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We study quantum many-body mixed states with a symmetry from the perspective of separability,
i.e., whether a mixed state can be expressed as an ensemble of short-range-entangled symmetric pure
states. We provide evidence for “symmetry-enforced separability transitions” in a variety of states, where
in one regime the mixed state is expressible as a convex sum of symmetric short-range-entangled pure
states, while in the other regime, such a representation is not feasible. We first discuss the Gibbs state
of Hamiltonians that exhibit spontaneous breaking of a discrete symmetry, and argue that the associated
thermal phase transition can be thought of as a symmetry-enforced separability transition. Next we study
cluster states in various dimensions subjected to local decoherence, and identify several distinct mixed-
state phases and associated separability phase transitions, which also provides an alternative perspective
on recently discussed “average symmetry-protected topological order.” We also study decohered p + ip
superconductors, and find that if the decoherence breaks the fermion parity explicitly, then the resulting
mixed state can be expressed as a convex sum of nonchiral states, while a fermion parity—preserving
decoherence results in a phase transition at a nonzero threshold that corresponds to spontaneous breaking
of fermion parity. Finally, we briefly discuss systems that satisfy the no low-energy trivial state property,
such as the recently discovered good low-density parity-check codes, and argue that the Gibbs state of
such systems exhibits a temperature-tuned separability transition.
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I. INTRODUCTION

Suppose one has the ability to apply unitary gates that
act in a geometrically local fashion on a many-body sys-
tem. Starting from a product state, a specific circuit com-
posed of such gates results in a specific pure state, and an
ensemble of such circuits can therefore be associated with
the mixed state p = ), pi|¥;) (|, where the pure state
|;) is prepared with probability p;. If one is limited to
only constant-depth unitary circuits, then the correspond-
ing mixed state can be regarded as “short-range entangled”
(SRE) or “trivial” [1,2], which generalizes the notion of a
short-range-entangled pure state [3—8]. In parallel with the
notion of symmetry-protected topological (SPT) phases for
pure states [9—12], it is then natural to define a trivial or
SRE symmetric mixed state [a symmetric and SRE (sym-
SRE) state] as one that can be obtained from an ensemble
of pure states, where each element of the ensemble is pre-
pared with only a constant-depth circuit consisting of local,
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symmetric gates under some given symmetry. Motivated
by experimental progress in controllable quantum devices
where both unitary quantum dynamics and decoherence
play an important role [13—16], we explore in this paper
mixed-state phase diagrams where in one regime a mixed
state is sym-SRE, and in the other regime, it is not. We
call such phase transitions “symmetry-enforced separa-
bility transitions,” since a sym-SRE state is essentially
separable [1] (i.e., a convex sum of unentangled states)
up to short-distance correlations generated by constant-
depth unitaries. In the absence of any symmetry constraint,
analogues of such transitions were recently studied in
Ref. [17] in the context of decohered topologically ordered
mixed states [18—22]. To make progress, we try to lever-
age our understanding of the complexity of preparing pure
many-body states using unitaries. Some of the questions
that will motivate our discussion are as follows: Do there
exist separability phase transitions when pure-state SPT
phases are subjected to decoherence, and if the answers
is “yes,” what is the universality class of such transition?
When a 2D chiral pure state (e.g., the ground state of an
integer quantum Hall phase) is subjected to local deco-
herence, can the resulting density matrix be expressed
as a convex sum of nonchiral states? Can the conven-
tional, finite-temperature phase transitions corresponding
to the spontaneous breaking of a global symmetry be also
thought of as separability transitions?
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As an example, consider the transverse-field Ising model
on a square lattice. We provide an argument (Sec. III)
that the Gibbs state for this model can be prepared with
use of an ensemble of finite-depth local unitary circuits
at all temperatures, including at 7' < 7., where T, is the
critical temperature for spontaneous symmetry breaking.
It is crucial here that one is not imposing any symmetry
constraint on the unitaries. This is consistent with pre-
vious work [23-25] where evidence was provided that
the mixed-state entanglement corresponding to a Gibbs
state that exhibits spontaneous symmetry breaking remains
short-ranged at all nonzero temperatures, including at the
finite-temperature critical point (assuming the absence of
any coexisting finite-temperature topological order). How-
ever, if one allows access to an ensemble of short-depth
unitary circuits composed of only Ising symmetric local
gates, then using results from Ref. [21], we provide a rig-
orous argument that the Gibbs state cannot be prepared
for any 7 < T,.. We expect similar results to hold for
other symmetry-broken Gibbs states as well. Therefore, the
conventional, finite-temperature symmetry-breaking phase
transition in a transverse-field Ising model can be thought
of as a symmetry-enforced separability transition. This
statement is true even when the transverse field is zero (i.e.,
for a classical Ising model)—the quantum mechanics still
plays a role since the imposition of symmetry implies that
one is forced to work with “cat” (GHZ) states, which are
long-range entangled (LRE).

In the context of pure states, a well-known example
of symmetry-enforced complexity is an SPT phase whose
ground state cannot be prepared with use of a finite-depth
circuit composed of symmetric local gates [9—12]. Recent
studies have provided a detailed classification of SPT
phases protected by zero-form symmetries that are being
subjected to decoherence with use of spectral sequences
and obstruction to an SRE purification [26,27]. Progress
has also been made in understanding nontrivial decohered
SPT orders with use of string operators [28] and “strange
correlators” [29,30], concepts that were originally intro-
duced to characterize pure SPT states [10,31,32]. Here
we are interested in understanding decohered SPT states
from the viewpoint of separability, which, as we discuss
in Sec. II, is a notion of entanglement of mixed states
different from that based on SRE purification considered
in Refs. [26,27]. As hinted above, we define a symmet-
ric, LRE (sym-LRE) state as one that does not admit a
decomposition as a convex sum of pure states that can all
be prepared via a finite-depth circuit made of symmetric
local gates. If this is the case, it is interesting to ask if
there exist separability transitions between sym-LRE and
sym-SRE states as a function of the decoherence rate, anal-
ogous to the phase transitions in mixed states with intrinsic
topological order [17]. We will not consider a general SPT
state, and will focus primarily on cluster states in vari-
ous dimensions to illustrate the broad idea. A key step in

our analysis is the following result, which was also briefly
mentioned in Ref. [17] and which we discuss in detail in
Sec. IV: for a large class of SPT orders, including the
cluster states in various dimensions, a Kitaev chain in on
dimension, and several 2D topological phases protected
by zero-form Z, symmetry, one can find local, finite-depth
channels that map the pure state to a Gibbs state. We dis-
cuss decoherence-induced separability transitions due to
such channels in Sec. IV.

When trying to understand the complexity of mixed SPT
states, we will often find the following line of inquiry help-
ful. One first asks whether our assuming that a mixed state
is trivial (i.e., decomposable as a convex sum of SRE pure
states) leads to an obvious contradiction. If the answer is
that it does, then we already know that the mixed state
is necessarily nontrivial. In this case, there may still exist
interesting transitions between two different kinds of non-
trivial mixed state, and we will consider a couple of such
examples as well. On the other hand, if the answer is that
it does not, we will attempt to find an explicit decomposi-
tion of the mixed state as a convex sum of SRE states. The
aforementioned relation between local and thermal deco-
herence will again be instrumental in making analytical
progress.

As an example, consider the ground state of the 2D
cluster-state Hamiltonian H subjected to a local channel
that locally anticommutes with the terms in the Hamilto-
nian. One can show that the resulting decohered state pg
takes the Gibbs form: p oc e 7 where tanhg =1 —2p
and p is the decoherence rate. In this example, H has
both a zero-form and a one-form Ising symmetry. We
will provide arguments that this system undergoes a sep-
arability transition as a function of p: for 0 < p < p,,
o cannot be decomposed as a sum of pure states that
respect the aforementioned two symmetries, while for
p > p¢, such a decomposition is feasible. Moreover, for
p > p. we will express pg explicitly as Y pu|Vm) (Yl
where |,,) are pure, symmetric states that are statisti-
cally SRE. More precisely, one can define an ensemble-
averaged string correlation, [(S¢)?] = > Dm (Sc)i,, where
(ScYm = (WUnmlScl¥m) /{¥m|¥m) and Sc¢ is a string opera-
tor whose nonzero expectation value implies long-range
entanglement. We will show that [(S¢)?] precisely corre-
sponds to a disorder-averaged correlation function in the
2D random-bond Ising model (RBIM) along the Nishi-
mori line [33]. Therefore, in this example, the separa-
bility transition maps to the ferromagnetic transition in
the random-bond Ising model. For the 3D cluster state,
we will find an analogous relation between separability
and 3D random-plaquette Ising gauge theory. We note
that similar order parameters and connections to statisti-
cal mechanics models also appear in the setting of mea-
surement protocols to prepare long-range-entangled SPT
states [34,35]. We briefly discuss the connection to these
studies.
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As another by-product of the relation between local
decoherence and Gibbs states, we also study a recently
introduced nontrivial class of mixed states that are
protected by a tensor product of “exact” and “average”
symmetries [26-29]. One says that a density matrix p
has an “exact symmetry” if Ugp o p for some unitary
Ug, while it has an “average symmetry” if UZpUA =p
for some unitary Uy. References [26—29] provide several
nontrivial examples of such mixed-state SPT orders by
showing that they possess nontrivial correlation functions
and/or cannot be purified to an SRE pure state. Here we
focus on examples of such states that are based on cluster
states in various dimensions, and using locality/the Lieb-
Robinson bound [36—38], we show that the corresponding
mixed states cannot be written as a convex sum of sym-
metric, pure states. For a 1D cluster state, we also provide
an alternative proof of nonseparability by using the result
from Ref. [39] that in one dimension if a state has an aver-
age Z, symmetry, and its connected correlation functions
are short-ranged, then the corresponding “order parame-
ter” and the “disorder parameter” cannot both be zero or
nonzero at the same time.

In Sec. V we consider fermionic chiral states subjected
to local decoherence. We primarily focus on the ground
state of a 2D p, + ip, superconductor (p + ip SC) as our
initial state (we expect integer quantum Hall states to have
qualitatively similar behavior). We first consider subject-
ing this pure state to a finite-depth channel with Kraus
operators that are linear in fermion creation/annihilation
operators, so that the decoherence breaks the fermion-
parity symmetry. In the pure-state classification of topo-
logical superconductors, fermion parity is precisely the
symmetry responsible for the nontrivial topological char-
acter of the p +ip SC [40,41]. Therefore, it is natural
to wonder about the fate of the mixed state obtained
by breaking this symmetry from exact down to average.
One potential path to make progress on this problem is
to map the mixed state to a pure state in the doubled
Hilbert space by means of the Choi-Jamiotkowski (CJ)
map [42,43] (we call such a state the “double state,”
similar to the nomenclature in Ref. [20]). There are inter-
esting subtleties in applying the CJ map to fermionic
Kraus operators that we clarify. Following the ideas in
Refs. [18,20,22,29], one may then map the double state
to a (1 +1) D theory of counterpropagating free confor-
mal field theories (CFTs) coupled via a fermion bilinear
term, which is clearly relevant and gaps out the edge
states in this doubled picture. However, a short-depth chan-
nel cannot qualitatively change the expectation value of
state-independent operators [i.e., tr(pO), where O is inde-
pendent of p] [18,19], and it is not obvious what the
gapping of edge modes implies for the actual mixed state.
We conjecture that the physical implication of the gapping
of the edge states in the doubled formulation is that the
actual mixed state can now be expressed as a convex sum

of SRE states with zero Chern number, which is equiva-
lent to the statement that they can be obtained as a Slater
determinant of Wannier states, unlike the pure p + ip
state, where such a representation is not possible [44—46].
Therefore, the transition from the pure state to the mixed
state can be thought of as a “Wannierizability transition.”
We consider an explicit ansatz of such a decomposition,
and provide numerical support for our conjecture by calcu-
lating the entanglement spectrum and modular commutator
of the pure states whose convex sum corresponds to the
decohered density matrix.

A more interesting channel that acts on the 2D p + ip
SC corresponds to Kraus operators that are bilinear in
fermion creation/annihilation operators. To make progress
on this problem, we use the CJ map to obtain a field-
theoretic description for this problem in terms of two
counterpropagating chiral Majorana CFTs interacting via a
four-fermion interaction, where the strength of the interac-
tion is related to the strength of the interacting decohering
channel. This theory admits a phase transition at a criti-
cal interaction strength in the supersymmeteric tricritical
Ising universality class, which can be thought of as cor-
responding to spontaneous breaking of the fermion parity.
Although we do not have an understanding of this transi-
tion directly in terms of the mixed state in the nondoubled
(i.e., original) Hilbert space, it seems reasonable to conjec-
ture that at weak decoherence, the density matrix cannot be
expressed as a convex sum of area law—entangled nonchi-
ral states, while at strong decoherence, it is most naturally
expressible as a convex sum of states with GHZ-like char-
acter that originates from the aforementioned spontaneous
breaking of the fermion parity.

Incidentally, the kind of arguments we consider to rule
out sym-SRE mixed states in the context of symmetry-
broken phases or SPT phases also finds an application
in an exotic separability transition where symmetry plays
no role. In particular, we consider separability aspects
of the Gibbs state of Hamiltonians that satisfy the “no
low-energy trivial state” (NLTS) condition introduced by
Freedman and Hastings [47]. Colloquially, if a Hamilto-
nian satisfies the NLTS condition, then any pure state with
energy density less than a critical nonzero threshold cannot
be prepared by a constant-depth circuit. Recently, Anshu
et al. [48] showed that the “good low-density parity-check
(LDPC) code” constructed in Ref. [49] satisfies the NLTS
condition (we note that “good LDPC codes” [49—51] have
the remarkable property that both the code distance and the
number of logical qubits scale linearly with the number of
physical qubits). Anshu et al. [48] showed that the NLTS
condition holds also for mixed states, if one defines the
circuit depth of a mixed state as the minimum depth of the
unitary needed to prepare it by acting on system & ancillae,
both initially in a product state, where the ancillae are
traced out afterwards [52]. Under such a definition of a
nontrivial mixed state (namely, a mixed state that cannot
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be prepared by a constant-depth circuit under the afore-
mentioned protocol), even mixed states with long-range
classical correlations (e.g., the Gibbs state of 3D classical
Ising model) would be considered nontrivial. In contrast,
under our definition of a nontrivial mixed state, such clas-
sical states will be trivial since they can be written as a
convex sum of SRE states. Therefore, we ask the following
question: assuming that one defines a trivial (nontrivial)
mixed state as one that can (cannot) be expressed as a
convex sum of SRE states, is the Gibbs state of a Hamil-
tonian that satisfies the NLTS property nontrivial at a low
but nonzero temperature? Under reasonable assumptions,
in Sec. VI we provide a short argument that this is indeed
the case. This implies that one should expect a nonzero
temperature separability transition in such Gibbs states.

In Sec. VII we briefly discuss connections between sep-
arability criteria and other measures of the complexity of a
mixed state such as the ability to purify a mixed state to an
SRE pure state, entanglement of the doubled state using a
CJ map, and strange correlators.

Finally, in Sec. VIII we summarize our results and
discuss a few open questions.

II. SEPARABILITY CRITERIA WITH AND
WITHOUT SYMMETRY

Motivated by Werner and Hastings [1,2], we call a
mixed state p “short-range entangled” if and only if it can
be decomposed as a convex sum of pure states,

p= Pul¥m) (Wl, ey

where each [v,,) is SRE, i.e., it can be prepared by one
applying a constant-depth local unitary circuit to some
product state. The physical motivation for this definition
is rather transparent: if a mixed state can be expressed as
Eq. (1), only then it can be prepared with use of an ensem-
ble of unitary circuits (acting on the Hilbert space of p)
whose depth does not scale with the system size. We note
that this definition of an SRE mixed state has been used
to understand phase transitions in systems with intrinsic
topological order subjected to thermal or local decoherence
[17,53].

One can generalize the notion of an SRE mixed state
in the presence of a symmetry. Specifically, we say that a
mixed state p satisfying U(g)pU'(g) = p forall g € G is
a sym-SRE state if and only if one can decompose it as a
convex sum of pure states, where each of these pure states
can be prepared by one applying a finite-depth quantum
circuit made of local gates that all commute with U to a
symmetric product state.

Several comments follow:

(1) The “only if” clause in our definition for a sym-
SRE state or SRE state is a bit subtle. For example,

2

3)
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consider a density matrix where there exists no
decomposition that satisfies Eq. (1) but there exists
a decomposition p =3\ spg Pml¥m) (¥nl +
> lém¢SRE 9m|®m) (@m| such that the relative
weight of the non-SRE states is zero in the thermo-
dynamic limit [i.e., D, gm/D_,, @m + qm) = 0 in
the thermodynamic limit]. In this case, it might seem
reasonable to regard p as SRE. One may also define
an average circuit complexity of a density matrix as
(C) = inf{} ", pmC(¥)}, where C(|¥,,)) is the min-
imum depth of a circuit composed of local gates to
prepare the state |1,,) and the infimum is taken over
all possible decompositions of the mixed state p.
One may then consider calling a mixed state p SRE
if and only if (C) does not scale with the system size.
But even then, there may be special cases where the
average behavior is not representative of a typical
behavior. We will not dwell on this subtlety further
at this point, and will use physical intuition to quan-
tify the separability of a density matrix should we
encounter such a situation.

