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1. Introduction and main results

1.1. Background and motivations

In this paper we are interested in spectral properties of commutators of the form

[(−Δ)
ε
2 , Mf ] in L2(Rd) .

Here ε is a parameter that we typically fix in one of the intervals (0, 1] and (−d
2 , 0), and 

Mf is the operator of multiplication by a function f ∈ L1,loc(Rd). In Section 3 we will 

recall that the operator [(−Δ)
ε
2 , Mf ] is always well defined from C∞

c (Rd) to the space 

of distributions (C∞
c (Rd))′.

The spectral properties that we are interested in are boundedness, compactness and 

membership to a trace ideal, as well as the computation of the asymptotics of its singular 

values. The trace ideals in question are Schatten classes Lp and weak Schatten classes 

Lp,∞, whose definition we will recall in Section 2.

Our goal is to investigate these spectral properties under minimal assumptions on the 

function f . In particular, we will derive the asymptotics of the singular values under the 

sole assumption that the asymptotic coefficient is finite. We will also be interested in 

converse theorems, where spectral properties of the commutators imply certain properties 

of the function f .

To set the stage, let us recall a prototypical result in this area, due to Coifman, 

Rochberg and Weiss [17] with later contributions by Janson [26] and Uchiyama [52] and 

many others. In a certain sense this result corresponds to the case ε = 0 of our problem. 

Let d ≥ 2 and let Rj = −i∂j(−Δ)− 1
2 , j = 1, . . . , d, be a Riesz transform. Then

[Rj , Mf ] in L2(Rd)

is bounded if and only if f ∈ BMO(Rd), the class of functions of bounded mean oscil-

lations. In addition, there is a two-sided bound between the operator norm of [Rj, Mf ]

and the seminorm of f in BMO(Rd). Furthermore, the operator is compact if and only 

if f ∈ V MO(Rd), the class of functions of vanishing mean oscillations. Concerning trace 

ideals, Janson and Wolff [29] characterized membership of [Rj, Mf ] to Schatten classes 

Lp with d < p < ∞ in terms of membership of f to a homogeneous fractional Sobolev 

space, and they showed that the operator does not belong to Ld unless f is constant; for 

alternative proofs see [44,27]. Connes, Sullivan and Teleman, together with Semmes, [19]

added a characterization in the endpoint case of the weak Schatten class Ld,∞, namely 

membership to a certain homogeneous first order Sobolev space. In the recent papers 

[35,24] we have revisited and extended the latter result.

Thus, there is a scale of nested function spaces, parametrized by p, namely the ho-

mogeneous fractional Sobolev spaces, such that if the regularity of f improves (in the 

sense of it belonging to a smaller one of these spaces), then the trace ideal properties 
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of [Rj , Mf ] improve (in the sense of it belonging to a smaller trace ideal space). At the 

same time, there is a saturation effect in the sense that if the regularity properties of 

f improve beyond membership to the corresponding first order Sobolev space, then the 

trace ideal properties no longer improve. The existence of a critical exponent p∗ with 

this property, here p∗ = d, is sometimes referred to as the ‘Janson–Wolff phenomenon’ or 

‘cut-off phenomenon’. It has been observed in many other problems of this kind, involv-

ing commutator or Hankel operators, see for instance, [2,22,3,41,28,21] and references 

therein.

The present paper is a continuation of [24], but can be read independently. Our goal is 

to prove the analogue of the before-mentioned results for the operators [(−Δ)
ε
2 , Mf ] for 

ε �= 0. Several results about these operators were obtained by Murray [40] (concerning 

boundedness) and by Janson and Peetre [27] (concerning boundedness and trace ideal 

properties) and we review them in detail later on in this introduction. Here we just 

mention that for every ε ∈ (−d
2 , 0) ∪ (0, 1) there is a Janson–Wolff phenomenon with 

critical exponent p∗ = d
1−ε . The existing results characterize membership to Lp for 

p > p∗ in terms of f belonging to some homogeneous fractional Sobolev space. It is also 

known that [(−Δ)
ε
2 , Mf ] does not belong to Lp∗

unless f is constant. Our new results 

characterize membership to the endpoint space, namely the weak Schatten ideal Lp∗,∞, 

in terms of f belonging to some homogeneous first order Sobolev space. Moreover, we will 

compute the asymptotics of the singular values under the sole assumption of membership 

to this Sobolev space.

We will also obtain some results in the case ε = 1, which is somewhat different. Note 

that the exponent p∗ = d
1−ε tends to +∞ as ε → 1−. Among other things, we show that 

[(−Δ)
1
2 , Mf ] is never compact, unless f is constant. Moreover, we provide a short proof 

that a well-known criterion of Calderón [9] for boundedness is not only sufficient, but 

also necessary.

1.2. Main results

We now come to a precise formulation of our main results in the following three 

theorems. The necessary notation related to function spaces and trace ideals, as well 

as the precise meaning of the operator [(−Δ)
ε
2 , Mf ] can be found in the following two 

sections.

Our first result concerns the case 0 < ε < 1.

Theorem 1.1. Let d ≥ 1 and let 0 < ε < 1.

(i) If f ∈ Ẇ 1
d

1−ε

(Rd), then [(−Δ)
ε
2 , Mf ] ∈ L d

1−ε
,∞ and

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

≤ cd,ε‖f‖Ẇ 1
d

1−ε

(Rd).
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(ii) If f ∈ Ẇ 1
d

1−ε

(Rd), then

lim
t→∞

t
1−ε

d μ
(

t, [(−Δ)
ε
2 , Mf ]

)
= κd,ε‖f‖Ẇ 1

d
1−ε

(Rd)

with

κd,ε := |ε|

⎛
⎝(2π)−dd−1

∫

Sd−1

|ωd|
d

1−ε dω

⎞
⎠

1−ε
d

. (1)

(iii) If f ∈ L1,loc(Rd) and if [(−Δ)
ε
2 , Mf ] ∈ L d

1−ε
,∞, then f ∈ Ẇ 1

d
1−ε

(Rd) and

‖f‖Ẇ 1
d

1−ε

(Rd) ≤ c′
d,ε

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

.

Our second result concerns the case −d
2 < ε < 0.

Theorem 1.2. Let d ≥ 2 and let −d
2 < ε < 0.

(i) If f ∈ Ẇ 1
d

1−ε

(Rd), then [(−Δ)
ε
2 , Mf ] ∈ L d

1−ε
,∞ and

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

≤ cd,ε‖f‖Ẇ 1
d

1−ε

(Rd).

(ii) If f ∈ Ẇ 1
d

1−ε

(Rd), then

lim
t→∞

t
1−ε

d μ
(

t, [(−Δ)
ε
2 , Mf ]

)
= κd,ε‖f‖Ẇ 1

d
1−ε

(Rd)

with κd,ε given by (1).

(iii) If f ∈ L1,loc(Rd) and if [(−Δ)
ε
2 , Mf ] ∈ L d

1−ε
,∞, then f ∈ Ẇ 1

d
1−ε

(Rd) and

‖f‖Ẇ 1
d

1−ε

(Rd) ≤ c′
d,ε

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

.

Note that in this theorem we assume ε > −d
2 and d ≥ 2. For the case ε ≤ −d

2 , see 

Lemma 3.3 below. Concerning the assumption d ≥ 2, see the discussion in the following 

subsection.

Our third result concerns the case ε = 1.



R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738 5

Theorem 1.3. Let d ≥ 1.

(i) If f ∈ Ẇ 1
∞(Rd), then [(−Δ)

1
2 , Mf ] is bounded and

∥∥∥[(−Δ)
1
2 , Mf ]

∥∥∥
∞

≤ cd ‖f‖Ẇ 1
∞

(Rd).

(ii) If f ∈ L1,loc(Rd) and if [(−Δ)
1
2 , Mf ] is bounded, then f ∈ Ẇ 1

∞(Rd) and

‖f‖Ẇ 1
∞

(Rd) ≤
∥∥∥[(−Δ)

1
2 , Mf ]

∥∥∥
∞

.

(iii) If f ∈ Ẇ 1
∞(Rd) and if [(−Δ)

1
2 , Mf ] is compact, then f ≡ const.

Part (i) of this theorem is a celebrated result of Calderón [9], which we restate here 

only for the sake of completeness. Parts (ii) and (iii) for d = 1 are due to Janson and 

Peetre [27, Section 6, Example 7]. Part (ii) appeared recently in [13, Theorem 1.5 with 

Ω ≡ 1], but we present an alternative, shorter proof for the case at hand. Part (iii) for 

d ≥ 2 can be considered as new.

1.3. Comparison with known results

Let us formulate precisely the previous results on the operators [(−Δ)
ε
2 , Mf ]. We will 

not define the relevant function spaces, since they will not play any role in the remainder 

of this paper. They are the fractional Sobolev spaces Ẇ s
p (Rd) with 0 < s < 1, which are 

equal to a special case of Besov spaces, namely Ẇ s
p (Rd) = Ḃs

p,p(Rd). For these spaces 

see, for instance, [33, Chapter 17]. Less standard spaces are the BMO-Sobolev spaces 

(−Δ)
s
2 BMO(Rd), 0 < s < 1, which are studied in [47]. As discussed, for instance, 

in [54], these spaces coincide with a special case of Triebel–Lizorkin spaces, namely 

(−Δ)
s
2 BMO(Rd) = Ḟ s

∞,2(Rd). For these spaces see [51, Subsection 2.3.4].

Case ε ∈ (0, 1)

It is shown by Murray [40] in dimension d = 1 and by Janson and Peetre [27] in 

general dimension d that

[(−Δ)
ε
2 , Mf ] is bounded iff f ∈ (−Δ)

ε
2 BMO(Rd).

We are not aware of a published result characterizing compactness of [(−Δ)
ε
2 , Mf ], but 

it is natural to guess that the relevant space is the closure of C∞
c (Rd) in the space 

(−Δ)
ε
2 BMO(Rd). Concerning trace ideals it is shown in [27] that for any d

1−ε < p < ∞

one has

[(−Δ)
ε
2 , Mf ] ∈ Lp ⇐⇒ f ∈ Ẇ

ε+ d
p

p (Rd) ,
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as well as

[(−Δ)
ε
2 , Mf ] ∈ L d

1−ε
⇐⇒ f ≡ const .

Our Theorem 1.1 completes these results, namely by characterizing membership of the 

commutator [(−Δ)
ε
2 , Mf ] to the weak Schatten class L d

1−ε
,∞ in terms of the condition 

f ∈ Ẇ 1
d

1−ε

(Rd). Moreover, we compute the asymptotics of the singular values under the 

sole assumption of membership to this Sobolev space.

Case ε ∈ (−d
2 , 0)

Janson and Peetre [27] have shown that for any d
1−ε < p < d

−ε one has

[(−Δ)
ε
2 , Mf ] ∈ Lp ⇐⇒ f ∈ Ẇ

ε+ d
p

p (Rd) .

We are not aware of any results characterizing membership of [(−Δ)
ε
2 , Mf ] to Lp with 

p ≥ d
−ε or its boundedness or compactness. Thus, the results for ε < 0 are far less 

complete than those for ε > 0. Our Theorem 1.2 completes the existing results at the 

endpoint p = d
1−ε in a similar way as in the case ε > 0. However, now we need the 

additional assumption d ≥ 2.

The origin of this extra-assumption can be seen from the fact that the integrability 

exponent d
1−ε of the Sobolev space Ẇ 1

d
1−ε

is less than 1 for d = 1 and ε < 0. In this way the 

restriction to d ≥ 2 arises from a technical point of view in our proofs. We think, however, 

that this restriction is not only technical but that the results are significantly different for 

d = 1. More specifically, while it is probably still true that for f ∈ C∞
c (R), the operator 

[(−Δ)
ε
2 , Mf ] belongs to L 1

1−ε
and its singular values satisfy the asymptotics in (ii), it is 

conceivable that there are f in L1,loc(R) with f ′ ∈ L 1
1−ε

(R) for which [(−Δ)
ε
2 , Mf ] does 

not belong to L 1
1−ε

. This is a subject for further investigation.

Case ε = 1

As we have already mentioned, the boundedness of [(−Δ)
1
2 , Mf ] under the assumption 

f ∈ Ẇ 1
∞(Rd) was proved in an influential paper of Calderón [9]. For alternative proofs 

and extensions we refer, for instance, to [16,10,15].

Janson and Peetre [27] prove that the condition f ∈ Ẇ 1
∞(Rd) is also necessary for 

boundedness in dimension d = 1 and mention without proof that a referee of their paper 

has told them that this condition is also necessary for d ≥ 2. We provide a proof of this 

claim. A different proof has appeared recently in [13, Theorem 1.5 with Ω ≡ 1]. The 

latter paper deals with a much larger class of operators than we do, but for the problem 

at hand our proof has the advantage of being much more direct.

Finally, Janson and Peetre [27] prove that in dimension d = 1 the operator 

[(−Δ)
1
2 , Mf ] is not compact unless f is constant. Our Theorem 1.3 shows that this 

remains valid in any dimension.
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1.4. Outline of the paper

We end this introduction by giving a quick overview over this paper. For simplicity 

we restrict ourselves to the proofs of Theorems 1.1 and 1.2; that of Theorem 1.3 appears 

in Section 9 and uses related arguments.

When proving Theorems 1.1 and 1.2, the methods that we are using are rather different 

for part (i) on the one hand and parts (ii) and (iii) on the other hand.

Let us begin with discussing our proof of part (i) in Theorems 1.1 and 1.2, which 

appears in Section 4. It is of operator-theoretic nature and based on the technique of 

Double Operator Integrals (DOIs). As two of us have demonstrated in [30,42,35], DOIs 

are an excellent tool for studying commutators. Earlier uses of DOIs in connection with 

spectral properties of pseudodifferential operators can be found, for instance, in the work 

of Birman and Solomyak [7].

DOIs allow us to write the commutators [(−Δ)
ε
2 , Mf ] as a certain transformation 

applied to the simple commutator [∇, Mf ] = M∇f . Note that trace ideal properties of 

the operators (−Δ)
ε−1

4 [∇, Mf ](−Δ)
ε−1

4 and generalizations thereof can be obtained from 

Cwikel’s theorem [20] and its generalizations.

