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1. Introduction and main results
1.1. Background and motivations

In this paper we are interested in spectral properties of commutators of the form
[(—A)2,Mf]  in La(RY).

Here € is a parameter that we typically fix in one of the intervals (0, 1] and (—%, 0), and
My is the operator of multiplication by a function f € L1 10c(R%). Tn Section 3 we will
recall that the operator [(—A)2, M| is always well defined from C°(R?) to the space
of distributions (C°(R%))’.

The spectral properties that we are interested in are boundedness, compactness and
membership to a trace ideal, as well as the computation of the asymptotics of its singular
values. The trace ideals in question are Schatten classes £, and weak Schatten classes
Ly ~, whose definition we will recall in Section 2.

Our goal is to investigate these spectral properties under minimal assumptions on the
function f. In particular, we will derive the asymptotics of the singular values under the
sole assumption that the asymptotic coefficient is finite. We will also be interested in
converse theorems, where spectral properties of the commutators imply certain properties
of the function f.

To set the stage, let us recall a prototypical result in this area, due to Coifman,
Rochberg and Weiss [17] with later contributions by Janson [26] and Uchiyama [52] and
many others. In a certain sense this result corresponds to the case ¢ = 0 of our problem.
Let d > 2 and let R; = —iaj(—A)’%, j=1,...,d, be a Riesz transform. Then

[R;, My]  in Ly(R%)

is bounded if and only if f € BMO(R?), the class of functions of bounded mean oscil-
lations. In addition, there is a two-sided bound between the operator norm of [R;, M|
and the seminorm of f in BMO(R?). Furthermore, the operator is compact if and only
if f € VMO(RY), the class of functions of vanishing mean oscillations. Concerning trace
ideals, Janson and Wolff [29] characterized membership of [R;, M] to Schatten classes
L, with d < p < 0o in terms of membership of f to a homogeneous fractional Sobolev
space, and they showed that the operator does not belong to L4 unless f is constant; for
alternative proofs see [44,27]. Connes, Sullivan and Teleman, together with Semmes, [19]
added a characterization in the endpoint case of the weak Schatten class L4 o, namely
membership to a certain homogeneous first order Sobolev space. In the recent papers
[35,24] we have revisited and extended the latter result.

Thus, there is a scale of nested function spaces, parametrized by p, namely the ho-
mogeneous fractional Sobolev spaces, such that if the regularity of f improves (in the
sense of it belonging to a smaller one of these spaces), then the trace ideal properties
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of [R;, My] improve (in the sense of it belonging to a smaller trace ideal space). At the
same time, there is a saturation effect in the sense that if the regularity properties of
f improve beyond membership to the corresponding first order Sobolev space, then the
trace ideal properties no longer improve. The existence of a critical exponent p, with
this property, here p, = d, is sometimes referred to as the ‘Janson—Wolff phenomenon’ or
‘cut-off phenomenon’. It has been observed in many other problems of this kind, involv-
ing commutator or Hankel operators, see for instance, [2,22,3,41,28,21] and references
therein.

The present paper is a continuation of [24], but can be read independently. Our goal is
to prove the analogue of the before-mentioned results for the operators [(—A)z, M| for
€ # 0. Several results about these operators were obtained by Murray [40] (concerning
boundedness) and by Janson and Peetre [27] (concerning boundedness and trace ideal
properties) and we review them in detail later on in this introduction. Here we just
mention that for every e € (—%,0) U (0,1) there is a Janson-Wolff phenomenon with
critical exponent p, = 1%6. The existing results characterize membership to £, for
p > py in terms of f belonging to some homogeneous fractional Sobolev space. It is also
known that [(—A)%, My] does not belong to £, unless f is constant. Our new results
characterize membership to the endpoint space, namely the weak Schatten ideal £, ~,
in terms of f belonging to some homogeneous first order Sobolev space. Moreover, we will
compute the asymptotics of the singular values under the sole assumption of membership
to this Sobolev space.

We will also obtain some results in the case ¢ = 1, which is somewhat different. Note
that the exponent p, = 1%6 tends to +o0o as € — 17. Among other things, we show that
[(=A)z, My] is never compact, unless f is constant. Moreover, we provide a short proof
that a well-known criterion of Calderén [9] for boundedness is not only sufficient, but
also necessary.

1.2. Main results

We now come to a precise formulation of our main results in the following three
theorems. The necessary notation related to function spaces and trace ideals, as well
as the precise meaning of the operator [(—A)2, M;] can be found in the following two
sections.

Our first result concerns the case 0 < e < 1.

Theorem 1.1. Let d > 1 and let 0 < e < 1.

(i) If f € Wll%(Rd), then [(—=A)2, M) € L+, and

£ ,00

[CISER

< caellfllin, ®ay-
T—¢

1—e’
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(i) If f € W1 (]Rd) then

t—o0

lim ¢ a(4,1(=2)%, M7)) = Facl Flla, ey
1—e

with

all

Kae = el | (2m) %! / |wa| T duw . (1)

Sd—1

(iii) If f € L1joc(R?) and if [(~A)2, My] € L a_, then f € W', (R?) and

[(—A)%, My]

||f|\w1 @’ < € o

Our second result concerns the case —% <e<O.

Theorem 1.2. Let d > 2 and let —% <e<O.

,O0

() If f € Wj% (RY), then [(—=A)2, Ms] € L o, and

[CFSERH

<cd e||f||w1 (R

1—e?

(i) If f e Wl% (RY), then

ti 67 (1 (805, M1) = macl T, e

t—o0

with kg given by (1).
(iii) If f € L11oc(R?) and if [(—A)2, My] € L a o then f e W1 (Rd) and

[(—A)%, My]

1, mey < Che
1—e

d
T—e @

Note that in this theorem we assume ¢ > —£ and d > 2. For the case ¢ < ——, see
Lemma 3.3 below. Concerning the assumption d > 2, see the discussion in the following
subsection.

Our third result concerns the case € = 1.
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Theorem 1.3. Let d > 1.

(i) If f € WL(RY), then [(=A)=z, My] is bounded and

=202 3| < calflwy ooy

(ii) If f € L11oc(R%) and if [(—A)z, My] is bounded, then f € WL (RY) and
(P [(CONER 2]

(iil) If f € WL(R?) and if [(—A)%,Mf] is compact, then f = const.

Part (i) of this theorem is a celebrated result of Calder6n [9], which we restate here
only for the sake of completeness. Parts (ii) and (iii) for d = 1 are due to Janson and
Peetre [27, Section 6, Example 7]. Part (ii) appeared recently in [13, Theorem 1.5 with
Q) = 1], but we present an alternative, shorter proof for the case at hand. Part (iii) for
d > 2 can be considered as new.

1.8. Comparison with known results

Let us formulate precisely the previous results on the operators [(—A)%, My]. We will
not define the relevant function spaces, since they will not play any role in the remainder
of this paper. They are the fractional Sobolev spaces W; (R?) with 0 < s < 1, which are
equal to a special case of Besov spaces, namely W;(Rd) = B;p(Rd). For these spaces
see, for instance, [33, Chapter 17]. Less standard spaces are the BMO-Sobolev spaces
(-A)2BMO(R?), 0 < s < 1, which are studied in [47]. As discussed, for instance,
n [54], these spaces coincide with a special case of Triebel-Lizorkin spaces, namely
(=A)2 BMO(R?) = .govz(Rd). For these spaces see [51, Subsection 2.3.4].

Case € € (0,1)
It is shown by Mwrray [40] in dimension d = 1 and by Janson and Peetre [27] in
general dimension d that

[(—A)%, My] is bounded iff f € (—~A)2 BMO(R?).

We are not aware of a published result characterizing compactness of [(—A)2, M|, but
it is natural to guess that the relevant space is the closure of C>°(R%) in the space
(=A)2 BMO(R?). Concerning trace ideals it is shown in [27] that for any ;% < p < oo
one has

(- MjeL, <«  feW, "R,
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as well as
[(—A)2, My] € L a — f = const .

Our Theorem 1.1 completes these results, namely by characterizing membership of the
commutator [(—A)2, M/] to the weak Schatten class Eli,oo in terms of the condition

fe Wli (R?). Moreover, we compute the asymptotics of the singular values under the
1—e

sole assumption of membership to this Sobolev space.

Case € € (—£,0)
Janson and Peetre [27] have shown that for any %6 <p< _% one has

d
P

(-A):, My eL, <«  feW, "[®RY.

We are not aware of any results characterizing membership of [(—A)2, My] to £, with
p > _ie or its boundedness or compactness. Thus, the results for ¢ < 0 are far less
complete than those for € > 0. Our Theorem 1.2 completes the existing results at the
endpoint p = 1;2 in a similar way as in the case ¢ > 0. However, now we need the
additional assumption d > 2.

The origin of this extra-assumption can be seen from the fact that the integrability

exponent 1%6 of the Sobolev space Wlli is less than 1 for d = 1 and € < 0. In this way the
restriction to d > 2 arises from a technical point of view in our proofs. We think, however,
that this restriction is not only technical but that the results are significantly different for
d = 1. More specifically, while it is probably still true that for f € C°(R), the operator
[((—A)%, My] belongs to £ .1 and its singular values satisfy the asymptotics in (ii), it is
conceivable that there are f in Ly joc(R) with f* € L 1 (R) for which [(—A)2, M;] does

not belong to El 1. This is a subject for further investigation.

Case e =1

As we have already mentioned, the boundedness of [(—A)% , M¢] under the assumption
f € WL(RY) was proved in an influential paper of Calderén [9]. For alternative proofs
and extensions we refer, for instance, to [16,10,15].

Janson and Peetre [27] prove that the condition f € WL (R?) is also necessary for
boundedness in dimension d = 1 and mention without proof that a referee of their paper
has told them that this condition is also necessary for d > 2. We provide a proof of this
claim. A different proof has appeared recently in [13, Theorem 1.5 with @ = 1]. The
latter paper deals with a much larger class of operators than we do, but for the problem
at hand our proof has the advantage of being much more direct.

Finally, Janson and Peetre [27] prove that in dimension d = 1 the operator
[(=A)z, M;] is not compact unless f is constant. Our Theorem 1.3 shows that this
remains valid in any dimension.
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1.4. Outline of the paper

We end this introduction by giving a quick overview over this paper. For simplicity
we restrict ourselves to the proofs of Theorems 1.1 and 1.2; that of Theorem 1.3 appears
in Section 9 and uses related arguments.

When proving Theorems 1.1 and 1.2, the methods that we are using are rather different
for part (i) on the one hand and parts (ii) and (iii) on the other hand.

Let us begin with discussing our proof of part (i) in Theorems 1.1 and 1.2, which
appears in Section 4. It is of operator-theoretic nature and based on the technique of
Double Operator Integrals (DOIs). As two of us have demonstrated in [30,42,35], DOIs
are an excellent tool for studying commutators. Earlier uses of DOIs in connection with
spectral properties of pseudodifferential operators can be found, for instance, in the work
of Birman and Solomyak [7].

DOIs allow us to write the commutators [(—A)2, M;] as a certain transformation
applied to the simple commutator [V, M;] = My;. Note that trace ideal properties of
the operators (—A) T [V, M 71(=A) <+ and generalizations thereof can be obtained from
Cwikel’s theorem [20] and its generalizations.