Reference [2] also introduced a seemingly different
definition of an SRE mixed state: Consider a “clas-
sical” state pg o< e el where H,; is a Hamiltonian
composed of terms that are all diagonal in a prod-
uct basis, and that acts on an enlarged Hilbert space
a ® s, where s denotes the system of interest and
a denotes ancillae. Then a mixed state p may be
regarded as SRE if it can be obtained from p. by one
applying a finite-depth unitary on s ® a, followed by
one tracing out a. That is, one may consider p as
SRE if

p =tr, (U'e,U/Z) )

where U is a finite-depth circuit and Z = tr (e~1).
We are unable to show that the definition in Eq. (1)
is equivalent to Eq. (2). Although we will primar-
ily use the former definition [Eq. (1)], in Sec. VII
we briefly discuss potential connections between
the two definitions, and also the relation with other
diagnostics of mixed-state entanglement.

The symmetry [(U(g)pU'(g) = p for all g € G)]
we consider is called “weak symmetry” in Ref. [28]
and “average symmetry” in Ref. [26], which high-
lights its difference from the stronger symme-
try U(g)p = pU(g) = €@ p for all g € G termed
“strong symmetry” in Ref. [28] and “exact sym-
metry” in Ref. [26]. Physically, exact symmetry
enforces the constraint that the density matrix must
be written as an incoherent sum of pure states, where
each of them is an eigenstate of U(g) with the
same eigenvalue e® . On the other hand, while the
mixed state p with only average symmetry can be
written as a convex sum of symmetric pure states
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having different charge under G, one may as well
express p as a convex sum of nonsymmetric pure
states. Therefore, our requirement that each of the
pure states respects the symmetry puts a further
constraint on a mixed state with only average sym-
metry.On that note, Ref. [54] defined a sym-SRE
state for a symmetry U as one that satisfies Eq. (2)
where el is replaced by Py e !, where Py,
is a projector onto a given symmetry charge 0(g).
Therefore, in this definition one is always working
with a density matrix that has an exact symme-
try. As already mentioned, we will instead impose
the average symmetry only in our definition of a
sym-SRE state (of course, there may be special
quantum channels that happen to preserve an exact
symmetry).

(4) An alternative definition of an SRE mixed state was
considered in Refs. [26,27,52], whereby a mixed
density matrix is considered SRE if it can be
obtained from a pure product state in a system ®
ancillae Hilbert space via a finite-depth unitary fol-
lowed by one tracing out ancillae. In contrast, as
already mentioned in comment (2), Ref. [2] defines
a mixed density matrix as SRE if it can be obtained
from the “classical mixed state” p¢ o< e el of
system ® ancillae via a finite-depth local quantum
channel. Therefore, a mixed state can be trivial/SRE
if one uses the definition in Ref. [2] while remain-
ing nontrivia/LRE if one uses the definition in
Refs. [26,27,52]. The physical distinction between
these two definitions is most apparent when one
considers a mixed state for qubits of the form
p=5UNET+1LA D, where | 1) =TT 1)
and | |) =[[; | {)i. This state is clearly separable
(unentangled). However, any short-depth purifica-
tion of this state must be long-range entangled. This
is because tr(pZ;Z;) — tr(pZ;)tr(pZ;) is nonzero and
the purified state cannot change this correlation
function due to the Lieb-Robinson bound [36,37]
(this is also related to the fact the entanglement
of purification [55] is sensitive to both quantum
and classical correlations, and therefore is not a
good mixed-state entanglement measure). Thus, the
aforementioned p will be SRE if one uses the
definition in Ref. [2] and will be LRE if one uses
the definition in Refs. [26,27,52]. Of course, it will
also be SRE via Eq. (1), which is the definition we
will use throughout this paper.

III. ILLUSTRATIVE EXAMPLE: SEPARABILITY
TRANSITION IN THE GIBBS STATE OF THE 2D
QUANTUM ISING MODEL

Let us consider an example to illustrate the difference
between an SRE mixed state and a sym-SRE mixed state,

which will also provide one of the simplest examples
of a separability transition. Consider the density matrix
p for qubits [i.e., objects transforming in the spin-1/2
representation of SU(2)] given by p(8) = e #/Z, where
H is a local Hamiltonian that satisfies U'HU = H, with
U = [, X; being the generator of the Ising symmetry, and
Z = tre P! is the partition function. Let us further assume
that p(B) exhibits spontaneous symmetry breaking for
B > B¢, where 0 < 8. < oo (for a range of other param-
eters that specify the Hamiltonian). For concreteness, one
may choose H as the nearest-neighbor transverse-field
Ising model on the square lattice, i.e., H = — ) (i) ZiZ; —
h) . X; although the only aspect that will matter in the
following discussion is that H is local with a zero-form
Ising symmetry, and the order parameter in the symmetry-
breaking phase is a real scalar (e.g., one may also consider
a transverse-field Ising model on a cubic lattice). There-
fore, for a range of the transverse-field # and g8 > 8.
(where 8. depends on #), the two-point correlation func-
tion tr (pZ;Z;) is nonzero for |i — j| — oo. We will argue
that p is SRE for all nonzero temperatures, while it is sym-
SRE only for 8 < .. Partial support for p being an SRE
at all nonzero temperatures was provided in Refs. [23-25],
and we will argue for an explicit decomposition of p in
terms of SRE states.

The statement that p is not sym-SRE for 8 > f. was
also hinted at in Ref. [54], and intuitively follows from
the fact that for 8 > ., spontaneous symmetry breaking
implies that if one decomposes p as a convex sum of sym-
metric, pure states, those pure states must have GHZ-like
entanglement. Let us first consider a rigorous argument
for this statement that, up to small modifications, essen-
tially follows the argument in Ref. [21] for a closely related
problem of nontriviality of a density matrix with an exact
symmetry and long-range order.

To show that for 8 > B., p cannot be a sym-SRE
state, we first decompose p as p = py + p_, where p, =
1+ U/2)p and p_ = (1 — U/2)p are the projections of
p onto even and odd charge of the Ising symmetry. py
and p_ are valid density matrices with an exact Ising
symmetry; that is, they satisfy Upy = po+. Now let us
make the assumption that for 8 > B., p is a sym-SRE
state. We will show that this assumption leads to a contra-
diction. Therefore, we write p1 = Y, po+|Va+) (Vo +l,
where p, 4+ are positive numbers, and |, 1) are SRE states
for all values of « that satisfy Ul +) = %[y +). Since U
anticommutes with Z;, (Y, +|Zi|¥4 1) = 0. Further, since
|[Y¥y+) are all SRE states, correlation functions of all
local operators decay exponentially (notably, we assume
that the associated correlation length is bounded by a
system-size-independent constant for all |y, 1)), and there-
fore (Vo|Z ZiVas) — (Va2 Vo) Vot | Zel Yras) =
(Yo, +|Zj Zt| Yo +) vanishes as |j — k| — oco. However,
this leads to a contradiction, because this implies that

tr(0ZZk) = D1 Yo Pat (V12 Zi| o +) itself vanishes,
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which we know cannot be true since as mentioned above,
for B > B, the system is in a spontaneous-symmetry-
breaking phase with long-range order. Therefore, our
assumption that p is a sym-SRE state for 8 > 8. must be
incorrect. The same conclusion also holds for 8 = 8, since
the correlations at the critical point decay as a power law.

As mentioned in Sec. I, our general approach would be
to first look for general constraints that lead to a mixed
state being necessarily nontrivial. If we are unable to
find such a constraint, we will attempt to find an explicit
decomposition of the density matrix as a convex sum of
SRE states. For example, above we noted that p cannot be
a sym-SRE state for 8 > B, and we also claimed that p
is an SRE state for all nonzero temperatures. Let us there-
fore try to find an explicit decomposition of p as a convex
sum of SRE pure states for any nonzero temperature, and
as a convex sum of symmetric, pure SRE states for 8 < f,.
The key player in our argument will be a particular convex
decomposition ansatz (CDA) that is motivated by the con-
struction of “minimally entangled typical thermal states”
(METTS:s) introduced in Ref. [56], and which was used in
Ref. [53] to show that the Gibbs state of 2D and 3D toric
code is SRE for all nonzero temperatures. Note that despite
the nomenclature, construction of METTSs as introduced
in Ref. [56] does not involve minimization of entanglement
over all possible decompositions, and is simply an ansatz
that is physically motivated (which is why we prefer the
nomenclature “CDA over METTSs” for our discussion).

First, let us specialize to zero transverse field. In this
case, p is clearly an SRE state at any temperature since
Py, e PEn|z,)(z,n|, Where |z,,) denotes a product state
in the Z basis and E,, = (z,,|H |z,»). To obtain a symmetric
convex decomposition, we write

D € P12 xm) (e P12

p == Z =Y V) Wl (3)

where the set {|x,,)} corresponds to the complete set of
states in the X basis and |¥,,) = e #7/2|x,,)//Z is the
unnormalized wave function. The states |y,,) are clearly
symmetric under the Ising symmetry, and their symmetry
charge (= =£1) is determined by the parity of the number
of sites in the product state |x,,) where spins point along
the negative-x direction. We will now argue that the states
|v,) are SRE for 8 < 8. and LRE for 8 > .. To see
this, we first consider the “partition function with respect
to |¢,,)” defined as Z,, = (V,,|¥,,) and study its analytic-
ity as a function of 8. In this specific example, since the
transverse field is set to zero, one finds that for all m, Z,, is
simply proportional to the partition function of the 2D clas-
sical Ising model at inverse temperature 8, and therefore
is nonanalytic across the phase transition. Similarly, the
two-point correlation function (,,|Z;Z; |¥) / (Yrm|¥rm) is
just the two-point spin-spin correlation function in the 2D
classical Ising model, which is long-ranged for 8 > B, and

exponentially decaying for § < B.. These observations
strongly indicate that |v,,) is SRE (and correspondingly,
p is sym-SRE) if and only if 8 < .. Note that the states
|V) are expected to be area-law entangled for all 8. This
is because one may represent the imaginary time evolu-
tion e #|m) as a tensor network of depth S acting on |m)
(which is a product state), which can generate only an area-
law worth of entanglement. Further, even the state at § =
oo is area-law entangled (which is the ground state of H).
Therefore, short-range correlations are strongly suggestive
of short-range entanglement.

Now let us consider a nonzero transverse field. To
argue that p is SRE for any nonzero temperature, we
again decompose it as p = Y |V) (Y|, where [,) =
e PH2|z,)//Z. The corresponding Z,, = (Y| ¥,) can
now be expressed in the continuum limit as an imaginary-
time path integral Z,~ [, o .5 D¢ e,
where §=3, i o 160k ko P02 + K+ 0B) + [,
fx’y (rlp|* + ulg|*), w, =27n/B are the Matsubara fre-
quencies, and, crucially, the Dirichlet boundary conditions
$(x,y, T =0)=9¢x,y,7 =B) = ¢o(x,y) are imposed
by the “initial” state z, ~ ¢o(x,y). Since B # oo, the
discrete sum over the Matsubara frequencies will be
dominated by w, = 0, which corresponds to space-time
configurations that are translationally invariant along
the imaginary-time direction. Furthermore, the Dirichlet
boundary conditions imply that there is just one such con-
figuration, namely, ¢ (x,y,T) = ¢o(x,y), such that Z,, ~
S0 and thus the fluctuations of ¢ will be com-
pletely suppressed at all nonzero temperatures (including
at the finite-temperature critical point that corresponds to
renormalized » = 0). Therefore, we expect that Z,, will
not exhibit singularity across the finite-temperature critical
point, which indicates that the states |¢,,) are SRE.

To argue that p is sym-SRE for 8 < B., we now
decompose p as p =Y, |Yu)(Ynl, where |[¥,) =
e PH12|x,)//Z. The corresponding Z,, = (Ym|¥,) can
again be expressed in the continuum limit as an
imaginary-time path integral Z,, ~ [ D¢ e™S, where S =

Yo Sy 10 Gk PR+ K+ o) + [Lg [, (rloP +

u|¢|4). Crucially, since the initial state is now a product
state in the X basis, the fields at the two boundaries T =
0, B are integrated over all possible configurations Again,
the path integral will be dominated by w, = 0, which
implies that the dominant contribution comes only from
configurations ¢ (t,x,y) = ¢ (x,y). Therefore, unlike the
aforementioned case when the CDA states corresponded
to e PH/2|z,)) //Z, here the dominant contribution to Z,,
precisely corresponds to the partition function of the 2D
classical Ising model, which is in the paramagnetic phase
for 8 < B.. The correspondence with the 2D classical Ising
model makes physical sense since the universality class of
the phase transition at any nonzero temperature is indeed
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that of the 2D classical Ising model. Therefore, we expect

that the states |,,) = e #"/?|x,,)/+/Z are SRE for B < B,
and LRE for 8 > B.. Correspondingly, we expect that
the Gibbs state is sym-SRE for 8 < 8. and sym-LRE for
B > Be.

To summarize, we have provided arguments that the
Gibbs state of a transverse-field Ising model is an SRE
state at any nonzero temperature and is a sym-SRE state
only for 8 < B.. Therefore, we expect that it undergoes
a separability transition as a function of temperature if
one is allowed to expand the density matrix only as a
convex sum of symmetric states. We expect similar state-
ments for other models that exhibit a finite-temperature
zero-form symmetry-breaking phase transition. In the fol-
lowing sections, we use logic broadly similar to that in
this example, with the primary focus on topological phases
of matter subjected to local decoherence. Specifically, we
write p = I'T'" and use the following CDA:

p = TImymIT'= " [u) Wl = D Pl Vi) (Y,
" ' " )

where [¥,) = T|m), pn = (mITTTIm) = (Yl and
[Vm) = | Ym) /~/ (¥ ¥) are normalized versions of |v,,).
We note that here I' is not unique (note that I' is not
restricted to being a square matrix; see, e.g., Ref. [17]), and
the CDA in Eq. (3) corresponds to our choosing I' = p!/?
for the Gibbs state p. We will sometimes call states {|,,)}
that enter a particular CDA “CDA states.” We further note
that, in general, we do not know how to find the matrix I"
that is “optimal,” i.e., a matrix I" that guarantees that the
states I'|m) are SRE whenever p is SRE. However, as we
will see in the rest of the paper, for a large class of prob-
lems, after a judicious choice of the basis {|m)}, the decom-
position in the form of Eq. (4) turns out to be optimal.

IV. SEPARABILITY TRANSITIONS IN SPT
STATES

The fundamental property of a nontrivial SPT phase is
that it cannot be prepared with use of a short-depth cir-
cuit consisting of local, symmetric, unitary gates [9—12].
Therefore, it is natural to ask whether if an SPT phase is
subjected to local decoherence whether the resulting mixed
state is sym-SRE, i.e., can it be expressed as a convex sum
of symmetric, SRE pure states? This is clearly a very chal-
lenging question for many-body mixed states, since to our
knowledge, there does not exist an easily calculable mea-
sure of mixed-state entanglement that is nonzero if and
only if the mixed state is unentangled [57] (if such a mea-
sure did exist, then it would be useful to study its universal,
long-distance component, which is similar to the topologi-
cal part of negativity [19,53,58]). As hinted at in Sec. I, our
general scheme will be to first seek sufficient conditions

that make a given mixed state sym-LRE (i.e., not sym-
SRE). We will do this by decomposing the decohered state
into its distinct symmetry sectors as p = ZQ po, With pg
the projection of the density matrix onto symmetry charge
0, and then examining whether the assumption of each
po being SRE leads to a contradiction. If we are unable
to find an obvious contradiction, we will attempt to use
the decomposition outlined in Eq. (4) to express p as a
convex sum of sym-SRE states. In either of these steps,
we will exploit the connection between local and thermal
decoherence for cluster states that was briefly mentioned
in Ref. [17], and which is described in the next subsection
in detail.

A. A relation between local and thermal decoherence

Systems with intrinsic topological order typically
behave rather differently when they are coupled to a ther-
mal bath compared with when they are subjected to deco-
herence induced by a short-depth quantum channel. For
example, when 2D and 3D toric codes are embedded in
a thermal bath, so that the mixed state is described by a
Gibbs state, the topological order is lost at any nonzero
temperature [2,53,59,60]. In contrast, when 2D or 3D
toric codes are subjected to local decoherence, the error-
threshold theorems [61—66] imply that the mixed-state
topological order is stable up to a nonzero decoherence rate
[17-20,59,67]. Given this, it is interesting to ask if there
exist situations where a local short-depth channel maps a
ground state to a Gibbs state. Here we show that this is
indeed the case if the corresponding Hamiltonian satisfies
the following properties:

(1) It can be written as a sum of local commuting terms
where each of them squares to identity:

H=> "l [h.h]=0, h =I, forallj,k.
J

®)

(2) There exists a local unitary O; that anticommutes
(commutes) with 4 ifj =k (G # k):
O0;h;0] = —h;,
L ©)
OjhO; = hy (j # k).

