu-

lar fermions through αj = (ξ2j −1 + iξ2j )/2, and the den-

sity matrix takes the form ρ ∝ e
−2β

∑

j α
†
j αj mentioned in

Sec. V B.
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To proceed, we note that Eq. (B1) will map a Gaussian

state to a Gaussian state. A Gaussian fermionic state ρ,

whether pure or mixed, is fully specified by the covariance

matrix M , defined as

Mjk = −itr(ρ(³j ³k − ´jk)). (B2)

Therefore, to determine the evolution of the density matrix

under the channel, it suffices to determine how the covari-

ance matrix evolves, which we denote as E(M ). Using

³l(³j ³k)³l = (−1)´jl+´kl³j ³k, one can easily compute the

element of the resulting covariance matrix [El(M )]jk:

[El(M )]jk = −itr(El[ρ](³j ³k − ´jk))

= (1 − p)Mjk + (−1)´jl+´klpMjk

= [(1 − p) + (−1)´jl+´klp]Mjk

=
{

Mjk for j �= l and k �= l,

(1 − 2p)Mjk for j = l or k = l.
(B3)

It follows that the composition of the channel El on all sites

gives

E(M ) = (1 − 2p)2M . (B4)

To see how one can use Eq. (B4) to deduce the resulting

decohered mixed state, let us first explicitly write down

the relation between a general density matrix ρ and its

covariance matrix M . Let us write the density matrix as

ρ ∝ e−Hρ . Since ρ is Gaussian, Hρ can be written as a sum

of Majorana bilinears:

Hρ =
i

2

2N
∑

j ,k=1

³j Kjk³k, (B5)

where K is a 2N × 2N antisymmetric matrix and we

denote the number of Majorana modes as 2N . To see how

the matrix M is related to the matrix K , we begin by

block-diagonalizing K :

K = O(Kd ⊗ (iY))OT, (B6)

where Kd is an N × N diagonal matrix and Y is the Pauli Y

matrix (i.e., [0 − i; i 0]). If we denote ξj = (OT)jk³k, the

density matrix takes the following form:

ρ ∝
∏

j

[I − tanh(Kd)j ,j (iξ2j −1ξ2j )]. (B7)

Using −itr(ρξ2j −1ξ2j ) = tanh(Kd)j ,j and the relation

between ξj and ³j , one can obtain the covariance matrix

as

M = O(tanh Kd ⊗ (iY))OT. (B8)

Now let us determine the matrix O and the relation between

tanh Kd and p using the property of the initial pure state

ρ0 and Eq. (B4). Since ρ0 = |ψ0〉〈ψ0| is the ground state

of the Hamiltonian H , the matrix O at p = 0 is pre-

cisely the one that diagonalizes H . Besides, using ρ2
0 =

ρ0, one finds tanh Kd = I when p = 0, and thus M0 =
O(I ⊗ (iY))OT. Equation (B4) then gives M (p) = O[(1 −
2p)2I ⊗ (iY)]OT. This implies that O remains unchanged

and tanh(Kd)j ,j = (1 − 2p)2 is independent of j . There-

fore, the entanglement Hamiltonian takes the form

Hρ(p) = iβ
∑

j

ξ2j −1ξ2j , (B9)

where tanh β = (1 − 2p)2 and ξj = (OT)jk³k are the Majo-

rana operators that block-diagonalize the original Hamilto-

nian H .

2. Double-state formalism for fermions

In this section, we derive the double-state formalism for

fermions. As a warm-up, we first derive how the bosonic

density matrices and channels are mapped to pure states

and operators, respectively, under

|ρ〉 = ρ ⊗ I |�〉. (B10)

We later derive the similar correspondence for fermions

using Grassmann algebra.

For a general bosonic density matrix ρ =
∑

p ,q ρ
p
q |p〉〈q|,

one can compute |ρ〉 using Eq. (B10):

|ρ〉 =
∑

p ,q

ρp
q |p〉〈q|

(

∑

r

|r〉 ⊗ |r〉
)

=
∑

p ,q,r

ρp
q ´q

r |p〉 ⊗ |r〉 =
∑

p ,q

ρp
q |p , q〉, (B11)

which is tantamount to flipping the bra vector of ρ in the

original Hilbert space H to the ket vector in H̄. This intu-

ition can be visualized by our expressing Eq. (B10) using

a tensor network [see Fig. 5(a)]. In this sense, one can

regard the maximally entangled states as a tool to trans-

form the bra (ket) spaces to ket (bra) spaces, and such a

trick is called “Choi-Jamiołkowski isomorphism.” We note

that CJ isomorphism was originally used to map quantum

channels E (superoperators) to quantum states σ (density

matrices) [42,43],

σE = E ⊗ I [|�〉〈�|], (B12)

which can be visualized in Fig. 5(b). However, while

both Eq. (B12) and Eq. (B10) map quantum channels to

operators, the operators they map quantum channels to

are different in general. Specifically, consider the channel

E[·] =
∑

α Kα(·)K†
α and denote its corresponding operator
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Eq. (B10) maps to as N , i.e., |E[ρ]〉 = N |ρ〉. The opera-

tor N can be obtained by the direct evaluation of |E[ρ]〉
for any ρ:

|E[ρ]〉 =
∑

α

KαρK†
α ⊗ I |�〉

=
∑

α,

Kα

(

∑

q

|q〉〈q|
)