Therefore, the proof of our results is reduced to studying the mapping properties
of the transformation that allows us to write [(—A)2%, My] in terms of [V, My]. This
transformation depends on the parameter e. The mapping properties in the case € €
[—1,1] are relatively straightforward, given the previous results in [42] by one of us. To
prove the mapping properties for € < —1 we use a certain ‘renormalization procedure’,
where we extract a finite number (depending on €) of extra terms, before being able to
apply again the results in [42].

We now turn to a discussion of the methods used to prove parts (ii) and (iii) in
Theorems 1.1 and 1.2. For part (ii) the analysis is divided into two steps. In a first step
we derive the spectral asymptotics in the smooth case, that is, for f € C>°(R%) and with
—A replaced by 1 — A. In a second step we use the uniform a priori bounds from part
(i) to extend the asymptotics to the maximal class of functions f.

The first step here uses an approximation result for commutators that is in the spirit
of parametrix constructions in the theory of pseudodifferential operators, but we present
it in an elementary fashion; see Section 5. Once we have this approximation, we can apply
the results about spectral properties that we developed in our previous paper [24]; see
Section 7. To be more precise, the methods from [24] are applicable, but the results are
not, at least not in an obvious way. Instead of referring the reader to redo the arguments
in [24], in Section 6 we present a method to deduce from [24] the results we need without
redoing the argument. We believe that this argument is interesting in its own right and
illustrates, once again, the power of DOI techniques.

Part (iii) of Theorems 1.1 and 1.2 is proved in Section 8. The argument is related to
that in the proof of part (ii). Namely, we show that if [(—A)2, M] has certain trace
ideal properties, then the same is true for the corresponding operator with a regularized
f- For the latter operator we can use (a localized version of) the spectral asymptotics in
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part (ii) to get a bound on the Sobolev norm of the regularized version of f, uniform in
the regularization parameter. This allows us to conclude the f itself has to be sufficiently
regular.

1.5. Acknowledgments
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many’s Excellence Strategy EXC-2111-390814868 (RLF), and through Australian Re-
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2. Preliminaries

All considered functions are complex-valued, unless otherwise specified.

Let (Q,3,r) be a measure space with a o-finite measure v, defined on a o-algebra
Y, and let L(2) be the algebra of all classes of equivalent measurable complex-valued
functions on (€2, ¥, v). Denote by Lo(£2) the subalgebra of L(2) consisting of all functions
f such that v({|f| > s}) < oo for some s > 0. For every f € Ly(2), its non-increasing
rearrangement is defined by

p(t, ) :=inf{s > 0: v({|f| > s}) <t}, t > 0.

For 0 < p < oo the space L,(Q,%,v) (resp. Ly, (2, 2,v)) consists of all elements
f € Lo(Q) for which

o0 l/p

Il i= | [ntesrar) <o (vesp. Il = supt! it ) < o).
0

As always, the measure spaces Z, = {0,1,2,---}, N = {1,2,3,---} are equipped
with counting measures and the Euclidean space R? with Lebesgue measure.

For detailed information concerning classical function and sequence spaces such as
Ly(RY), Ly oo(RY), £, = £,(Z+) and £, oo = €y (Z), we refer the reader for instance
to [32,36,37).

In this paper, V is the self-adjoint gradient operator on Lo(R%), that is

Lo 1o,
i0ty’ T i0ty

Definition 2.1. The homogeneous Sobolev space Wpl (R4, 1 < p < oo, consists of func-
tions f € L1 10c(R?) whose distributional gradient belongs to L,(R%). This is a space of
functions modulo constants. We set
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||fHW,[}(Rd) = [|Vflp-
The following result is available, see e.g. [33, Theorem 12.9].

Theorem 2.2 (Sobolev embedding theorem). Let 1 < p < d and let % = % — L. We have

WZ} (R C Ly(RY). This should be understood in the sense that in the class of functions
modulo constants there is one that belongs to Ly(R?).

Let H be a complex separable Hilbert space, and let B(H) denote the set of bounded
operators on H. The standard uniform operator norm on B(H) is denoted by || - || co-

Let IC(H) denote the ideal of compact operators on H. Given T' € K(H), the singular
value function ¢ — u(t,T) is defined by the formula

w(t, T) :=inf{||T — R|| : rank(R) <t}, t>0.

We denote by p(T') the sequence {p(n,T)}52,. Equivalently, p(7') is the sequence of
eigenvalues of |T'| arranged in nonincreasing order with multiplicities.
The following basic properties of singular values will be frequently used in the sequel:

wit+s,A+B) <u(t,A)+u(s,B), t,s>0, (2)
and, for any 0 < p < oo,
u(t, A) = p(t, A%) = p(t, |A[P)», £ 20; (3)

see e.g. [36, Section 2.3].

Let p € (0,00). The Schatten class £, is the set of operators T' in IC(H) such that
wu(T) is p-summable, that is, belongs to the sequence space ¢,. If 1 < p < oo, then the
L, norm is defined by

1Tl = (T)lle, = (Y uln, T)?) 7

With this norm £, for 1 < p < oo is a Banach space, and a Banach ideal of B(H).
Analogously, for 0 < p < oo, the weak Schatten class £, » is the set of operators
T € K(H) such that p(T') is in the weak L,-space ¢, , with quasi-norm

IT|lp 00 := sup (n+1)"Pp(n, T) < oo
n>0

As with the £, spaces, £,  is an ideal of B(H).
For more details on ideals of compact operators and singular value sequences, we refer
the reader to [36,37,45].
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We will frequently use the following two trace ideal bounds for operators of the form
M;g(V) on L?(R?). To formulate them, we use the Birman—Solomyak spaces £,(L,)(R?)
and £, oo (Lq)(R?) (see [7], [45, Chapter 4] or [4, Subsection 5.6]), as well as their analogue
2.10g(Loo ) (R?) in [34, Definition 5.5]. The only fact about these spaces that we will be
using is that they all contain C,(R%).

Theorem 2.3. Let d > 1.

(i) If2<p<ooand f,g € Lp(Rd), then Myg(V) € Ep(Lg(]Rd)) and

1Mpg(V)liz,Lo®ey < cpallfllz,®ayllglz, e

(it) If 0 <p < 2 and f,g € £p(L2)(RY), then M;g(V) € L,(La(R?)) and

[Mrg(V)llz, (L2®ey) < cpall flle, o)) 9lle, (£2) R
Part (i) is known as the Kato—Seiler—Simon inequality; for a proof see, e.g., [45, The-

orem 4.1]. Part (2) is due to Birman and Solomyak [6, Theorem 11.1]; for a proof for
p > 1 see also [45, Theorem 4.5]. For a strengthening see [34, Theorem 1.4].

Theorem 2.4. Let d > 1.

(i) If2 < p < oo and f € Ly(R%), g € Ly (RY), then M;g(V) € Ly oo(L2(RY)) and

IMrg(V)llz, oo zo®ey) < cpallfllo, @9z, . ®e)-

(i) Ifp=2and f € Zgylog(Loo)(]Rd), g€ EQ,OO(LLL)(Rd), then Myg(V) € £p700(L2(]Rd))
and

1Mpg(V)llzy. o (z2®e)) < 2.l flleg 1op (o) ®)NGNles o (L) ®E)-

(iii) If0 <p <2 and f € £(L2)(R?), g € £ oo(L2)(R?), then Myg(V) € Ly 00 (La(R?))
and

||Mf9(v)\|ﬁp,w(L2(Rd)) < Cp,d”fHe,,(Lz)(Rd)HQHep,oo(Lz)(Rdy

Part (1) is known as the Cwikel inequality and due to [20]; for proofs see also, for
instance, [45, Theorem 4.2] and [23,34]. Part (2) is due to two of us [34, Theorem 1.3].
Part (3) is due to Simon [45, Theorem 4.6] for p > 1 and appears in [4, Subsection 5.7]
in general. For a strengthening see [34, Theorem 1.4].
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3. Domain and codomain of the commutator [(—A)%, My]

We begin by clarifying in which sense the commutator [(—A)2, M/] is understood for
fe LLlOC(Rd) and € € (—d, 1].

Lemma 3.1. Let € € (—d, 1] and let f € Ly 10c(R?). For any ¢ € C°(RY) there are unique
distributions, denoted by

(—A)EMpp and My(-A)%¢,
such that for all ¢ € C2°(R?) one has
(~A)2Mph,w) = (fo,(D)29)  and  (Mp(=D)2¢,0) = ((—L)%¢, f¥).

Here (-,-) on the left sides denotes the sesquilinear duality pairing between (C2°) and
C, and on the right sides that between Ly and Loo (Loo and L, respectively). The

distribution M¢(—A)2¢ is reqular (that is, given by an Ly joc-function), and so is, for
€ <0, the distribution (—A)2 Myg.
Moreover, if {futn>0 C Lioc(RY) ds such that f, — f in Li1oc(RY), then for every
¢ € C(RY), we have
(—A)EMy,¢ = (A)EMpo, My, (=A)2¢ — My(=A)2g, n— o,
in (C2°(RA).
As a consequence of this lemma, the mappings
Mp(—=A)2 : C°(RY) — Ly joc(R?)

and

. L1 10c(RY if e € (—d,0),
() My : O (B - § Lree () e 0]
(C®RY) ifeec (0,1].
are well defined.
Proof. We begin with the case € € (—d,0). It is well known (see, e.g., [46, Chapter V,
Theorem 1]) that (—A)? : Li(RY) — Lﬁyoo(Rd). If ¢ € CX(R?), then f¢ € Li(RY)
and, therefore,

((-A)EMf)(¢) = (~A)2(f9) € L_s_ (R) C Ly joc(RY).

Moreover, by duality, (=A)2 : L_a4 ;(R%) — Loo(R?). Therefore,
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(My(—=A)2)(¢) = f+ (=A)26 € L1 10c(R?) - Loo(RY) C Ly 10c(RY).

Thus, both (—A)2 Mg and Ms(—A)2 ¢ are regular distributions.
Now let € € (0,1]. Then (=A)2 : C°(RY) — Lo (RY). Thus,

(Mf(—=A)2)(¢) = f+ (—A)2¢ € L110c(R?) - Loo (R?) C L1 10c(R%).

€

Moreover, by duality, (—A)? : (Lso(RY)) — (C(R?))’, where on (Lo (R%))" we con-
sider the weak star topology. Since f¢ € L1(R?) C (Lo (R%))’, we have

(—A)2My)(¢) = (—A)5(fo) € (CZ(RY))".

This proves the existence of the two distributions. The uniqueness is clear. It remains to
prove the convergence statement. For the distribution (—A)2 M ¢ we use the fact that
fnd — fo in Ly and therefore

The proof for M;(—A)2 ¢ is similar, using fn1) — f1p in Ly. O

Lemma 3.2. Let € € (—%,1] and let f € Loo(RY) and ¢ € CX(RY). For m > 1 let
P = X(1 m)(=A). Then

(P (—A)2)My P — (—A)2 Mo, PpMp(Pp(—A)2)¢ — Mp(—A)2¢, m — oo,
in (C2(R®))". Here (—A)2Ms¢ and My(—A)2¢ are defined as in Lemma 3.1.