Specifically, if we denore the total system size as N,
the channel £ = & o - -+ 0 Ey with

&lpl = (1=p)p +p0; pO; (7)

maps the ground-state density matrix py to a Gibbs
state for H.

To verify the claim, we first note that Eq. (5) implies
that pp can be written as the product of the projectors
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on all sites pg = 1/2" [];(I — k). With use of Eq. (6),
it is straightforward to show that & [pg] = 1 J2N[T - (1 —
2p) 1T 1, 4 (I — hy). It then follows that the composition
of & on all sites gives

1
Elpol = o5 [ [ = (1 = 20)1y1. )
J

Since hjz = I, which implies e #" = cosh(B)I — sinh(8)
h;, one may now exponentiate Eq. (8) to obtain E[pg] =
(1/2)e PH where tanh B = (1 — 2p) and Z = tr(e #1).
In Sec. VIII, we also discuss a Zy generalization of this
construction. For the rest of the paper, the aforementioned
Z, version will suffice. In Secs. IVB-IV D, we exploit
the connection between local and thermal decoherence
to study decoherence-induced separability transitions for
the cluster states in various dimensions. In Sec. IVE, we
briefly discuss a couple of examples where the pure state
is protected by a single zero-form symmetry.

B. One-dimensional cluster state

The Hamiltonian for the 1D cluster state is given by

N
H == (Zyj-1XajZoj + ZajXp; Zaj+1)
j=1

N
= haj + oy, ©)
j=1

where a and b denote the two sublattices of the 1D
chain [see Fig. 1(a)]. H has a global Z, x Z, symmetry
generated by

Ua:HXaJ, Ub:HXbJ. (10)
J

J

We assume periodic boundary conditions, so that there is
a unique, symmetric, ground state of A that is separated
from the rest of the spectrum with a finite gap. It is obvious
that H satisfies Eq. (5). To satisfy Eq. (6), we choose Kraus
operators O, p; = Zyp; . Therefore, under the composition
of the channel &[] = (1 = pasp) P + PajpZasvyj 0Zasv,
on all sites, the pure-state density matrix becomes

P Pa>pp) = (Zie_ﬂ“ ) haj > (Zie_ﬂb 2 hbJ)
a b

= Pa(Pa) Po(Pb), an

withtanh B,/, = (1 — 2p,/) and 2,/ = tr(e_ﬁ"/” 2 h“/bJ).
In the following, we suppress the arguments p, and
pr in p,(p,) and pp(pp) if there is no ambiguity. Note

that p, and p, commute with each other. To decom-
pose p as a convex sum of symmetric states, we write
P = 0,0, P00y Where each pg, o, is an unnormalized
density matrix that carries exact symmetry: U, pg,.0, =
(=% pg,0,: Us po,.0, = (=1)%pg, 0, With Qs = 0,1
and O, = 0,1, so the sum over Q,, O, contains four
terms. The explicit expression for pg, o, is given as
P0..0y = PO.PO,» Where po, = puPo, and pg, = psPo,,
and PQa/b = + (—=1)%a Uup)/2 are projectors. Note
that the probability for a given sector (Q,, Op) is given
by tr(pg,.0,), Which can be used to obtain the normal-
ized density matrix pg, o, for a sector (Q,, Q) as pg,.0, =
£04.04/ 1 (P04.0;):

To discuss whether the decohered mixed state p is triv-
ial on the basis of our definition of a sym-SRE mixed state,
we start by considering the special case p, > 0, p, =0,
i.e., the mixed state obtained by application of the afore-
mentioned quantum channel only on sublattice a. This case
was studied in detail in Ref. [27] from a different perspec-
tive and is an example of an “average-SPT-order phase”
[26,27,29,30]. In particular, it was shown in Ref. [27] that
this mixed state cannot be purified to an SRE pure state
with use of a finite-depth local quantum channel. As dis-
cussed in Sec. II, our definition of an SRE mixed state is a
bit different (namely, whether a mixed state can be written
as a convex sum of SRE pure states), and therefore it is
worth examining whether this state continues to remain an
LRE mixed state with our definition.

When p, > 0, pp =0, only the sector corresponding
to O, = 0 survives, and in this sector, pg, 0, ]_[j =

hyp q,-)ef'g“ 2 haj Pg,. We now provide two separate argu-
ments that show that pg, o, is a sym-LRE (i.e., not a
sym-SRE) mixed state when p, > 0, p, = 0.

1. First argument

We want to show that pg,.0, & [];(I —hy J)e_ﬂ” 2 haj Py,
cannot be written as ) " pu|¥m) (¥ml, where |1,,) are SRE
states that can be prepared via a short-depth circuit con-
sisting of symmetric, local gates. We use the result in
Ref. [39], which shows that for an area law—entangled state
in one dimension (which we take to be |,,)) that is sym-
metric under an Ising symmetry (which we take here to
be U, = ]_[j X,,), the order and disorder parameters can-
not both vanish simultaneously. Note that we are assuming
that |,,) has an area-law entanglement, as otherwise it is
certainly not SRE and there is nothing more to prove.

Therefore, following the results in Ref. [39], |¢,)
must either (1) have a nonzero order parameter corre-
sponding to the symmetry U,, i.e., (1//,,,|Z,~Zk|¢fm) #0,
where |j —k| > 1 and Z is an operator that is odd
under U, e.g., 7= Z,i, or (2) have a nonzero “disor-
der parameter” corresponding to the symmetry U,, i.e.,

(¥nlOs (TTE, Xas) Orlyrm) # 0, where |j — k| > 1, and
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FIG. 1. Cluster states under decoherence in (a) one dimension, (b) two dimensions, and (c) three dimensions. In (a)c), the diagram
on the left depicts the Hamiltonian of cluster states. The diagram in the middle in (a)—(c) divides the decohered mixed state as a function
of error rates into several regimes that have qualitatively different behaviors. The white regions [region (4)] in the three phase diagrams
denote phases where the mixed state is “sym-SRE” (“trivial”), i.e., it is expressible as a convex sum of symmetric, short-range-
entangled pure states. In contrast, the colored regions or lines [regions (1), (2), and (3)] denote phases where such a decomposition is
not possible (“sym-LRE”). There can be phase transitions from one kind of sym-LRE phase to a different kind of sym-LRE phase as
depicted by different colors. The phase diagram is obtained by our calculating objects of the form [(0)?] = ZQ P(Q) ((O)Q)z, where
O corresponds to an appropriate observable that characterizes symmetry-enforced long-range entanglement and P(Q) is the probability
for obtaining the symmetry charge ¢g. p. = 0.109 in (b) corresponds to the ferromagnetic to paramagnetic phase transition in the 2D
random-bond Ising model along the Nishimori line, while p. &~ 0.029 in (c) corresponds to the critical point in the 3D random-plaquette
gauge model along the Nishimori line. The diagram on the right in (a)~c) shows the phase diagram obtained by our expressing p as a
convex sum of symmetric states, where each symmetric state [,,) = p'/2|m), with |m) the product state in the Pauli X basis. See the
main text for more details.

Op and Oy are operators localized close to site j and  This is because |{,,) is an eigenstate of the string operator

site k, respectively, that are either both even or both odd g, (7 ) = 7, (H(_l XbJ) Zor+1 [this follows from the fact
under U,. In case (1), the system has a long-range GHZ- that I . _1 I ’ hich anti ‘ ith
type order since the state |,,) is symmetric under U,. In at o,y & [1;(I = hv;)]. which anticommutes wi

case (2), we now argue that the system has an SPT order. Oy (]_[5‘: j Xa,;) Og, for an appropriate choice of (/,7) when-
For (¥,,|Or (]_[f:j XaJ) Og|¥,) to be nonzero, the oper-  ever neither O, nor O is charged under U,. As a con-
ator O; ® Op must carry no charge under the symmetry sequence, for (¥,,|0r <]_[5‘:f Xa,l) ORr|Y,,) to be nonzero,

Up as |y) is an eigenstate of U. Therefore, there are two 9, and Ok must both be odd under U. If this is so, then
disjoint possibilities for the operators Oy, and Og: they are  the disorder parameter precisely corresponds to one of
cither both charged under the symmetry Uj, or neither of  the two SPT string order parameters, namely, S,(j, k) =
them is charged under U,. If neither of them is charged

Zpi_1 (]—[kz‘X ’1> Zpj+1 up to finite-depth symmetric
under Uy, then (¥,,|0; (]_[;‘:j Xa,1> ORr|Y,,) must vanish. ! = N

unitary transformation. At the same time, the other SPT
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string order parameter {(V,,|S,(j,k)|¥,,) is also nonzero
[due to pg,0, H_;‘ (I — hy,;)], and therefore we arrive at
the conclusion that in case (2), |¥,,) must possess non-
trivial SPT order since the string order parameters on both
sublattices are nonzero. Therefore, in either case (1) or case
(2), |¥,) cannot be prepared by a short-depth circuit com-
posed of local gates that respect both U, and U, starting
with a symmetric product state.

2. Second argument

This argument is essentially the same as the argument
introduced in Ref. [38] to show that the circuit depth of var-
ious states with a nontrivial string order parameter cannot
be a system-size-independent constant due to locality/the
Lieb-Robinson bound [36,37]. Again, recall that we want
to show that pg, 0, o< [];(/ — hy e Paitei Py cannot
be written as ), pu|¥m) (¥ml, where |1,,) are SRE. Since
00,0, carries an exact symmetry charge of U,, U, so
do each of the pure states |i,,). As discussed above, the
expectation value of the string order parameter S,(j, k) =

]_[f:j (—hpy) = Z, (n;‘:j Xb,;> Zga j+1 1s unity with respect
to pg,0,» Which implies that its expectation value is
also unity with respect to each of the states |y,,). Let
us assume that |y,,) can be obtained from a symmet-
ric product state (i.e., an eigenstate of Pauli X on all
sites) that we denote as |xap) = ®; |X4,,Xp;), 1.€., [¥) =
Vixap) (here x,/5; = £1 are chosen so as to satisfy the
symmetry Uss|¥m) = (—~1)%%[1,)). Note that [xp) sat-
isfy not only the global symmetry U,/ but the “local”
ones as well, i.e., l—[jerﬂxa,b) X |xap) for any string /.
Since each end point of S, is charged under U, (i.e.,
UaZajjk41Us = —Zyj 1), the local symmetry of |xap)
implies (xap|Sp(j, k)|xap) = 0. Moreover, since V is a
finite-depth unitary, the operator V'S, (j, k) Vis still a string
operator with each “end-point operator” V1Z, J/k+1V a
sum of local operators (due to the locality of V) that are
charged under U, (due to V being a symmetric unitary,
ie., [V,U,] =[V,Uy] = 0). Because of these properties,
the expectation value (x, | V‘Sb(/‘ ,k)Vixap) will be iden-
tically zero. However, (xa,b|V'LSb(/',k) V|xap) is nothing
but (V|85 , k)| ¥m), which is unity, as discussed above.
Therefore, we arrive at a contradiction. This implies that
our assumption that |y,) is a symmetric SRE state must
be incorrect.

We now discuss the general case of both p, and p;
being nonzero. On the basis of our discussion above, it
is instructive to evaluate the string order parameter with
respect to each pg, o,, 1.€., tr(pg,.0,54/5) /tr(pg,,0,). One
finds (see Appendix A) that both string order parame-
ters can be mapped to two-point correlation functions of
spins in the 1D classical Ising model at nonzero tem-
perature and hence they decay exponentially with the
length of the strings. This result merely implies that the
corresponding mixed state p =}, , 0,0, does not

satisfy the aforementioned sufficient condition for being a
nontrivial sym-SRE state, and does not guarantee that p
must be trivial. We now use the CDA in Eq. (4) to argue
that p is indeed sym-SRE. In particular, we choose I' =
p'? so that p =Y Tlm)y(m|TT = |[¥u)(¥nl, with
[¥) ox e Pa 2 haj+Py 2 ")/2|my. To ensure that each
|,) respects the global Z, x Z, symmetry, we choose
the set {|m)} = {lxa,xp)m}. When B, =B =0, [) =
|xa, Xp)m 18 @ product state. To check whether |,,) remains
SRE for any noninfinite 8, and B, let us consider the
“partition function with respect to |y,)”

Zm(IBan ﬂb) = (V/mhhm) (12)

as a function of 8. As B, and B, are increased from zero, if
the state |,,) becomes long-range entangled, one expects
that it will lead to a nonanalytic behavior of Z,(8) as
a function of B, and B,. The calculation for Z,(8) =
(Xa, Xp|p|xa, xp) is quite similar to the one for tr(pg, o,)
detailed in Appendix A, and one finds that Z,,(8) is pro-
portional to the product of two partition functions for the
1D classical Ising model at inverse temperatures S, and ;.
Therefore, we expect that [1,,(8)) remains an SRE state
as long as both 8, < 0o and B, < oo, which confirms our
expectation that p is sym-SRE for noninfinite 8, and S,
(i.e. pa,pp > 0).

One can also compute the string order parameters
Sa (Sp) for |v,,) and show its equivalence to (z;zx) 1D Ising
at inverse temperature B, (Bp). Therefore, |v,,) does
not develop string order as long as B, < oo. The
triviality of |y,,) is also manifested by the nonzero
expectation value of the disorder operator U, (k,j) =
]_[;‘:j Xasp. For example, consider the expectation value
of the disorder operator on the a sublattice: (U, (k,j)), =
(U | Ua (ks ) W) /(W |¥m). Using the fact that the only
terms in e~ Pe2yhaitPr 2 1j)/2 that anticommute with
Uy(k,j) are hp;_1 and hpy, we find that (U,(k,j))m =
(]_[f:j x7) sec h*(B,), which is nonvanishing except for
Ba = oo. This is, of course, expected on the basis of the
result in Ref. [39], since [/,,,) does not have any GHZ-type
order. The result for Uy (k,j) is similar.

It is also instructive to apply the aforementioned con-
vex decomposition to the case 8, = o0, B, # 0, i.e., the
above-discussed case of “average SPT order.” In this case
we find that the corresponding state |,,) develops GHZ-
type long-range entanglement. To see this, one can rewrite
V) as [Y) ~ e Podihai 21 x,), where ) ~ 1, (I —
hy)m) = 1xy) @ [T, ( = xp;ZajZaj+)la)  exhibits
GHZ-type long-range entanglement characterized by
[{(Xm|ZajZaklxm)| = 1. Using the fact that the only
terms in e P42i%i/? that anticommute with ZajZaj
are h,; and hgi, one finds that |(V,|Z,;Z x| Ym)| =
sec W2 (B)[{xm|Zaj Zaj| xm)| = sec h*(B,), which is nonva-
nishing except for 8, = co.
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To summarize the results in this subsection, the deco-
hered state p as a function of p, and p; can be divided into
four regimes (see Fig. 1):

(1) pa = pp = 0: tr(pg,.0,5( ,k)) =1 (in the O, =0
sector) and tr(pg, 0,55(7,k)) =1 (in the QO =0
sector). This is just the pure-state SPT-order phase.

(2) pa > 0 and p, = 0: tr(pg,.0,5.( , k)) decays expo-
nentially with [j — k| and tr(pg,.0,S5(7,k)) =1 (in
the O, = 0 sector). This regime is sym-LRE, i.e.,
a nontrivial mixed state, in agreement with the
nontrivial “average-SPT-order phase” discussed in
Ref. [27].

(3) pa =0 and p;, > 0: this is similar to case (2) with
a <> b and is again a sym-LRE state.

4) pa,py > 0: both tr(pg, 0,5 ,k) and tr(pg, 0,
Sy(j, k)) decay exponentially with |j — &|. This is a
sym-SRE state.

On the basis of our discussion above, we also provide one
possible “phase diagram” to express p as a convex sum of
symmetric states using CDA states |1/,,) = p'/?|xa, Xp), as
summarized on the right in Fig. 1(a). Note that the bound-
ary of the phase diagram obtained with the CDA matches
the boundary of regimes (1)—~(4), and therefore the CDA is
optimal in this sense. However, it is worth noting that the
decomposition we chose is just one possible choice, and
the label “GHZ” on the x and y axes in plot on the right
in Fig. 1(a) is tied to this choice. One may also chose to
expand p as a convex sum of SPT states. Therefore, the
result that is independent of any specific choice of CDA
is that regime (4) is sym-SRE, while regimes (1)~(3) are
sym-LRE.

C. Two-dimensional cluster state

The 2D cluster state Hamiltonian H;p cpuster 1S given by

Hyp cluster = — ZXU (l_[ Ze) - ZXe(l_[ Zv)

esv vee

=> h+Y ke (13)

Here the Hilbert space consists of qubits residing on both
the vertices v and the edges e of a 2D square lattice
[see Fig. 1(b)]. The Hamiltonian has both a zero-form
symmetry ZEO) and a one-form symmetry Zél) with the
corresponding generators

0O =%, 0 =]]x (14)

ecdp

where p labels the plaquette on the lattice and dp is the
boundary of p. We assume periodic boundary conditions,
so that H has a unique, symmetric, gapped ground state.