Therefore, the proof of our results is reduced to studying the mapping properties 

of the transformation that allows us to write [(−Δ)
ε
2 , Mf ] in terms of [∇, Mf ]. This 

transformation depends on the parameter ε. The mapping properties in the case ε ∈

[−1, 1] are relatively straightforward, given the previous results in [42] by one of us. To 

prove the mapping properties for ε < −1 we use a certain ‘renormalization procedure’, 

where we extract a finite number (depending on ε) of extra terms, before being able to 

apply again the results in [42].

We now turn to a discussion of the methods used to prove parts (ii) and (iii) in 

Theorems 1.1 and 1.2. For part (ii) the analysis is divided into two steps. In a first step 

we derive the spectral asymptotics in the smooth case, that is, for f ∈ C∞
c (Rd) and with 

−Δ replaced by 1 − Δ. In a second step we use the uniform a priori bounds from part 

(i) to extend the asymptotics to the maximal class of functions f .

The first step here uses an approximation result for commutators that is in the spirit 

of parametrix constructions in the theory of pseudodifferential operators, but we present 

it in an elementary fashion; see Section 5. Once we have this approximation, we can apply 

the results about spectral properties that we developed in our previous paper [24]; see 

Section 7. To be more precise, the methods from [24] are applicable, but the results are 

not, at least not in an obvious way. Instead of referring the reader to redo the arguments 

in [24], in Section 6 we present a method to deduce from [24] the results we need without

redoing the argument. We believe that this argument is interesting in its own right and 

illustrates, once again, the power of DOI techniques.

Part (iii) of Theorems 1.1 and 1.2 is proved in Section 8. The argument is related to 

that in the proof of part (ii). Namely, we show that if [(−Δ)
ε
2 , Mf ] has certain trace 

ideal properties, then the same is true for the corresponding operator with a regularized 

f . For the latter operator we can use (a localized version of) the spectral asymptotics in 
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part (ii) to get a bound on the Sobolev norm of the regularized version of f , uniform in 

the regularization parameter. This allows us to conclude the f itself has to be sufficiently 

regular.
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2. Preliminaries

All considered functions are complex-valued, unless otherwise specified.

Let (Ω, Σ, ν) be a measure space with a σ-finite measure ν, defined on a σ-algebra 

Σ, and let L(Ω) be the algebra of all classes of equivalent measurable complex-valued 

functions on (Ω, Σ, ν). Denote by L0(Ω) the subalgebra of L(Ω) consisting of all functions 

f such that ν({|f | > s}) < ∞ for some s > 0. For every f ∈ L0(Ω), its non-increasing 

rearrangement is defined by

μ(t, f) := inf{s > 0 : ν({|f | > s}) ≤ t}, t > 0.

For 0 < p < ∞ the space Lp(Ω, Σ, ν) (resp. Lp,∞(Ω, Σ, ν)) consists of all elements 

f ∈ L0(Ω) for which

‖f‖p :=

⎛
⎝

∞∫

0

μ(t, f)pdt

⎞
⎠

1/p

< ∞,

(
resp. ‖f‖p,∞ := sup

t>0
t1/pμ(t, f) < ∞

)
.

As always, the measure spaces Z+ = {0, 1, 2, · · · }, N = {1, 2, 3, · · · } are equipped 

with counting measures and the Euclidean space Rd with Lebesgue measure.

For detailed information concerning classical function and sequence spaces such as 

Lp(Rd), Lp,∞(Rd), 	p = 	p(Z+) and 	p,∞ = 	p,∞(Z+), we refer the reader for instance 

to [32,36,37].

In this paper, ∇ is the self-adjoint gradient operator on L2(Rd), that is

∇ = (
1

i

∂

∂t1
, · · · ,

1

i

∂

∂td
).

Definition 2.1. The homogeneous Sobolev space Ẇ 1
p (Rd), 1 ≤ p ≤ ∞, consists of func-

tions f ∈ L1,loc(Rd) whose distributional gradient belongs to Lp(Rd). This is a space of 

functions modulo constants. We set
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‖f‖Ẇ 1
p (Rd) := ‖∇f‖p .

The following result is available, see e.g. [33, Theorem 12.9].

Theorem 2.2 (Sobolev embedding theorem). Let 1 ≤ p < d and let 1
q = 1

p − 1
d . We have 

Ẇ 1
p (Rd) ⊂ Lq(Rd). This should be understood in the sense that in the class of functions 

modulo constants there is one that belongs to Lq(Rd).

Let H be a complex separable Hilbert space, and let B(H) denote the set of bounded 

operators on H. The standard uniform operator norm on B(H) is denoted by ‖ · ‖∞.

Let K(H) denote the ideal of compact operators on H. Given T ∈ K(H), the singular 

value function t �→ μ(t, T ) is defined by the formula

μ(t, T ) := inf{‖T − R‖∞ : rank(R) ≤ t}, t ≥ 0.

We denote by μ(T ) the sequence {μ(n, T )}∞
n=0. Equivalently, μ(T ) is the sequence of 

eigenvalues of |T | arranged in nonincreasing order with multiplicities.

The following basic properties of singular values will be frequently used in the sequel:

μ(t + s, A + B) ≤ μ(t, A) + μ(s, B), t, s ≥ 0 , (2)

and, for any 0 < p < ∞,

μ(t, A) = μ(t, A∗) = μ(t, |A|p)
1
p , t ≥ 0 ; (3)

see e.g. [36, Section 2.3].

Let p ∈ (0, ∞). The Schatten class Lp is the set of operators T in K(H) such that 

μ(T ) is p-summable, that is, belongs to the sequence space 	p. If 1 ≤ p < ∞, then the 

Lp norm is defined by

‖T‖p := ‖μ(T )‖�p
=

( ∞∑

n=0

μ(n, T )p
)1/p

.

With this norm Lp for 1 ≤ p < ∞ is a Banach space, and a Banach ideal of B(H).

Analogously, for 0 < p < ∞, the weak Schatten class Lp,∞ is the set of operators 

T ∈ K(H) such that μ(T ) is in the weak Lp-space 	p,∞, with quasi-norm

‖T‖p,∞ := sup
n≥0

(n + 1)1/pμ(n, T ) < ∞.

As with the Lp spaces, Lp,∞ is an ideal of B(H).

For more details on ideals of compact operators and singular value sequences, we refer 

the reader to [36,37,45].
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We will frequently use the following two trace ideal bounds for operators of the form 

Mf g(∇) on L2(Rd). To formulate them, we use the Birman–Solomyak spaces 	p(Lq)(Rd)

and 	p,∞(Lq)(Rd) (see [7], [45, Chapter 4] or [4, Subsection 5.6]), as well as their analogue 

	2,log(L∞)(Rd) in [34, Definition 5.5]. The only fact about these spaces that we will be 

using is that they all contain Cc(Rd).

Theorem 2.3. Let d ≥ 1.

(i) If 2 ≤ p ≤ ∞ and f, g ∈ Lp(Rd), then Mf g(∇) ∈ Lp(L2(Rd)) and

‖Mf g(∇)‖Lp(L2(Rd)) ≤ cp,d‖f‖Lp(Rd)‖g‖Lp(Rd).

(ii) If 0 < p < 2 and f, g ∈ 	p(L2)(Rd), then Mf g(∇) ∈ Lp(L2(Rd)) and

‖Mf g(∇)‖Lp(L2(Rd)) ≤ cp,d‖f‖�p(L2)(Rd)‖g‖�p(L2)(Rd).

Part (i) is known as the Kato–Seiler–Simon inequality; for a proof see, e.g., [45, The-

orem 4.1]. Part (2) is due to Birman and Solomyak [6, Theorem 11.1]; for a proof for 

p ≥ 1 see also [45, Theorem 4.5]. For a strengthening see [34, Theorem 1.4].

Theorem 2.4. Let d ≥ 1.

(i) If 2 < p < ∞ and f ∈ Lp(Rd), g ∈ Lp,∞(Rd), then Mf g(∇) ∈ Lp,∞(L2(Rd)) and

‖Mf g(∇)‖Lp,∞(L2(Rd)) ≤ cp,d‖f‖Lp(Rd)‖g‖Lp,∞(Rd).

(ii) If p = 2 and f ∈ 	2,log(L∞)(Rd), g ∈ 	2,∞(L4)(Rd), then Mf g(∇) ∈ Lp,∞(L2(Rd))

and

‖Mf g(∇)‖L2,∞(L2(Rd)) ≤ c2,d‖f‖�2,log(L∞)(Rd)‖g‖�2,∞(L4)(Rd).

(iii) If 0 < p < 2 and f ∈ 	p(L2)(Rd), g ∈ 	p,∞(L2)(Rd), then Mf g(∇) ∈ Lp,∞(L2(Rd))

and

‖Mf g(∇)‖Lp,∞(L2(Rd)) ≤ cp,d‖f‖�p(L2)(Rd)‖g‖�p,∞(L2)(Rd).

Part (1) is known as the Cwikel inequality and due to [20]; for proofs see also, for 

instance, [45, Theorem 4.2] and [23,34]. Part (2) is due to two of us [34, Theorem 1.3]. 

Part (3) is due to Simon [45, Theorem 4.6] for p > 1 and appears in [4, Subsection 5.7]

in general. For a strengthening see [34, Theorem 1.4].
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3. Domain and codomain of the commutator [(−∆)
ε

2 , Mf ]

We begin by clarifying in which sense the commutator [(−Δ)
ε
2 , Mf ] is understood for 

f ∈ L1,loc(Rd) and ε ∈ (−d, 1].

Lemma 3.1. Let ε ∈ (−d, 1] and let f ∈ L1,loc(Rd). For any φ ∈ C∞
c (Rd) there are unique 

distributions, denoted by

(−Δ)
ε
2 Mf φ and Mf (−Δ)

ε
2 φ ,

such that for all ψ ∈ C∞
c (Rd) one has

〈(−Δ)
ε
2 Mf φ, ψ〉 = 〈fφ, (−Δ)

ε
2 ψ〉 and 〈Mf (−Δ)

ε
2 φ, ψ〉 = 〈(−Δ)

ε
2 φ, fψ〉 .

Here 〈·, ·〉 on the left sides denotes the sesquilinear duality pairing between (C∞
c )′ and 

C∞
c , and on the right sides that between L1 and L∞ (L∞ and L1, respectively). The 

distribution Mf (−Δ)
ε
2 φ is regular (that is, given by an L1,loc-function), and so is, for 

ε < 0, the distribution (−Δ)
ε
2 Mf φ.

Moreover, if {fn}n≥0 ⊂ L1,loc(Rd) is such that fn → f in L1,loc(Rd), then for every 

φ ∈ C∞
c (Rd), we have

(−Δ)
ε
2 Mfn

φ → (−Δ)
ε
2 Mf φ, Mfn

(−Δ)
ε
2 φ → Mf (−Δ)

ε
2 φ, n → ∞,

in (C∞
c (Rd))′.

As a consequence of this lemma, the mappings

Mf (−Δ)
ε
2 : C∞

c (Rd) → L1,loc(Rd)

and

(−Δ)
ε
2 Mf : C∞

c (Rd) →

{
L1,loc(Rd) if ε ∈ (−d, 0) ,

(C∞
c (Rd))′ if ε ∈ (0, 1] .

are well defined.

Proof. We begin with the case ε ∈ (−d, 0). It is well known (see, e.g., [46, Chapter V, 

Theorem 1]) that (−Δ)
ε
2 : L1(Rd) → L d

d+ε
,∞(Rd). If φ ∈ C∞

c (Rd), then fφ ∈ L1(Rd)

and, therefore,

(
(−Δ)

ε
2 Mf

)
(φ) = (−Δ)

ε
2 (fφ) ∈ L d

d+ε
,∞(Rd) ⊂ L1,loc(Rd).

Moreover, by duality, (−Δ)
ε
2 : L− d

ε
,1(Rd) → L∞(Rd). Therefore,
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(
Mf (−Δ)

ε
2

)
(φ) = f · (−Δ)

ε
2 φ ∈ L1,loc(Rd) · L∞(Rd) ⊂ L1,loc(Rd).

Thus, both (−Δ)
ε
2 Mf φ and Mf (−Δ)

ε
2 φ are regular distributions.

Now let ε ∈ (0, 1]. Then (−Δ)
ε
2 : C∞

c (Rd) → L∞(Rd). Thus,

(Mf (−Δ)
ε
2 )(φ) = f · (−Δ)

ε
2 φ ∈ L1,loc(Rd) · L∞(Rd) ⊂ L1,loc(Rd).

Moreover, by duality, (−Δ)
ε
2 : (L∞(Rd))′ → (C∞

c (Rd))′, where on (L∞(Rd))′ we con-

sider the weak star topology. Since fφ ∈ L1(Rd) ⊂ (L∞(Rd))′, we have

((−Δ)
ε
2 Mf )(φ) = (−Δ)

ε
2 (fφ) ∈ (C∞

c (Rd))′.

This proves the existence of the two distributions. The uniqueness is clear. It remains to 

prove the convergence statement. For the distribution (−Δ)
ε
2 Mf φ we use the fact that 

fnφ → fφ in L1 and therefore

〈fnφ, (−Δ)
ε
2 ψ〉 → 〈fφ, (−Δ)

ε
2 ψ〉 .

The proof for Mf (−Δ)
ε
2 φ is similar, using fnψ → fψ in L1. �

Lemma 3.2. Let ε ∈ (−d
2 , 1] and let f ∈ L∞(Rd) and φ ∈ C∞

c (Rd). For m ≥ 1 let 

Pm = χ( 1
m

,m)(−Δ). Then

(Pm(−Δ)
ε
2 )Mf Pmφ → (−Δ)

ε
2 Mf φ, PmMf (Pm(−Δ)

ε
2 )φ → Mf (−Δ)

ε
2 φ, m → ∞,

in (C∞
c (Rd))′. Here (−Δ)

ε
2 Mf φ and Mf (−Δ)

ε
2 φ are defined as in Lemma 3.1.

Proof. Let ψ ∈ C∞
c (Rd). Then, with 〈·, ·〉 denoting the L2-inner product,

〈((Pm(−Δ)
ε
2 ) · Mf · Pm)φ, ψ〉 = 〈f · Pmφ, (Pm(−Δ)

ε
2 )ψ〉,

〈(Pm · Mf · (Pm(−Δ)
ε
2 )φ, ψ〉 = 〈(Pm(−Δ)

ε
2 )φ, f · Pmψ〉.

Let χ denote either φ or ψ. We claim that

χ, (−Δ)
ε
2 χ ∈ L2(Rd). (4)

Indeed, for χ this is clear. When ε ∈ (0, 1] it is also clear for (−Δ)
ε
2 χ. Thus let ε ∈ (−d

2 , 0). 