Proof. Let 1) € C2°(R%). Then, with (-,-) denoting the Lo-inner product,

vl

(Pn(=A)2) - My P)p, b)) = (f - P, (Pn(=2)2)1)),

(P - My - (Pr(=8)%)¢, ) = (P (=2)2)g, f - Prut).
Let x denote either ¢ or ¥. We claim that
X; (—A)%x € Ly(RY). (4)

Indeed, for y this is clear. When € € (0, 1] it is also clear for (—A)%x. Thuslet € € (—£,0).
As observed in the proof of Lemma 3.1, we have

R?), (=A)2 : L_a;(RY) — Leo(RY).
Therefore,

(-A)2 : Li(RY) N L_%J(Rd) - Lrie7oo(Rd) N Loo(RY) C Ly(RY).
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In particular, (—A)2x € Ly(R?). This proves (4).
It follows from (4) that P,x — x and Pn(—=A)2x — (—=A)2x in Ly(R?). This,
together with f € L. (R%), implies

(f - P, (Pr(=D)2)Y) — (f - 6, (—A)20)
(Pr(=A)2)¢, f - Puth) — ((—A) 20, F - 4) .

Here (-, -) denotes the Lo-inner product. Alternatively, it can be interpreted as the duality
pairing between L; and Lo (Lo and Ly, respectively), and then, by Lemma 3.1, the right
sides coincide with ((—A)2M ¢, 1) and (M;(—A)2 ¢, 1), respectively, where now (-, )
denotes the sesquilinear duality pairing between (C2°(R%))" and C2°(R?). This proves
the claimed convergence in C2°(R?). O

Having defined the operator [(—A)2, M;] : C2(RY) — (C)'(R?), we are now in-
terested in when it extends to a bounded operator on Ly(R?) and belongs to certain
operator ideal. The following theorem provides a negative result in a certain range of
negative €’s.

Lemma 3.3. If € € (—d,—%] and if 0 # f € Li(R?) is compactly supported, then the
operator [(—A)%, My] does not map La(R?) to itself.

Proof. The operator (—A)? is an integral operator with an integral kernel |t —s|~¢~¢ (up
to a multiplicative constant). Hence, the operators M;(—A)%, (—A)2M; : CZ(RY) —
L1 10¢(R?) (those operators are well defined, see the proof of Lemma 3.1) are also integral
ones. Thus, [(—A)%, M/] is an integral operator with the integral kernel given, up to a
multiplicative constant, by

f{t) = f(s)

d
[t — S| t,s € R

(t,s) —
Suppose f is supported in the ball B(0, R). Let ¢ € C2°(R?) be such that

/ (f6)(s)ds # 0.

Rd

We have

(i) = [ 2208 as 1> r

(-2 2)8) 0 = i< [ (Fo)ds + O, > 2R

[s|<R
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The function on the right hand side does not belong to Lo(R%\ B(0,2R)). Hence, we have
(I(=2)%, My))¢ ¢ Lo(RY). O

Let now —% < e < 0. By the weak Young inequality (see, e.g., [46, Chapter V,

Theorem 1]), Holder’s inequality and Sobolev’s inequality (see Theorem 2.2) we find

1My (~A) 5|, [1(—A)E Myl < ) <C(2)||f\lwl moy

Hence, for —% < e <0 and f € VV1 the commutator [(—A)%, M;] is a difference of

two bounded operators and is, therefore bounded. Moreover,

e d
HK—AP7MﬂHm§C¢JfMWLﬂmy fEWl (RY), -2 <e<0. (5)

1—e

4. Proof of Theorem 1.1 (I) and Theorem 1.2 (I)

If A= (Ay,...,4,) is a d-tuple of mutually commuting self-adjoint operator on a
Hilbert space and ¢ is a sufficiently regular function on R? x R?, then the symbol Tf
denotes the corresponding Double Operator Integral (DOI). We refer the reader to [30,12]
for the notion of a DOI with respect to tuples of mutually commuting operators. The
following lemma shows that for certain ¢ this DOI can be reduced to one for a single
operator. It is the exact analogue of [42, Lemma 8] and its proof is exactly the same as
in [42], so we omit it.

Lemma 4.1. Let ¥ : R xR — R be a bounded Borel measurable function and let h : R —
R be a Borel measurable function. Set

P\, ) = U(h(N),h(p)), A peR™
For every tuple A = (Ay,---, Aq) of commuting self-adjoint operators we have

A h(A
T = Tp™.

For a fixed € € R, define the function ¢. on R? x R by setting

A€ —|p|€ l-e,  l—e
R A= |l 2 A A # Ll

. (6)
€ if (Al = ]

@Qw%={

Lemma 4.2. Let € € [—1,1] and let ¢. be as in (6). Then for any 1 < p < co the operator
T(Z is bounded on L, and on Ly o

Proof. For e = +1, ¢, is a constant and there is nothing to prove. Suppose € € (—1,1).
By Lemma 4.1 applied with h(\) = ||, we have
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1
—A)2
Ty =Ty,

with

U (s,t) =2 .82 tl%, s,t > 0.
Thus,
S
\Ije(sat):he(g)’ Sat>Oa

with the function h. given by the formula

B

et — 1 (1—e)t sinh(i)
he t) = . . =——22  teR.
(he o exp)(t) 1 ¢ sinh(%)

In particular, h. o exp is a Schwartz function. By [42, Lemma 9], we have

N

1
TS L= Ly, TSN Lo — Lo
Therefore, by interpolation,

)z

1
Té/:A)z : ‘CP - [’IN Téf:A : Lp,oo — ‘Cp,om 1 <p <o,

proving the assertion. O

For € € R and n € N, define the function 6,, . on R% x R by setting

n A e+21—1 n e+21—1
b e = S (D=3t g lilyena e Ra y uzo

Lemma 4.3. Let n € N and let e € [-2n — 1, —2n + 1). We have

(be()‘v M) = ¢6+2n()‘7 /J/) - en,e()‘? M)a )‘7 we Rd7 )‘a 1% 7é 0.

Proof. For every ¢ € R, we have

QSG(/\’ :u) - ¢6+2(>‘v :LL) =

B el 7 YRS S S e T APV S
A= [l A= [l
I\~ 5 o T
= L (Al (AL = [l) = (A2 — [ >).
A= [l (

Note that
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Ml = Tul) = (A2 = |u]*2) =
= = AL L o Jl - [l = I - A =
= = (1Al = [ (A A+ ).

Thus,

¢e()\a M) - ¢6+2(/\’ H) =

1+e
SN Y = = (5
||

1+ et1
2 ) 2

:—|)\_

The assertion follows now by induction on n. O

Define the function v, 1 < k < d, on R? x R? by setting

Rl_fllﬁlzl Ak — ) EAFEp,

7
0 ifA=p. ™)

Yr(A, p) = {

Lemma 4.4. Let 1 < k < d and let i be as in (7). For all 1 < p < oo the operator TX@
is bounded on L, and on L, .

Proof. Boundedness of Tth : L, = L,, 1 <p < oo, is established in [12, Corollary 5.2];
see also [11, Theorem 5.1]. By interpolation, qu tLpoo = Lpooy 1 < p < 00, is bounded
as well. O

For a tuple A = (44,...,Aq) we write
|A| = (A2 +... + A2)3.
In the next two lemmas we derive representations for commutators [|A|¢, B] as DOIs.
Lemma 4.5. Let € € R and let ¢ and ¢y be as in (6) and (7), respectively. If B € Lo

and if A is a tuple of bounded self-adjoint, mutually commuting operators such that |A|
is bounded from below by a strictly positive constant, then

e—1
Al B ZTM |A| = [Ay, BJA] ).

Proof. Let g; be the function on R? x R¢ given by the formula

g ) = N7 O — )l =, ApeRL

Note that g is bounded when u, A range over compact sets in R% \ {0}. Then we have
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|A|=" [Ay, B]

=T (B).

It follows that

d
S T8 (A= [Ax, BIA|Z) =

zi: To. w’“( ) g: veoeB) =Ty 4,0, (B):
Since
(D e ti-ge)Ap) = A= luly A e R,
k=1
we have

A iae .
TS, petneg (B) = |AI°B = BIA[,

which proves the assertion. O

Lemma 4.6. Letn € N, lete € [-2n—1,—2n+1) and let ¢, and 1y, be as in (6) and (7),
respectively. If B € Lo and if A is a tuple of bounded self-adjoint, mutually commuting
operators such that |A| is bounded from below by a strictly positive constant, then

d

¢ e—1 e—1
AL B = YT, 0 (1A% (44, BIIA]T)
k=1

d n n
_ ZTé}k (Z ‘A|E+l—1[Ak7B”A|_l + Z |A|_Z[Ak,B]|A‘e+l_1)
k=1

=1 =1

Proof. By Lemma 4.5 and Lemma 4.3, we have

d
[|A|€7 ZT(¢E+271_971 e) 1/Jk(|'A'| [Ak7 ]|A‘FT) -
k=1
d B d » .
Z Peton- wk( [AIWB Al >_ZT$¢(T£’E(‘A|T[AI@7B] 2 ))
k=1 k=1

It is immediate from the definition of 6, ., given before Lemma 4.3, that

7

A BJAIT) =
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n
=D IAITE A (A BIAE AT
=1
AT AT A BlIAIT - AT =

Z A‘eJrl 1 Ak ]|A|7l + Z ‘Arl[Ak’BHAFJrlfl.
=1 =1

This proves the claimed representation. 0O

Our goal is to apply the representation formulas in Lemmas 4.5 and 4.6 to (regular-
izations of) A =V and B = M. To that end, we now derive trace ideal properties of
the operators that appear. It is exactly in the following lemma that we are using the
assumption € > —%.

Lemma 4.7. Let € € (—§,1) with € > 0 whend = 1. Let f € L_a_(R?).

(i) We have

e—1

Myp(—A)

s

< caellfl -

(ii) If n € N is such that € € [-2n — 1,—2n + 1), then we have

e+l—1

7 My(—A)72 < lfla, 1<i<n.

=)

1—e?