Using Egs. (5) and (6), if one subjects the ground state
of Hsp cluster to Kraus operators O,/ = Z,,. with respec-
tive probabilities p, ., the resulting decohered density

(O SWEETS 3

matrix is given as p = (1/2)e
tanh ,Be/u = - Zpe/v).
Let us decompose p as a convex sum of sym-

metric states by writing p = ZQ(O) ot PO o), where
each pyo o) carries the exact symmetry: vo PO o) =

(—1)Q(0)PQ<0>,Q<1>, UL po o) = (_1)QISO)10Q(0),Q(U- Here,
the one-form symmetry charge is labeled by the set 1) =
{00}, with OfP) = 0,1 defined on each plaquette p. Cru-
cially, the number of one-form symmetry sectors grows
exponentially as a function of the system size, and this
implies that the probability for a given sector (Q©©, 0W),
ie., tr(,OQ(O),Q(l)), is exponentially small in general. It fol-
lows that even if there exists some Po® o) that is not
sym-SRE, the decohered state p may still be well approx-
imated by a sym-SRE mixed state as long as the total
probability corresponding to the nontrivial sectors is expo-
nentially small. Therefore, the notion of p being sym-SRE
must take into account the probability for each symmetry
sector, and can be made precise only in a statistical sense
(a similar situation arises for a certain nonoptimal decom-
position for decohered toric code [17]. We will return to
this point in detail below. For now, let us focus on the
physical observables in each symmetry sector.

The observables that characterize the 2D cluster ground
state are the expectation value of the membrane opera-
tor Mg = [],.(—h'?), with S a surface (for simplicity,
we assume that the boundary 95 of this surface is con-
tractible), and the string operator S¢ = [],.(—AL"), with
C a curve (the expectation value of either of these opera-
tors equals unity in the 2D cluster ground state). To detect
whether PoO) o) is sym-SRE, i.e., it can be expanded
as a convex sum of pure SRE states that each carries a
definite symmetry charge (Q©, Q"), it is instructive to
calculate the expectation value of these operators with
respect t0 PO o), ie., tr(poo o Ms) /tr(pgo om) and
tr(,oQ(O)ijSc) / tr(pQ(())7Q(1)). To proceed, we first compute
the denominator in these expressions, i.e., tr(,oQ«)),Qu)).
Similarly to the 1D cluster state, this can be easily done
by insertion of the complete basis {|x.y)} and {|zey)},
where [Xey) = ®cylXe, Xy) and |zey) = ®cylze,2y) denote
the product state in the Pauli X basis and the Pauli Z
basis, respectively. Following a calculation quite similar to
that in the 1D cluster state, one finds that tr(,oQ(O),Qa)) x
vaeQ(()) Z2D gauge,xXy ereQ(l) ZZD Ising,xe - Here ZZD gauge, Xy
=), efr2vdlevZ) s the partition function of the 2D
Ising gauge theory with the sign of interaction on each
vertex given by xy, while Z5p ising x, = sz ePe Xexe([Tyeez)
is the partition function of the 2D Ising model with the
sign of Ising interaction given by x.. In the summa-
tion, the notation x, € Q0 denotes all possible x, that
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satisfy [ [, xy = (—I)Q(O), while x. € OV denotes all pos-

sible xe that satisfy [],.,, xe = (—1)Q1(’1) for all p. For
a system with periodic boundary conditions, all possi-
ble x, € 0@ (x. € OV) can be reached by the transfor-
mation x, — xy [[,5, Oc, 0 = £1 (xe = Xe [[,cp Svo S0 =
£1). One may verify that Zpgauger, (22D Isingre) 18
invariant under the aforementioned transformation by
changing the dummy variables z, — .z, (z, = Syzp).
It follows that Zp gaugexry (Z2DIsingre) 18 @ function of
only the charge Q©(Q"), and therefore we label it
a8 25D gauge.0® (Z2p 1sing o). Therefore, tr(pgo p))
ZZD gauge,0(0) Z2D Ising,0(1) [68].

One may similarly compute tr(pyo omMs) and tr
(Poo o) Sc), the numerators in the expectation value for
the membrane and the string operators. Let us first con-
sider the membrane order parameter in the sector (Qy, O1),
which we denote as (Ms)g,.0,. One finds

tr(ppo o Ms)
tr(ppo o)

— Zze (HveS Xv HeeaS Z@) e oo ([l )

(Ms)0y.0, =

ZZD gauge,0(0)

xveQ(O)
= W,
(l_[ xv) (W35)2D gauge.ry 10 c0®
ves
~ e S for B, < oo, (15)

where (Wjs)2p gauge,xy 15 the expectation value of the Wil-
son loop operator along the curve 9.5 for the 2D Ising gauge
theory with interaction xy while 4(S) is the area enclosed
by the surface S. The area law follows because the 2D Ising
gauge theory is confining at any nonzero temperature. We
conclude that Lo o) has no membrane order as long as
Py > 0.

On the other hand, the string order parameter (Sc)o,.0,
is given by

tr( oo o Sc)
() 000, = ———=

tr(ppo o)
sz (neerg) ZUIZUZeﬂe Zexe(nuazv)
ZZD Ising,0(D xecQM)
= (l—[xe) (Zv,Zvy ) 2D Ising,xe reco”’ (16)
eeC

where v; and v, label the end points of the curve C and
(2v,2v,)2D Ising.x 18 the spin-spin correlation function of the
2D Ising model with the sign of the Ising interaction deter-
mined by x.. Clearly, (S¢)g,,0, can show long-range order
at low temperature, and following the same argument as
for the 1D cluster state, long-range order for a given sector
implies that the (unnormalized) density matrix pgo o) is

sym-LRE. For example, in the sector corresponding to all
x. = 1, the long-range order sets in below the 2D Ising
critical temperature. However, since the ordering temper-
ature clearly depends on the sector OV, to understand
whether the full density matrix p = ZQ(O),Q(I) Po©) o) is
sym-LRE, one needs to statistically quantify the string
order as a function of the error rate. To do so, we introduce
the following “average string order parameter”:

Z tr(pQ(0>,Q(l)) ((SC>Q0,Q1)2 . (17)

00 o

[(Sc)*] =

Equation (17) is equivalent to the disorder-averaged spin-
spin correlation function of the RBIM along the Nishimori
line [33]. It follows that [(Sc)?] decays exponentially as a
function of |C| when p, > p. ~ 0.109 [69].

On the basis of the above analysis, the decohered state p
as a function of p, and p, can be divided into four regimes
with use of the qualitative behavior of the expectation val-
ues of membrane and average string order operators [see
Fig. 1(b)]:

(1) py =0and p. > p. > 0: (Ms)g,.0, = 1 (in the sec-
tor 00 = 0) and [(S¢)?] is a nonzero constant as
|C| — oo. In this regime, p must be sym-LRE.

(2) pv =0 and p, > p.: (Ms)g,0, =1 (in the sector
09 = 0) and [(Sc)?] decays exponentially as a
function of |C|. In this regime, p must again be
sym-LRE.

(3) py >0 and p. > p, > 0: (Ms)g,0, ~ e *® and
[(Sc)?] is a nonzero constant as |C| — oo. In this
regime, p must also be (statistically) sym-LRE.

4) py >0 and p.>pe: (Ms)g,o ~ e and
[(Sc)?] ~ e~ !¢l This is suggestive that in this
regime p is (statistically) sym-SRE, and we provide
an argument in favor of this conclusion below using
an explicit convex decomposition.

We now use the CDA in Eq. (4) with I' = ,/p to argue
that regime (4), namely, p, > 0 and p, > p., is indeed
sym-SRE. To ensure that each CDA state |,,) satis-
fies the Zéo) X Zél) symmetry, we choose {|m) = |xy, X.)}.
Similarly to the 1D case, we consider the singularity
of the “partition function” Z,, = (¥,,|¥,,) as a diagnos-
tic for transition from SRE to LRE as B is increased
from zero. Since Z,, = (X¢, Xy|p|Xe, Xv), @ calculation simi-
lar to that for tr(pQ(O),Qa)) shows that Z,, is proportional
t0 25D Ising gauge,xy 22D Ising,xo- ON€ can also compute the
expectation values of membrane and average string order
operators with respect to |,,) and find that (Ms),, is pro-
portional to the expression in Eq. (15), while [(Sc)?] is
proportional to the expression in Eq. (17), and therefore
both vanish when p, > 0 and p. > p..

Alternatively, one may define an “average free energy”
nZ]=)", PnIn(Z,) x ), Z,In(Z,) with respect to
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|Y,) to detect whether the ensemble {v,,)} encounters a
phase transition as a function of the error rate. When 8 =
0, |¥m) = |Xa,Xp)m 18 the trivial product state. On the other
hand, |v¥,,) becomes the 2D cluster state when  — oo.
One expects that the phase transition point can be located
by the singular behavior of [In Z]. Since [In Z] is propor-
tional to the disorder-averaged free energy of the 2D RBIM
along the Nishimori line, it is singular at p, ~ 0.109. This
leads to the same conclusion that {|1,,)} remains SRE in
regime (4) above.

Interestingly, if one adopts the aforementioned CDA
in regimes (2) and (3), then |y,) hosts intrinsic topo-
logical order and GHZ order, respectively. This can be
argued by one first considering the extreme case (p,, p.) =
(0,0.5) in regime (2) and (p,,p.) = (0.5,0) in regime
(3). When (py,p.) = (0,0.5), [¢n) o< [, 4 AP)|m) o
(Ixv) @ [ [, +xy [ 1,5, Ze)Ixe)), which is an eigenstate of
toric code. On the other hand, when (p,,p.) = (0.5,0),
[Ym) o T1.(+ A0 m) o (xe) @ T +e [oee Zo)bxv)
is the 2D GHZ state. The argument based on the ana-
lyticity of the average free energy [In Z] then indicates
that regimes (2) and (3) continue to host topological
order and GHZ order, respectively. The phase diagram
obtained with the current decomposition is summarized in
Fig. 1(b).

Finally, we note that order parameters similar to [(Sc)?]
[Eq. (17)] and the connections between the decohered
cluster states and the RBIM have also appeared in the
context of preparing long-range-entangled states by means
of measurement protocols in Refs. [34,35]. In particular,
our phase diagram [Fig. 1(b)] along the line p, = 0.5 is
similar to the finite-time measurement-induced phase tran-
sitions in Ref. [34,35]. However, one crucial difference is
that the mixed states in Refs. [34,35] do not respect the
Zél) symmetry and therefore the corresponding transitions
cannot be interpreted as separability transitions protected
by ZZ(O) X Zz(l) symmetry between a sym-LRE phase and
a sym-SRE phase. Instead, the role of different sectors
corresponding to the Zél) symmetry is played by the flux
b= ]_[eep s, through a plaquette p, where s, is the mea-
surement outcome. One may then regard the transition in
Refs. [34,35] as a separability transition where in the non-
trivial phase it is impossible to decompose the density
matrix as a convex sum of SRE states that carry both def-
inite 22(0) charge and flux f,. Similar statements hold true
for the case of a 3D cluster state, which we discuss next.

D. Three-dimensional cluster state

The 3D cluster state Hamiltonian H3p cpuster 1S given by

H3Dcluster - ZX Hzf - ZX/’ l_IZ

foe f ecf

= het Y hy. (18)
e ya

The Hilbert space consists of qubits residing at both the
faces f and the edges e of a cubic lattice [see Fig. 1(c)]
or, equivalently, at the edges of a cubic lattice and the
edges of its dual lattice [recall that each edge (plaquette)
of the original lattice is in one-to-one correspondence with
a plaquatte (edge) of the dual lattice]. We assume peri-

odic boundary conditions. This model has a Z(Zl) X Zgl)
symmetry whose generators are given by

(](1)_1_[&, l-]gl) l—[Xea

fedc ecdc

(19)

where ¢ (¢) specifies the cube in the lattice (dual lat-
tice) and dc (d¢) denotes the faces on the boundary of
¢ (¢). Choosing Kraus operators O,/ = Z.;; with respec-
tive probabilities p./r, using Egs. (5) and (6), one obtains

_ (_ a
the decohered state p = 1/Ze ™ Lehe =Py 2 by

tanh B.;r =1 —2p,r.
We now decompose p as a convex sum of sym-
metric states by writing p = ZQm o Lo o) where

, with

each p,a pa) carries exact symmetry: U(,")pQ(l/) on =

1
(= 1)QEI)PQ(1/> onr U ppan o = (1) E),0Q<1’> o
Here two one-form symmetry charges are labeled by
0" = (0"}, with Q") = 0,1 defined on each cube
¢, and O = (0"}, with Q" = 0,1 defined on each
cube ¢ in the dual lattice. Let us focus on the physical
observables that characterize each sector. These are the
membrane operators My = ]_[f ES(—h}l ) ), with S a con-
tractible surface on the original lattice (by “contractible
surface” we mean an open membrane whose boundary 9.5
is nonzero and is a closed loop) and My = neeg(—hg/)),
with S a noncontractible surface on the dual lattice. Thus,
we want to compute tr(,oQ(lr),QmMS)/tr(,oQ(y)’Q(l)) and
tr(ppan o Mz) /tr(pgan om)-

Similarly to the cases in previous sections, we first com-
pute the denominator tr(p,a) 1)) in these expressions by
inserting the complete basis {|xte)} and {|zf¢)}, and obtain
tr(Ppa) o) ~ 2yept) 23D gaugexs 2 reeo) 23D gaugere-
Here Z3p gauge,xy — Z e 25 % (Teer o) is the partition
function of the 3D Ismg guage theory with the sign of

the interaction on each face labeled by xg, and x; € O

denotes all possible xf satisfying l_[fedc xg = (— I)QEU.

For a system with periodic boundary conditions, all pos-
sible x; € 0" can be reached by the transformation
Xr — Xr ]_[esf 0e, 0, = *1. Further, one may verify that
Z3D gaugex; 1S invariant under the aforementioned trans-
formation by changing the dummy variables z, — 0,z,.
It follows that Z3p gauger; = Z5p cauge.01") is a function

of only charge 0". Analogous statements hold true for
Z3D gauge,xo- 1 herefore, we write
(20)

tr('oQ(l/),Qm) x Z3D gauge,0(1") Z3D gauge,Q(1) -
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One may similarly compute tr(poa oy Ms), and obtain the following expressions:

(Ms)

tr(ogan oy Ms) > (Hf es ¥ [eess Ze) e Ly (leey 20

) o = =
one tr(ppm o)

= l_lx_f (W3S>3D gauge,xg
fes

where (Wjs)3D gaugex; 1 the expectation value of the Wil-
son loop operator (corresponding to [, z. along a closed
curve) along the boundary of S for the 3D classical Ising
gauge theory whose Hamiltonian is defined by the term
that multiplies B, in the exponential in the second line
of Eq. (21). Since the plaquette interaction term in this
Ising gauge theory depends on x; € 0, similarly to the
discussion for 2D cluster state, we introduce an average
membrane order parameter

2
Z tr(pgan om) ((MS>Q’1,Q1> .
01" oM

[(Ms)*] = (22)

Equation (22) precisely corresponds to the disorder-
averaged Wilson loop of the 3D random-plaquette gauge
model along the Nishimori line [67]. It follows that
[(Ms)?] ~ e 195 (“perimeter law”) when p; < p. ~
0.029, while [(Ms)?] ~ e8! (“area law”) when p; > p,.
One can also define the average membrane order parame-
ter [(M5)?] for Mz, and the results are analogous with the
same critical error rate p,.

Therefore, using the qualitative behaviors of [(Ms)?]
and [(Mz)?], one can divide the decohered state p as a
function of p; and p, into four regimes [see Fig. 1(c)]:

(1) pr,pe < pe: both [(Ms)?] and [(M;)?] satisfy the
perimeter law.

(2) pr < Pespe > pe: [(Ms)?] satisfies he perimeter law,
while [(M;)?] satisfies the area law.

(3) pr > PesPe < pei [(Ms)?] satisfies the area law,
while [(M5)?] satisfies the perimeter law.

(4) pr,pe > pe: both [(Ms)?] and [<M§>z] satisfy the
area law.

Using an argument similar to the argument in Ref. [21],
and also similar to arguments used in previous subsec-
tions for 1D and 2D cluster states, one can show that in
regimes (1)~3), p cannot be a convex sum of symmetric
pure states where membrane operators exhibit only an area
law. This suggests that these three regimes are sym-LRE.
In regime (4), p does not develop any average membrane
orders, which strongly suggests that it is a sym-SRE state.
We now use a CDA to support this expectation.

xre0(1"’

Z3D gauge,0(1") xpeQ(1)

2

We again choose a CDA [Eq. (4)] with T' = ,/p.
To ensure that each |y,) that enters the CDA satis-
fies Zgl) X Z;l/) symmetry, we choose the basis {|m) =
|xe,xg)}. Similarly to the previous cases, we consider
the “partition function” Z,, = (¥,,|¥,,), whose singu-
larities are expected to indicate the presence of a
phase transition. The evaluation of Z,, = (xg, xe|p|xt, Xe)
is quite similar to that for tr(pga om)s and one finds
that Z,, ~ Z3p gaugex; 23D gauge,xo.- ON€ may also compute
the expectation values of the two membrane opera-
tors and find (wm|MS|vfm) = (1_[/ s xf)<W3S)3D gauge xg and
(WmlMng) = (l_[eeS’ xe)<W3_§‘>3D gauge,xe * USing these, one
may then define average membrane order parameters
[(Ms)*] = 3, Pu(¥m|Ms|¥m)? and  [(M3)*]1 =3, Pn
(wm|M§|wm)2. Using the same arguments as those fol-
lowing Eq. (22), one concludes that both these order
parameters vanish in regime (4).