ρ

(

∑

r

|r〉〈r|
)

K†
α

×
(

∑

p

|p〉 ⊗ |p〉
)

=
∑

α

∑

p ,q,r

Kα|q〉〈r|K†
α |p〉〈q|ρ|r〉|p〉

=
∑

α

∑

q,r

Kα|q〉
(

∑

p

|p〉〈p|
)

K̄ |r〉〈q|ρ|r〉

=
∑

α

∑

q,r

Kα ⊗ K̄α|q, r〉〈q, r|ρ〉

=
∑

α

Kα ⊗ K̄α|ρ〉. (B13)

Therefore, one finds

NE =
∑

α

Kα ⊗ K̄α . (B14)

On the other hand, the corresponding operator σE for the

channel E is evaluated with use of Eq. (B12), and one finds

σE =
∑

α

|Kα〉〈Kα|, (B15)

where |Kα〉 = Kα ⊗ I |�〉. It is then obvious that NE and

σE are different. For example, if E[·] = K(·)K† consists of

only a single Kraus operator K , then σE is necessarily a

projector, while NE is not in general.

Now we turn to the CJ map for fermions, i.e., the ana-

logue of Eq. (B13) for fermions. Note that the derivation of

NE in Eq. (B13) required the insertion of a complete basis.

For fermions, this can be achieved by use of Grassmann

algebra. To build intuition, we consider the mixed-state

density matrix ρ with a single fermionic mode with cre-

ation/annihilation operators c†/c (which act on the Hilbert

space H in our notation), i.e., ρ = ρ(c, c†). The maximally

entangled state in the double Hilbert space for fermions can

then be defined as

|�〉 ≡ (I + eiθc†d†)|00〉. (B16)

Here d† denotes the fermionic creation operators in the

Hilbert space H, |00〉 is the vacuum defined by c|00〉 =
d|00〉 = 0, and θ ∈ [0, 2π) is an arbitrary phase that we

will set to zero for convenience. To derive a compact

(a)

(b)

(c)

FIG. 5. Tensor network representations of CJ isomorphisn
for (a) |ρ〉 = ρ ⊗ I |�〉, (b) σE = E ⊗ I [|�〉〈�|], and (c)

〈m′|ρT|m〉 = (〈m′| ⊗ 〈�|)I ⊗ ρ ⊗ I(|�〉 ⊗ |m〉).

form for |ρ〉, we make use of the coherent state |c, d〉 =
e−cc†

e−dd† |00〉, where c and d are Grassmann numbers.

The maximally entangled state in the coherent-state basis

can be easily computed:

〈

c̄d̄
∣

∣�
〉

= 〈c̄d̄|I + c†d†|00〉 = (1 + c̄d̄)
〈

c̄d̄
∣

∣00
〉

= ec̄d̄.

(B17)

Similarly, we can compute |ρ〉 in the coherent-state basis:

〈c̄d̄|ρ〉 =
∫

DᾱDα〈c̄|ρ|α〉e−ᾱα〈ᾱd̄|�〉

=
∫

Dᾱeᾱ(d̄−α)Dα〈c̄|ρ|α〉 (B18)

=
∫

Dα(α − d̄)〈c̄|ρ|α〉 = 〈c̄|ρ|d̄〉.

In the final line, we use the fact that (α − d̄) = ´(d̄ − α).

Therefore, we arrive at the following conclusion: given the

density matrix in the coherent-state basis 〈c̄|ρ|c〉, the corre-

sponding double state in the coherent-state basis 〈c̄d̄|ρ〉 can

be obtained simply by one substituting c → d̄. For exam-

ple, if ρ0 = |�0〉〈�0| is the density matrix of the pure state,

then

〈c̄d̄|ρ0〉 = 〈c̄|�0〉〈�0|d̄〉 = 〈c̄|�0〉〈d̄|�0〉∗

= 〈c̄d̄|�0, �∗
0 〉, (B19)

which is consistent with our intuition on bosonic fields.