As observed in the proof of Lemma 3.1, we have

(−Δ)
ε
2 : L1(Rd) → L d

d+ε
,∞(Rd), (−Δ)

ε
2 : L− d

ε
,1(Rd) → L∞(Rd).

Therefore,

(−Δ)
ε
2 : L1(Rd) ∩ L− d

ε
,1(Rd) → L d

d+ε
,∞(Rd) ∩ L∞(Rd) ⊂ L2(Rd).
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In particular, (−Δ)
ε
2 χ ∈ L2(Rd). This proves (4).

It follows from (4) that Pmχ → χ and Pm(−Δ)
ε
2 χ → (−Δ)

ε
2 χ in L2(Rd). This, 

together with f ∈ L∞(Rd), implies

〈f · Pmφ, (Pm(−Δ)
ε
2 )ψ〉 → 〈f · φ, (−Δ)

ε
2 ψ〉 ,

〈(Pm(−Δ)
ε
2 )φ, f · Pmψ〉 → 〈(−Δ)

ε
2 φ, f · ψ〉 .

Here 〈·, ·〉 denotes the L2-inner product. Alternatively, it can be interpreted as the duality 

pairing between L1 and L∞ (L∞ and L1, respectively), and then, by Lemma 3.1, the right 

sides coincide with 〈(−Δ)
ε
2 Mf φ, ψ〉 and 〈Mf (−Δ)

ε
2 φ, ψ〉, respectively, where now 〈·, ·〉

denotes the sesquilinear duality pairing between (C∞
c (Rd))′ and C∞

c (Rd). This proves 

the claimed convergence in C∞
c (Rd). �

Having defined the operator [(−Δ)
ε
2 , Mf ] : C∞

c (Rd) → (C∞
c )′(Rd), we are now in-

terested in when it extends to a bounded operator on L2(Rd) and belongs to certain 

operator ideal. The following theorem provides a negative result in a certain range of 

negative ε’s.

Lemma 3.3. If ε ∈ (−d, −d
2 ] and if 0 �= f ∈ L1(Rd) is compactly supported, then the 

operator [(−Δ)
ε
2 , Mf ] does not map L2(Rd) to itself.

Proof. The operator (−Δ)
ε
2 is an integral operator with an integral kernel |t −s|−d−ε (up 

to a multiplicative constant). Hence, the operators Mf (−Δ)
ε
2 , (−Δ)

ε
2 Mf : C∞

c (Rd) →

L1,loc(Rd) (those operators are well defined, see the proof of Lemma 3.1) are also integral 

ones. Thus, [(−Δ)
ε
2 , Mf ] is an integral operator with the integral kernel given, up to a 

multiplicative constant, by

(t, s) �→
f(t) − f(s)

|t − s|d+ε
, t, s ∈ R

d.

Suppose f is supported in the ball B(0, R). Let φ ∈ C∞
c (Rd) be such that

∫

Rd

(fφ)(s)ds �= 0.

We have

((
[(−Δ)

ε
2 , Mf ]

)
φ

)
(t) = −

∫

|s|≤R

(fφ)(s)

|t − s|d+ε
ds, |t| > R.

It follows that

((
[(−Δ)

ε
2 , Mf ]

)
φ

)
(t) = −|t|−d−ε ·

∫

|s|≤R

(fφ)(s)ds + O(|t|−d−ε−1), |t| > 2R.
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The function on the right hand side does not belong to L2(Rd\B(0, 2R)). Hence, we have (
[(−Δ)

ε
2 , Mf ]

)
φ /∈ L2(Rd). �

Let now −d
2 < ε < 0. By the weak Young inequality (see, e.g., [46, Chapter V, 

Theorem 1]), Hölder’s inequality and Sobolev’s inequality (see Theorem 2.2) we find

‖Mf (−Δ)
ε
2 ‖∞, ‖(−Δ)

ε
2 Mf ‖∞ ≤ c

(1)
d,ε‖f‖− d

ε
≤ c

(2)
d,ε‖f‖Ẇ 1

d
1−ε

(Rd).

Hence, for −d
2 < ε < 0 and f ∈ Ẇ 1

d
1−ε

the commutator [(−Δ)
ε
2 , Mf ] is a difference of 

two bounded operators and is, therefore, bounded. Moreover,

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
∞

≤ cd,ε‖f‖Ẇ 1
d

1−ε

(Rd), f ∈ Ẇ 1
d

1−ε

(Rd), −
d

2
< ε < 0. (5)

4. Proof of Theorem 1.1 (I) and Theorem 1.2 (I)

If A = (A1, . . . , Ad) is a d-tuple of mutually commuting self-adjoint operator on a 

Hilbert space and φ is a sufficiently regular function on Rd × R
d, then the symbol T A

φ

denotes the corresponding Double Operator Integral (DOI). We refer the reader to [30,12]

for the notion of a DOI with respect to tuples of mutually commuting operators. The 

following lemma shows that for certain φ this DOI can be reduced to one for a single 

operator. It is the exact analogue of [42, Lemma 8] and its proof is exactly the same as 

in [42], so we omit it.

Lemma 4.1. Let Ψ : R ×R → R be a bounded Borel measurable function and let h : R
d →

R be a Borel measurable function. Set

φ(λ, μ) = Ψ(h(λ), h(μ)), λ, μ ∈ R
d.

For every tuple A = (A1, · · · , Ad) of commuting self-adjoint operators we have

T A

φ = T
h(A)
Ψ .

For a fixed ε ∈ R, define the function φε on Rd × R
d by setting

φε(λ, μ) :=

{
|λ|ε−|μ|ε

|λ|−|μ| · |λ|
1−ε

2 |μ|
1−ε

2 if |λ| �= |μ| ,

ε if |λ| = |μ| .
(6)

Lemma 4.2. Let ε ∈ [−1, 1] and let φε be as in (6). Then for any 1 < p < ∞ the operator 

T ∇
φε

is bounded on Lp and on Lp,∞

Proof. For ε = ±1, φε is a constant and there is nothing to prove. Suppose ε ∈ (−1, 1). 

By Lemma 4.1 applied with h(λ) = |λ|, we have
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T ∇
φε

= T
(−Δ)

1
2

Ψε

with

Ψε(s, t) :=
sε − tε

s − t
· s

1−ε
2 t

1−ε
2 , s, t > 0.

Thus,

Ψε(s, t) = hε(
s

t
), s, t > 0,

with the function hε given by the formula

(hε ◦ exp)(t) =
eεt − 1

et − 1
· e

(1−ε)t

2 =
sinh( εt

2 )

sinh( t
2 )

, t ∈ R.

In particular, hε ◦ exp is a Schwartz function. By [42, Lemma 9], we have

T
(−Δ)

1
2

Ψε
: L1 → L1, T

(−Δ)
1
2

Ψε
: L∞ → L∞.

Therefore, by interpolation,

T
(−Δ)

1
2

Ψε
: Lp → Lp, T

(−Δ)
1
2

Ψε
: Lp,∞ → Lp,∞, 1 < p < ∞,

proving the assertion. �

For ε ∈ R and n ∈ N, define the function θn,ε on Rd × R
d by setting

θn,ε(λ, μ) :=

n∑

l=1

(
|λ|

|μ|
)

ε+2l−1
2 +

n∑

l=1

(
|μ|

|λ|
)

ε+2l−1
2 , λ, μ ∈ R

d, λ, μ �= 0.

Lemma 4.3. Let n ∈ N and let ε ∈ [−2n − 1, −2n + 1). We have

φε(λ, μ) = φε+2n(λ, μ) − θn,ε(λ, μ), λ, μ ∈ R
d, λ, μ �= 0.

Proof. For every ε ∈ R, we have

φε(λ, μ) − φε+2(λ, μ) =

=
|λ|ε − |μ|ε

|λ| − |μ|
· |λ|

1−ε
2 |μ|

1−ε
2 −

|λ|ε+2 − |μ|ε+2

|λ| − |μ|
· |λ|−

1+ε
2 |μ|−

1+ε
2 =

=
|λ|−

1+ε
2 |μ|−

1+ε
2

|λ| − |μ|
·
(

|λ||μ|(|λ|ε − |μ|ε) − (|λ|ε+2 − |μ|ε+2)
)

.

Note that
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|λ||μ|(|λ|ε − |μ|ε) − (|λ|ε+2 − |μ|ε+2) =

= −|λ| · |μ|ε+1 + |μ| · |μ|ε+1 − |λ| · |λ|ε+1 + |μ| · |λ|ε+1 =

= −(|λ| − |μ|)(|λ|ε+1 + |μ|ε+1).

Thus,

φε(λ, μ) − φε+2(λ, μ) =

= −|λ|−
1+ε

2 |μ|−
1+ε

2 · (|λ|ε+1 + |μ|ε+1) = −(
|λ|

|μ|
)

ε+1
2 − (

|μ|

|λ|
)

ε+1
2 .

The assertion follows now by induction on n. �

Define the function ψk, 1 ≤ k ≤ d, on Rd × R
d by setting

ψk(λ, μ) :=

{
|λ|−|μ|
|λ−μ|2 · (λk − μk) if λ �= μ ,

0 if λ = μ .
(7)

Lemma 4.4. Let 1 ≤ k ≤ d and let ψk be as in (7). For all 1 < p < ∞ the operator T ∇
ψk

is bounded on Lp and on Lp,∞.

Proof. Boundedness of T ∇
ψk

: Lp → Lp, 1 < p < ∞, is established in [12, Corollary 5.2]; 

see also [11, Theorem 5.1]. By interpolation, T ∇
ψk

: Lp,∞ → Lp,∞, 1 < p < ∞, is bounded 

as well. �

For a tuple A = (A1, . . . , Ad) we write

|A| = (A2
1 + . . . + A2

d)
1
2 .

In the next two lemmas we derive representations for commutators [|A|ε, B] as DOIs.

Lemma 4.5. Let ε ∈ R and let φε and ψk be as in (6) and (7), respectively. If B ∈ L2

and if A is a tuple of bounded self-adjoint, mutually commuting operators such that |A|

is bounded from below by a strictly positive constant, then

[|A|ε, B] =
d∑

k=1

T A

φε·ψk
(|A|

ε−1
2 [Ak, B]|A|

ε−1
2 ).

Proof. Let gk be the function on Rd × R
d given by the formula

gk(λ, μ) = |λ|
ε−1

2 (λk − μk)|μ|
ε−1

2 , λ, μ ∈ R
d.

Note that gk is bounded when μ, λ range over compact sets in Rd \ {0}. Then we have



R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738 17

|A|
ε−1

2 [Ak, B]|A|
ε−1

2 = T A

gk
(B).

It follows that

d∑

k=1

T A

φε·ψk
(|A|

ε−1
2 [Ak, B]|A|

ε−1
2 ) =

=

d∑

k=1

T A

φε·ψk

(
T A

gk
(B)

)
=

d∑

k=1

T A

φε·ψk·gk
(B) = T A∑

d
k=1 φε·ψk·gk

(B).

Since

(
d∑

k=1

φε · ψk · gk)(λ, μ) = |λ|ε − |μ|ε, λ, μ ∈ R
d,

we have

T A∑
d
k=1 φε·ψk·gk

(B) = |A|εB − B|A|ε,

which proves the assertion. �

Lemma 4.6. Let n ∈ N, let ε ∈ [−2n −1, −2n +1) and let φε and ψk be as in (6) and (7), 

respectively. If B ∈ L2 and if A is a tuple of bounded self-adjoint, mutually commuting 

operators such that |A| is bounded from below by a strictly positive constant, then

[|A|ε, B] =
d∑

k=1

T A

φε+2n·ψk

(
|A|

ε−1
2 [Ak, B]|A|

ε−1
2

)

−

d∑

k=1

T A

ψk

( n∑

l=1

|A|ε+l−1[Ak, B]|A|−l +

n∑

l=1

|A|−l[Ak, B]|A|ε+l−1
)

Proof. By Lemma 4.5 and Lemma 4.3, we have

[|A|ε, B] =
d∑

k=1

T A

(φε+2n−θn,ε)·ψk
(|A|

ε−1
2 [Ak, B]|A|

ε−1
2 ) =

=
d∑

k=1

T A

φε+2n·ψk

(
|A|

ε−1
2 [Ak, B]|A|

ε−1
2

)
−

d∑

k=1

T A

ψk

(
T A

θn,ε

(
|A|

ε−1
2 [Ak, B]|A|

ε−1
2

))
.

It is immediate from the definition of θn,ε, given before Lemma 4.3, that

T A

θn,ε

(
|A|

ε−1
2 [Ak, B]|A|

ε−1
2

)
=
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=
n∑

l=1

|A|
ε+2l−1

2 · |A|
ε−1

2 [Ak, B]|A|
ε−1

2 · |A|−
ε+2l−1

2 +

+
n∑

l=1

|A|−
ε+2l−1

2 · |A|
ε−1

2 [Ak, B]|A|
ε−1

2 · |A|
ε+2l−1

2 =

=

n∑

l=1

|A|ε+l−1[Ak, B]|A|−l +

n∑

l=1

|A|−l[Ak, B]|A|ε+l−1.

This proves the claimed representation. �

Our goal is to apply the representation formulas in Lemmas 4.5 and 4.6 to (regular-

izations of) A = ∇ and B = Mf . To that end, we now derive trace ideal properties of 

the operators that appear. It is exactly in the following lemma that we are using the 

assumption ε > −d
2 .

Lemma 4.7. Let ε ∈ (−d
2 , 1) with ε > 0 when d = 1. Let f ∈ L d

1−ε
(Rd).

(i) We have

∥∥∥(−Δ)
ε−1

4 Mf (−Δ)
ε−1

4

∥∥∥
d

1−ε
,∞

≤ cd,ε‖f‖ d
1−ε

.

(ii) If n ∈ N is such that ε ∈ [−2n − 1, −2n + 1), then we have

∥∥∥(−Δ)
ε+l−1

2 Mf (−Δ)− l
2

∥∥∥
d

1−ε
,∞

≤ c′
d,ε‖f‖ d

1−ε
, 1 ≤ l ≤ n.

Proof. In the proof of (i), we are only using the assumption ε ∈ (1 − d, 1). We write

(−Δ)
ε−1

4 Mf (−Δ)
ε−1

4 = (−Δ)
ε−1

4 M
|f |

1
2

· Msgn(f) · M
|f |

1
2

(−Δ)
ε−1

4 .