One may also conclude that the aforementioned
decomposition in regimes (2) and (3) corresponds
to topologically ordered phases. This can be argued
by one first considering the extreme case (pr,p.) =
(0,0.5) in regime (2) and (pr,p.) = (0.5,0) in regime

(3). When (p/,pe) = (0,0.5), [vm) ~ [, ( + h)|m) ~
(Jxf) ® ]_[f U +xr ]_[eef Z.)|xe)), which is an eigenstate of
the 3D toric code. The argument based on the singularity of
the average free energy [In Z] then indicates that in regime
(2) CDA states are topologically ordered. Similar argu-
ments hold for regime (3). The phase diagram obtained
with such a convex decomposition is summarized in the
plot on the right in Fig. 1(c).

It is interesting to compare our results with the results
in Ref. [70], where the Gibbs state of the 3D cluster
Hamiltonian was studied. The main difference between
the decohered state we study, which also takes the Gibbs
form, and the state studied in Ref. [60] is that in Ref. [60],
the Gibbs state is projected to a single charge sector
of both one-form symmetries [and therefore possesses
an exact symmetry, see comment (3) in Sec. II], which
results in a phase transition as a function of tempera-
ture that is in the 3D Ising universality. In contrast, the
decoherence we are considering leads only to an average
(instead of an exact) symmetry, and therefore we obtain an
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ensemble of density matrices Po) o labeled by the

symmetry charges 07,01, As discussed above, this
implies that the universality class of the transition is related
to the 3D random-plaquette gauge model (and not the 3D
Ising transition).

E. One-dimensional and two-dimensional topological
phases protected by a ZZ(O) symmetry

Aside from the cluster states in several dimensions,
Egs. (5) and (6) also hold for various stabilizer models
realizing 1D and 2D SPT phases protected by a ZSO) sym-
metry, which we now discuss briefly. An example in one
dimension is the nontrivial phase of the Kitaev chain [71]:

H=—i) vy vy, (23)
J

where y; denotes the Majorana operator satisfying
{¥j, v&} = 28 . Itis straightforward to see that the Hamilto-
nian satisfies Eq. (5), and one can choose O; as y»;_1 or y»;
such that Eq. (6) is satisfied. Therefore, under the composi-
tion of the channel & [p] = (1 — p)p + py2—1pY2 -1, the
pure-state density matrix becomes the finite-temperature
Gibbs state with tanh 8 =1 —2p. A 2D example is the
Levin-Gu state [72], where the Hamiltonian is defined on
the triangular lattice and can be written as

H=— ZB , B,=-X, ]_[ i1=%a2)2(24)

P (paq"

where the product runs over the six triangles (pqq’) con-
taining the site p. The ground state has nontrivial SPT
order for the Zéo) symmetry generated by U = ]_[po.
One can verify that [B,, B,y] = 0 and B = 1 by straight-
forward algebra, and thus Eq. (5) is satisfied. Besides,
one can choose O; =Z; such that Eq. (6) is satisfied.
Therefore, under the composition of the channel &;[p] =
(1 —p)p + pZ; pZ;, the pure-state density matrix becomes
the finite-temperature Gibbs state with tanh § = 1 — 2p.
Using the CDA in Eq. (4), one may then argue that both
the decohered Kitaev chain and the Levin-Gu state are
sym-SRE for any nonzero p (we assume periodic boundary
conditions so that there are no boundary modes).

V. SEPARABILITY TRANSITIONS FOR 2D
CHIRAL TOPOLOGICAL STATES

A. Setup and motivation

In this subsection, we consider subjecting chiral
fermions in two dimensions to local decoherence. The
starting pure state we consider is the ground state of a p +
ip SC, although we expect that the results will qualitatively
carry over to other noninteracting chiral states.

Our motivation is as follows: It is generally believed
that the 2D p 4 ip SC cannot be prepared from a prod-
uct state with use of a constant-depth unitary circuit (as
suggested by the fact that the thermal Hall conductance
of a p + ip SC is nonzero, while that for a trivial, gapped
paramagnet is zero). Indeed, one may think of a p +ip
SC as an SPT phase protected by the conservation of
fermion parity [40]. Therefore, it is natural to ask what
happens if one applies a quantum channel to this sys-
tem where Kraus operators anticommute with the fermion
parity. This is conceptually similar to our discussion in
Sec. IV, where we subjected a nontrivial SPT ground state
to Kraus operators odd under the symmetry responsible for
the existence of a (pure) SPT ground state. An example of
such a Kraus operator is the fermion creation/annihilation
operator, and we study this case in detail. Alternatively,
one may consider subjecting a p + ip ground state to
decoherence with Kraus operators bilinear in fermion cre-
ation/annihilation operators. In this latter case, the fermion
parity remains an exact symmetry. From our discussion in
Sec. IV, one may expect a qualitative difference in these
two cases, namely, Kraus operators linear versus bilinear in
fermion creation/annihilation operators. We briefly outline
such a qualitative difference as suggested by field-theoretic
considerations, whose details are presented in Sec. V D.

Let us first consider Kraus operators linear in fermion
operators. This is equivalent to one bringing in auxil-
iary fermions and entangling them with the fermions of
the p +ip SC by a finite-depth unitary. Since this is a
finite depth unitary operation on the enlarged Hilbert space
(including both the system and auxiliary qubits), the expec-
tation value of any observable, including nonlocal ones
that detect chiral topological order [73,74], cannot become
zero. At the same time, intuitively, the resulting mixed
state for the electrons belonging to the original p + ip SC
must somehow “lose its chirality” at infinitesimal coupling
to the ancillae. This is indicated by our treating the den-
sity matrix as a pure state in the doubled Hilbert space
using CJ isomorphism, which we discuss below in detail,
where we also clarify subtleties pertinent to the mapping of
Kraus operators linear in fermion operators. Under the CJ
map, the effect of the channel becomes a coupling bilinear
in fermion operators between two chiral Ising CFTs with
opposite chirality, and which, therefore, gaps out the coun-
terpropagating chiral CFTs. The gapping out of the edge
states in the double state is also manifested in the entan-
glement spectrum of the double state, which we also study.
In particular, we show that infinitesimal decoherence leads
to a gap in the entanglement spectrum.

Although working with the double state obtained via the
CJ map is insightful, it does not directly tell us the nature
of the decohered mixed state. One of our central aims is to
understand the difference between the original pure (non-
decohered) state and the decohered state not in terms of
the double state obtained via the CJ map, or in terms of
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nonlinear functions of the density matrix, but directly in
terms of the separability properties of the mixed state.
Our main result is that the resulting mixed state can be
expressed as a convex sum of nonchiral states, and in this
sense, it is nonchiral (i.e., it can be prepared with use of
an ensemble of finite-depth unitaries that commute with
fermion parity).

We next consider Kraus operators bilinear in the fermion
operators. We study this problem using only the double-
state formalism (i.e., the aforementioned CJ map), and
obtain an effective action consisting of two counterprop-
agating free, chiral Majorana CFTs coupled via a four-
fermion interaction. Such a Hamiltonian has already been
studied (see, e.g., Refs. [75,76]), and we simply borrow
the previous results to conclude that unlike the case for
Kraus operators linear in Majorana operators, this system
is stable against infinitesimal decoherence. Furthermore,
the field theory corresponding to the double state indicates
that this system undergoes a spontaneous symmetry break-
ing where the gapless modes corresponding to the CFT are
gapped out. The universality class for this transition lies
in the (supersymmetric) ¢ = 7/10 tricritical Ising model.
We discuss this in detail in Sec. V D. We note that recently
Su et al. [22] studied chiral topological phases subjected to
decoherence using a generalization of a strange correlator
[32] to mixed states [29,30]. Although they did not study
the problem of our interest (namely, p + ip SC subjected to
Kraus operators bilinear in Majorana fermions), the overall
structure of the field theories obtained in Ref. [22] using a
strange correlator bears resemblance to the one we derive
using an entanglement spectrum in Sec. V D.

B. Separability of a p + ip SC subjected to fermionic
Kraus operators

Our starting point is the ground state of the p + ip super-
conductor [45] described by the following Hamiltonian on
a square lattice:

= Z _t(cjc+1,ycx,y + cz,yﬂcx,y +H.c)

Xy
+ A(cIH’ycI,y + icI,yHcI,y +H.c.)

— (n— 40cf ey (25)
When t = A = 1/2 and the chemical potential u = 1, the
system is in the topologically nontrivial phase. This can
be diagnosed, for example, by one studying the entan-
glement spectrum, which will exhibit chiral propagating
modes [77,78], or by one studying the modular commu-
tator [79—82], which is proportional to the chiral central
charge of the edge modes that appear if the system had
boundaries. Relatedly, in the topological phase, the ground
state cannot be written as a Slater determinant of exponen-
tially localized Wannier single-particle states [44—46]. In

our discussion, we assume periodic boundary conditions,
so that there are no physical edge modes.

We are interested in subjecting the ground state of
Eq. (25) to the composition of the following single-
Majorana-fermion channel on all sites:

Elpl= U =p)p+pyipy. (26)

Is the chiral nature of the ground state p, stable under the
channel? More precisely, can we express the decohered
density matrix as a convex sum of pure states, where each
of these pure states now does not exhibit chiral states in
its entanglement spectrum, and relatedly, has a vanishing
modular commutator in the thermodynamic limit?

Under the aforementioned channel [Eq. (26)], the den-
sity matrix will continue to remain Gaussian, and is fully
determined by the covariance matrix M defined as M =
—itr(o(y; v« — 0jx)). As shown in Appendix B 1, under the
channel in Eq. (26), M evolves as EM) = (1 — 2p)*M.
We write the decohered density matrix p as p(p) =
e1®) where H,(p) can be determined explicitly in terms
of E(M) = (1 — 2p)>M as detailed in Appendix B 1.

To write the decohered mixed state p as a convex sum
of pure states, we consider the decomposition in Eq. (4),
and write

pp) =Y e 0 m) (mle” 2
= 1Y) (Yul, 27)

where |m) are product states in the occupation-number
basis, |m) = |my,...,my), m; = 0,1, and |,,) = \/p|m)
= e Hr®)/2|m). To build intuition for the states |,), let
us consider the particular state |vo) = ,/p0|0), where |0)
is a state with no fermions. One can analytically show at
any nonzero decoherence that the real-space wave function
for this state is a Slater determinant of localized Wannier
orbitals, unlike the (undecohered) ground state of the p +
ip SC [44-46]. The argument is as follows. One may write

W) o e Tk |0y, where tanh 8 = (1 — 2p)? and o], =
ukci + vjc_k are the same (complex) fermionic opera-
tors that diagonalize the original p + ijp BCS Hamiltonian
(see Appendix B 1), with |uy|? + |vk|?> = 1 due to unitarity.
Since ck|0) = 0, this implies that

[o) 1_[ [1 + (e—ﬂ - 1) <|Uk|2 + ukvkclcik)] |0).
) (28)

This expression may then be exponentiated to obtain the
it
standard BCS-like form for [v/) o Xk R4 0y where

(29)
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As p — 0, B — oo [recall tanh 8 = (1 — 2p)?], and one
recovers the p +ip ground state where h(k) ~ vy/ux
diverges as 1/(k + ik,) and results in a power-law decay
of Wannier orbitals [45]. In contrast, at any noninfinite 8
(i.e., nonzero decoherence rate p), 4(k) is noninfinite for
any k (since |uy|> + |vg|? = 1), and therefore the Wannier
orbitals corresponding to the state |1/y) are exponentially
localized. As an aside, this same argument also applies to
the decohered 1D Kitaev chain (Sec. IV E), and more gen-
erally to other decohered noninteracting fermionic topo-
logical superconductors.

The above argument applies only to the translation-
ally invariant state |y) that enters the convex decom-
position in Eq. (27). To make progress for general
|Ym), we found it more helpful to consider diagnostics
that directly access the topological character (or lack
thereof) of a wave function, and which are also more
amenable to finite-size scaling. In particular, we use the
“modular commutator” introduced in Refs. [79—82]. The
modular commutator is a multipartite entanglement mea-
sure that quantifies the chiral central charge for a pure
state, and can be completely determined by the many-
body wave funtion [79-82]. Specifically, it is defined as
Jupc = itr(p4pc[In pyc, In ppc]), with py the reduced den-
sity matrix in region X obtained from a pure state |) (i.e.,
px = trely) (V).

In the absence of decoherence, the modular commutator
of |Y,) for this setup is Jy 4pc = mwc/3 = 7 /6, as the chi-
ral central charge ¢ = 1/2 for the p + ip superconductor.
Figure 2 shows the modular commutator Jpc/Jo.4pc On a
L x L torus as a function of L. We choose the error rate p =
0.04 and several different initial states, including |m) =
|0,...,0) (uniform), |0,1,0,1,...,0,1) (staggered), and
also a random bit string in the occupation-number basis.
We find that in all cases, Jypc vanishes in the thermo-
dynamic limit. We also studied other values of p, and
our results are again consistent with the claim that at any
nonzero p, the modular commutator for the states |y,,)
vanishes in the thermodynamic limit. This provides numer-
ical evidence that at any nonzero error rate, the decohered
mixed state can be expressed as a convex sum of states that
do not have any chiral topological order, and hence must
be representable as Slater determinants of single-particle
localized Wannier states [44] (note that all states |y,,) are
area-law entangled).

It is important to note that in contrast to the pure states
[Y), the modular commutator for the decohered mixed
state p does not show any abrupt behavior change at
p = 0 (dashed line in Fig. 2). This is consistent with the
fact that the arguments relating the modular commutator to
the chiral central charge rely on the overall state being pure
[79—82], and therefore we do not expect that the modular
commutator for the mixed state p captures the separability
transition at p = 0. This again highlights the utility of the
convex decomposition of p into pure states.

100 "/——~ I

‘ ~-+-- density matrix
f " —— p=0
—o— uniform

o— staggered

o— random

—
i———
40

FIG. 2. Modular commutator J4p¢c/Jo 4pc on an L x L torus as
a function of L corresponding to several different pure states |,,)
that enter the convex decomposition of the p + ip SC subjected
to decoherence with Kraus operators linear in Majorana fermions
[Eq. (27)], as well as the modular commutator of the decohered
mixed state itself. We choose error rate p = 0.04, and the fol-
lowing initial states |m) in Eq. (27): |m) = 10, ...,0) (uniform),
10,1,0,1,...,0,1) (staggered), and |m) = a random bit string in
the occupational number basis. The inset shows the geometry
of regions A4, B, and C used to define the modular commutator.
We use antiperiodic boundary conditions along both directions
so that the ground state is unique.

In addition, we also numerically compute the
entanglement spectrum of |y,,), with |m) the uniform
product state (so that momentum along the entanglement
bipartition is a good quantum number). For a chiral topo-
logical state, one expects that the edge spectrum of a
physical edge will be imprinted on the entanglement spec-
trum of a subregion [77]. Since |v,) is Gaussian, the
entanglement spectrum is encoded in the spectrum of the
matrix iMy, where M, is the restriction of the covari-
ance matrix M to the region 4 in the inset in Fig. 3.
Figure 3 shows the spectrum of iM pc (denoted as v) as
a function of the momentum £, with error rate p = 0 and
p = 0.04. The geometry is again chosen as a torus, with
length L, = 60, and height L, = 30. In the absence of
error (p = 0), all states |v,,) are projected to the p + ip
ground state, and thus the spectrum shows chirality, resem-
bling the edge states of the p 4+ ip SC (note that we have
two entanglement boundaries, resulting in counterpropa-
gating chiral states in the entanglement spectrum). After
the decoherence is introduced, one finds that the chiral
mode in the entanglement spectrum is gapped out (see
Fig. 3). We also confirmed that the gap between the two
“bands” of the entanglement spectrum increases with the
system size (not shown). Overall, both the modular com-
mutator and the entanglement spectrum provide numerical
evidence that the decohered density matrix can be written
as a convex sum of free-fermion, pure states that have no
chiral topological order.

030310-17



YU-HSUEH CHEN and TARUN GROVER

PRX QUANTUM 5, 030310 (2024)

1.0 _%& OO ..855885 M

% <5}
%
0.5 . eommmmmmn % 6%
b 0 9490g0 o
o o
(o] (]
L o e =0.04
8 P
A 00F A \L/z b 8p=000
: 4
o o
L ®00%.
0 0%e0% O
—0.5¢} x Co® *%

FIG. 3. Spectrum of iM, (equals the restriction of the covari-
ance matrix to region A4 in the inset) for a state |y,,) obtained
from |m) = |0, ...,0) [see Eq. (27)] as a function of the momen-
tum k, for error rates p = 0 (i.e., nondecohered) and p = 0.04
(i.e., decohered). Here we put the system on an L, x L, torus
with L, = 60 and L, = 30.