Proof. In the proof of (i), we are only using the assumption € € (1 — d,1). We write

Mf(_A) 4 :(_A) 4 le‘% Msgn(f)M‘flé(_A) 4

(_A) 621
By Holder’s inequality for weak £, ideals (see [8, Theorem 11.6.9] and, concerning sharp
constants, [50]), we write

e—1

Mg(=A)=

ooy

_d_ -
To¢,00

e—1

(—A)F M

HM A) 611
Tk 2d

2a .
|71 F=r] T—e'>®

< ey

(
2

Since € € (1 — d, 1), it follows that 2~ > 2. Note that the function ¢ — t|=, t € RY,

|1/2

falls into L 24 yoo(Rd). Hence, Theorem 2.4 is applicable to the functions |f and

g(t) = || and we can write

e—1

o

(M3 (=

! e SR, = 1
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Combining these estimates, we obtain (i).
In the proof of (ii), we note that e is negative and that 1 —e >n >1,1 <1l <n. We

write

N~

(—A) T My(—A)~

e+i—1 _
= (A M Mgy M (24)

Using Holder inequality for weak £, ideals, we write

(Gt AN

14,00
< craell(—A M H —A)"3 .
< ctae||(=4) el M G
Note that
d_d d d
->=->2, —F>—>2.
l n 1—e—1 "7 —e

Note that the function ¢ + [¢|*t!=1 ¢t € R? (respectively, the function ¢ — [t|~!, t € R9)
falls into Llidil ’M(Rd) (respectively, into L%’OO(Rd)). Hence, Theorem 2.4 is applicable
and we can write

3 L 3 -1k
<N | o, = AT
o0 € 1—e

etl—1
2

L
-1

M
L tme gty

(—a)7

=

1

€

4 =
=T
1—e€

4 1
< cP1fI=

d
10

b,
[fl1=e

Combining these estimates, we obtain (ii). 0O

The following corollary follows immediately by applying Lemma 4.7 with f replaced

by Dkf
Lemma 4.8. Let € € (—%,1) with e > 0 when d = 1, and let n € Z, with € € [-2n —
1,—2n+1). For f € C=°(R?) set

Vi =7 ((—8) %57 Mp,g(—8) 75 +(-4)

=1

Here, for n =0, Yy, is assumed to be zero. Then

1Kl oo ¥l oo < [l

I—e
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We are now in position to state and prove a useful representation formula for the
commutators of interest.

Proposition 4.9. Let d > 2 and let € € (—%,1) (alternatively, let d = 1 and € € (0,1)).
Choose n € Z, with € € [-2n — 1,2n + 1). For every f € C°(R?), we have

[(_A) : Z ka <T¢E+2n Xk ) Z Td’k Yk
Here, Xy, and Yy are given in Lemma 4.8, ¢ is given in (6) and ¢y is given in (7).

Proof. Fix m € N. Let P, = x (1 my(—A). Consider the tuple A = V- Py, and B =
P,,M;P,, on the Hilbert space Pm(Lg(Rd)). Clearly, A is bounded and |A] is bounded
from below. Also, B € L5 (due to the fact that M;g(V) belongs to Lo whenever f,g €
Ly (R%)). We now apply Lemma 4.6 (for n € N) or Lemma 4.5 (for n = 0). Abbreviating
0 := € + 2n we obtain

T = (P (—=A)%) - My - Py — Py - My - (P (—A)%) = [|A|°, B]
d
=2 (rA( )

n

,Zka(Z|A‘E+l 1A B|A| I+Z‘A| lAk |A|e+l 1)

s;l [Ak” B]

Since
|A|= [A, BI|A|Z = Py Xy P,

n
ZIAIEH 'Aw, BIIA|T Z+Z|A| "[Ak, BIJA|I = PpYiP,
=1 =1

we see that

d d
:kz T3, (75, (P X+ P ))—;T&(Pm.yk.pm)'
=1 =1

We now want to pass to the limit m — oo. We have, by Lemma 4.8,

X, Y GL: Cﬁp,

,O0

— < p < OQ.
l_epoo

Since P,, 1 1 strongly, it follows that

Pm-Xk-Pm%Xk, P, Yy P,—Y; inﬁp.
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The operators TGZ and th are bounded in £, by Lemma 4.2 and Lemma 4.4, respectively.
It follows that

T3 (15 (P Xe - Po)) = TS (T(X0)), TSP+ Y- P) > T3, (i)

in £,. We therefore have

£,3 T = lim T, = ZTW (75 (x0)) - ZTW (V).

To complete the proof, it remains to notice that T, : Lo(R9) — Lo(R) is the unique
bounded extension of the operator [(—A)2, My] : C®(RY) — (C°(R))" defined via
Lemma 3.1. Indeed, by Lemma 3.2 we have for all ¢ € C2°(R%)

Tng = (—A)2 My — Mp(=D) 26 = [(=A)%, Mo
in (C>°(R%))’. This implies
Too¢ = [(7A)%aMf]¢a ¢ € Cgo(Rd)7
and therefore proves the claim. 0O

Remark 4.10. In the proof above, we used the folklore result that in any separable Banach
ideal (&, -||¢) and for any sequence of projections P, 1 1, we have || — Pp,aPplle — 0
as m — oo. For a proof of a similar but more general fact, we refer to [14, Proposition
2.5]. In particular, this fact holds in any Schatten ideal £,, 1 < p < oo, but fails in the
non-separable ideals £, o.

We can now derive the trace ideal inequality in Theorem 1.1 (i) and Theorem 1.2 (i)
for smooth functions.

Lemma 4.11. Let € € (—%, 1) with € > 0 when d = 1. For every f € C>(R?), we have

[CSERYS

<Cder||W1 (R

1—e?

Proof. Choosing n as in Proposition 4.9 and applying its result, we find

[(_A)E Zka( <Z+2n X ) Zka Yk

k=1

By the triangle inequality, we obtain
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)g
d o0

1—e?

1—e>

d
v v
S 61175 ( Z Hka (T¢s+2n (Xk)>
k=1

’ (1 Hjaﬁ +21 )
Lid [e o] Lid o0 ¢ " Lid oo Lid oo
1 T—¢’ ’ ’

e T—e T—e¢
d d
(IRl o+ IRl e )-
k=1 k=1

By Lemma 4.4, the first factor is finite (its value depends only on d and ¢). By Lemma 4.2,

d
R A
k=1

\%
Tll)k

’
< Cd,e

the second factor is finite (its value depends only on d and €). The assertion follows now
from Lemma 4.8. O

Fact 4.12. Let (A,,) be a sequence of bounded operators with sup,, || Al < 00 and let
A CX(RY) — (CF(R)) be such that A,é¢ — A¢ in the sense of distributions for every
¢ € CX(RY). Then A extends to a bounded operator on Ly(R?) and A, — A strongly.

Proof. Let M := sup,, ||An|lec- For ¢,9 € C°(R?) we have

(¥, A9)| = lim

(¥, Ang)| < M[[%]2[l9]l2 -

By density and the Riesz representation theorem, this implies A¢ € Lo(RY) with
| Ag|la < M| p|2. Consequently, A extends to a bounded operator on Lo(R?) and one
easily verifies that A, f — Af for any f € Ly(R?). O

Proof of Theorem 1.1 (i). The assertion follows from Lemma 4.11 by a simple density
argument. Let us give the details.
Let f € W', (R?). It is well known (see, e.g., [33, Theorem 11.43]) that C>°(R9) is
=

(R%). (Observe that [33, Theorem 11.43] requires that either d > 2 or else

€

dense in W1,
p>1.In ou?case, ifd<2,thend=1andp= ﬁ So, p > 1 means € € (0, 1), satisfying
the assumption.) Choose a sequence { f, }n>0 C C°(R?) such that f,, — fin W', (R%).
The proof of [33, Theorem 11.43] also shows that there is a sequence (¢,) C C siliceh that
fn — ¢, — f in the space L%E,IOC(Rd). (Indeed, ¢, can be chosen as the mean value of
fover {x € RY: n < |z| < 2n}.)

Denote, for brevity,

Ay = [(_A)%,an} = [(_A)%vanfcn]a A= [(_A)%aMf]

Since f,, —cn, — f in Ly 10c(R?), it follows from Lemma 3.1 that A,,¢ — A¢ in (C°(R4))’
for every ¢ € C°(R?). By Fact 4.12 and the Fatou property of the ideal L"%
e.g., [45, Theorem 2.7 (d)]), we have

o (see,

1A L. o < liminf [ An]| 4
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Since, by Lemma 4.11,

[An]l 2 o < cae

- ,O00 —

|anW1d , n =0,

1—e

we obtain the assertion. 0O

Proof of Theorem 1.2 (i). The assertion follows from Lemma 4.11 by a simple density
argument. Let us give the details.
Let f € W', (R?). It is well known (see, e.g., [33, Theorem 11.43]) that C>°(R9) is
2

dense in W1, (R?%). Choose a sequence (f,) C C°(R%) such that f,, — f in W', (R?).
1—e

Denote f(l)}ebrevity
A =[(-2)5, My, ], A=[(-A)%, My].
It follows from (5) that
14 = Alloo < 521fn = fllvir, -
d
T—e
Recall from Lemma 4.11 that

[Anl|
1

—e

ooSCd,ernHViﬂd s n > 0.

1—e

Using the Fatou property of the ideal £_4_ (see, e.g., [45, Theorem 2.7 (d)]), we obtain

1Al o <Tmsupl|Ay]| o, < eaclimsup|fullyr, = caclflur, -
n— 00 n—o0 T—e T—e

as claimed. O
5. Approximate expression for commutator

In this section, we prove an approximation results, which provides the leading term of
the commutator [(1—A)2, My]. This approximation is needed in the proof of Theorem 1.1
(ii) and Theorem 1.2 (ii).

Theorem 5.1. Let d > 2 and € € (—%, 1) (alternatively, let d = 1 and € € (0,1)). For
every f € C°(RY) we have

[(1—A)2, My] € —§[A, My](1—A)2 ! + (L

1—e€’

00)0‘

The rest of this section is devoted to the proof of this theorem.
Let (£2,v) be a measure space and H a complex, separable Hilbert space. Recall that
a function f : (Q,v) — B(H) is called measurable in the weak operator topology if for
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every pair of vectors £, € H the function s — (f(s)&,n) is measurable. A function f :
(Q,v) — B(H) is said to be integrable in the weak operator topology if it is measurable in
the weak operator topology and fQ I/ (s)]|cods < oo; for details see, e.g., [18, Subsection
2.7). In this case, [, f(s)ds determines uniquely an operator in B(H) called the weak
integral. If the function F' : (0,00) = L, 0, 1 < p < 00, is continuous in the weak
operator topology, and [;~ [|F(A)lp,.cdX < oo, then its weak integral exists and belongs
to L 0. Furthermore, we record the following fact, established in [49, Proposition 2.3.2].

Fact 5.2. For every 1 < p < oo there is a constant c, such that, if F': (0,00) = L} o0 15
continuous in the weak operator topology, then

H 7 PO <e 7 | F ) sodA.
0 0

Fact 5.3. Let f € C2°(R%). For every n > 2, we have

n—1

1 1 1 1
— M =4 Ay .
= M) ; BT A A T TrA AT AT A A

Here, we use the inductive notation
Aoy =My, Agrry=[AAry], k>0

Lemma 5.4. Let € € (0,1). For f € C°(R%) we have

T 1 .