By Hölder’s inequality for weak Lp ideals (see [8, Theorem 11.6.9] and, concerning sharp 

constants, [50]), we write

∥∥∥(−Δ)
ε−1

4 Mf (−Δ)
ε−1

4

∥∥∥
d

1−ε
,∞

≤

≤ c
(1)
d,ε

∥∥∥(−Δ)
ε−1

4 M
|f |

1
2

∥∥∥
2d

1−ε
,∞

·
∥∥∥M

|f |
1
2

(−Δ)
ε−1

4

∥∥∥
2d

1−ε
,∞

.

Since ε ∈ (1 − d, 1), it follows that 2d
1−ε > 2. Note that the function t �→ |t|

ε−1
2 , t ∈ R

d, 

falls into L 2d
1−ε

,∞(Rd). Hence, Theorem 2.4 is applicable to the functions |f |1/2 and 

g(t) = |t|
ε−1

2 and we can write

∥∥∥(−Δ)
ε−1

4 M
|f |

1
2

∥∥∥
2d

1−ε
,∞

,
∥∥∥M

|f |
1
2
(−Δ)

ε−1
4

∥∥∥
2d

1−ε
,∞

≤ c
(2)
d,ε

∥∥|f |
1
2

∥∥
2d

1−ε

= c
(2)
d,ε‖f‖

1
2

d
1−ε

.
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Combining these estimates, we obtain (i).

In the proof of (ii), we note that ε is negative and that 1 − ε > n ≥ l, 1 ≤ l ≤ n. We 

write

(−Δ)
ε+l−1

2 Mf (−Δ)− l
2 =

= (−Δ)
ε+l−1

2 M
|f |

1−
l

1−ε
· Msgn(f) · M

|f |
l

1−ε
(−Δ)− l

2 .

Using Hölder inequality for weak Lp ideals, we write

∥∥∥(−Δ)
ε+l−1

2 Mf (−Δ)− l
2

∥∥∥
d

1−ε
,∞

≤

≤ cl,d,ε

∥∥∥(−Δ)
ε+l−1

2 M
|f |

1−
l

1−ε

∥∥∥
d

1−ε−l
,∞

∥∥∥M
|f |

l
1−ε

(−Δ)− l
2

∥∥∥
d
l

,∞
.

Note that

d

l
≥

d

n
> 2,

d

1 − ε − l
≥

d

−ε
> 2.

Note that the function t �→ |t|ε+l−1, t ∈ R
d (respectively, the function t �→ |t|−l, t ∈ R

d) 

falls into L d
1−ε−l

,∞(Rd) (respectively, into L d
l

,∞(Rd)). Hence, Theorem 2.4 is applicable 

and we can write

∥∥∥(−Δ)
ε+l−1

2 M
|f |

1−
l

1−ε

∥∥∥
d

1−ε−l
,∞

≤ c
(3)
d,ε‖|f |1− l

1−ε ‖ d
1−ε−l

= c
(3)
d,ε‖f‖

1− l
1−ε

d
1−ε

,

∥∥∥M
|f |

l
1−ε

(−Δ)− l
2

∥∥∥
d
l

,∞
≤ c

(4)
d,ε‖|f |

l
1−ε ‖ d

l
= c

(4)
d,l ‖f‖

l
1−ε

d
1−ε

.

Combining these estimates, we obtain (ii). �

The following corollary follows immediately by applying Lemma 4.7 with f replaced 

by Dkf .

Lemma 4.8. Let ε ∈ (−d
2 , 1) with ε > 0 when d = 1, and let n ∈ Z+ with ε ∈ [−2n −

1, −2n + 1). For f ∈ C∞
c (Rd) set

Xk = (−Δ)
ε−1

4 MDkf (−Δ)
ε−1

4 , 1 ≤ k ≤ d,

Yk =

n∑

l=1

(
(−Δ)

ε+l−1
2 MDkf (−Δ)− l

2 + (−Δ)− l
2 MDkf (−Δ)

ε+l−1
2

)
, 1 ≤ k ≤ d.

Here, for n = 0, Yk is assumed to be zero. Then

‖Xk‖ d
1−ε

,∞, ‖Yk‖ d
1−ε

,∞ ≤ ‖f‖Ẇ 1
d

1−ε

.
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We are now in position to state and prove a useful representation formula for the 

commutators of interest.

Proposition 4.9. Let d ≥ 2 and let ε ∈ (−d
2 , 1) (alternatively, let d = 1 and ε ∈ (0, 1)). 

Choose n ∈ Z+ with ε ∈ [−2n − 1, 2n + 1). For every f ∈ C∞
c (Rd), we have

[(−Δ)
ε
2 , Mf ] =

d∑

k=1

T ∇
ψk

(
T ∇

φε+2n
(Xk)

)
−

d∑

k=1

T ∇
ψk

(Yk).

Here, Xk and Yk are given in Lemma 4.8, φε is given in (6) and ψk is given in (7).

Proof. Fix m ∈ N. Let Pm = χ( 1
m

,m)(−Δ). Consider the tuple A = ∇ · Pm and B =

PmMf Pm on the Hilbert space Pm(L2(Rd)). Clearly, A is bounded and |A| is bounded 

from below. Also, B ∈ L2 (due to the fact that Mf g(∇) belongs to L2 whenever f, g ∈

L2(Rd)). We now apply Lemma 4.6 (for n ∈ N) or Lemma 4.5 (for n = 0). Abbreviating 

δ := ε + 2n we obtain

Tm := (Pm(−Δ)
ε
2 ) · Mf · Pm − Pm · Mf · (Pm(−Δ)

ε
2 ) = [|A|ε, B]

=
d∑

k=1

T A

ψk

(
T A

φδ

(
|A|

ε−1
2 [Ak, B]|A|

ε−1
2

))

−
d∑

k=1

T A

ψk

( n∑

l=1

|A|ε+l−1[Ak, B]|A|−l +
n∑

l=1

|A|−l[Ak, B]|A|ε+l−1
)

.

Since

|A|
ε−1

2 [Ak, B]|A|
ε−1

2 = PmXkPm,
n∑

l=1

|A|ε+l−1[Ak, B]|A|−l +
n∑

l=1

|A|−l[Ak, B]|A|ε+l−1 = PmYkPm,

we see that

Tm =
d∑

k=1

T ∇
ψk

(
T ∇

φδ

(
Pm · Xk · Pm

))
−

d∑

k=1

T ∇
ψk

(
Pm · Yk · Pm

)
.

We now want to pass to the limit m → ∞. We have, by Lemma 4.8,

Xk, Yk ∈ L d
1−ε

,∞ ⊂ Lp,
d

1 − ε
< p < ∞.

Since Pm ↑ 1 strongly, it follows that

Pm · Xk · Pm → Xk, Pm · Yk · Pm → Yk in Lp .
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The operators T ∇
φδ

and T ∇
ψk

are bounded in Lp by Lemma 4.2 and Lemma 4.4, respectively. 

It follows that

T ∇
ψk

(
T ∇

φδ

(
Pm · Xk · Pm

))
→ T ∇

ψk

(
T ∇

φδ
(Xk)

)
, T ∇

ψk
(Pm · Yk · Pm) → T ∇

ψk
(Yk)

in Lp. We therefore have

Lp � T∞ := lim
m→∞

Tm =
d∑

k=1

T ∇
ψk

(
T ∇

φδ
(Xk)

)
−

d∑

k=1

T ∇
ψk

(Yk).

To complete the proof, it remains to notice that T∞ : L2(Rd) → L2(Rd) is the unique 

bounded extension of the operator [(−Δ)
ε
2 , Mf ] : C∞

c (Rd) → (C∞
c (Rd))′ defined via 

Lemma 3.1. Indeed, by Lemma 3.2 we have for all φ ∈ C∞
c (Rd)

Tmφ → (−Δ)
ε
2 Mf φ − Mf (−Δ)

ε
2 φ = [(−Δ)

ε
2 , Mf ]φ

in (C∞
c (Rd))′. This implies

T∞φ = [(−Δ)
ε
2 , Mf ]φ, φ ∈ C∞

c (Rd),

and therefore proves the claim. �

Remark 4.10. In the proof above, we used the folklore result that in any separable Banach 

ideal (E , ‖ · ‖E) and for any sequence of projections Pm ↑ 1, we have ‖x − PmxPm‖E → 0

as m → ∞. For a proof of a similar but more general fact, we refer to [14, Proposition 

2.5]. In particular, this fact holds in any Schatten ideal Lp, 1 ≤ p < ∞, but fails in the 

non-separable ideals Lp,∞.

We can now derive the trace ideal inequality in Theorem 1.1 (i) and Theorem 1.2 (i)

for smooth functions.

Lemma 4.11. Let ε ∈ (−d
2 , 1) with ε > 0 when d = 1. For every f ∈ C∞

c (Rd), we have

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

≤ cd,ε‖f‖Ẇ 1
d

1−ε

(Rd).

Proof. Choosing n as in Proposition 4.9 and applying its result, we find

[(−Δ)
ε
2 , Mf ] =

d∑

k=1

T ∇
ψk

(
T ∇

φε+2n
(Xk)

)
−

d∑

k=1

T ∇
ψk

(Yk).

By the triangle inequality, we obtain

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

≤
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≤ c′
d,ε

( d∑

k=1

∥∥∥T ∇
ψk

(
T ∇

φε+2n
(Xk)

)∥∥∥
d

1−ε
,∞

+

d∑

k=1

∥∥∥T ∇
ψk

(Yk)
∥∥∥

d
1−ε

,∞

)
≤

≤ c′
d,ε

∥∥∥T ∇
ψk

∥∥∥
L d

1−ε
,∞

→L d
1−ε

,∞

·
(

1 +
∥∥∥T ∇

φε+2n

∥∥∥
L d

1−ε
,∞

→L d
1−ε

,∞

)
·

·
( d∑

k=1

‖Xk‖ d
1−ε

,∞ +

d∑

k=1

‖Yk‖ d
1−ε

,∞

)
.

By Lemma 4.4, the first factor is finite (its value depends only on d and ε). By Lemma 4.2, 

the second factor is finite (its value depends only on d and ε). The assertion follows now 

from Lemma 4.8. �

Fact 4.12. Let (An) be a sequence of bounded operators with supn ‖An‖∞ < ∞ and let 

A : C∞
c (Rd) → (C∞

c (Rd))′ be such that Anφ → Aφ in the sense of distributions for every 

φ ∈ C∞
c (Rd). Then A extends to a bounded operator on L2(Rd) and An → A strongly.

Proof. Let M := supn ‖An‖∞. For φ, ψ ∈ C∞
c (Rd) we have

|〈ψ, Aφ〉| = lim
n→∞

|〈ψ, Anφ〉| ≤ M‖ψ‖2‖φ‖2 .

By density and the Riesz representation theorem, this implies Aφ ∈ L2(Rd) with 

‖Aφ‖2 ≤ M‖φ‖2. Consequently, A extends to a bounded operator on L2(Rd) and one 

easily verifies that Anf → Af for any f ∈ L2(Rd). �

Proof of Theorem 1.1 (i). The assertion follows from Lemma 4.11 by a simple density 

argument. Let us give the details.

Let f ∈ Ẇ 1
d

1−ε

(Rd). It is well known (see, e.g., [33, Theorem 11.43]) that C∞
c (Rd) is 

dense in Ẇ 1
d

1−ε

(Rd). (Observe that [33, Theorem 11.43] requires that either d ≥ 2 or else 

p > 1. In our case, if d < 2, then d = 1 and p = 1
1−ε . So, p > 1 means ε ∈ (0, 1), satisfying 

the assumption.) Choose a sequence {fn}n≥0 ⊂ C∞
c (Rd) such that fn → f in Ẇ 1

d
1−ε

(Rd). 

The proof of [33, Theorem 11.43] also shows that there is a sequence (cn) ⊂ C such that 

fn − cn → f in the space L d
1−ε

,loc(Rd). (Indeed, cn can be chosen as the mean value of 

f over {x ∈ R
d : n < |x| < 2n}.)

Denote, for brevity,

An := [(−Δ)
ε
2 , Mfn

] = [(−Δ)
ε
2 , Mfn−cn

], A := [(−Δ)
ε
2 , Mf ].

Since fn −cn → f in L1,loc(Rd), it follows from Lemma 3.1 that Anφ → Aφ in (C∞
c (Rd))′

for every φ ∈ C∞
c (Rd). By Fact 4.12 and the Fatou property of the ideal L d

1−ε
,∞ (see, 

e.g., [45, Theorem 2.7 (d)]), we have

‖A‖ d
1−ε

,∞ ≤ lim inf
n→∞

‖An‖ d
1−ε

,∞
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Since, by Lemma 4.11,

‖An‖ d
1−ε

,∞ ≤ cd,ε‖fn‖Ẇ 1
d

1−ε

, n ≥ 0,

we obtain the assertion. �

Proof of Theorem 1.2 (i). The assertion follows from Lemma 4.11 by a simple density 

argument. Let us give the details.

Let f ∈ Ẇ 1
d

1−ε

(Rd). It is well known (see, e.g., [33, Theorem 11.43]) that C∞
c (Rd) is 

dense in Ẇ 1
d

1−ε

(Rd). Choose a sequence (fn) ⊂ C∞
c (Rd) such that fn → f in Ẇ 1

d
1−ε

(Rd).

Denote for brevity

An = [(−Δ)
ε
2 , Mfn

], A = [(−Δ)
ε
2 , Mf ].

It follows from (5) that

‖An − A‖∞ ≤ c
(1)
d,ε‖fn − f‖Ẇ 1

d
1−ε

.

Recall from Lemma 4.11 that

‖An‖ d
1−ε

,∞ ≤ cd,ε‖fn‖Ẇ 1
d

1−ε

, n ≥ 0.

Using the Fatou property of the ideal L d
1−ε

,∞ (see, e.g., [45, Theorem 2.7 (d)]), we obtain

‖A‖ d
1−ε

,∞ ≤ lim sup
n→∞

‖An‖ d
1−ε

,∞ ≤ cd,ε lim sup
n→∞

‖fn‖Ẇ 1
d

1−ε

= cd,ε‖f‖Ẇ 1
d

1−ε

,

as claimed. �

5. Approximate expression for commutator

In this section, we prove an approximation results, which provides the leading term of 

the commutator [(1 −Δ)
ε
2 , Mf ]. This approximation is needed in the proof of Theorem 1.1

(ii) and Theorem 1.2 (ii).