C. Double-state formalism for fermions

The previous subsection focused on the single-Majorana
channel that breaks the fermion-parity symmetry of the
initial density matrix from exact (Up = pU = p) down to
average (U'pU = p). As briefly mentioned above, if one
instead uses a channel where Kraus operators are bilinear
in Majorana operators (so that the fermion parity remains
an exact symmetry), one might expect a more interesting
behavior, in particular the possibility of a phase transi-
tion between different nontrivial mixed states. One way to
make progress on this case is to study appropriate non-
linear functions of the density matrix [18-20,22,29,83].
Relatedly, one may use the double state obtained with the
CJ map, which was used in Refs. [18,20] to study deco-
herence in bosonic problems. Specifically, given a density
matrix py acting on the Hilbert space H, one can define a
state vector |p) g7 in the doubled Hilbert space H ® H
(with H having the same dimension as ) using the CJ
map [42,43,84]:

|0 ner = PH ® In|P)yen- (30)

Here I;; denotes the identity in H and |P) g7 1s the
product of (unnormalized) maximally entangled pairs
connecting H and H, i.e., |P)ygn = &;|d); 1gn, With
19); Hen = & (Zzzl |p1,p7);) and d the Hilbert space
dimension on a single site. Henceforth, for notational sim-
plicity, we omit the subscript labeling the Hilbert space
if there is no confusion. For bosons, it is straightfor-
ward to see that under Eq. (30), the density matrix p =
>, Palp){gl is mapped to [p) =" of|p,q). On the
other hand, the channel £[-] =), Ka(-)Kg is mapped to

the operator

Ne=> Ky ®K,. 31)

This can be derived by one expressing |E[p]) as an oper-
ator acting on |p), i.e., |E[p]) = Ne|p). See Appendix
B2 for details. However, a similar correspondence for
fermions is a bit subtle. For example, naively applying
Eq. (31) to the single-Majorana channel in Eq. (26), one
obtains

Elp) = [(1 =) T +py; @ 7)]lo)
=[(1 =p) +pyn)lip)
~ eI o) =tan(p/(1 —p)),  (32)

where we denote n = y as the Majorana operators in the
Hilbert space H. Equation (32) suggests that the channel
generates a real time evolution for the double state, which
contradicts our intuition that the channel instead gives rise
to an imaginary time evolution. Another hint that Eq. (32)
is incorrect comes from our setting p = 1/2, where the
relation & [€;[p]] = &;[p] holds. However, Eq. (32) gives
& &ilp) = yinilp)/2, which is not equal to & |p). There-
fore, to find the correct correspondence between £[-] and
N¢ for fermions, one should begin with the more funda-
mental definition of the double state, i.e,, |p) = p ® I|PD).
Because of the linearity of Eq. (30), one can consider
each Ka(-)K; individually. Using |K, pKJ ) = (Ky ,oK;r) ®
1|1®) = Ky (0K @ I|1®)) = Ky|pKS), one finds K, is
unchanged under Eq. (30). On the other hand, since
one can always write K. as a function of ¢ and cf, it
suffices to consider how to express |pc) and |pcf) as
an operator applying to |p). In Appendix B2, we find
that

lo¢) = d'lp), |pe’) = —d|p). (33)
One can then use Eq. (33) to derive N¢ given £[-]. For
example, for the Kraus operator given by K = y; = (¢ +
¢, one finds

l(e +chHp(e+ch)) = (e +ehHlp(e+¢h))
=(c+chd-dlp). (34

This implies the CJ transformed operator Ng = (¢ +
c¢h(@" — d) = —iyam1, where n; = (d — d7)/i [85].

D. Phase transition induced by an interacting channel
inap +ip SC

Being equipped with the correspondence between £[-]

and Vg, we now return to our discussion of decoherence-

induced transitions in chiral topological states of fermions.
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We first revisit the problem discussed in Sec. V B, and then
consider a more interesting problem where the Kraus oper-
ators are bilinear in fermions so that the decohered density
matrix is not Gaussian.

There are different ways to use the double state to probe
the effect of decoherence. For example, one may consider
nonlinear functions such as the normalization of the dou-
ble state [18,20,29,83]. Here we will use the entanglement
spectrum of a state obtained from the double state |p) (after
space-time rotation) as a probe of the decoherence-induced
phase transitions.

To begin with, consider the normalization of the double
state

(plp) = (0ol ETE| po). 35)

If the bulk action describing |pg) = |Wo, W) is rotation-
ally invariant, one can map (p|p) to the path integral of
the (1 + 1) D boundary fields following the procedure in
Ref. [20]:

(plp) = / DWW Vra b))

x e~ S0LWLY)=So RWRVR) =Sint WLV VRVR) (36)

Here y; and v, denote the low-energy field variables in
H and H, respectively. So,z 1s the partition function on the
left side of the spatial interface x = 0~ [the meanings of
(Yr, ¥) and Spr are similar]. Siy describes the effect of
the channel £7€ and has two contributions:

Sint = S1 + S¢, (37)

where S denotes the action that exists even in the absence
of decoherence. In particular, S; strongly couples the fields
Yo () and Y& (¥7) such that i = yx (Y] = ¥})
in the absence of decoherence. On the other hand, S¢
describes the action that merely comes from the decoher-
ence and vanishes when the error rate p = 0. We note that
a similar field theory was discussed in Ref. [86] in a dif-
ferent context in the evaluation of the system-environment
entanglement in the (1 4+ 1) D system. In general, the
exact form of S¢ involves four fields (Y., ¥}, Y&, ¥5) and
may be schematically captured by the following Hamilto-
nian:

H = (Hor+Hep)+ (Hor + Her) + Hi, (33)

where H, strongly couples the left and right fields. One
may then consider the reduced density matrix for left fields
that is obtained after one has traced out the right fields.
One expects [87,88] that the corresponding entanglement
Hamiltonian (i.e., logarithm of the reduced density matrix)
will essentially correspond to Hy; + He . Working with
the entanglement Hamiltonian has the advantage that the

number of fields one needs to keep track of is now halved.
Similar simplification occurs if one considers the fidelity
tr(pq4 po) between the decohered density matrix p; and
the nondecohered density matrix pg; see Ref. [22]. Since
we are now working only with the left fields, in the
following we omit the subscript L for notational simplic-
1ty.

As an example, let us first revisit the case of a p + ip
superconductor perturbed by a channel that is linear in
Majorana fermions (Sec. V B). Recall that here the Kraus
map corresponds to the composition of the following map
on all sites: &[p]l = (1 —p)p + pyxpyx. From our dis-
cussion above on the CJ map for fermions, this translates
to a term of the form Hg =ig [dy yn, where p ~ g
and where y and 7, respectively, denote the fields corre-
sponding to H and H of the left fields. In the absence
of any decoherence, the spatial boundary of the p + ip
superconductor has a simple description in terms of a
chiral Majorana fermion. The entanglement Hamiltonian
in the doubled Hilbert space then corresponds to stack-
ing the boundary of p + ip and p — ip superconductors,
and is given by Hy =i [dy(yd,y — nd,n). Therefore,
one expects that the entanglement Hamiltonian for the
left fields in the presence of decoherence will take the
form

Hg =i/dy(y3yy —nayn)+ig/dyyn- (39

The counterpropagating edge modes are gapped out for
any nonzero g (x p), in line with our earlier discussion
where we provided evidence that at any nonzero p the
density matrix can be written as a convex sum of pure
states that are SRE. The gapping out of the edge modes
can also be seen by pne numerically evaluating the entan-
glement spectrum of the double state obtained via the
CJ map. Figure 4 shows the spectrum of iM; (denoted
as v) as a function of the momentum £k, with differ-
ent error rates p. Here we put the system on a cylinder
with circumference L, = 60 and height L, = 16. In the
absence of error (p = 0), there are two counterpropa-
gating modes, resembling the edge states of the initial
double state |pg). After the decoherence is introduced,
one can clearly see from Fig. 4 that these counterprop-
agating modes are gapped out for an arbitrarily small
error rate. Note that we did not perform any space-
time rotation to obtain Fig. 4. This suggests that the
entanglement Hamiltonian of the double state |p) may
already have the same qualitative behavior as the entan-
glement Hamiltonian obtained after space-time rotation.
We leave further investigation of this point for future
work.

Let us return to the problem of our main interest in this
subsection—namely, that of Kraus operators that commute
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FIG. 4. Spectrum of iM; for the double state |p), where M,
is the restriction of the covariance matrix M to the region L, as
a function of the momentum k, for different error rates p. Here
we put the system on a cylinder with circumference L, = 60 and
height L, = 16.

with the fermion-parity operator. The simplest possibil-
ity is the composition of the following Kraus map on all
nearest-neighbor bonds (x, y) of the square lattice:

Exylpl = A =p)p +PYxVyPVy¥x- (40)

The interaction term Hg induced by such a Kraus map
in the double state should respect the following Z, x Z,
symmetries: y — —y and/or n — —n. Since Majorana
fermions square to identity, the simplest term that is bilin-
ear in both y and n and respects all the symmetries
involves derivatives:

He =g f dy (v 3,7 (), @1)

where g o« p. Therefore, the full entanglement Hamilto-
nian for the left fields in the presence of decoherence is
given by

Hp = ifdy(yayy — noyn) +g/dy()/8yy)(n8yn).
(42)

This field theory was studied in Refs. [75,76]. At a partic-
ular g = g., the system undergoes a phase transition in the
tricitical Ising universality class with central charge ¢ =
7/10. For g < g., the interaction term is irrelevant, while
above g., the system spontaneously breaks the Z, x Z,
symmetry down to the diagonal Z, symmetry. Physically,
this means that the exact fermion-parity symmetry (i.e.,
Up = p, where U is the generator of the fermion parity),
has been spontaneously broken down to an average sym-
metry (i.e., UpU'" = p). We note that a class of 2D chiral
topological phases subjected to decoherence with fermion-
bilinear Kraus operators was also studied in Ref. [22].

One notable difference between the examples considered
in Ref. [22] and our problem is that in the examples con-
sidered in Ref. [22], the decoherence always reduces the
effective central charge of the action corresponding to the
double state. In contrast, in our problem, the effective
central charge c increases from 1/2 to 7/10.

It is interesting to contemplate the implications of the
phase transition described above in terms of the separa-
bility properties of the original mixed state p (instead of
the double state |p)). We conjecture that for p < p, there
exists no decomposition of the density matrix as a convex
sum of area law—entangled pure states without any chi-
rality, while for p > p. the density matrix is expressible
as a convex sum of area law—entangled pure states with
GHZ-like entanglement (due to spontaneous breaking of
fermion parity). Similarly to the case of intrinsic topolog-
ical orders subjected to local decoherence [17,18,20,82],
we anticipate that the universality class and the location of
the critical point obtained from the double-state formalism
will differ from those of the “intrinsic” mixed-state tran-
sition for the density matrix, e.g., when viewed from the
perspective of separability. We do not know the univer-
sality for the latter transition, and we leave it as an open
question.

VI. SEPARABILITY TRANSITION IN GIBBS
STATES OF THE NLTS HAMILTONIAN

In this section we consider an exotic separability tran-
sition in a Gibbs state relevant to certain quantum codes.
Although this transition does not require any symmetry,
which has been a main ingredient in the rest of this work,
the argument below to deduce the existence of a separabil-
ity transition is broadly similar in spirit to that in Secs. III
and IV.

Recently, “good LDPC codes,” where the code distance
and the number of logical qubits scale with the total num-
ber of qubits, have been discovered [49—51]. Moreover,
Anshu et al. [48] showed that the construction of a good
LDPC code in Ref. [49] satisfies the Freedman-Hastings
NLTS conjecture [47], which, when satisfied by a Hamil-
tonian, means that any state |y) with energy density less
than a nonzero value e, cannot be prepared by a constant-
depth unitary circuit [the energy density e of a state |y)
is defined as e = limy_, o, (Y |H|Y¥) — Ey) /N, where E,
is the groundspace energy of H]. Here we ask whether the
Gibbs state of an NLTS Hamiltonian shows a separabil-
ity transition at a nonzero temperature. That is, does there
exist 7. > 0 so that for T < T, the Gibbs state cannot be
written as a convex sum of SRE pure states?

Firstly, we note that Anshu et al. [48] have already
proved that any mixed state whose energy density is less
than a positive number e, cannot be purified to a pure SRE
state by a short-depth channel, i.e., it cannot be prepared
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by one first enlarging the Hilbert space to include ancil-
lae, which are initially all in a product state, followed by
a finite-depth unitary that entangles the “system” qubits
(which are also initially in a product state) with the aux-
iliary qubits, and eventually integrating out the ancillae.
However, as discussed in Sec. II, the inability to purify
to an SRE state via a short-depth channel does not imply
that a mixed state is SRE with our definition (i.e., express-
ibility of a mixed state as a convex sum of SRE pure
states). We briefly reiterate the example discussed in Sec. 11
that illustrates these two different notions of mixed-state
entanglement [see comment (4) in Sec. II] by stating that
any Gibbs state that exhibits spontaneous symmetry break-
ing (which therefore has long-range correlations for the
operator corresponding to the order parameter) cannot be
purified to an SRE pure state via a short-depth chan-
nel. Therefore, such a mixed state will be SRE with our
definition and LRE with the definition in Refs. [48,52].
Here we provide a simple argument that the Gibbs state
of an NLTS-satisfying Hamiltonian shows a separability
transition at a nonzero temperature.

Let us assume that the Gibbs state of an NLTS-
satisfying Hamiltonian H can be expressed as a con-
vex sum of SRE pure states for any temperature 7 >
0, ie., p(1) = e "/Z = 3=, pil i) (¥il, where each |1;)
can be prepared via a unitary whose depth is indepen-
dent of the number of qubits N. For simplicity of nota-
tion, we set the ground-space energy Ey to zero (this
can always be achieved by one adding a constant Nc
to the Hamiltonian, where ¢ is a constant). We show
that this assumption leads to a contradiction. Since all
pure states |y;) are SRE, by the NLTS condition, they
must all satisfy (y;|H|y;)/N > e. as N — oo. There-
fore, tr(o(T)H)/N = Zipi<1//i|H|'Wi>/N > Zipiec = €c.
This implies that if the Gibbs state can be expressed as
a convex sum of SRE pure states, then its energy density
is nonzero. However, nonzero energy density necessarily
implies nonzero temperature. This is equivalent to showing
thatas T — 0, tr(o(T)H)/N — 0. This is indeed the case
because as T — 0, tr(p(T)H)/N =~ E;e £1/T/N, which
indeed vanishes as 7 — 0 (E| denotes the energy of the
first excited state, which is a constant independent of N
since the LDPC code Hamiltonian under discussion is a
sum of commuting projectors). Therefore, if we assume
that the Gibbs state is separable for all nonzero tempera-
tures, we arrive at a contradiction. Hence, the Gibbs state
must be long-range entangled up to a nonzero tempera-
ture 7. It seems reasonable to assume that at sufficiently
high temperature, the Gibbs state is SRE. Therefore, one
expects a separability transition at some temperature 7,
that satisfies 0 < T, < oo.

It is important to note that the above-argued separability
transition does not necessarily imply that the Gibbs state
has a thermodynamic phase transition, i.e., it need not be
accompanied by a singularity of the partition function.

VII. SOME CONNECTIONS BETWEEN
SEPARABILITY AND OTHER MEASURES OF
MIXED-STATE COMPLEXITY

In this section, we comment on some connections
among the separability criteria, purification, double states,
and strange correlators.

A. Connections among separability, purification, and
double states

In Sec. V C, we used the double-state formalism to probe
decoherence-induced transitions. However, the connection
between p being sym-SRE and the double state |p) being
trivial remains unclear. In this subsection, we attempt to
bridge the gap between them using purification of the
mixed state.

We first recall the idea of purification: given a mixed
state py in the Hilbert space H, there exists a purifica-
tion in the double Hilbert space H ® H, with H having
the same dimension as H:

10'2) = pyl? ® I | )y (43)

where |®) ;5 is a maximally entangled state between H
and H. It is straightforward to see that try; (| 0/2)(p'/?]) =
px. Besides, we note that Eq. (43) is somtimes called
“standard purification” [55], and all possible purifications
are equivalent up to an isometry applied merely in H. If
one uses Eq. (2) as a definition of an SRE mixed state p,
then |p'/?) being SRE implies that p is SRE. However, it
is not obvious to us how to show that this implies that p
can be written as a convex sum of SRE states [Eq. (1)].
Instead, we are only able to show that if | p!/?) is SRE, one
can write the mixed state p ® I/dim(H) (which lives in
the Hilbert space system ® ancillae) as a convex sum of
SRE states. To see this, we first note that a complete basis
for the Hilbert space H ® H can be obtained from a single
maximally entangled state by application of local unitaries
merely in 'H. Specifically, if we denote the complete basis
of Bell pairs for a spin-1/2 system as {|¢,,), m,n =0, 1},
all of them are related to |¢) = (]00) + |11))/+/2 through
|pmn) = (Zi7)" (Xr)"|@). It then follows that a complete
basis for H ® H can be written as

@) = [[Z )" X2 1®), (44)
J

with m = (my,my,...) and n = (ny,ny,...). Since | P, ,)
are obtained by application of the local unitary in H to
a maximally entangled state, they are all also maximally
entangled. We now use the same idea as we used to
define CDA states [Eq. (4)] by writing p ® I/dim(H) as
1/dim(H) 3, (07 @ 1) 19n) (Pl (012 ® 1):
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In the second line,
[1;(Z )™ (X; 5)" and p
ferent Hilbert spaces. Since | ,0,1,/ ,% ) is related to |p'/?) by
a unitary acting solely in 7 , if |p'/2) is SRE, then so is
|p,},/, 5 ). Therefore, if there exists an SRE purification for p
[Eq. (43)], then p ® I/dim(’H) can be written as a convex
sum of SRE pure states [Eq. (45)].