A Y ..
/1+>\—A 2T A= a)p NN E L
0

Proof. We first assume d > 2 and bound

H 1+ /\1— Az 1+ Al— A)? Hd,oo

(1 —A)% H

[42s0 =278 |52

< |5zl

One easily finds that

lri=al s rix o552l = e
1+ A—Allec =1+ A (T+A=A)2e ™ (14 A)2

Moreover, Aj ¢ is a second order differential operator with bounded, compactly supported
coefficients. Explicitly,
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App =4 Moo, 10;00 +4)  Mp,as0; + Mazs .
Jok i

We claim that by Cwikel’s estimate (Theorem 2.4 (i) for d > 3 and Theorem 2.4 (ii) for
d = 2) we have Aj f(1 —A) ke L4 0. To see this, we write 0;0%(1 —A) %as(1-A)"2
times the bounded operator 9;0x(1 — A)~'. The operator My, s(1 — A)~z belongs to
the claimed trace ideal by Cwikel’s bound. The other terms in the expression for A ¢
can be handled similarly (and, in fact, enjoy better trace ideal properties than L4 ).
Thus, we have shown that

S
(T+A=A2Mdee = (14 N2

1
H1+>\—AA2’f

Hence, the integrand is absolutely integrable in £ ~, and the assertion of the lemma for
d > 2 follows from Fact 5.2.
The proof for d =1 is a variation of this argument. We bound

H 1 +/\1— AAz’f(l +>\1— A)2”1

. _ A
< Izl e -0 gl
One easily finds that
A2
H1+A1fAHoo = 1ix H((11+AA)A)2 Lo = ﬁ

Furthermore, we have Ay f(1—A)272 € £; using Theorem 2.3. We, therefore, established
the inequality

Izt sl <
T+ A AP A a=azlh = 1+ s

The integrand is absolutely integrable in £;. Using Fact 5.2 (with £, instead of L4 ),
we infer that the integral in the assertion belongs to £; and, therefore, to £ . O

Proof of Theorem 5.1 for 0 < € < 1. Set d = 2—¢ € (1,2). Using the functional calculus,
we write (see, e.g., [8, Theorem 1, p.232])

Therefore,
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oo

sm% _s
(S NENY; /1H M
0
It is immediate that
1-A A 1
— M| =1—- —r— M| = —|——— , M| -\

Hence,

[(1—A)2, My] = - Sm(%)/ 1_ MyIAZdA.
0

Using Fact 5.3 with n = 2, we write

TUNTI Y7 IR 2 A
f f
= -
0

sm% 7 1 A5 d
14+ M- A (1+)\—A)2 '
0

It follows from Lemma 5.4 that

o0

1 1 P
5 (L .
/1+>\—AA2’f(1+)\—A)2)\ A € Laoo C (Lo 00)o
0

Again by the functional calculus, we have

o0

AT . U .
=1-A)2'Bl+51-£5)=—2_(1-A)"1

0

where B(+, ) denotes the beta function. This completes the proof. O

Lemma 5.5. Let o, 5 > 0 and ¢ € (0,2). Suppose p > 1 is such that p > We have

+ﬂ+2

a 1 1 s 8
— —2 . A 2 (1 =A) 2 0
=2 /1+>\—A WA AR A AmATEel,

Proof. We claim that

1-A)3M,(1-A)"3ler h € C.(RY). (8)

d
atpra >’
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By complex interpolation [45, Theorem 2.9], it suffices to prove that

atpB+2
2

My(1—A)~ €L . h € C.(R%).

atpT2 >’

The latter inclusion follows from Theorem 2.4, thus proving (8).
We now note that

5_o

(1-A)"2A4;(1-A)"22¢L

aFEFe 0
Indeed, As y is a differential operator of second order with smooth, compactly supported
coefficients. Hence, the inclusion follows from (8).

We now argue similarly as in the proof of Lemma 5.4. We bound

o 1 1 B8
1-A)%. A NN <
H( R T A ey N e R o
1 a 8 c
<———H1—A‘TA L—A‘i”‘ ot
— 14+ ( ) 27f( ) a+%+2)°o 1+>\

Hence, the integrand is absolutely integrable in £ 4 oot Consequently, it is absolutely

a+pB+

integrable in £, - and the assertion follows from Fact 5.2. O

Proof of Theorem 5.1 for —% <e<0,d>2. Choose 0 < § <1 and m € N such that
€ = —md. Using Leibniz’s rule, we write

)

[(1—A)%, My =[(1-A)""%, My] =

m—1
(I4+1—m)é
2

A)TH[(1-2)75, My)(1 - A)
l:O

Using the functional calculus, we write

sm”— 7 A3 d\
N /

( ) 1+A=-A"
0

where the integrand is a norm-continuous function of A and the integral converges in
operator norm.
We have

Using Fact 5.3 with n = 2, we write
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1=y F A = 4y, - S0 7(1 i_fdl)z
0
Smgr%&)o/1+/\1 A 2,f(1+)\1_ A)Q)\_Ed)\
Thus,
[(1— A)5, M) =
) 7:_01(1 S 0/ N
+7j_01 Sin;%é)(l —A) .0/001 +;_ AAQ’f(l +)\1_ A)Q/\igdA S(1— A

2—e 1—e 1—e
d > 2.) It follows from Lemma 5.5 that

Choose p > 1 such that L_é <p< L. (Note that 4 > 1 since ¢ > —% and

7 1 1 5 (I+1-m)s
I—A*%-/ A “SAN-(1—A) T .
( ) I+A—A Q’f(1+)\—A)2>\ dA- ( ) €L
0
Thus,
[(1—A)%,My] €
m—1 e R _s
s sin(%2) A 2d)\ (4+1-m)s
ey (1-A)"%4,; —2 / -0 T (L :
;( ) 1,f o / (1+/\—A)2 ( ) +( lie,oo)o
Again by the functional calculus, we have
I A%dx ; 0 ;
(1 -A)":l.BE+1,1 -9 =—2 _(1-A)""L
0/(1+>\—A)2 ( ) (3 2) sin(%‘s)( )
Thus,
ml 15 (I=m)s
[(1-A):Mledd (1-A) 2A;(1-A) = "'+ (Lo o
1=0

With the help of Cwikel estimates (Theorem 2.4) it is easy to see that

(1-A) %, A1 -A)F e (La o 0<I<m.

1—e?
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Thus,

—

[(1—A)%, M) € §W Af1=8)"%(1-4)
=

(1=m)s
o

+ (,C d oo)o'

1—e?
Since all summands on the right hand side are equal, the assertion follows. O
6. Spectral asymptotics for pseudo-differential operators

Our goal in this section is to extend the main result in [24].
Let II be the C*-subalgebra of B(Ly(R?)) generated by the algebras

{Mf : feC +C0<Rd)} and {g(V(—A)—%) i g€ C(Sd_l)},

According to [48] (where a much stronger result is given in Theorem 1.2) or [39] (where
a very general result is given in Theorem 3.3 and examplified on p. 284), there is a
*x-homomorphism

sym : IT — C(S4™1, C 4 Cy(RY))
such that, for all f € C + Cp(R%) and g € C(S971),
sym(My) = f®1 and  sym(g(V(=A)"2)=1®yg.

We say that T € B(Lo(R%)) is compactly supported from the right if there is a
¢ € C°(RY) such that T = TM,. We say that T € B(La(R?)) is compactly supported
if there is a ¢ € C°(R?) such that T = MyT My.

Theorem 6.1. Let d > 2 and p > 0. If T € 11 is compactly supported from the right, then
1 _d _1 _d
tlim tﬁu(t,T(l —A) 2P> =d 7 (2m) 7 |lsym(T)| L, (Raxsd-1)-
— 00

This theorem with p = d appears in [24]. The above more general assertion can be
obtained either by following the same steps as in that paper or, as we shall show here, as a
consequence of the results proved there. The corresponding result for d = 1 is essentially
the well-known Weyl asymptotic and will be discussed separately in Subsection 6.3.

6.1. An abstract result on spectral asymptotics

Our goal in this subsection is to prove the following result, which allows us to reduce
spectral asymptotics for the product of powers to the power of a product. The parameter
d in this subsection is an arbitrary real number, not necessarily an integer (although it
will be in the application to the proof of Theorem 6.1).
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Proposition 6.2. Let d > p > 1. Let 0 < A, B € B(H). Suppose BA: € La,c0, BPAP €
La, and [BP,Az] € (L4 o )o- Then

BPAP — (A2BA)P € (L4 ).

The first step in the proof of this proposition is an integral representation for the
difference on the left side of the proposition. This representation formula is a special
case of [49, Theorem 5.2.1], with a predecessor in [18].

Lemma 6.3. Let 0 < A, B € B(H) and let Y = Az BA=. For p > 1, define the mapping
T, : R — B(H) by,

To(s) = BPTUBA%, AP=3] + [BA3, A3]yP! ifs=0,
P = Bp_1+is[BA%7Ap—%+is]Y—is + Bis[BA%’A%—&-is]Yp—l—is if s # 0.

We also define the function g, € S(R) by setting

-z ift=0,
t) := Py _ Py
()= 3 _ e2’—e 2 — it #0.
)

Then the mapping T, : R — B(H) is continuous in the weak operator topology and we
have

BPAP — (A7 BA?)? = T,(0) — /Tp(s)gp(s)ds.
R

Lemma 6.4. Let d > 0 andp > 1. Let 0 < A, B € B(H) and let T), be as in Lemma 6.5.
Suppose BPAP € La .. We have

Sup Ty (s) 4 oo < 00
seR P

Proof. We use the notion of logarithmic submajorization discussed, for instance in [37,
Definition 2.3.10]. For z,y € B(H) one write & <=<1og y if [[1_; p(k,z) < TTi_, (k. y)
for all n > 0. In this notation the Araki-Lieb-Thirring inequality (see [1]) states that

XYY" << | XY|", 0<r <1

Using this inequality with X = BP, Y = AP and taking into account that every
quasi-Banach ideal is closed with respect to the logarithmic submajorization (see [37,

Proposition 2.4.18]), we obtain from the assumption BPAP € L4 _ the inclusions
4,

BPlAP e L, BA€E Lyoo, B?A? € Log 0.
P

—&5,007



R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738 31

It follows from (2) that

1
=

2+ Yllro < 27 ([[2]]r,00 + [[Yllr00) for all 0 <7 < oc.

Applying this quasi-triangle inequality, we have with Y := A2 BA?
1T (5l 4,00 < 28| BPHBAZ, AP7 54|y o + 28 [|[BAZ, ATHY P | .
P’ p’ P’
Again using the quasi-triangle inequality, we obtain

|BPHBAZ, AP35l o < 20| BPAP|a o + 28||BPTI AP IV BA |4
[[BA%, Az+is]yP=1]|, < 28 ||[BA™YP~ |y + 28| AZBATYP[a .
p’ p’ p’

Using Holder’s inequality, we obtain

|BP1 AP BAS |y o < 28| BP AP s [l AR BAZ g,
IBA Yl o < 28| BAaocllY [ -
Clearly,
142 BAZYP 4 o = IV ]G o = B2 A2 3]

e’} N 2d,00"

Combining these estimates, we complete the proof. 0O

Lemma 6.5. Let 1 < r < o0. Let 0 < X, Y € B(H). If [X,Y] € (L.00)0, then also
[X,Y?] € (Lro00)o for every z € C with R(z) > 1.

Proof. Without loss of generality, ||Y||coc = 1. Let f. be a Lipschitz function on R such
that f.(t) = t* for t € [0,1]. We have

X,Y7] = [X, £.00)] = T, (X, V)

The main result of [43] yields that T;fm i (Lroo)o = (L£r.00)o, and this is enough to
complete the proof. O

Lemma 6.6. Letd >p > 1. Let 0 < A, B € B(H) and let T;, be as in Lemma 6.3. Suppose
BA? € L4 and [BP, A2] € (L4 o)o- We have

T,(s) € (La )0, sER.

p7OO
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Proof. Since [B?, A2] € (L4 o )o, it follows from [25, Corollary 7.1] that

1

[B7~1, A € (Lo o, [B,AT] € (Laso)o-

By the Leibniz rule, we have

BPTUBA% AP35 = X Xy — X3 Xy,
X, =[BP,AP 3] X, = A2, X3 =[B! APT3t5] X, = BA>.