Theorem 5.1. Let d ≥ 2 and ε ∈ (−d
2 , 1) (alternatively, let d = 1 and ε ∈ (0, 1)). For 

every f ∈ C∞
c (Rd) we have

[(1 − Δ)
ε
2 , Mf ] ∈ − ε

2 [Δ, Mf ](1 − Δ)
ε
2 −1 + (L d

1−ε
,∞)0.

The rest of this section is devoted to the proof of this theorem.

Let (Ω, ν) be a measure space and H a complex, separable Hilbert space. Recall that 

a function f : (Ω, ν) → B(H) is called measurable in the weak operator topology if for 
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every pair of vectors ξ, η ∈ H the function s �→ 〈f(s)ξ, η〉 is measurable. A function f :

(Ω, ν) → B(H) is said to be integrable in the weak operator topology if it is measurable in 

the weak operator topology and 
∫

Ω
‖f(s)‖∞ds < ∞; for details see, e.g., [18, Subsection 

2.7]. In this case, 
∫

Ω
f(s)ds determines uniquely an operator in B(H) called the weak 

integral. If the function F : (0, ∞) → Lp,∞, 1 < p < ∞, is continuous in the weak 

operator topology, and 
∫ ∞

0
‖F (λ)‖p,∞dλ < ∞, then its weak integral exists and belongs 

to Lp,∞. Furthermore, we record the following fact, established in [49, Proposition 2.3.2].

Fact 5.2. For every 1 < p < ∞ there is a constant cp such that, if F : (0, ∞) → Lp,∞ is 

continuous in the weak operator topology, then

∥∥∥
∞∫

0

F (λ)dλ
∥∥∥

p,∞
≤ cp

∞∫

0

‖F (λ)‖p,∞dλ.

Fact 5.3. Let f ∈ C∞
c (Rd). For every n ≥ 2, we have

[
1

1 + λ − Δ
, Mf ] =

n−1∑

k=1

Ak,f
1

(1 + λ − Δ)k+1
+

1

1 + λ − Δ
An,f

1

(1 + λ − Δ)n
.

Here, we use the inductive notation

A0,f = Mf , Ak+1,f = [Δ, Ak,f ], k ≥ 0.

Lemma 5.4. Let ε ∈ (0, 1). For f ∈ C∞
c (Rd) we have

∞∫

0

1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2
· λ

ε
2 dλ ∈ Ld,∞.

Proof. We first assume d ≥ 2 and bound

∥∥∥ 1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2

∥∥∥
d,∞

≤
∥∥∥ 1

1 + λ − Δ

∥∥∥
∞

∥∥∥A2,f (1 − Δ)− 3
2

∥∥∥
d,∞

∥∥∥ (1 − Δ)
3
2

(1 + λ − Δ)2

∥∥∥
∞

.

One easily finds that

∥∥∥ 1

1 + λ − Δ

∥∥∥
∞

≤
1

1 + λ
,

∥∥∥ (1 − Δ)
3
2

(1 + λ − Δ)2

∥∥∥
∞

≤
1

(1 + λ)
1
2

.

Moreover, A2,f is a second order differential operator with bounded, compactly supported 

coefficients. Explicitly,
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A2,f = 4
∑

j,k

M∂j∂kf ∂j∂k + 4
∑

j

M∂jΔf ∂j + MΔ2f .

We claim that by Cwikel’s estimate (Theorem 2.4 (i) for d ≥ 3 and Theorem 2.4 (ii) for 

d = 2) we have A2,f (1 −Δ)− 3
2 ∈ Ld,∞. To see this, we write ∂j∂k(1 −Δ)− 3

2 as (1 −Δ)− 1
2

times the bounded operator ∂j∂k(1 − Δ)−1. The operator M∂j∂kf (1 − Δ)− 1
2 belongs to 

the claimed trace ideal by Cwikel’s bound. The other terms in the expression for A2,f

can be handled similarly (and, in fact, enjoy better trace ideal properties than Ld,∞). 

Thus, we have shown that

∥∥∥ 1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2

∥∥∥
d,∞

≤
cn,f

(1 + λ)
3
2

.

Hence, the integrand is absolutely integrable in Ld,∞ and the assertion of the lemma for 

d ≥ 2 follows from Fact 5.2.

The proof for d = 1 is a variation of this argument. We bound

∥∥∥ 1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2

∥∥∥
1

≤
∥∥∥ 1

1 + λ − Δ

∥∥∥
∞

∥∥∥A2,f (1 − Δ)
ε
2 −2

∥∥∥
1

∥∥∥ (1 − Δ)2− ε
2

(1 + λ − Δ)2

∥∥∥
∞

.

One easily finds that

∥∥∥ 1

1 + λ − Δ

∥∥∥
∞

≤
1

1 + λ
,

∥∥∥ (1 − Δ)2− ε
2

(1 + λ − Δ)2

∥∥∥
∞

≤
1

(1 + λ)
ε
2

.

Furthermore, we have A2,f (1 −Δ)
ε
2 −2 ∈ L1 using Theorem 2.3. We, therefore, established 

the inequality

∥∥∥ 1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2

∥∥∥
1

≤
cn,f

(1 + λ)1+ ε
2

.

The integrand is absolutely integrable in L1. Using Fact 5.2 (with L1 instead of Ld,∞), 

we infer that the integral in the assertion belongs to L1 and, therefore, to L1,∞. �

Proof of Theorem 5.1 for 0 < ε < 1. Set δ = 2 −ε ∈ (1, 2). Using the functional calculus, 

we write (see, e.g., [8, Theorem 1, p.232])

(1 − Δ)
ε
2 =

sin(πε
2 )

π

∞∫

0

1 − Δ

1 + λ − Δ
λ− δ

2 dλ.

Therefore,
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[(1 − Δ)
ε
2 , Mf ] =

sin(πε
2 )

π

∞∫

0

[
1 − Δ

1 + λ − Δ
, Mf ]λ− δ

2 dλ.

It is immediate that

[
1 − Δ

1 + λ − Δ
, Mf ] = [1 −

λ

1 + λ − Δ
, Mf ] = −[

1

1 + λ − Δ
, Mf ] · λ.

Hence,

[(1 − Δ)
ε
2 , Mf ] = −

sin(πε
2 )

π

∞∫

0

[
1

1 + λ − Δ
, Mf ]λ

ε
2 dλ.

Using Fact 5.3 with n = 2, we write

[(1 − Δ)
ε
2 , Mf ] = −A1,f ·

sin(πε
2 )

π

∞∫

0

λ
ε
2 dλ

(1 + λ − Δ)2
−

−
sin(πε

2 )

π

∞∫

0

1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2
λ

ε
2 dλ.

It follows from Lemma 5.4 that

∞∫

0

1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2
λ

ε
2 dλ ∈ Ld,∞ ⊂ (L d

1−ε
,∞)0.

Again by the functional calculus, we have

∞∫

0

λ
ε
2 dλ

(1 + λ − Δ)2
= (1 − Δ)

ε
2 −1B(1 + ε

2 , 1 − ε
2 ) =

πε
2

sin(πε
2 )

(1 − Δ)
ε
2 −1,

where B(·, ·) denotes the beta function. This completes the proof. �

Lemma 5.5. Let α, β > 0 and δ ∈ (0, 2). Suppose p > 1 is such that p ≥ d
α+β+2 . We have

(1 − Δ)− α
2 ·

∞∫

0

1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2
λ− δ

2 dλ · (1 − Δ)− β
2 ∈ Lp,∞.

Proof. We claim that

(1 − Δ)− α
2 Mh(1 − Δ)− β

2 −1 ∈ L d
α+β+2 ,∞, h ∈ Cc(Rd). (8)
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By complex interpolation [45, Theorem 2.9], it suffices to prove that

Mh(1 − Δ)− α+β+2
2 ∈ L d

α+β+2 ,∞, h ∈ Cc(Rd).

The latter inclusion follows from Theorem 2.4, thus proving (8).

We now note that

(1 − Δ)− α
2 A2,f (1 − Δ)− β

2 −2 ∈ L d
α+β+2 ,∞.

Indeed, A2,f is a differential operator of second order with smooth, compactly supported 

coefficients. Hence, the inclusion follows from (8).

We now argue similarly as in the proof of Lemma 5.4. We bound

∥∥∥(1 − Δ)− α
2 ·

1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2
· (1 − Δ)− β

2

∥∥∥
d

α+β+2 ,∞
≤

≤
1

1 + λ

∥∥∥(1 − Δ)− α
2 A2,f (1 − Δ)− β

2 −2
∥∥∥

d
α+β+2 ,∞

≤
cα,β,f

1 + λ
.

Hence, the integrand is absolutely integrable in L d
α+β+2 ,∞. Consequently, it is absolutely 

integrable in Lp,∞ and the assertion follows from Fact 5.2. �

Proof of Theorem 5.1 for −d
2 < ε < 0, d ≥ 2. Choose 0 < δ < 1 and m ∈ N such that 

ε = −mδ. Using Leibniz’s rule, we write

[(1 − Δ)
ε
2 , Mf ] = [(1 − Δ)− mδ

2 , Mf ] =

=
m−1∑

l=0

(1 − Δ)− lδ
2 [(1 − Δ)− δ

2 , Mf ](1 − Δ)
(l+1−m)δ

2 .

Using the functional calculus, we write

(1 − Δ)− δ
2 =

sin(πδ
2 )

π

∞∫

0

λ− δ
2 dλ

1 + λ − Δ
,

where the integrand is a norm-continuous function of λ and the integral converges in 

operator norm.

We have

[(1 − Δ)− δ
2 , Mf ] =

sin(πδ
2 )

π

∞∫

0

[
1

1 + λ − Δ
, Mf ] · λ− δ

2 dλ.

Using Fact 5.3 with n = 2, we write
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[(1 − Δ)− δ
2 , Mf ] = A1,f ·

sin(πδ
2 )

π

∞∫

0

λ− δ
2 dλ

(1 + λ − Δ)2

+
sin(πδ

2 )

π

∞∫

0

1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2
λ− δ

2 dλ.

Thus,

[(1 − Δ)
ε
2 , Mf ] =

=
m−1∑

l=0

(1 − Δ)− lδ
2 A1,f ·

sin(πδ
2 )

π

∞∫

0

λ− δ
2 dλ

(1 + λ − Δ)2
· (1 − Δ)

(l+1−m)δ

2 +

+
m−1∑

l=0

sin(πδ
2 )

π
(1 − Δ)− lδ

2 ·

∞∫

0

1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2
λ− δ

2 dλ · (1 − Δ)
(l+1−m)δ

2 .

Choose p > 1 such that d
2−ε−δ ≤ p < d

1−ε . (Note that d
1−ε > 1 since ε > −d

2 and 

d ≥ 2.) It follows from Lemma 5.5 that

(1 − Δ)− lδ
2 ·

∞∫

0

1

1 + λ − Δ
A2,f

1

(1 + λ − Δ)2
λ− δ

2 dλ · (1 − Δ)
(l+1−m)δ

2 ∈ Lp,∞.

Thus,

[(1 − Δ)
ε
2 , Mf ] ∈

∈
m−1∑

l=0

(1 − Δ)− lδ
2 A1,f ·

sin(πδ
2 )

π

∞∫

0

λ− δ
2 dλ

(1 + λ − Δ)2
· (1 − Δ)

(l+1−m)δ

2 + (L d
1−ε

,∞)0.

Again by the functional calculus, we have

∞∫

0

λ− δ
2 dλ

(1 + λ − Δ)2
= (1 − Δ)− δ

2 −1 · B( δ
2 + 1, 1 − δ

2) =
πδ
2

sin(πδ
2 )

(1 − Δ)− δ
2 −1.

Thus,

[(1 − Δ)
ε
2 , Mf ] ∈ δ

2

m−1∑

l=0

(1 − Δ)− lδ
2 A1,f (1 − Δ)

(l−m)δ

2 −1 + (L d
1−ε

,∞)0.

With the help of Cwikel estimates (Theorem 2.4) it is easy to see that

[(1 − Δ)− lδ
2 , A1,f ](1 − Δ)

(l−m)δ

2 −1 ∈ (L d
1−ε

,∞)0, 0 ≤ l < m.
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Thus,

[(1 − Δ)
ε
2 , Mf ] ∈ δ

2

m−1∑

l=0

A1,f (1 − Δ)− lδ
2 (1 − Δ)

(l−m)δ

2 −1 + (L d
1−ε

,∞)0.

Since all summands on the right hand side are equal, the assertion follows. �

6. Spectral asymptotics for pseudo-differential operators

Our goal in this section is to extend the main result in [24].

Let Π be the C∗-subalgebra of B(L2(Rd)) generated by the algebras

{Mf : f ∈ C + C0(Rd)} and {g(∇(−Δ)− 1
2 ) : g ∈ C(Sd−1)}.

According to [48] (where a much stronger result is given in Theorem 1.2) or [39] (where 

a very general result is given in Theorem 3.3 and examplified on p. 284), there is a 

∗-homomorphism

sym : Π → C(Sd−1, C + C0(Rd))

such that, for all f ∈ C + C0(Rd) and g ∈ C(Sd−1),

sym(Mf ) = f ⊗ 1 and sym(g(∇(−Δ)− 1
2 )) = 1 ⊗ g .

We say that T ∈ B(L2(Rd)) is compactly supported from the right if there is a 

φ ∈ C∞
c (Rd) such that T = TMφ. We say that T ∈ B(L2(Rd)) is compactly supported 

if there is a φ ∈ C∞
c (Rd) such that T = MφTMφ.

Theorem 6.1. Let d ≥ 2 and p > 0. If T ∈ Π is compactly supported from the right, then

lim
t→∞

t
1
p μ

(
t, T (1 − Δ)− d

2p

)
= d− 1

p (2π)− d
p ‖sym(T )‖Lp(Rd×Sd−1).

This theorem with p = d appears in [24]. The above more general assertion can be 

obtained either by following the same steps as in that paper or, as we shall show here, as a 

consequence of the results proved there. The corresponding result for d = 1 is essentially 

the well-known Weyl asymptotic and will be discussed separately in Subsection 6.3.

6.1. An abstract result on spectral asymptotics

Our goal in this subsection is to prove the following result, which allows us to reduce 

spectral asymptotics for the product of powers to the power of a product. The parameter 

d in this subsection is an arbitrary real number, not necessarily an integer (although it 

will be in the application to the proof of Theorem 6.1).
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Proposition 6.2. Let d > p > 1. Let 0 ≤ A, B ∈ B(H). Suppose BA
1
2 ∈ Ld,∞, BpAp ∈

L d
p

,∞ and [Bp, A
1
2 ] ∈ (L d

p
,∞)0. Then

BpAp − (A
1
2 BA

1
2 )p ∈ (L d

p
,∞)0.