However, we emphasize that the converse is not true: if
|p'/?) is not SRE, it does not rule out the possibility that
the mixed state p is still SRE. This can be most easily seen
by one considering the following counterexample that also
appears in Sec. II. Let p be the convex sum of two product

we use the property that
172 commute, as they act on dif-

states |0)Y and |1)V, i.e
1
= 5[(I0)(0|)®N + (I (D=, (46)
It follows that the purified state is the GHZ state:
1
p1%) = —=[100)®" + [11)#"], 47
7 47

which is clearly long-range entangled. This implies that
|p'/?) being trivial is a sufficient but not necessary con-
dition for p ® I/dim(’H) being trivial.

The advantage of studying p using its purification is
obvious: instead of finding the decomposition in Eq. (4),
one needs to deal with only a single pure state |p'/2). How-
ever, it is, in general, difficult to compute |p!/?), as taking
a square root of p is nontrivial if H, = —In(p) does not
admit a simple compact form. An alternative is to consider
the double state |p) = p ® I|P) in Eq. (30) (note that if
the original density is pure, i.e., p> = p, then the double
state |p) is equivalent to the purified state |p'/?)). Heuris-
tically, since the coefficient in front of /,, for |p) is greater
than the coefficient for | p!/2), we expect that if | p) is SRE,
then |p'/?) is SRE as well, but we do not know how to
prove this. This is consistent with the result in Ref. [20],
where the critical error rate for |p) being trivial is higher
than the error rate at which the topological entanglement
negativity drops to zero, and is also consistent with the

k

(H( )" G 5" 112, (45)

(

results in Ref. [17] for the error threshold for separability
of topologically ordered mixed states.

B. Connections between convex decomposition and
strange correlators

In Sec. 1V, we studied separability transitions for
cluster-state SPT orders in various dimensions using the
CDA [Eq. (4)] with the initial basis {|m)} as product states
satisfying the corresponding symmetry of the cluster-state
SPT (which was the Pauli X basis in all the cases we con-
sidered). Fortuitously, as we discussed, the threshold for
the CDA states being sym-SRE exactly corresponded to
the error rate beyond which p must be sym-LRE when gen-
eral arguments are used, indicating that our choice of CDA
is optimal.

Intriguingly, the symmetric product state basis to gener-
ate the CDA has an apparently close connection with the
strange correlator [32], which was originally devised as a
diagnosis for the SPT pure states and has recently been
used to probe the nontrivial SPT mixed states [29,30]. To
see the connection between them, we briefly review the
original strange correlator for SPT pure states and two
types of strange correlator introduced in Ref. [29]. If we
choose |m) as the disordered product state respecting the
symmetry group G, the strange correlator for a pure state
| is defined as [32]

. (m|O; Oxlyr)
CulG — k) = ———=, 48
G =5 i) (48)

where O is some operator that transforms nontrivially
under G. The basic idea of the strange correlator is that
the temporal edge of an SPT pure state (when the many-
body wave function is expressed as an imaginary-time
path integral) mimics its spatial edge. Since at least 2D
SPT orders possess nontrivial spatial edge states (in three
dimensions, there also exists a possibility of boundary
topological order), one may also use the temporal corre-
lation defined in Eq. (48) to probe nontrivial SPT-order
phase. To generalize the strange correlator from pure states
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to mixed states, two types of strange correlator were intro-
duced in Ref. [29]. The type-I strange correlator is defined
as

(m|pO; Orm)

CL(G —h =
w0 =B = o)

(49)

In the pure-state limit p = [i) (Y|, the type-I strange cor-
relator reduces to Eq. (48). Therefore, in the case of one
subjecting local decoherence to an SPT pure state, C!, can
be intuitively regarded as asking whether the local deco-
herence destroys the temporal edge states. However, it
was shown in Ref. [29] that the type-I strange correlator
is unable to detect the average SPT order mentioned in
Ref. [26]. Instead, it was argued that the nontriviality of
such an SPT order should be detected by the type-II strange
correlator, defined as

(m|0LO] pO; O|m)
(m|p|m)

ClG —k) = (50)

In the pure-state limit, it reduces to |(m|O; O |Yr) 12/ (m|y).
Roughly speaking, the type-II strange correlator is devised
to capture the case that p can be written as an incoherent
sum of pure states |v,), where (m|O; Oi|,) is nontrivial
but can be either positive or negative depending on |,,).
On the other hand, the necessary condition for the mixed
state to be nontrivial with use of separability criteria is the
nontriviality of CDA states |,,), which may be probed by
several physical observables S as discussed in Sec. [V:

(YmlSlpm) _
(Vml¥m)
Comparing Egs. (49)~(51), one finds that the denominator

is always the fidelity between a symmetric product state
and the mixed state of interest:

(m|p'/2Sp! 2 |m)
(mlplm)

(51

Zy = tr(plm)(m|)

= (m|plm) = (Y| ¥m). (52)
For the numerator, Eq. (51) involves insertion of an oper-
ator between (m|p'/? and p'/?|m), while the strange cor-
relator involves insertion of an operator between (m|p and
|m).

VIII. SUMMARY AND DISCUSSION

In this work we explored the interplay of complexity
and symmetry for many-body mixed states. Specifically,
we asked whether a given mixed state can be expressed
as a convex sum of symmetric short-range-entangled pure
states, which we took as a definition of an SRE mixed state
subjected to a given symmetry (a “sym-SRE” mixed state,
Sec. II). Our primary aim was to identify “many-body

separability transitions” as a function of an appropriate
tuning parameter (e.g., decoherence rate or temperature)
across which the nature of the mixed state changes qual-
itatively—on one side of transition the mixed state is
sym-SRE and on the other side it is sym-LRE (i.e., not
sym-SRE). Analogous phase diagrams for intrinsic topo-
logical orders subjected to local decoherence [18—22] were
recently studied in Ref. [17]. Our general approach was to
first seek constraints that imply that a mixed state is nec-
essarily long-range entangled, and absent such constraints,
we developed tools to find the regime where a mixed state
can be shown to be sym-SRE. One of the tools that allowed
us to make progress was that local decoherence converts
ground states of several SPT orders, e.g., cluster states in
various dimensions, to a Gibbs state.

In the context of SPT orders subjected to local decoher-
ence, we focused on cluster states in various dimensions
and obtained their “separability phase diagram” as shown
in Fig. 1. As evident from Fig. 1, the phase diagram gets
progressively richer as one moves up in spatial dimension-
ality. The paths solely along the x and y axes in these
phase diagrams correspond to the special case of “average
SPT” mixed states where one of the symmetries is exact,
while the other is average [26—30]. It is crucial to note that
although the decohered mixed state takes a Gibbs form,
the corresponding partition function is not singular at any
nonzero temperature for any of these cluster states. This is
because any local channel can be Stinespring dilated as a
local unitary circuit in the enlarged system, and thus any
physical observables tr(pO) with O acting on a large but
finite region must be a smooth function of the error rate
[18,19,86]. Therefore, the different phases in Fig. 1 arise
only because we are requiring that the density matrix be
expressible as a convex sum of pure, symmetric states.
As a consequence, these transitions are conceptually dis-
tinct from thermal phase transitions, and are more akin to
“complexity phase transitions” for the mixed state, when a
symmetry is enforced. We briefly discussed relation with
other approaches to classifying mixed-state SPT orders
[26-30] in Sec. VII.

It is also interesting to contrast the symmetry-enforced
separability transitions in decohered 2D and 3D cluster
states with decoherence-induced separability transitions in
2D and 3D toric codes, studied in Ref. [17]. In both cases,
one finds the appearance of the same statistical mechanics
models (e.g., RBIM in two dimensions). This similarity
can be traced to the fact that the ground state of toric
codes can be obtained from the ground state of the cluster
states by one performing appropriate projective measure-
ments [89-92], along with the equivalence between local
and thermal decoherence for cluster states (this statement
holds true also for the fractonic X-cube model [93] and its
parent cluster state [91]).

We also studied nonstabilizer topological states sub-
jected to local decoherence. In particular, for free-fermion
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chiral states corresponding to a p + ip superconductor, we
argued that if the quantum channel responsible for deco-
herence breaks the fermion parity, the resulting Gibbs state
can be expressed as a convex sum of nonchiral states, and
is therefore SRE at any nonzero decoherence rate (Sec. V).
We also studied a case where the channel respects the
fermion parity and identified a mixed-state phase transition
as a function of the decoherence rate using the double-state
formalism. This transition can be thought of as correspond-
ing to spontaneous breaking of the fermion parity, and as
far as we know, does not have a pure-state counterpart.
Intuitively, in a pure-state context, breaking fermion par-
ity spontaneously essentially requires assigning a nonzero
expectation value to fermionic operators, which is unphys-
ical. In contrast, in the context of a mixed state, breaking
fermion parity spontaneously means that the environment
can exchange fermions with the system “spontaneously,”
which is not unphysical (in the double-state formalism, this
corresponds to assigning a nonzero expectation value to
the bosonic order parameter 1y, where n and y, respec-
tively, denote the fields corresponding to bra and ket
Hilbert spaces).

We also analyzed separability transitions in the Gibbs
state of the quantum Ising model and argued that the Gibbs
state is SRE at any nonzero temperature is and sym-SRE
only for T > T,, where T, is the critical temperature corre-
sponding to the spontaneous symmetry breaking (Sec. I1II).
We expect similar results to hold for other models whose
Gibbs state shows a spontaneous breaking of zero-form
discrete symmetry.

Finally, in Sec. VI, we provided a short argument that
the Gibbs states of Hamiltonians that satisfy the NLTS
condition [47] must exhibit a separability transition at a
nonzero temperature.

In the rest of this section, we discuss various aspects of
our results and discuss questions for further exploration.

A. SPT and chiral states

The technique we used to study phase diagrams of var-
ious cluster states relied on the fact the quantum channel
resulted in Gibbs states [Egs. (5) and (6)]. It is not obvious
how to generalize it to other SPT states. On that note, the
following Zy generalization may be helpful to study Zy
cluster states and topological orders produced by partial
measurement of such states. Let us consider a commut-
ing projector Hamiltonian of the form H = )_ P;, where

P; are projectors (P? = 1) written as P; = 1/N ZnNz_ol h,
with 4 = 1. Let us now introduce the following set of
Kraus operators on each site i: K (i) = /1 — p1, K;(i) =
VP/2K (i), and K3(i) = «/p/2KT (i), where KT()K (i) =
K@K'() =1, and K(i) are clock operators that sat-
isfy K()hKT (i) = /N h;, KT () liK (i) = e >N h;. One
may verify that the application of this channel on all sites
again results in a Gibbs state for H.

It might also be interesting to study “intrinsically
mixed” SPT states introduced in Refs. [26,27] from the
point of view of separability. These are SPT states that can
exist only in the presence of decoherence. Conversely, it
will be interesting to understand our results on nontriv-
ial mixed SPT orders protected by higher-form symme-
tries, such as 2D and 3D cluster state, by one using the
techniques in Refs. [26,27], which primarily focused on
zero-form symmetry SPT orders.

In the context of chiral states, we studied a phase tran-
sition driven by a channel where the Kraus operators were
Majorana bilinears (Sec. V C). We analyzed this problem
using only the double-state formalism. As suggested by the
problem of decoherence in toric code, the double state is
likely to overestimate the threshold for the actual transi-
tion, and it will be interesting to find a description of the
aforementioned transition in a p + ip SC directly in terms
of the separability properties of the mixed state.

One important subtlety we point out is that we assumed
periodic boundary conditions in our discussion of the SPT
and chiral states. If instead one considers open bound-
aries such that the boundaries do not break the symmetry
responsible for nontrivial SPT/chiral topological order,
then the pure (nondecohered) state is always LRE, e.g.,
due to propagating edge modes or topolgical order at the
boundary. In the presence of decoherence, our naive expec-
tation is that the resulting mixed state is not sym-SRE, even
if the decoherence breaks the symmetry from exact down
to average. It will be interesting to study this aspect in the
future.

B. Symmetry-broken states

The first example we discussed, primarily to illustrate
the distinction between SRE and sym-SRE states, was
the Gibbs state of the transverse-field Ising model in any
dimension (Sec. IIT). We discussed an explicit decompo-
sition of this state at a nonzero temperature as a convex
sum of pure states that we argued are SRE at any nonzero
temperature. This conclusion is consistent with numerical
results on Renyi negativity [24] and mean-field arguments
[23,25]. On the other hand, for the case where one imposes
the Ising symmetry on the pure states into which the Gibbs
state is being decomposed, we used an argument from
Ref. [21] to show that these pure states must be long-
range entangled for 7 < T.. This implies that the Gibbs
state is sym-LRE for T < T,. In contrast, for T > T, we
provided an explicit sym-SRE decomposition of the Gibbs
state. The basic idea of the argument is to write e #7 as
> s PH%\p) (ple /2, where {¢} are chosen as a com-
plete set of states in the z(x) basis if one wants to expand
the Gibbs state as a sum of sym-SRE pure states or SRE
pure states.

There are several open questions along this direction.
Firstly, the argument we provided for the aforementioned
pure states being sym-SRE or SRE is not mathematically
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rigorous. To explicitly show that a state is SRE, one needs
to construct a finite-depth circuit that prepares it start-
ing from a product state. We provided arguments only in
the continuum limit that the pure states under considera-
tion have short-range correlations. It will be worthwhile
to study the entanglement structure of the pure states
we claimed to be SRE with use of numerical methods
(e.g., quantum Monte Carlo methods) or by a detailed
field-theoretic analysis. Secondly, as we discussed, the
transverse-field Ising model for d > 2 must exhibit a sep-
arability transition from a sym-SRE state to a sym-LRE
state as a function of temperature. It will be interesting to
study the symmetry-resolved negativity [94] to quantify
the nature of long-range entanglement across this transi-
tion. Finally, our arguments apply only to Gibbs states
that break a discrete symmetry spontaneously, and it will
be interesting to consider generalization to systems with
spontaneously broken continuous symmetries that host
Goldstone modes at a nonzero temperature.

C. Experimental and numerical implications

It is interesting to contemplate experimental implica-
tions of a symmetry-enforced separability transition. One
perspective is that symmetry-resolved versions of mixed-
state entanglement measures such as entanglement nega-
tivity or entanglement of formation, which are specifically
designed to quantify the lack of separability, would likely
experience a singularity across such a phase transition. For
example, for the Gibbs state p of the transverse-field Ising
model (Sec. III), one can, in principle, prepare the states
p+ = P1p, where Py are the projectors onto the even and
odd sectors of the Ising symmetry. This can be done, for
example, by one entangling an auxiliary qubit with the sys-
tem qubits sequentially using controlled NOT gates, and by
one measuring the auxiliary qubit at the end. As discussed
in Sec. I11, the resulting mixed state (i.e., py or p_, depend-
ing on the outcome of the measurement on the auxiliary
qubit) will show long-range mixed-state entanglement for
T < T., in contrast to the original density matrix o, which
will be short-range entangled for any 7" > 0. The long-
range entanglement of p1 can, in principle, be quantified
experimentally with use of the Renyi negativity [95].

One may also imagine a very patient, gedanken experi-
mentalist who has access to local unitary gates with a finite
fidelity, so that such an experimentalist has the ability to
prepare only an ensemble of SRE pure states (i.e., pure
states that can be prepared with a constant-depth unitary).
If this is the case, then a separability transition from an
SRE mixed state to an LRE mixed state is equivalent to the
transition from success to failure in preparing the ensemble
corresponding to the mixed state. One may similarly char-
acterize a transition from a sym-SRE state to a sym-LRE
state by putting symmetry constraints on the local gates
that form the circuit.