1

Applying Lemma 6.5 to X = BP (respectively, X = BP71)| Y = A2, r =

r= ]%) and z = 2p — 1+ 27,8, we obtain

(respectively,

hSHISH

X € (’Ci,oo)O’ X3 € (L a )o -

p=T1,°

Since also X is bounded and X4 € £, it follows from the inclusions above and from
Holder’s inequality that

BPTUBAz, AP 3tis] ¢ (L1 50)0-
Thus,
B;U—l-‘ris[BA%’Ap—%-i-is]Y—is c (E%,oo)o- (9)
We have
Bis[BA%,A%—&-is]Yp—l—is _ pis. [B,A%—&-is] LAYy “is L yp-1

Recall that [B,A%] € (L4,00)0. Applying Lemma 6.5 with X = B, Y = A%, r = d and
z =1+ 2is, we obtain

[B, A7) € (La,00)o-
By assumption, BAz € Li oo Thus, Y € Lo and YP! € Eﬁm' Hence,
Bis[BA%’A%jLis]Ypflfis c (C%,oc)o- (10)
The assertion follows now by combining (9) and (10). O
We are finally in position to prove the main result of this subsection.
Proof of Proposition 6.2. By Lemmas 6.4 and 6.6, the mapping

s = Tp(s)gp(s), seR,
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is absolutely integrable in (L4 . )o. Since d > p, it follows that the latter mapping is
4,
Bochner integrable in (L4 . )o. In particular, its integral belongs to (La o )o. O
4,

p,OO
6.2. Proof of Theorem 0.1

We now combine the result from [24] with Proposition 6.2 and obtain the following
preliminary version of Theorem 6.1.

Lemma 6.7. Let 1 < p <d. If0 <T €1l is compactly supported, then one has
P P 1 p
Jim ¢ (e, TP (L= A)78) = (a3 @m) " sym(T) |, raxse )
—00
Proof. Set A=T and B=(1— A)_%. We want to apply Proposition 6.2.

Let us show that the conditions of the Proposition 6.2 are satisfied. Indeed, the inclu-
sion [BP, Az] € (L4 o )o is established in Theorem A.1 for every p > 0. Recall that T is

compactly supported and choose ¢ € C.(R?) such that T = MyT'. Then, by Theorem 2.4,
BA* = (1—A) My -T? € Lo, BPA"=(1—-A)"5M; T? ¢ La oo
By Proposition 6.2, we have
BPAP — (A3BAZ) € (La )o.
By [24, Theorem 1.5], we have

lim tip(t,AB) = cr, cr=d 4(2m) " sym(T)|| L, maxsa—1)-
—00

By Theorem A.1, we have [B, A%] € (L4,00)0- By a standard result on spectral asymp-
totics (see, e.g., [24, Lemma 3.1]) this implies that

lim t%p(t,A%BA%) = cr.
t—o00
In other words, we have

. P 1 1\p\
tlggotw(t, (A3 BA?) ) = .
Again using [24, Lemma 3.1], we conclude that

tllglo td pu(t, BP AP) = .

This is exactly our assertion. O
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Lemma 6.8. Let d > 2 and p > 0. The following conditions are equivalent:
(i) for every nonnegative and compactly supported T € I1 one has
1 _d _1 _d
lim ¢ p(t,T(1 - A)"2) =d™7»(2m) "7 |[sym(T)| 1, (Raxs2-1)
t—o0 P
(ii) for every nonnegative and compactly supported T € II one has

Jim ¢2a(t, T(1 = A)75) = ™ (2m) 5 sym(T)| 1 moxsa).
Proof. We use the fact that the set of nonnegative, compactly supported elements of II
is invariant under taking powers.

Renaming 7T into T2, we rewrite (ii) as follows: for every nonnegative and compactly
supported T' € II one has

.2 _d _z _2d
Tim (721 - A)7F) = d7F 0) ¥ fsym(D) 2, s
It follows from Theorem A.1 (which we proved for d > 2) and simple arithmetic that

T2(1—A)77 — (1= A)"HT2(1— A)"% € (Lp o0)o-
Using a standard result about spectral asymptotics (see, e.g., [24, Lemma 3.1]), we
rewrite (ii) as follows:

. 2 _d _2 _2d
tlggotw?(t,m —A)7F) =d"(2m) 7 sym(T)|I7 (maxsar)-
This is clearly equivalent to (i). O

Proof of Theorem 6.1. Let us first prove the assertion for 1 < p < d. For p = d, the

assertion is given by Theorem 1.5 in [24]. Hence, we may assume that 1 < p < d. Applying
1

Lemma 6.7 to T» (which belongs to I and is compactly supported), we conclude that

. P _p _P _ 1
tli{rolotdﬂ(t:T(l_A) 2)=d 4(2m) p||sym(TP)||id(RdXSd,1)

= d~7(27) 7P |lsym(T)|| 1, exsi-1)
P

Renaming p into % and noting that as p runs through (1,d), % runs through the same
interval, we conclude the assertion for 1 < p < d (and, hence, for 1 < p < d).

Let us now prove the assertion in full generality. Fix p > 0. Choose n € Z such that
g =2"p € (1,d]. By Lemma 6.7, for every nonnegative and compactly supported T" € II
we have

lim ¢3pu(t, T(1— A) %) = d ™5 (2m) " 7 |lsym(T)|| 1, Raxsa1)-

t—o0
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By repeated use of Lemma 6.8, we deduce that for every nonnegative and compactly
supported T' € II we have

. 1 _d _1 _4d
lim ¢ pu(t,T(1—A)72r) =d™» (2m) "> [[sym(T)| 1, (Raxs2-1)-

t—o0

This proves the assertion for every nonnegative and compactly supported T € II.

Consider now the general case. Let T' € II be compactly supported from the right.
Clearly, |T'| € II is nonnegative and compactly supported. By the preceding paragraph,
we have

. 1 _d _1 _d
Jim 5 (8, [T(1 — A) %) = d75 (2m) 7 sym(|T]) |, raxso-).

Observing that for any operators A, B € B(H) we have pu(AB) = u(|AB|) and |AB| =
||A|B|, we write

(T = 2)7%) = (11 = 2)7%), sym(|T)) = Jsym(T)).

This proves the assertion in general case. O
6.8. Asymptotics for d =1

For d = 1, the sphere S%! is just a two-point set. Hence, the algebra II consists
of two ‘copies’ of the first algebra in the definition of II. So, the result analogous to
Theorem 6.1 should be stated only for multiplication operators. This is the well-known
Weyl asymptotic formula. For the convenience of the reader we explain how this can be
deduced from the results of Birman—Solomyak in [5].

Theorem 6.9. Let d =1 and p > 0. If f € C.(R), then
L1 AV -1
Jim t7 pu(t, Mp(1 = A)720) = 77 [| £l
The ingredient from [5] that we use is the following.
Lemma 6.10. Let d =1 and let p > 1. If f € C.(R), then
L1 _1 1
Jim (e, My (=) 7H ) = 7| 115,
Proof. This is a very special case of [5, Theorem 1]. Indeed, take m = 1 and a = % —-1le
(—1,0). Set 6(¢) = |t|*, ®(¢,t') = 1 and a(t) = f(¢) for every t € R. Set E = supp(f).
Note that in [5] a non-standard notion of Fourier transform is used. However, for
a homogeneous function 6 of degree o € (—1,0), this notion coincides with the usual

notion of Fourier transform. In particular, the operator T featuring in [5, (2.4)] is given
1
by a constant times Mg(—A)"2» My. O
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Lemma 6.11. Let d =1 and p > 0. The following conditions are equivalent:
(i) for every 0 < f € C.(R) one has

T £5 u(t, Mp(1 = A) ) =73 f]],
(ii) for every 0 < f € C.(R) one has

- 1 _2

Jim £ u(t, Mp(1 - A)3) =775 | 5.
Proof. The proof follows that of Lemma 6.8 mutatis mutandi. Instead of Theorem A.1,
which we stated under the assumption d > 2, we apply Lemma A.3, whose proof remains

valid ford=1. 0O

Proof of Theorem 6.9. First, take p > 2. Applying Lemma 6.10 to § and taking into
account that

Sk

W(Mp(—A) "7 M) = p?(My(—A) "),

we arrive at

.2 - -2
lim t7p?(t, Myp(—A) "2 ) =72 | f||2

t—o0 P

Noting that, by Theorem 2.3,
My(~A)"% — My(1— A) "% € (Lpoo)os

and using a standard result about spectral asymptotics (see, e.g., [24, Lemma 3.1]), we
infer the assertion for p > 2.

The assertion for p < 2 follows by induction in the same way as in the proof of
Theorem 6.1, using Lemma 6.11 instead of Lemma 6.8. O

7. Proof of Theorem 1.1 (ii) and Theorem 1.2 (ii)

Parts (ii) of Theorems 1.1 and 1.2 state spectral asymptotics for [(—A)%, M;] under
the sole assumption that the leading term is finite. We begin by proving these asymptotics
in the smooth case.

Lemma 7.1. Let d > 2 and € € (—%,1) (alternatively, let d = 1 and e € (0,1)). If
f € CX(RY), then

. l-e <
lim ¢7 1t [(=8)%, 7)) = kacl Flur, oo

t—o0
T—e
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with kg given by (1).

Proof. Set
d
D
T := GZ k MDkf
k:l

and note that T € II and that T is compactly supported from the right.
We claim that

[(~A)2, My = T(1 = A)"2" € (Lo )o- (11)

—e

To prove this, we note that by Theorem 2.3

[(1—A)2, My] — [(-A)%, My] =

=(1-A)F — (=A)) My — Mp(1-A)2 — (-A)F) €L 4 C (L a

1—e 1—

E,<>o)0'

Here we use the assumption f € C°(R?) together with the fact that the function
£ (L+[¢%)% — [¢]° belongs to L_a_(R) if 5 L >2and to ¢ o (Lo)(RY) if 4 <2
Next, by Theorem 5.1,

[(1— A)2, My + 5[A, My](1 - A2 € (£ o o

1—e’

Finally, we write
d
—[A, My} =2 Mp, ;D — May .
k=1

For the second term we use Theorem 2.3 similarly as before and find

Mas(1=A)F €L a C(L o o

For the first term we again use Theorem 2.3 and find

d
GZMDkak(l — A)

k=1

[SIE

T -A)

N

bec%gc(ﬁd ~)o-

T—e>

This completes the proof of (11).
Consider the case d > 2. The inclusion (11), together with simple limiting arguments
(see, e.g., [24, Lemma 3.1]) and Theorem 6.1, applied with p = 1%, implies
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i (1 ()7 M]) = i 7 (1,70 - )7

t—o0

1—

7 (2m) " sym(T)

:d_

||L1L_€(]Rd><§d71)'

Finally, we compute, similarly as in [24, Lemma 8.4],

_d
Jsym(T)||F = | / / - Vf (@)™ dw dz

Lt‘ie(RdXSd—l)
Rd §Sd—1

— i [9s@tde [ o do,
R4 §d—1

This completes the proof for d > 2.
Consider the case d = 1. The inclusion (11) reads as

[(—A)§7Mf] € —eMpys(1— A)% -sgn(D) + (L 1 )o-

1—e

By a simple limiting argument (see, e.g., [24, Lemma 3.1]), this reduces the assertion for

d =1 to the corresponding assertion about the operator eMps(1—A) = -sgn(D). Since
sgn(D) is unitary, we have

€—

W(Mps(1—A)F -sgn(D)) = p(Mpy(1— A)7 ).