The first step in the proof of this proposition is an integral representation for the 

difference on the left side of the proposition. This representation formula is a special 

case of [49, Theorem 5.2.1], with a predecessor in [18].

Lemma 6.3. Let 0 ≤ A, B ∈ B(H) and let Y = A
1
2 BA

1
2 . For p > 1, define the mapping 

Tp : R → B(H) by,

Tp(s) :=

{
Bp−1[BA

1
2 , Ap− 1

2 ] + [BA
1
2 , A

1
2 ]Y p−1 if s = 0 ,

Bp−1+is[BA
1
2 , Ap− 1

2 +is]Y −is + Bis[BA
1
2 , A

1
2 +is]Y p−1−is if s �= 0.

We also define the function gp ∈ S(R) by setting

gp(t) :=

⎧
⎨
⎩

1 − p
2 if t = 0 ,

1 − e
p
2

t−e−
p
2

t

(e
t
2 −e−

t
2 )(e

(
p−1

2

)
t
+e

−

(
p−1

2

)
t
)

if t �= 0 .

Then the mapping Tp : R → B(H) is continuous in the weak operator topology and we 

have

BpAp − (A
1
2 BA

1
2 )p = Tp(0) −

∫

R

Tp(s)ĝp(s)ds.

Lemma 6.4. Let d > 0 and p > 1. Let 0 ≤ A, B ∈ B(H) and let Tp be as in Lemma 6.3. 

Suppose BpAp ∈ L d
p

,∞. We have

sup
s∈R

‖Tp(s)‖ d
p

,∞ < ∞.

Proof. We use the notion of logarithmic submajorization discussed, for instance in [37, 

Definition 2.3.10]. For x, y ∈ B(H) one write x ≺≺log y if 
∏n

k=1 μ(k, x) ≤
∏n

k=1 μ(k, y)

for all n ≥ 0. In this notation the Araki–Lieb–Thirring inequality (see [1]) states that

XrY r ≺≺log |XY |r, 0 < r ≤ 1.

Using this inequality with X = Bp, Y = Ap and taking into account that every 

quasi-Banach ideal is closed with respect to the logarithmic submajorization (see [37, 

Proposition 2.4.18]), we obtain from the assumption BpAp ∈ L d
p

,∞ the inclusions

Bp−1Ap−1 ∈ L d
p−1 ,∞, BA ∈ Ld,∞, B

1
2 A

1
2 ∈ L2d,∞.
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It follows from (2) that

‖x + y‖r,∞ ≤ 2
1
r (‖x‖r,∞ + ‖y‖r,∞) for all 0 < r < ∞.

Applying this quasi-triangle inequality, we have with Y := A
1
2 BA

1
2

‖Tp(s)‖ d
p

,∞ ≤ 2
p
d ‖Bp−1[BA

1
2 , Ap− 1

2 +is]‖ d
p

,∞ + 2
p
d ‖[BA

1
2 , A

1
2 +is]Y p−1‖ d

p
,∞.

Again using the quasi-triangle inequality, we obtain

‖Bp−1[BA
1
2 , Ap− 1

2 +is]‖ d
p

,∞ ≤ 2
p
d ‖BpAp‖ d

p
,∞ + 2

p
d ‖Bp−1Ap− 1

2 +isBA
1
2 ‖ d

p
,∞,

‖[BA
1
2 , A

1
2 +is]Y p−1‖ d

p
,∞ ≤ 2

p
d ‖BA1+isY p−1‖ d

p
,∞ + 2

p
d ‖A

1
2 BA

1
2 Y p−1‖ d

p
,∞.

Using Hölder’s inequality, we obtain

‖Bp−1Ap− 1
2 +isBA

1
2 ‖ d

p
,∞ ≤ 2

p
d ‖Bp−1Ap−1‖ d

p−1 ,∞‖A
1
2 BA

1
2 ‖d,∞,

‖BA1+isY p−1‖ d
p

,∞ ≤ 2
p
d ‖BA‖d,∞‖Y ‖p−1

d,∞.

Clearly,

‖A
1
2 BA

1
2 Y p−1‖ d

p
,∞ = ‖Y ‖p

d,∞ = ‖B
1
2 A

1
2 ‖2p

2d,∞.

Combining these estimates, we complete the proof. �

Lemma 6.5. Let 1 < r < ∞. Let 0 ≤ X, Y ∈ B(H). If [X, Y ] ∈ (Lr,∞)0, then also 

[X, Y z] ∈ (Lr,∞)0 for every z ∈ C with �(z) ≥ 1.

Proof. Without loss of generality, ‖Y ‖∞ = 1. Let fz be a Lipschitz function on R such 

that fz(t) = tz for t ∈ [0, 1]. We have

[X, Y z] = [X, fz(Y )] = T Y

f
[1]
z

([X, Y ]).

The main result of [43] yields that T Y

f
[1]
z

: (Lr,∞)0 → (Lr,∞)0, and this is enough to 

complete the proof. �

Lemma 6.6. Let d > p > 1. Let 0 ≤ A, B ∈ B(H) and let Tp be as in Lemma 6.3. Suppose 

BA
1
2 ∈ Ld,∞ and [Bp, A

1
2 ] ∈ (L d

p
,∞)0. We have

Tp(s) ∈ (L d
p

,∞)0, s ∈ R.
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Proof. Since [Bp, A
1
2 ] ∈ (L d

p
,∞)0, it follows from [25, Corollary 7.1] that

[Bp−1, A
1
2 ] ∈ (L d

p−1 ,∞)0, [B, A
1
2 ] ∈ (Ld,∞)0.

By the Leibniz rule, we have

Bp−1[BA
1
2 , Ap− 1

2 +is] = X1X2 − X3X4,

X1 = [Bp, Ap− 1
2 +is], X2 = A

1
2 , X3 = [Bp−1, Ap− 1

2 +is], X4 = BA
1
2 .

Applying Lemma 6.5 to X = Bp (respectively, X = Bp−1), Y = A
1
2 , r = d

p (respectively, 

r = d
p−1 ) and z = 2p − 1 + 2is, we obtain

X1 ∈ (L d
p

,∞)0 , X3 ∈ (L d
p−1 ,∞)0 .

Since also X2 is bounded and X4 ∈ Ld,∞, it follows from the inclusions above and from 

Hölder’s inequality that

Bp−1[BA
1
2 , Ap− 1

2 +is] ∈ (L d
p

,∞)0.

Thus,

Bp−1+is[BA
1
2 , Ap− 1

2 +is]Y −is ∈ (L d
p

,∞)0. (9)

We have

Bis[BA
1
2 , A

1
2 +is]Y p−1−is = Bis · [B, A

1
2 +is] · A

1
2 Y −is · Y p−1.

Recall that [B, A
1
2 ] ∈ (Ld,∞)0. Applying Lemma 6.5 with X = B, Y = A

1
2 , r = d and 

z = 1 + 2is, we obtain

[B, A
1
2 +is] ∈ (Ld,∞)0.

By assumption, BA
1
2 ∈ Ld,∞. Thus, Y ∈ Ld,∞ and Y p−1 ∈ L d

p−1 ,∞. Hence,

Bis[BA
1
2 , A

1
2 +is]Y p−1−is ∈ (L d

p
,∞)0. (10)

The assertion follows now by combining (9) and (10). �

We are finally in position to prove the main result of this subsection.

Proof of Proposition 6.2. By Lemmas 6.4 and 6.6, the mapping

s → Tp(s)ĝp(s), s ∈ R,
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is absolutely integrable in (L d
p

,∞)0. Since d > p, it follows that the latter mapping is 

Bochner integrable in (L d
p

,∞)0. In particular, its integral belongs to (L d
p

,∞)0. �

6.2. Proof of Theorem 6.1

We now combine the result from [24] with Proposition 6.2 and obtain the following 

preliminary version of Theorem 6.1.

Lemma 6.7. Let 1 < p < d. If 0 ≤ T ∈ Π is compactly supported, then one has

lim
t→∞

t
p
d μ(t, T p(1 − Δ)− p

2 ) =
(

d− 1
d (2π)−1‖sym(T )‖Ld(Rd×Sd−1)

)p

.

Proof. Set A = T and B = (1 − Δ)− 1
2 . We want to apply Proposition 6.2.

Let us show that the conditions of the Proposition 6.2 are satisfied. Indeed, the inclu-

sion [Bp, A
1
2 ] ∈ (L d

p
,∞)0 is established in Theorem A.1 for every p > 0. Recall that T is 

compactly supported and choose φ ∈ Cc(Rd) such that T = MφT . Then, by Theorem 2.4,

BA
1
2 = (1 − Δ)− 1

2 Mφ · T
1
2 ∈ Ld,∞, BpAp = (1 − Δ)− p

2 Mφ · T
p
2 ∈ L d

p
,∞.

By Proposition 6.2, we have

BpAp −
(
A

1
2 BA

1
2

)p
∈ (L d

p
,∞)0.

By [24, Theorem 1.5], we have

lim
t→∞

t
1
d μ(t, AB) = cT , cT := d− 1

d (2π)−1‖sym(T )‖Ld(Rd×Sd−1).

By Theorem A.1, we have [B, A
1
2 ] ∈ (Ld,∞)0. By a standard result on spectral asymp-

totics (see, e.g., [24, Lemma 3.1]) this implies that

lim
t→∞

t
1
d μ(t, A

1
2 BA

1
2 ) = cT .

In other words, we have

lim
t→∞

t
p
d μ

(
t,

(
A

1
2 BA

1
2

)p
)

= cp
T .

Again using [24, Lemma 3.1], we conclude that

lim
t→∞

t
p
d μ(t, BpAp) = cp

T .

This is exactly our assertion. �
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Lemma 6.8. Let d ≥ 2 and p > 0. The following conditions are equivalent:

(i) for every nonnegative and compactly supported T ∈ Π one has

lim
t→∞

t
1
p μ(t, T (1 − Δ)− d

2p ) = d− 1
p (2π)− d

p ‖sym(T )‖Lp(Rd×Sd−1)

(ii) for every nonnegative and compactly supported T ∈ Π one has

lim
t→∞

t
2
p μ(t, T (1 − Δ)− d

p ) = d− 2
p (2π)− 2d

p ‖sym(T )‖L p
2

(Rd×Sd−1).

Proof. We use the fact that the set of nonnegative, compactly supported elements of Π

is invariant under taking powers.

Renaming T into T 2, we rewrite (ii) as follows: for every nonnegative and compactly 

supported T ∈ Π one has

lim
t→∞

t
2
p μ(t, T 2(1 − Δ)− d

p ) = d− 2
p (2π)− 2d

p ‖sym(T )‖2
Lp(Rd×Sd−1).

It follows from Theorem A.1 (which we proved for d ≥ 2) and simple arithmetic that

T 2(1 − Δ)− d
p − (1 − Δ)− d

2p T 2(1 − Δ)− d
2p ∈ (L p

2 ,∞)0.

Using a standard result about spectral asymptotics (see, e.g., [24, Lemma 3.1]), we 

rewrite (ii) as follows:

lim
t→∞

t
2
p μ2(t, T (1 − Δ)− d

2p ) = d− 2
p (2π)− 2d

p ‖sym(T )‖2
Lp(Rd×Sd−1).

This is clearly equivalent to (i). �

Proof of Theorem 6.1. Let us first prove the assertion for 1 < p ≤ d. For p = d, the 

assertion is given by Theorem 1.5 in [24]. Hence, we may assume that 1 < p < d. Applying 

Lemma 6.7 to T
1
p (which belongs to Π and is compactly supported), we conclude that

lim
t→∞

t
p
d μ(t, T (1 − Δ)− p

2 ) = d− p
d (2π)−p‖sym(T

1
p )‖p

Ld(Rd×Sd−1)

= d− p
d (2π)−p‖sym(T )‖L d

p
(Rd×Sd−1)

Renaming p into d
p and noting that as p runs through (1, d), d

p runs through the same 

interval, we conclude the assertion for 1 < p < d (and, hence, for 1 < p ≤ d).

Let us now prove the assertion in full generality. Fix p > 0. Choose n ∈ Z such that 

q = 2np ∈ (1, d]. By Lemma 6.7, for every nonnegative and compactly supported T ∈ Π

we have

lim
t→∞

t
1
q μ(t, T (1 − Δ)− d

2q ) = d− 1
q (2π)− d

q ‖sym(T )‖Lq(Rd×Sd−1).
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By repeated use of Lemma 6.8, we deduce that for every nonnegative and compactly 

supported T ∈ Π we have

lim
t→∞

t
1
p μ(t, T (1 − Δ)− d

2p ) = d− 1
p (2π)− d

p ‖sym(T )‖Lp(Rd×Sd−1).

This proves the assertion for every nonnegative and compactly supported T ∈ Π.

Consider now the general case. Let T ∈ Π be compactly supported from the right. 

Clearly, |T | ∈ Π is nonnegative and compactly supported. By the preceding paragraph, 

we have

lim
t→∞

t
1
p μ(t, |T |(1 − Δ)− d

2p ) = d− 1
p (2π)− d

p ‖sym(|T |)‖Lp(Rd×Sd−1).

Observing that for any operators A, B ∈ B(H) we have μ(AB) = μ(|AB|) and |AB| =∣∣|A|B
∣∣, we write

μ
(

T (1 − Δ)− d
2p

)
= μ

(
|T |(1 − Δ)− d

2p

)
, sym(|T |) = |sym(T )|.

This proves the assertion in general case. �

6.3. Asymptotics for d = 1

For d = 1, the sphere S
d−1 is just a two-point set. Hence, the algebra Π consists 

of two ‘copies’ of the first algebra in the definition of Π. So, the result analogous to 

Theorem 6.1 should be stated only for multiplication operators. This is the well-known 

Weyl asymptotic formula. For the convenience of the reader we explain how this can be 

deduced from the results of Birman–Solomyak in [5].

Theorem 6.9. Let d = 1 and p > 0. If f ∈ Cc(R), then

lim
t→∞

t
1
p μ(t, Mf (1 − Δ)− 1

2p ) = π− 1
p ‖f‖p.

The ingredient from [5] that we use is the following.