Perhaps a more practical implication of our results is
that they may allow efficient classical simulation of a class
of mixed states. For example, in the context of the Gibbs
state of the quantum Ising model, we argued that it admits
a convex decomposition in terms of SRE pure states at
any nonzero temperature if one does not impose any sym-
metry constraint on the pure states. Since SRE states are
typically easier to study, such a representation facilitates
the task of simulating the corresponding mixed state. In
contrast, if one tries to prepare the Gibbs state of the quan-
tum Ising model starting with a product state (assisted with
ancillae), then long-range correlations below 7, imply that
one necessarily requires a deep quantum circuit [96]. We
note that the decompositions we study generically involve
an exponentially large number of pure states, which may
lead to another difficulty in preparation. We can imag-
ine at least two distinct ways to address this. Firstly, if
a mixed state is SRE, and does not contain any classi-
cal long-range correlations, then it is reasonable to expect
that it can be purified into an SRE pure state (with use of
auxiliary degrees of freedom). This equivalence between
an SRE mixed state and SRE purification is discussed for
Gibbs states in Ref. [96] and is suggested more generally
in Ref. [2] although we are not aware of an explicit proof
or construction in the non-Gibbs case. If one can indeed
find an SRE purification, then an SRE mixed state can be
prepared by a finite-depth unitary circuit acting on system
and auxiliary degrees of freedom. An alternative route that
is more generally available is to sample from the ensemble
of SRE states that enter a given decomposition (assuming
that the density matrix is SRE) with use of Monte Carlo
algorithms, instead of one preparing each and every SRE
state that enters the SRE decomposition. While the sam-
pling task may still be generally hard even in classical
mechanics [97,98], the decomposition we have provided
clearly simplifies the “quantum hardness” of simulating a
mixed state, analogous to the METTS algorithm [56].

On a different note, one way to prepare an ensemble
of pure states that may show a mixed-state separability
phase transition is via a judicious combination of uni-
taries and measurements [21,34,35,89-92,99]. For exam-
ple, Refs. [34,35] provide a construction of mixed states
that are closely related to the mixed states discussed in
Sec. 11, and which have also been implemented in a recent
experiment [100]. It will be interesting to design experi-
ments that probe the phase diagram in Fig. 1 using similar
ideas, although we suspect it may be comparatively more
challenging as it requires measuring nonlocal observables
supplemented with an appropriate decoding scheme [34].
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APPENDIX A: DETAILS OF THE STRING ORDER
PARAMETER FOR A 1D CLUSTER STATE

This appendix provides details of evaluating the string
order parameter for a 1D cluster state with respect to each
004,05 1-€-, 11(00,.0,84/5) /tr(Pg,.0,)- We first compute the
denominator in this expression, namely, the trace of pg, o,
[corresponds to probability of sector with charge (Q,, O»)],
by inserting the complete basis {|xap)} and {|z,p)}:

tr(00,.0,) & Y (Xabl 00, |Zab) (Zan|Pg, [Xan)

Xa,b-Za,b

o« D

Xab€0u bZab

(XaplOalzap) (Zapl OblXap), (A1)

where 3, = denotes summation over all possible x,
in the Q, and Q, sectors, i.e., ]_[j (xg;) = (—=1)% and
[T, &) = (=1)2. Now,

(Xab| Oalzap) O €7Pa 2 Fi=1%aiZ41 (x, 17 1)

o e Pasjj—1%ajZbj+1

(A2)

Similarly, (zaplos|Xap) X e P2 zaj%bizajv1 Tt follows
that tI’(,OQ Qb) 08 ZXaEQa ZlD Ising,xa theQb ZlD Ising,xp »
where Zip ising.xa Z ePaXj¥ajZbj-1%j g the partition
function of the 1D Ismg model with the Ising inter-
action determined by x, (the expression for Zip singx,
is analogously obtained by one interchanging a and b).
For a system with periodic boundary conditions, one can
parameterize all x, € Q, by performing the transformation
Xaj —> XajSpj—15p),5p; = £1 from any x, that belongs to
Q.. Besides, one can easily verify that Zp ising x, 1S invari-
ant under the transformation by changing the dummy vari-
ables Zpj—1 = Sbj—1Zb,j—1- In other WOde, ZlDlsing;ca =
Z1D 1sing,0, depends only on the charge Q,. Therefore,

tr(00,.0,) € Z1D Ising,0, 21D Ising,0p» (A3)

which is the product of the partition functions of the 1D
Ising model in the O, and Q) sectors. The evaluation of
the numerator of the string order can be done in a simi-
lar way. The only term that does not cancel out with the
denominator is associated with (xp|0S,(7, k)|zap), Which

can be evaluated as

(xa,b | )OSa (] s k) |Za,b)
k

H Xag | Zox{Xaplzap)

I=j

o e Padljj-1%aj7bj+1 Zbj_1

e Pl B 1aj it 7y -z (A4)

k
l_[ Xa,l
=i
It follows that

(P0,.0,5G . k) _

X zZi_1Z
tr(0g,.0,) H al | {27 -12K)1D Isingxa

b
Xa€Qq
I=j

(AS)

where (zj _1z) 1D Ising xac0, 15 the spin-spin correlation func-
tion of the 1D Ising model with the Ising interaction
determined by any x, belonging to the O, sector. Note
that (HLj Xa){Zj —1Zk) 1D Ising.xacQ, 1S invariant under the
transformation x,; — Xu;Sp; 155, Sp; = £1, and thus
Eq. (AS) is independent of the choice for any x, € Q,.
For example, one can choose x,; = 1 for all j if O, = 0.
On the other hand, if O, = 1, one can choose x,; = 1 for
all j # N and x,y = —1. It follows that the string order
of pg,.0, for both O, =0 and Q, =1 can be mapped to
{2/ —12k)1D 1sing, the spin-spin correlation function of the 1D
ferromagnetic Ising model. The results for S, are similar.
Since (zj_1zx) 1p 1sing decays exponentially with |j — k| for
any B < oo, we conclude that pg, o, has no string order as
long as p,, pp > 0.

APPENDIX B: DETAILS OF CALCULATIONS FOR
CHIRAL FERMIONS SUBJECTED TO
DECOHERENCE

1. Covariance matrix under a channel linear in
fermion operators

We are interested in subjecting the ground state py =
[¥o) (Wo| of a Gaussian fermionic Hamiltonian H to the
composition of the following single-Majorana channel on
all sites:

Elpl=A=p)p+pyipy;. (B1)

The goal in this section is to show that the resulting covari-
ance matrix is £(M) = (1 — 2p)>M and the resulting den-
sity matrix p oc e’ %) $j-1%  where tanh B = (1—-2p)
and § = (07 jikVk are the Majorana operators that block-
diagonalize the original Hamiltonian H. We note that one
can also pair up two Majorana fermions to get regu-
lar fermions through «; = (&1 + i&;)/2, and the den-

2% of

sity matrix takes the form p o e % mentioned in

Sec. VB.
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To proceed, we note that Eq. (B1) will map a Gaussian
state to a Gaussian state. A Gaussian fermionic state p,
whether pure or mixed, is fully specified by the covariance
matrix M, defined as

My = —itr(p (Vi v — 0in)). (B2)

Therefore, to determine the evolution of the density matrix
under the channel, it suffices to determine how the covari-
ance matrix evolves, which we denote as £(M). Using
iy vy = (—1)%+du Yj Yk, one can easily compute the
element of the resulting covariance matrix [£;(M)];:

[EiM) ] = —itr(ELp](Y; vk — 8ix))
= (1 = p)Mj + (=) pMy
=[(1 —p) + (=D Hup My

M forj #land k # I, (B3)
~la —2p)Mjy forj =lork=1

It follows that the composition of the channel & on all sites

gives

EM) = (1-2p)°M. (B4)

To see how one can use Eq. (B4) to deduce the resulting
decohered mixed state, let us first explicitly write down
the relation between a general density matrix p and its
covariance matrix M. Let us write the density matrix as
p o e fr Since p is Gaussian, H, can be written as a sum
of Majorana bilinears:

Y
i
H, = 3 Z Vi Kikvie, (BS)

Jk=1

where K is a 2N x 2N antisymmetric matrix and we
denote the number of Majorana modes as 2N. To see how
the matrix M is related to the matrix K, we begin by
block-diagonalizing K :

K = 0K, ® (iY))0’, (B6)

where K; is an N x N diagonal matrix and Y is the Pauli ¥
matrix (i.e., [0 — ;i 0]). If we denote & = (OT)jkyk, the
density matrix takes the following form:

p o [ JU — tanh(Ky); ; (i -165)].

J

(B7)

Using —itr(p&y—16y) = tanh(Ky); ; and the relation
between &; and y;, one can obtain the covariance matrix
as

M = O(tanh K; ® (iY))O". (B8)

Now let us determine the matrix O and the relation between
tanh K; and p using the property of the initial pure state

po and Eq. (B4). Since pg = [0} (o] is the ground state
of the Hamiltonian H, the matrix O at p =0 is pre-
cisely the one that diagonalizes H. Besides, using p§ =
po, one finds tanh K; =1 when p =0, and thus My =
O ® (iY))O'. Equation (B4) then gives M (p) = O[(1 —
2p)*I ® (iY)]OT. This implies that O remains unchanged
and tanh(K,); ; = (1 —2p)?* is independent of ;. There-
fore, the entanglement Hamiltonian takes the form

Hy(p) =iB Y _ &y 18y, (B9)
J

where tanh 8 = (1 — 2p)* and & = (O7) .y are the Majo-
rana operators that block-diagonalize the original Hamilto-
nian H.

2. Double-state formalism for fermions

In this section, we derive the double-state formalism for
fermions. As a warm-up, we first derive how the bosonic
density matrices and channels are mapped to pure states
and operators, respectively, under

o) = 0 ® D). (B10)
We later derive the similar correspondence for fermions
using Grassmann algebra.

For a general bosonic density matrix p = Zp’ g pﬁ,’ p){ql,
one can compute |p) using Eq. (B10):

o) = pr;|p><q|<2 ) ® |r>)

P4q
=Y slip)®Ir) =Y pllp.g), (Bl
Psq.r P4

which is tantamount to flipping the bra vector of p in the
original Hilbert space H to the ket vector in H. This intu-
ition can be visualized by our expressing Eq. (B10) using
a tensor network [see Fig. 5(a)]. In this sense, one can
regard the maximally entangled states as a tool to trans-
form the bra (ket) spaces to ket (bra) spaces, and such a
trick is called “Choi-Jamiotkowski isomorphism.” We note
that CJ isomorphism was originally used to map quantum
channels £ (superoperators) to quantum states o (density
matrices) [42,43],

o = € @ I7|) (P[], (B12)
which can be visualized in Fig. 5(b). However, while
both Eq. (B12) and Eq. (B10) map quantum channels to
operators, the operators they map quantum channels to
are different in general. Specifically, consider the channel
El1=2, Ka(~)KJ and denote its corresponding operator
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Eq. (B10) maps to as N, i.e., |E[p]) = N|p). The opera-
tor NV can be obtained by the direct evaluation of |E[p])
for any p:

E[pD) = ) KupK] @ 1|®)
= ZKQ(Z ) <q|>p(2 ) <r|)K2
o, q r
x (Z p)® |p>)
p

=2 Kela)rK]Ip)iglolp)

@ p.gr

= ZZKach(Z |p><p|)i<|r><q|p|r>
P

o q,r

= 33" Ka ® Rulg. P (g, r10)

o q,r

:ZKa ®I_(oz|/0> (B13)

Therefore, one finds

Ne=) K, ®K,. (B14)

On the other hand, the corresponding operator o¢ for the
channel £ is evaluated with use of Eq. (B12), and one finds

or = Y |Ka)(Kal, (B15)

where |K,) = K, ® I|®). It is then obvious that N and
o¢ are different. For example, if £[-] = K(-)K T consists of
only a single Kraus operator K, then o¢ is necessarily a
projector, while Ng is not in general.

Now we turn to the CJ map for fermions, i.e., the ana-
logue of Eq. (B13) for fermions. Note that the derivation of
N in Eq. (B13) required the insertion of a complete basis.
For fermions, this can be achieved by use of Grassmann
algebra. To build intuition, we consider the mixed-state
density matrix o with a single fermionic mode with cre-
ation/annihilation operators ¢f /¢ (which act on the Hilbert
space H in our notation), i.e., p = p(c, ¢'). The maximally
entangled state in the double Hilbert space for fermions can
then be defined as

|®) = (I +€%¢'d")]00). (B16)
Here d' denotes the fermionic creation operators in the
Hilbert space H, |00) is the vacuum defined by ¢|00) =
d|00) = 0, and 6 € [0,27) is an arbitrary phase that we
will set to zero for convenience. To derive a compact

(a) (c)
_
o) P | @) I
— @ /JT P | @)
} - —_—— = 0
_I’_ E
S
(b)
&
Og ~o—l—» AJ—»
E| E
I I
— _—
FIG. 5. Tensor network representations of CJ isomorphisn

for (a) |p)=p®I|P), (b) og=E@I[P)(P]], and (c)
(m'|p"Im) = (m'| ® (PNI ® p @I(|P) ® |m)).

form for |p), we make use of the coherent state |c,d) =
e_“Te_dd”OO), where ¢ and d are Grassmann numbers.
The maximally entangled state in the coherent-state basis
can be easily computed:

(¢d|®) = (@d|l + ¢'d']00) = (1 + zd) (cd|00) = .
(B17)

Similarly, we can compute |p) in the coherent-state basis:
(cdlp) = / DaDa (el pla)e* (ad|®)

= fD&e“@—“)Da(ama) (B18)

_ fDoz(Ol — d)Elple) = (@lpld).

In the final line, we use the fact that (o« — d) = §(d — a).
Therefore, we arrive at the following conclusion: given the
density matrix in the coherent-state basis (c|p|c), the corre-
sponding double state in the coherent-state basis (cd|p) can
be obtained simply by one substituting ¢ — d. For exam-
ple, if pg = |Wo) (Wo| is the density matrix of the pure state,
then

(ed|po) = (¢|Wo){(Wold) = (¢|Wo)(d|Wo)*

= (|, ¥;), (B19)
which is consistent with our intuition on bosonic fields.
We emphasize that the left-hand side of Eq. (BI8) is
defined in the double Hilbert space spanned by the Fock
basis {|00),¢"|00),d"|00),¢"d?|00)}. On the other hand,
the right-hand side of Eq. (B18) is defined in the original
Hilbert space spanned by {|0), ¢7|0)}.

We are now ready to work out the correspond-

ing operator Ng for the channel E[]=)", Ko (DKS
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under Eq. (B10). As mentioned in the main text, since
Eq. (B10) is linear, one can consider each K, ( -)K,I individ-
ually. Using |K,pKd) = (KopKd) @ 1|®) = Ko (pKJ ®
11®)) = K, | ,oK(i ), one finds K, is unchanged under
Eq. (30). Besides, since one can always write K as a func-
tion of ¢ and ¢, it suffices to consider how to express |pc)
and |pc’) as an operator applying to |p). Using Eq. (B18)
for |pc), we find

(ed|pe ® I|®) = (¢|peld) = (c|pld)d

= d(cdlp) = (ed|d"|p).  (B20)
In the second line, we use the fact that p preserves the
fermionic parity for p. It is then obvious that |o¢) = d’|p).

Similarly, using Eq. (B18) for pc’, we get (cd|pc’ ®
I|®) = (¢|pct|d). However, the evaluation of (¢|pc’|d) is
not as straightforward as that of (c| peld) since (¢|pct|d)
is not normally ordered. To proceed, we insert the identity
between p and ¢

(@lolc’|d) = / DaDaEpla)e ™ (&lc'|d)

— / DaDaae™ = (¢ pla). (B21)

In the second line, we use the fact that (@|ct|d) =

a (@|d) = @e®. Now we change the variable o (@) as
B (—pB) so that we can substitute (¢B|p) for (c|p|a):

(@lpet|d) = /D(—ﬁ)DB(—ﬂ)e‘ﬂ("‘B)<Z’/§|p>
= / DBDB(Be™)e PP (2B p)
=fDﬂDB(EI|d|ﬂ)e’3ﬁ(55|P)

_ /Dgpmiﬂdm)eﬁf‘(c‘:ﬁlp)

= (cd| — d|p). (B22)
In the fifth line, the minus sign is attributed to the exchange
of DB and Dg. It follows that |pe’) = —d|p).
Interestingly, treating the CJ map as a general way to
transform the bra (ket) space to ket (bra) space leads
to other useful applications for fermionic problems. For
example, the fermionic transpose can be naturally defined
with use of the CJ map, and we find that this definition
is consistent with the fermionic time reversal, which was
proposed in Ref. [101] to resolve the issue that the con-
ventional definition of the fermionic transpose fails to
capture the entanglement negativity due to the formation
of the edge Majorana fermions. Specifically, the fermionic

transpose can be defined as follows:
(m'1p"Im) = ((m'| @ (PN ® p @ 1(|D) ® |m)), (B23)

where {|m)} is an arbitrary complete basis for fermions.
One may show that this definition makes sense by express-
ing Eq. (B23) in terms of a tensor network [see Fig. 5(¢)].
We now show that this definition coincides with the ones
proposed in Ref. [101] using fermionic time reversal. Not-
ing that (¢d|®) = ¢ and (®|cd) = e, one can evaluate
p in the coherent-state basis:

@pTlc) = / DaDaDEDL(Dlac)e % (ap|B)e PP eP

- / DaDaDBDR™ ) (ap|f)e PP

— (clp] — ). (B24)

Therefore, one can obtain (¢|p”|c) by simply substituting
¢ — —cand c — cin {(c|p]c).
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