The assertion for d = 1 follows now from Theorem 6.9 (applied with p = 1;). m|

Proof of Theorem 1.1 (ii) and Theorem 1.2 (ii). The assertion follows from Lemma 7.1
and the universal bounds in parts (i) by means a simple approximation argument (see,
e.g., [24, Lemma 3.2]). O

In the proof of part (iii) we need a lower bound with localization functions.

Lemma 7.2. Let d > 2 and € € (—%,1) (alternatively, let d = 1 and e € (0,1)). If
f € C>®RY) and x € C.(R?), then

. 1-e < 24 ary
i 5 (6 M- 205, MM ) = o | [ PO
Rd

with Kq, given by (1).
Proof. Let ¢ € C°(R?) be real-valued with y¢ = . Then

My[(=8)%, MMy = My[(=A)%, My.g] M,.
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Hence, we may assume without loss of generality that f € C>°(R?). The rest of the
argument follows that in Corollary 7.1 mutatis mutandi. O

The following bound is an immediate consequence of Lemma 7.2.

Lemma 7.3. Let d > 2 and let € € (—%,1) (alternatively, let d =1 and € € (0,1)). There
is a constant cqc > 0 such that for all f € C*(RY) and x € C.(RY),

B _2d_ _d_
A MM, e = cac | [ (4175
Rd

8. Proof of Theorems 1.1 and 1.2 (iii)
In this section, T}, t € R?, denotes the translation operator,
(T.f)(s) = f(s+1), s € RE.

Lemma 8.1. Let € € (—%,0) and let f € L1 1oc(R?). If h,® € C.(R?), then

/(D(t)(T_tf, hydt = (f * ®, h).

Rd

Proof. Let h be supported in B(0,r;) and let ® be supported in B(rs). We have

(IR f(s — )] dsdt < [|hloo]| ] / (s = 1) dsdt =

RdxR4 |s|<r1
[t|<r2

— ool ®]loc / 1£(0)] dudv < Bl ]| ® ] / £ ()] dudv =
[u|<ry [u]<ry

[utv|<rg [v|<rit7T2

— car?|| ]| @ / )| dv < oo,

[v|<r1+72
By Fubini theorem, we have
/@(t)(/f(s—o@ds)dt:/@(/f(s—m(t)dt)ds.
Rd R4 Rd Rd

This completes the proof. 0O
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In the following lemma we use the notion of submajorization, which is discussed in
detail for instance in [37, Section 2.3].

Lemma 8.2. Let € € (—%,1] and let f € L1 10c(R?) be such that [(—A)%, M;] extends

to a bounded operator on La(R?). If ® € C.(R?) is nonnegative with |®|; = 1, then
[(—A)2, My.a] also extends to a bounded operator on La(R?) and

[(—8)%, Mpa] << [(—A)%, My].
Moreover, if [(—A)2, My] is compact, then so is [(—A)2, M)

Proof. Let A : Ly(RY) — Ly(R?) be the extension of [(—A)%, M]. We consider the
weak integral

B = / ®(t)T_, AT,dt.
Rd

Clearly, B is a bounded operator and we have B << A; see, for instance, [35, Lemma
18 and its proof].
We now claim that

By definition,
LHS = [ ST AT0, v)dt = [ @)((~2)5 Ma-_ 16 vhc.
R4 R4

By Lemma 3.1, we have

([(=A)%, Mr_, /], ¥) = (T-ef - 6, (=A)29)) — (D)2, T f - ¥)) =

=(Ttfod (=A)20) = (- (D)2, T f) = (T f. h),

where

h=6¢-(=A)2p — - (—A)2¢ € Ce(RY).

Meanwhile, it follows from Lemma 3.1 that

ol

RHS = ((f @) ¢, (L) 5¢) — ((=2)%¢, (f x D) -¢)) = (f x ©, h).

The claim (12) follows now from Lemma 8.1.
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By (12), we have

Therefore, [(—A)%, My.e] extends to a bounded operator on Lz(R?) and its extension
is exactly B.

The last statement concerning compactness follows from the general fact that any
bounded operator that is submajorized by a compact one is compact. The latter fact
follows immediately from the definition of submajorization via the singular value func-
tion, together with the simple fact that a bounded operator A is compact if and only if
N1 Zgzlu(n,A) —0as N —»o00. O

Lemma 8.3. Let 1 < p < oo and let f € Lljloc(Rd) be such that
IV(f*®)|L,recay <1
for every nonnegative ® € C°(R?) with |®||; = 1. Then f € W'P(R?) and
£y ey < 1.
Proof. Let 0 < ® € C°(R?) with ||®||; = 1 and set
@, (t) :==n'®(nt), tecR? neN.
By assumption, we have

IV (f * q)n)HLp(]Rd7(cd) <1.

Since 1 < p < oo, L,(R% C?) is the Banach dual of a separable space, namely of
Ly (R4, C%). Therefore (see, e.g., [53, Proposition 4.49]) there is a subsequence (V(f *
®,,)) and a G € L,(R? C?) such that V(f * ®,,) — G in weak*-topology on L,. In
particular, V(f % ®,,) — G in the sense of distributions. However, V(f * ®,,) — V[ in
the sense of distributions. By uniqueness of the limit, we have G = V f and, therefore,
VfeL,(RYCY) and

IVfllz,®ece <1,
as claimed. O

Proof of Theorems 1.1 and 1.2 (iii). Let f € L 10c(RY) and assume [(—A)%, My] ex-
tends to a bounded operator on Ly(R?) that belongs to L a

,00°

Let ® € C°(R?) be nonnegative with ||®||; = 1. By Lemma 8.2, we have

[(—A)%, Mp.g] << [(—=A)2, My].
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Therefore, if y € C°(R?) satisfies ||x|/oc = 1, we have

< cgll) .
- s€ d
752,00 792,00

HMY[(—A)g,Mf*@]MX

(2%, My

Meanwhile, since x € C2°(R%) and f * ® € C*°(R?), Lemma 7.3 implies that

IX® 1V * @)z y @) < ) | Mil(=2)%, Mp.alMy

d
s ,O0

Combining these bounds, we find

I 1V @)y ey < e lei |[(~2)%, My]

d

1—e’

oo

Taking the supremum over y € C2°(R?) such that ||x|l« = 1, we obtain

1 2 €
IV *®)r , meca < cilel)|[(=A)2, M|

T—e T

The assertion follows from Lemma 8.3. O
9. Proof of Theorem 1.3

Proof of Theorem 1.3 (i). The first part follows from [9, Theorem 2]. Indeed, note that
for sufficiently nice functions ¢,

(8000 = o [ S s,

where the integral is understood in the principal value sense. Therefore [(—A)z, M 7] has
integral kernel

f(t) = f(s)

and this is precisely the setting of [9, Theorem 2]. O
For the proofs of (ii) and (iii), we use the following notation
ee(t) ;= et t ¢, cRL

and the following auxiliary results.
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Lemma 9.1. Let ¢,1, f € S(RY). We have

(¥, fo) = (2m)" % Flm = m2)(m)d(na)dm dna,
Rd xRd
(W, [(~A)%, My]g) = (2m) % / (Im| = n2)) F(m = n2)d(m)b(nz)dmy dns.
RdxRd

Here f(z) = (2m)" 2 Jra €€ f(z)dz denotes the Fourier transform.

Proof. The first assertion is standard and the proof is omitted.
To prove the second assertion, suppose first that ¢ and 1[) vanish near 0. It follows
that (—A)2¢ and (—A)2¢) are Schwartz functions. Note that

o — —

(=A)2(m) = [mld(m),  (=A)2d(n2) = [n2ld(nz), n1,7m2 € R™

We have

(W, [(—A)2, Mf)g) = ((—A)24, f&) — (i, f((—A)2 ).

Using the first assertion, we write

4
2

()29, fo) = (2m)~ mulf (1 — m2)d () d(n2)dny e,

R xRd

(W, f(~A)2¢)) = (21)"% / n2| £ (1 — m2) (1) b (n2) dy dipo.

RdxR4

Combining these equalities, we obtain the second assertion for the case when qAS and 7,@
vanish near 0.
However,

[l e o — el | < 1 G111

RdxRd

So, the right hand side in the second assertion is a continuous functional of 7,2 in Li-norm.
One can also see that so is the left hand side. Thus, we can remove the restriction on ¢
and ¢. O

Lemma 9.2. Let f € C°(RY) and let w € ST"1. We have

M._, [(-A)%, Ms]M

€nw

— My,.vf, n— 00,

—nw

in the weak operator topology.
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Proof. Let ¢, € C>°(R). Note that

Enw®(m1) = Bl — 1), Enwth(n2) = D(nz — nw).

Applying the second assertion of Lemma 9.1 to the functions ey, ¢, enwy, f € C°(RY),
we arrive at

(W, (Mo, [(—A)2, Mf]M,, ) ¢) = (enuth, [(—A)2, My)(enut)) =

= (2m)"% / (I | — |2 F(m — m2) o (m — nw)d(ne — nw)di dns.
R4 xR4

Replacing n; with 11 + nw and 72 with 72 + nw, we obtain

(W, (Me_, [(-A)%, Mf]M,, ) 6) =

(I + nw| — |02 + nw|) Fm — n2)d (m)d(n2)dim dns.