Lemma 6.10. Let d = 1 and let p > 1. If f ∈ Cc(R), then

lim
t→∞

t
1
p μ(t, Mf̄ (−Δ)− 1

2p Mf ) = π− 1
p ‖f‖2

2p.

Proof. This is a very special case of [5, Theorem 1]. Indeed, take m = 1 and α = 1
p −1 ∈

(−1, 0). Set θ(t) = |t|α, Φ(t, t′) = 1 and a(t) = f(t) for every t ∈ R. Set E = supp(f).

Note that in [5] a non-standard notion of Fourier transform is used. However, for 

a homogeneous function θ of degree α ∈ (−1, 0), this notion coincides with the usual 

notion of Fourier transform. In particular, the operator T featuring in [5, (2.4)] is given 

by a constant times Mf̄ (−Δ)− 1
2p Mf . �
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Lemma 6.11. Let d = 1 and p > 0. The following conditions are equivalent:

(i) for every 0 ≤ f ∈ Cc(R) one has

lim
t→∞

t
1
p μ(t, Mf (1 − Δ)− 1

2p ) = π− 1
p ‖f‖p

(ii) for every 0 ≤ f ∈ Cc(R) one has

lim
t→∞

t
2
p μ(t, Mf (1 − Δ)− 1

p ) = π− 2
p ‖f‖ p

2
.

Proof. The proof follows that of Lemma 6.8 mutatis mutandi. Instead of Theorem A.1, 

which we stated under the assumption d ≥ 2, we apply Lemma A.3, whose proof remains 

valid for d = 1. �

Proof of Theorem 6.9. First, take p > 2. Applying Lemma 6.10 to p
2 and taking into 

account that

μ(Mf̄ (−Δ)− 1
p Mf ) = μ2(Mf (−Δ)− 1

2p ),

we arrive at

lim
t→∞

t
2
p μ2(t, Mf (−Δ)− 1

2p ) = π− 2
p ‖f‖2

p.

Noting that, by Theorem 2.3,

Mf (−Δ)− 1
2p − Mf (1 − Δ)− 1

2p ∈ (Lp,∞)0,

and using a standard result about spectral asymptotics (see, e.g., [24, Lemma 3.1]), we 

infer the assertion for p > 2.

The assertion for p ≤ 2 follows by induction in the same way as in the proof of 

Theorem 6.1, using Lemma 6.11 instead of Lemma 6.8. �

7. Proof of Theorem 1.1 (ii) and Theorem 1.2 (ii)

Parts (ii) of Theorems 1.1 and 1.2 state spectral asymptotics for [(−Δ)
ε
2 , Mf ] under 

the sole assumption that the leading term is finite. We begin by proving these asymptotics 

in the smooth case.

Lemma 7.1. Let d ≥ 2 and ε ∈ (−d
2 , 1) (alternatively, let d = 1 and ε ∈ (0, 1)). If 

f ∈ C∞
c (Rd), then

lim
t→∞

t
1−ε

d μ
(

t, [(−Δ)
ε
2 , Mf ]

)
= κd,ε‖f‖Ẇ 1

d
1−ε

(Rd)
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with κd,ε given by (1).

Proof. Set

T := ε
d∑

k=1

Dk

(−Δ)
1
2

MDkf

and note that T ∈ Π and that T is compactly supported from the right.

We claim that

[(−Δ)
ε
2 , Mf ] − T (1 − Δ)− 1−ε

2 ∈ (L d
1−ε

,∞)0. (11)

To prove this, we note that by Theorem 2.3

[(1 − Δ)
ε
2 , Mf ] − [(−Δ)

ε
2 , Mf ] =

=
(
(1 − Δ)

ε
2 − (−Δ)

ε
2

)
Mf − Mf

(
(1 − Δ)

ε
2 − (−Δ)

ε
2

)
∈ L d

1−ε
⊂ (L d

1−ε
,∞)0.

Here we use the assumption f ∈ C∞
c (Rd) together with the fact that the function 

ξ �→ (1 + |ξ|2)
ε
2 − |ξ|ε belongs to L d

1−ε
(Rd) if d

1−ε ≥ 2 and to 	 d
1−ε

(L2)(Rd) if d
1−ε < 2. 

Next, by Theorem 5.1,

[(1 − Δ)
ε
2 , Mf ] + ε

2 [Δ, Mf ](1 − Δ)
ε
2 −1 ∈ (L d

1−ε
,∞)0.

Finally, we write

−[Δ, Mf ] = 2
d∑

k=1

MDkf Dk − MΔf .

For the second term we use Theorem 2.3 similarly as before and find

MΔf (1 − Δ)
ε
2 −1 ∈ L d

1−ε
⊂ (L d

1−ε
,∞)0.

For the first term we again use Theorem 2.3 and find

ε

d∑

k=1

MDkf Dk(1 − Δ)
ε
2 −1 − T (1 − Δ)− 1−ε

2 ∈ L d
1−ε

⊂ (L d
1−ε

,∞)0.

This completes the proof of (11).

Consider the case d ≥ 2. The inclusion (11), together with simple limiting arguments 

(see, e.g., [24, Lemma 3.1]) and Theorem 6.1, applied with p = d
1−ε , implies
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lim
t→∞

t
1−ε

d μ
(

t, [(−Δ)
ε
2 , Mf ]

)
= lim

t→∞
t

1−ε
d μ

(
t, T (1 − Δ)− 1−ε

2

)

= d− 1−ε
d (2π)−1+ε‖sym(T )‖L d

1−ε
(Rd×Sd−1)

.

Finally, we compute, similarly as in [24, Lemma 8.4],

‖sym(T )‖
d

1−ε

L d
1−ε

(Rd×Sd−1)
= |ε|

d
1−ε

∫

Rd

∫

Sd−1

|ω · ∇f(x)|
d

1−ε dω dx

= |ε|
d

1−ε

∫

Rd

|∇f(x)|
d

1−ε dx

∫

Sd−1

|ωd|
d

1−ε dω .

This completes the proof for d ≥ 2.

Consider the case d = 1. The inclusion (11) reads as

[(−Δ)
ε
2 , Mf ] ∈ −εMDf (1 − Δ)

ε−1
2 · sgn(D) + (L 1

1−ε
,∞)0.

By a simple limiting argument (see, e.g., [24, Lemma 3.1]), this reduces the assertion for 

d = 1 to the corresponding assertion about the operator εMDf(1 − Δ)
ε−1

2 · sgn(D). Since 

sgn(D) is unitary, we have

μ(MDf (1 − Δ)
ε−1

2 · sgn(D)) = μ(MDf (1 − Δ)
ε−1

2 ) .

The assertion for d = 1 follows now from Theorem 6.9 (applied with p = 1
1−ε ). �

Proof of Theorem 1.1 (ii) and Theorem 1.2 (ii). The assertion follows from Lemma 7.1

and the universal bounds in parts (i) by means a simple approximation argument (see, 

e.g., [24, Lemma 3.2]). �

In the proof of part (iii) we need a lower bound with localization functions.

Lemma 7.2. Let d ≥ 2 and ε ∈ (−d
2 , 1) (alternatively, let d = 1 and ε ∈ (0, 1)). If 

f ∈ C∞(Rd) and χ ∈ Cc(Rd), then

lim
t→∞

t
1−ε

d μ
(

t, Mχ̄[(−Δ)
ε
2 , Mf ]Mχ

)
= κd,ε

⎛
⎝

∫

Rd

|χ|
2d

1−ε |∇f |
d

1−ε

⎞
⎠

1−ε
d

with κd,ε given by (1).

Proof. Let φ ∈ C∞
c (Rd) be real-valued with χφ = χ. Then

Mχ̄[(−Δ)
ε
2 , Mf ]Mχ = Mχ̄[(−Δ)

ε
2 , Mf ·φ]Mχ.
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Hence, we may assume without loss of generality that f ∈ C∞
c (Rd). The rest of the 

argument follows that in Corollary 7.1 mutatis mutandi. �

The following bound is an immediate consequence of Lemma 7.2.

Lemma 7.3. Let d ≥ 2 and let ε ∈ (−d
2 , 1) (alternatively, let d = 1 and ε ∈ (0, 1)). There 

is a constant cd,ε > 0 such that for all f ∈ C∞(Rd) and χ ∈ Cc(Rd),

‖Mχ̄[(−Δ)
ε
2 , Mf ]Mχ‖ d

1−ε
,∞ ≥ cd,ε

⎛
⎝

∫

Rd

|χ|
2d

1−ε |∇f |
d

1−ε

⎞
⎠

1−ε
d

.

8. Proof of Theorems 1.1 and 1.2 (iii)

In this section, Tt, t ∈ R
d, denotes the translation operator,

(Ttf)(s) = f(s + t) , s ∈ R
d .

Lemma 8.1. Let ε ∈ (−d
2 , 0) and let f ∈ L1,loc(Rd). If h, Φ ∈ Cc(Rd), then

∫

Rd

Φ(t)〈T−tf, h〉dt = 〈f ∗ Φ, h〉.

Proof. Let h be supported in B(0, r1) and let Φ be supported in B(r2). We have

∫

Rd×Rd

|h(s)||Φ(t)||f(s − t)| dsdt ≤ ‖h‖∞‖Φ‖∞

∫

|s|≤r1

|t|≤r2

|f(s − t)| dsdt =

= ‖h‖∞‖Φ‖∞

∫

|u|≤r1

|u+v|≤r2

|f(v)| dudv ≤ ‖h‖∞‖Φ‖∞

∫

|u|≤r1

|v|≤r1+r2

|f(v)| dudv =

= cdr2
1‖h‖∞‖Φ‖∞

∫

|v|≤r1+r2

|f(v)| dv < ∞.

By Fubini theorem, we have

∫

Rd

Φ(t)
( ∫

Rd

f(s − t)h(s) ds
)

dt =

∫

Rd

h(s)
( ∫

Rd

f(s − t)Φ(t)dt
)

ds.

This completes the proof. �
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In the following lemma we use the notion of submajorization, which is discussed in 

detail for instance in [37, Section 2.3].

Lemma 8.2. Let ε ∈ (−d
2 , 1] and let f ∈ L1,loc(Rd) be such that [(−Δ)

ε
2 , Mf ] extends 

to a bounded operator on L2(Rd). If Φ ∈ Cc(Rd) is nonnegative with ‖Φ‖1 = 1, then 

[(−Δ)
ε
2 , Mf∗Φ] also extends to a bounded operator on L2(Rd) and

[(−Δ)
ε
2 , Mf∗Φ] ≺≺ [(−Δ)

ε
2 , Mf ].

Moreover, if [(−Δ)
ε
2 , Mf ] is compact, then so is [(−Δ)

ε
2 , Mf∗Φ].

Proof. Let A : L2(Rd) → L2(Rd) be the extension of [(−Δ)
ε
2 , Mf ]. We consider the 

weak integral

B =

∫

Rd

Φ(t)T−tATtdt.

Clearly, B is a bounded operator and we have B ≺≺ A; see, for instance, [35, Lemma 

18 and its proof].

We now claim that

〈Bφ, ψ〉 = 〈[(−Δ)
ε
2 , Mf∗Φ]φ, ψ〉, φ, ψ ∈ C∞

c (Rd). (12)

By definition,

LHS =

∫

Rd

Φ(t)〈T−tATtφ, ψ〉dt =

∫

Rd

Φ(t)〈[(−Δ)
ε
2 , MT−tf ]φ, ψ〉dt.

By Lemma 3.1, we have

〈[(−Δ)
ε
2 , MT−tf ]φ, ψ〉 = 〈T−tf · φ, (−Δ)

ε
2 ψ〉 − 〈(−Δ)

ε
2 φ, T−tf · ψ〉 =

= 〈T−tf, φ̄ · (−Δ)
ε
2 ψ〉 − 〈ψ̄ · (−Δ)

ε
2 φ, T−tf〉 = 〈T−tf, h〉,

where

h = φ̄ · (−Δ)
ε
2 ψ − ψ · (−Δ)

ε
2 φ ∈ Cc(Rd).

Meanwhile, it follows from Lemma 3.1 that

RHS = 〈(f ∗ Φ) · φ, (−Δ)
ε
2 ψ〉 − 〈(−Δ)

ε
2 φ, (f ∗ Φ) · ψ〉 = 〈f ∗ Φ, h〉.

The claim (12) follows now from Lemma 8.1.
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By (12), we have

Bφ = [(−Δ)
ε
2 , Mf∗Φ]φ, φ ∈ C∞

c (Rd).

Therefore, [(−Δ)
ε
2 , Mf∗Φ] extends to a bounded operator on L2(Rd) and its extension 

is exactly B.

The last statement concerning compactness follows from the general fact that any 

bounded operator that is submajorized by a compact one is compact. The latter fact 

follows immediately from the definition of submajorization via the singular value func-

tion, together with the simple fact that a bounded operator A is compact if and only if 

N−1
∑N

n=1 μ(n, A) → 0 as N → ∞. �

Lemma 8.3. Let 1 < p ≤ ∞ and let f ∈ L1,loc(Rd) be such that

‖∇(f ∗ Φ)‖Lp(Rd,Cd) ≤ 1

for every nonnegative Φ ∈ C∞
c (Rd) with ‖Φ‖1 = 1. Then f ∈ Ẇ 1,p(Rd) and

‖f‖Ẇ 1
p (Rd) ≤ 1.

Proof. Let 0 ≤ Φ ∈ C∞
c (Rd) with ‖Φ‖1 = 1 and set

Φn(t) := ndΦ(nt), t ∈ R
d, n ∈ N.

By assumption, we have

‖∇(f ∗ Φn)‖Lp(Rd,Cd) ≤ 1.

Since 1 < p ≤ ∞, Lp(Rd, Cd) is the Banach dual of a separable space, namely of 

Lp′(Rd, Cd). Therefore (see, e.g., [53, Proposition 4.49]) there is a subsequence (∇(f ∗

Φnk
)) and a G ∈ Lp(Rd, Cd) such that ∇(f ∗ Φnk

) → G in weak∗-topology on Lp. In 

particular, ∇(f ∗ Φnk
) → G in the sense of distributions. However, ∇(f ∗ Φnk

) → ∇f in 

the sense of distributions. By uniqueness of the limit, we have G = ∇f and, therefore, 

∇f ∈ Lp(Rd, Cd) and

‖∇f‖Lp(Rd,Cd) ≤ 1,

as claimed. �

Proof of Theorems 1.1 and 1.2 (iii). Let f ∈ L1,loc(Rd) and assume [(−Δ)
ε
2 , Mf ] ex-

tends to a bounded operator on L2(Rd) that belongs to L d
1−ε

,∞.