We emphasize that the left-hand side of Eq. (B18) is

defined in the double Hilbert space spanned by the Fock

basis {|00〉, c†|00〉, d†|00〉, c†d†|00〉}. On the other hand,

the right-hand side of Eq. (B18) is defined in the original

Hilbert space spanned by {|0〉, c†|0〉}.
We are now ready to work out the correspond-

ing operator NE for the channel E[·] =
∑

α Kα(·)K†
α
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under Eq. (B10). As mentioned in the main text, since

Eq. (B10) is linear, one can consider each Kα(·)K†
α individ-

ually. Using |KαρK
†
α〉 = (KαρK

†
α) ⊗ I |�〉 = Kα(ρK

†
α ⊗

I |�〉) = Kα|ρK
†
α〉, one finds Kα is unchanged under

Eq. (30). Besides, since one can always write K
†
α as a func-

tion of c and c†, it suffices to consider how to express |ρc〉
and |ρc†〉 as an operator applying to |ρ〉. Using Eq. (B18)

for |ρc〉, we find

〈c̄d̄|ρc ⊗ I |�〉 = 〈c̄|ρc|d̄〉 = 〈c̄|ρ|d̄〉d̄

= d̄〈c̄d̄|ρ〉 = 〈c̄d̄|d†|ρ〉. (B20)

In the second line, we use the fact that ρ preserves the

fermionic parity for ρ. It is then obvious that |ρc〉 = d†|ρ〉.
Similarly, using Eq. (B18) for ρc†, we get 〈c̄d̄|ρc† ⊗

I |�〉 = 〈c̄|ρc†|d̄〉. However, the evaluation of 〈c̄|ρc†|d̄〉 is

not as straightforward as that of 〈c̄|ρc|d̄〉 since 〈c̄|ρc†|d̄〉
is not normally ordered. To proceed, we insert the identity

between ρ and c†:

〈c̄|ρIc†|d̄〉 =
∫

DᾱDα〈c̄|ρ|α〉e−āα〈ᾱ|c†|d̄〉

=
∫

DᾱDαᾱeᾱ(d̄−α)〈c̄|ρ|α〉. (B21)

In the second line, we use the fact that 〈ᾱ|c†|d̄〉 =
ᾱ〈ᾱ|d̄〉 = ᾱeᾱd̄. Now we change the variable α (ᾱ) as

β̄ (−β) so that we can substitute 〈c̄β̄|ρ〉 for 〈c̄|ρ|α〉:

〈c̄|ρc†|d̄〉 =
∫

D(−β)Dβ̄(−β)e−β(d̄−β̄)〈c̄β̄|ρ〉

=
∫

DβDβ̄(βed̄β)e−β̄β〈c̄β̄|ρ〉

=
∫

DβDβ̄〈d̄|d|β〉e−β̄β〈c̄β̄|ρ〉

=
∫

Dβ̄Dβ〈d̄|d|β〉e−β̄β〈c̄β̄|ρ〉

= 〈c̄d̄| − d|ρ〉. (B22)

In the fifth line, the minus sign is attributed to the exchange

of Dβ and Dβ̄. It follows that |ρc†〉 = −d|ρ〉.
Interestingly, treating the CJ map as a general way to

transform the bra (ket) space to ket (bra) space leads

to other useful applications for fermionic problems. For

example, the fermionic transpose can be naturally defined

with use of the CJ map, and we find that this definition

is consistent with the fermionic time reversal, which was

proposed in Ref. [101] to resolve the issue that the con-

ventional definition of the fermionic transpose fails to

capture the entanglement negativity due to the formation

of the edge Majorana fermions. Specifically, the fermionic

transpose can be defined as follows:

〈m′|ρT|m〉 = (〈m′| ⊗ 〈�|)I ⊗ ρ ⊗ I(|�〉 ⊗ |m〉), (B23)

where {|m〉} is an arbitrary complete basis for fermions.

One may show that this definition makes sense by express-

ing Eq. (B23) in terms of a tensor network [see Fig. 5(c)].

We now show that this definition coincides with the ones

proposed in Ref. [101] using fermionic time reversal. Not-

ing that 〈c̄d̄|�〉 = ec̄d̄ and 〈�|cd〉 = e−cd, one can evaluate

ρ in the coherent-state basis:

〈c̄|ρT|c〉 =
∫

DᾱDαDβ̄Dβ〈�|αc〉e−ᾱα〈ᾱρ|β〉e−β̄βec̄β̄

=
∫

DᾱDαDβ̄Dβeα(ᾱ−c)〈ᾱρ|β〉e−β̄(β+c̄)

= 〈c|ρ| − c̄〉. (B24)

Therefore, one can obtain 〈c̄|ρT|c〉 by simply substituting

c → −c̄ and c̄ → c in 〈c̄|ρ|c〉.
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