Set

Fo(m,m2) = (Im +nw| — |n2 +nw]) fm — n2)d(m)d(n2),  m,me € RY,
F(m,m2) = (Im — ) fm — n2)om)é(me),  mi,me € RY,

~ =~ ~

Foo(ni,m2) = (w- (m —n2)) f(m — n2)(m)d(m2),  m1,m2 € R

It follows from the triangle inequality that |F,| < F on R? x R?. We have
lim |y +nw| = 2+ nw| > w- (g —12), M, € RY

Thus, F,, = F. pointwise. Moreover, since

—

[F ()] < 1(=2)2 flloo [91(0) 61 (112), 01,2 € R,

it follows that F is integrable on R? x R?. By the Dominated Convergence Theorem, we
have

/Fn(n1,n2)dn1dnz—> / F(nu,n2)dmdnz, n — oco.
RdxR4 RdxR4

Thus,

Jim (0, (Mo, [(=2)% MM, .. )¢) =



R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738 45

~

= (2m)"% (w - (m = 12)) F(m = 1) (1 )12 dmy iy, =
Rd xRd
— (2m)~4 / & V(1 — ) D) B2 dmndng = (. (w0 V )@).
Rd xRd

Since our sequence of operators is bounded in the uniform norm, the assertion follows. O

Lemma 9.3. Let f € C°(R?) be such that [(—A)%,Mf] is bounded. We have f € WL (R?)
and

1l gy < 1(=2)%, My ]| oo

Proof. Let x € C°(R?) with ||x|lcc = 1 and choose § € C*(R?) with §x = x. It is
immediate that f6 € C>°(R9) and

1 1
My[(=A)2, Myg] My = My[(=A)2, My]M,.
Therefore,
1 1
[My[(=A)2, Myo]My[loe < [[[(=A)2, My]]lo
and, for every n € N and for every w € S9!,

Mg - Me_, [(=A)2, Mpg]Me,., - MyJloo < I[(=A)%, M]loc-

Letting n — oo, we deduce from Lemma 9.2 that for every w € S%1
1My - Mooy - Malloo < [1(=2)%, Myl
In other words, for every w € S4~! we have
Il (@ - VO Lay < N1(=8)%, My

We have |x|>V60 = 0 and therefore |y|*(w- V(f6)) = |x|*(wV f). Thus, we have shown
that for every w € S we have

P @ - VAl e < I1(=A)2, Myl

Taking the supremum over all xy € C°(R%) with ||x||« = 1, we obtain

o+ VIl ey < I[(=2)%, My]loo

for every w € S%~1. Since Vf is continuous, we deduce that
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lw- (V)(z)] < ||[(—A)%,Mf]|\oo, for all w € S9! and all 2 € R,
For given € R? with V f(z) # 0 we pick w = V f(z)/|Vf(z)| and obtain
I(VH@)] < [(=2)2, My]l[o, z € R,
which is the claimed inequality. O

Proof of Theorem 1.3 (ii). Let f € L; 10c(RY) and assume the operator [(—A)%,Mf] is
bounded. Let ® € C>°(R?) be nonnegative with ||®||; = 1. By Lemma 8.2, we have

1 1
[[(=2)2, Mfwo]lloo < [[[(—A)2, My]|co-
Since f x ® € C*°(RY), it follows from Lemma 9.3 that
1
1 @l may < 1[(=8)2, My]||oo-
The assertion follows now from Lemma 8.3. O

Lemma 9.4. Let f,x € CX(R%). If MX[(fA)%,Mf]MX extends to a compact operator,
then xV f = 0.

Proof. For every ¢,¢ € C®(R%) and for every w € S? ! we have e, v, en,¢ — 0
weakly to zero in Ly(R?) as n — oo. Therefore, the compactness of the operator implies

<eanX¢7 [(_A)%7Mf]€nwx¢> —0, n— oo.

In other words,

(X, (M., [(=A)Z, Mf]M,,,)(x$)) = 0, 1 — oo.

By Lemma 9.2, we deduce that for every w € S%1

In particular,

/lezz/_xé@kf -0, 1<k<d
Rd

Taking 1)¢ to be (approximately) the sign of dx f, we conclude that

[ =0, 1<k<a
Rd



R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738 47

This completes the proof. O
Proof of Theorem 1.3 (iii). Let f € L1 10c(RY) and assume that [(—A)%,Mf] extends to
a compact operator.
Let ® € C*(R?) be nonnegative with ||®||; = 1. Let x € C>(R%) and choose
0 € C(R?) with Oy = .
By Lemma 8.2, [(—A)%,M@f] is compact. Therefore,
1 1
My[(=A)2, Mg po] My = Mg[(=A)2, Ma. ;] My
is also compact. Clearly, (® * f)§ € C>°(R?). It follows from Lemma 9.4 that
X V((f + B)9) = 0.
We have xV6 = 0 and therefore
x-V(f*®)=0.
Since x € C°(R?) is arbitrary, it follows that
(V) x®=V(f+®)=0.
Since @ is arbitrary, it follows that V f = 0. This completes the proof. O

Appendix A. Commutator estimate

Throughout this appendix we assume d > 2. Our goal is to prove the following com-
mutator bound. We recall that the algebra II is defined at the beginning of Section 6.

Theorem A.1. If T € II is compactly supported, then
[T,(1—A)"%] € (La )0, p>0.
4,

The following lemma is a standard result, but for the convenience of the reader we
provide a proof.

Lemma A.2. If f € C°(R), then

p>0.

,007

[My, (1 =A)"2] € L a
Proof. We write f = fifo, f1, fo € C°(R?). By the Leibniz rule, we have

[My,(1—A)"2] = [My,, (1= A)72]- My, + My, - [My,, (1 — A)72] = X1¥1 + Yo Xo,



48 R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738

where we denote
Xy= My, (1-8)75)(1-2)"F, Xo=(1-A)" (M, (1-A)F),

pt1 pt1

Yi=(1-A) 2 My, Yo=My(1-A)" 2.

p+1
2

Clearly, X7 and X5 are pseudodifferential operators of order 0. Hence, they are bounded.
By Theorem 2.4 we have Y7,Ys € L o This completes the proof. O
e

Using standard arguments we can now weaken the regularity on f required in
Lemma A.2.

Lemma A.3. If f € C.(RY), then
[My,(1—-A)"%] € (L4 0o, p>0.

Proof. Assume for definiteness that f is supported on [—1,1]¢. Choose a sequence
{faln>o C C(R?) supported in [—1,1]¢ such that f,, — f in the uniform norm. Using
quasi-triangle and Hoélder inequalities, we write

Mg, - (1= D)5 o < 2 o = Flloo Moy, a (1= B) 7 F] Lt .
The second factor on the right hand side is finite by Theorem 2.4. Therefore,
(M, (1 — A)"5] — [My, (1 — A)~ %)

in La . Since the sequence on the left hand side belongs to (ﬁg’oo)o by Lemma A.2,

oo
the assertion follows. O

The following result is a special case of [38, Theorem 1.6] (with & = 1 and 8 = p).

Lemma A.4. If f € C°(RY), then

)
2

(- A)3, Mf)(1 - A)7% € L,

51007

p > 0.
The following lemma is a technical precursor to Lemma A.G.
Lemma A.5. If f € C°(RY), then

[Dk(=8)"2, M1 -A)F]€La o, p>0, ke{l,---.d}

,007

Proof. Set

hk(s)zs—k—sik, s € RY.

sl (1 +1s%)2
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It is immediate that

P
2

[D(=A)72, My (1= 8)78] = [Dp(1 = A)72, My (1 - A)"%] =
= h(V)Ms(1 = A)~5 — My(1— A) 5y (V) =

= he(V)(1 = A) - (1= A) My (1 = A)7F = My(1 = &)~ 5 - (1= A (V).

Using Theorem 2.4 as in the proof of Lemma A.2, we obtain

(1—A)'M;1—A)5, M;1-A)" €L 4

20

Since hi(V) - (1 — A) is bounded, it follows from (8) that

[Di(=A)7%, My(1 = A)78] = [Di(1 = A) 72, My (1 - A) 5] € L o, (13)

7OO'

Next,

MiS]

[Di(1—A) 5, Mp(1 - A) 5] = [Dp(1 - A)"%, My] - (1 - A) % =
= Mp, (1 - A)""F — Dy(1—A)"% - [(1-A)F, My](1—A)~ 5.

]

Applying Theorem 2.4 to the first term and Theorem A.4 (applied with p+ 1 instead of
p) to the second term, we deduce that

(14)

[oond

De(=8)"5, My (1= D) F] € Loy
Combining (13) and (14), we complete the proof. O
The next lemma is the crucial step in proving Theorem A.1.
Lemma A.6. If f € C.(R?) and if g € C(S?™1), then
[9(V(=2)72), Mp(1 = A)"5] € (La oo, p>0.
Proof. If g € C(S?!) is a monomial, then Lemma A.5 and the Leibniz rule yield

[9(V(=2)7%), M;(1 = A)F e £ o

If g € C(S% 1) is a polynomial, then we obtain by linearity

[9(V(=2)72), Mp(1 = A) "] € L o o C (Lu 0o
p+1’ p’
Consider now the general case. Fix g € C(S?~!) and choose a sequence of polynomials
{gn}n>0 € C(S%1) such that g, — ¢ in the uniform norm. Using quasi-triangle and
Hoélder inequalities, we write
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(g0 — (T (~2)75), Mp(1 = A) 5 oy < 2 F g — glocll ML~ )71 .
The second factor on the right hand side is finite by Theorem 2.4. Therefore,
lgn(V(=8)74), Mp(1 = 8) 78] = [g(V(=4)75), My (1~ A)7F]
in E%’OC. Since the sequence on the left is in (E%’OO)O, the assertion follows. O
Next, we derive an approximation result for operators 17" € II.
Lemma A.7. Let T € T1. There are {fui}ni>1 C (Co + C)(R?), {gni}ni>1 C C(S41)

and {Sn}n>0 C K(L2(RY)) such that, with the limit in the uniform norm,

. L ~ A1
T=lm T, T, .fZan,lgm(V( A)"2)+S,.

Proof. If T' € II, then we can find a sequence {T},},>0 C II such that T,, — T in the
uniform norm and such that

In  kn
:ZH i Inked (V(=A)7
=1 k=1

[N

).

Here, fn k1 € (Co+ C)(R?) and g, € C(S?71) for every n, every k and every I.
By [31, Lemma 5.8], the operator

kn kn
L2500 000V -2 5) = My (T gk (V(-28) )
k=1 k=1

is compact. Setting

kn kn
fn,l = H f’ﬂ,k?,l? gn,l = H In,k,l5 1<i<li,
k=1 k=1

the assertion follows. O
We are now in position to prove the main result of this appendix.

Proof of Theorem A.1. Let T € Il and let T}, € Il be as in Lemma A.7. Let ¢ € C2°(R?).
By the Leibniz rule, we have
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In

+ Zan,l . [gn,l(V(—A)_%)’Mqﬁ(l _ A)_§]+
1=1

+ [Sn, Mg(1— A)"5]. (15)

The commutators on the right hand side of (15) belong to (L« . )o- Indeed,

[an,L7M¢(]‘ - A)_%] = [an,mﬁv (1 - A) %] [M¢ ( A)_%] ’ an,l'

Hence, the first commutator on the right hand side of (15) belongs to (L4 . )o by
Lemma A.3. The second commutator on the right hand side of (15) belongs top(ﬁgm)o
by Lemma A.6. The third commutator on the right hand side of (15) belongs to (EZ
since My(1— A)~% EE% ’

)0

. and since S, is compact. Therefore,

[T, Mg (1 = A)"5] € (L 0 )o-

p,OO

Since T}, — T in the uniform norm and since My(1 — A)~2 € L4
P
follows that

by Theorem 2.4, it

,00

[T, Mg (1 — A)75] = [T, My(1 — A)~ 2],

where the limit is taken in L4
(La o )o, it follows that
4,

- Since the sequence on the left hand side belongs to

[T, My(1~ A)"2] € (La o )o-

Suppose now that 1" € II is compactly supported, that is, T = MyT = T My for some
¢ € C(R%). We have

=T(-A)E (- a)ET

= TMy(1— A) % — (1= A) 5 MuT = [T, My(1 — A) 5] + My, (1 - A) ] - T
The first term belongs to (Ed o )o as we have just shown above, and the second one does
by Lemma A.2. This completeb the proof. O
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