Let Φ ∈ C∞
c (Rd) be nonnegative with ‖Φ‖1 = 1. By Lemma 8.2, we have

[(−Δ)
ε
2 , Mf∗Φ] ≺≺ [(−Δ)

ε
2 , Mf ].
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Therefore, if χ ∈ C∞
c (Rd) satisfies ‖χ‖∞ = 1, we have

∥∥∥Mχ[(−Δ)
ε
2 , Mf∗Φ]Mχ

∥∥∥
d

1−ε
,∞

≤ c
(1)
d,ε

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

.

Meanwhile, since χ ∈ C∞
c (Rd) and f ∗ Φ ∈ C∞(Rd), Lemma 7.3 implies that

‖|χ|2 · |∇(f ∗ Φ)|‖L d
1−ε

(Rd) ≤ c
(2)
d,ε

∥∥∥Mχ̄[(−Δ)
ε
2 , Mf∗Φ]Mχ

∥∥∥
d

1−ε
,∞

.

Combining these bounds, we find

‖|χ|2 · |∇(f ∗ Φ)|‖L d
1−ε

(Rd) ≤ c
(1)
d,εc

(2)
d,ε

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

.

Taking the supremum over χ ∈ C∞
c (Rd) such that ‖χ‖∞ = 1, we obtain

‖∇(f ∗ Φ)‖L d
1−ε

(Rd,Cd) ≤ c
(1)
d,εc

(2)
d,ε

∥∥∥[(−Δ)
ε
2 , Mf ]

∥∥∥
d

1−ε
,∞

.

The assertion follows from Lemma 8.3. �

9. Proof of Theorem 1.3

Proof of Theorem 1.3 (i). The first part follows from [9, Theorem 2]. Indeed, note that 

for sufficiently nice functions φ,

(−Δ)
1
2 φ(t) = cd

∫

Rd

φ(s) − φ(t)

|t − s|d+1
ds,

where the integral is understood in the principal value sense. Therefore [(−Δ)
1
2 , Mf ] has 

integral kernel

cd
f(t) − f(s)

|t − s|d+1
,

and this is precisely the setting of [9, Theorem 2]. �

For the proofs of (ii) and (iii), we use the following notation

eξ(t) := eiξ·t, t, ξ, ∈ R
d.

and the following auxiliary results.
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Lemma 9.1. Let φ, ψ, f ∈ S(Rd). We have

〈ψ, fφ〉 = (2π)− d
2

∫

Rd×Rd

f̂(η1 − η2)ψ̂(η1)φ̂(η2)dη1 dη2,

〈ψ, [(−Δ)
1
2 , Mf ]φ〉 = (2π)− d

2

∫

Rd×Rd

(|η1| − |η2|)f̂(η1 − η2)ψ̂(η1)φ̂(η2)dη1 dη2.

Here f̂(x) = (2π)− d
2

∫
Rd e−iξ·xf(x)dx denotes the Fourier transform.

Proof. The first assertion is standard and the proof is omitted.

To prove the second assertion, suppose first that φ̂ and ψ̂ vanish near 0. It follows 

that (−Δ)
1
2 φ and (−Δ)

1
2 ψ are Schwartz functions. Note that

̂(−Δ)
1
2 ψ(η1) = |η1|ψ̂(η1), ̂(−Δ)

1
2 φ(η2) = |η2|φ̂(η2), η1, η2 ∈ R

d.

We have

〈ψ, [(−Δ)
1
2 , Mf ]φ〉 = 〈(−Δ)

1
2 ψ, fφ〉 − 〈ψ, f((−Δ)

1
2 φ)〉.

Using the first assertion, we write

〈(−Δ)
1
2 ψ, fφ〉 = (2π)− d

2

∫

Rd×Rd

|η1|f̂(η1 − η2)ψ̂(η1)φ̂(η2)dη1 dη2,

〈ψ, f((−Δ)
1
2 φ)〉 = (2π)− d

2

∫

Rd×Rd

|η2|f̂(η1 − η2)ψ̂(η1)φ̂(η2)dη1 dη2.

Combining these equalities, we obtain the second assertion for the case when φ̂ and ψ̂

vanish near 0.

However,

∣∣∣
∫

Rd×Rd

(|η1| − |η2|)f̂(η1 − η2)ψ̂(η1)φ̂(η2)dη1 dη2

∣∣∣ ≤ ‖f̂ ′‖∞‖φ̂‖1‖ψ̂‖1.

So, the right hand side in the second assertion is a continuous functional of ψ̂ in L1-norm. 

One can also see that so is the left hand side. Thus, we can remove the restriction on φ

and ψ. �

Lemma 9.2. Let f ∈ C∞
c (Rd) and let ω ∈ S

d−1. We have

Me−nω
[(−Δ)

1
2 , Mf ]Menω

→ Mω·∇f , n → ∞,

in the weak operator topology.
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Proof. Let φ, ψ ∈ C∞
c (Rd). Note that

ênωφ(η1) = φ̂(η1 − nω), ênωψ(η2) = ψ̂(η2 − nω).

Applying the second assertion of Lemma 9.1 to the functions enωφ, enωψ, f ∈ C∞
c (Rd), 

we arrive at

〈ψ,
(
Me−nω

[(−Δ)
1
2 , Mf ]Menω

)
φ〉 = 〈enωψ, [(−Δ)

1
2 , Mf ](enωφ)〉 =

= (2π)− d
2

∫

Rd×Rd

(|η1| − |η2|)f̂(η1 − η2)ψ̂(η1 − nω)φ̂(η2 − nω)dη1 dη2.

Replacing η1 with η1 + nω and η2 with η2 + nω, we obtain

〈ψ,
(
Me−nω

[(−Δ)
1
2 , Mf ]Menω

)
φ〉 =

= (2π)− d
2

∫

Rd×Rd

(|η1 + nω| − |η2 + nω|)f̂(η1 − η2)ψ̂(η1)φ̂(η2)dη1 dη2.

Set

Fn(η1, η2) := (|η1 + nω| − |η2 + nω|)f̂(η1 − η2)ψ̂(η1)φ̂(η2), η1, η2 ∈ R
d,

F (η1, η2) := (|η1 − η2|)f̂(η1 − η2)ψ̂(η1)φ̂(η2), η1, η2 ∈ R
d,

F∞(η1, η2) := (ω · (η1 − η2))f̂(η1 − η2)ψ̂(η1)φ̂(η2), η1, η2 ∈ R
d.

It follows from the triangle inequality that |Fn| ≤ F on Rd × R
d. We have

lim
n→∞

|η1 + nω| − |η2 + nω| → ω · (η1 − η2), η1, η2 ∈ R
d.

Thus, Fn → F∞ pointwise. Moreover, since

|F (η1, η2)| ≤ ‖ ̂(−Δ)
1
2 f‖∞|ψ̂|(η1)|φ̂|(η2), η1, η2 ∈ R,

it follows that F is integrable on Rd × R
d. By the Dominated Convergence Theorem, we 

have

∫

Rd×Rd

Fn(η1, η2)dη1dη2 →

∫

Rd×Rd

F (η1, η2)dη1dη2, n → ∞.

Thus,

lim
n→∞

〈ψ,
(
Me−nω

[(−Δ)
1
2 , Mf ]Menω

)
φ〉 =
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= (2π)− d
2

∫

Rd×Rd

(ω · (η1 − η2))f̂(η1 − η2)ψ̂(η1)φ̂(η2)dη1dη2 =

= (2π)− d
2

∫

Rd×Rd

ω̂ · ∇f(η1 − η2)ψ̂(η1)φ̂(η2)dη1dη2 = 〈ψ, (ω · ∇f)φ〉.

Since our sequence of operators is bounded in the uniform norm, the assertion follows. �

Lemma 9.3. Let f ∈ C∞(Rd) be such that [(−Δ)
1
2 , Mf ] is bounded. We have f ∈ Ẇ 1

∞(Rd)

and

‖f‖Ẇ 1
∞

(Rd) ≤ ‖[(−Δ)
1
2 , Mf ]‖∞.

Proof. Let χ ∈ C∞
c (Rd) with ‖χ‖∞ = 1 and choose θ ∈ C∞

c (Rd) with θχ = χ. It is 

immediate that fθ ∈ C∞
c (Rd) and

Mχ̄[(−Δ)
1
2 , Mfθ]Mχ = Mχ̄[(−Δ)

1
2 , Mf ]Mχ.

Therefore,

‖Mχ̄[(−Δ)
1
2 , Mfθ]Mχ‖∞ ≤ ‖[(−Δ)

1
2 , Mf ]‖∞

and, for every n ∈ N and for every ω ∈ S
d−1,

‖Mχ̄ · Me−nω
[(−Δ)

1
2 , Mfθ]Menω

· Mχ‖∞ ≤ ‖[(−Δ)
1
2 , Mf ]‖∞.

Letting n → ∞, we deduce from Lemma 9.2 that for every ω ∈ S
d−1

‖Mχ̄ · Mω·∇(fθ) · Mχ‖∞ ≤ ‖[(−Δ)
1
2 , Mf ]‖∞.

In other words, for every ω ∈ S
d−1 we have

‖|χ|2(ω · ∇(fθ))‖L∞(Rd) ≤ ‖[(−Δ)
1
2 , Mf ]‖∞.

We have |χ|2∇θ = 0 and therefore |χ|2(ω · ∇(fθ)) = |χ|2(ω∇f). Thus, we have shown 

that for every ω ∈ S
d−1 we have

‖|χ|2(ω · ∇f)‖L∞(Rd ≤ ‖[(−Δ)
1
2 , Mf ]‖∞

Taking the supremum over all χ ∈ C∞
c (Rd) with ‖χ‖∞ = 1, we obtain

‖ω · ∇f‖L∞(Rd) ≤ ‖[(−Δ)
1
2 , Mf ]‖∞

for every ω ∈ S
d−1. Since ∇f is continuous, we deduce that
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|ω · (∇f)(x)| ≤ ‖[(−Δ)
1
2 , Mf ]‖∞, for all ω ∈ S

d−1 and all x ∈ R
d.

For given x ∈ R
d with ∇f(x) �= 0 we pick ω = ∇f(x)/|∇f(x)| and obtain

|(∇f)(x)| ≤ ‖[(−Δ)
1
2 , Mf ]‖∞, x ∈ R

d,

which is the claimed inequality. �

Proof of Theorem 1.3 (ii). Let f ∈ L1,loc(Rd) and assume the operator [(−Δ)
1
2 , Mf ] is 

bounded. Let Φ ∈ C∞
c (Rd) be nonnegative with ‖Φ‖1 = 1. By Lemma 8.2, we have

‖[(−Δ)
1
2 , Mf∗Φ]‖∞ ≤ ‖[(−Δ)

1
2 , Mf ]‖∞.

Since f ∗ Φ ∈ C∞(Rd), it follows from Lemma 9.3 that

‖f ∗ Φ‖Ẇ 1
∞

(Rd) ≤ ‖[(−Δ)
1
2 , Mf ]‖∞.

The assertion follows now from Lemma 8.3. �

Lemma 9.4. Let f, χ ∈ C∞
c (Rd). If Mχ̄[(−Δ)

1
2 , Mf ]Mχ extends to a compact operator, 

then χ∇f = 0.

Proof. For every ψ, φ ∈ C∞
c (Rd) and for every ω ∈ S

d−1, we have enωψ, enωφ → 0

weakly to zero in L2(Rd) as n → ∞. Therefore, the compactness of the operator implies

〈enωχψ, [(−Δ)
1
2 , Mf ]enωχφ〉 → 0, n → ∞.

In other words,

〈χψ, (Me−nω
[(−Δ)

1
2 , Mf ]Menω

)(χφ)〉 → 0, n → ∞.

By Lemma 9.2, we deduce that for every ω ∈ S
d−1

〈χψ, Mω·∇f (χφ)〉 = 0.

In particular,

∫

Rd

|χ|2ψ̄φ∂kf = 0, 1 ≤ k ≤ d.

Taking ψ̄φ to be (approximately) the sign of ∂kf , we conclude that

∫

Rd

|χ|2|∂kf | = 0, 1 ≤ k ≤ d.
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This completes the proof. �

Proof of Theorem 1.3 (iii). Let f ∈ L1,loc(Rd) and assume that [(−Δ)
1
2 , Mf ] extends to 

a compact operator.

Let Φ ∈ C∞
c (Rd) be nonnegative with ‖Φ‖1 = 1. Let χ ∈ C∞

c (Rd) and choose 

θ ∈ C∞
c (Rd) with θχ = χ.

By Lemma 8.2, [(−Δ)
1
2 , MΦ∗f ] is compact. Therefore,

Mχ̄[(−Δ)
1
2 , M(Φ∗f)θ]Mχ = Mχ̄[(−Δ)

1
2 , MΦ∗f ]Mχ

is also compact. Clearly, (Φ ∗ f)θ ∈ C∞
c (Rd). It follows from Lemma 9.4 that

χ · ∇((f ∗ Φ)θ) = 0.

We have χ∇θ = 0 and therefore

χ · ∇(f ∗ Φ) = 0.

Since χ ∈ C∞
c (Rd) is arbitrary, it follows that

(∇f) ∗ Φ = ∇(f ∗ Φ) = 0.

Since Φ is arbitrary, it follows that ∇f = 0. This completes the proof. �

Appendix A. Commutator estimate

Throughout this appendix we assume d ≥ 2. Our goal is to prove the following com-

mutator bound. We recall that the algebra Π is defined at the beginning of Section 6.

Theorem A.1. If T ∈ Π is compactly supported, then

[T, (1 − Δ)− p
2 ] ∈ (L d

p
,∞)0, p > 0.

The following lemma is a standard result, but for the convenience of the reader we 

provide a proof.

Lemma A.2. If f ∈ C∞
c (Rd), then

[Mf , (1 − Δ)− p
2 ] ∈ L d

p+1 ,∞, p > 0.

Proof. We write f = f1f2, f1, f2 ∈ C∞
c (Rd). By the Leibniz rule, we have

[Mf , (1 − Δ)− p
2 ] = [Mf1

, (1 − Δ)− p
2 ] · Mf2

+ Mf1
· [Mf2

, (1 − Δ)− p
2 ] = X1Y1 + Y2X2,



48 R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738

where we denote

X1 = [Mf1
, (1 − Δ)− p

2 ](1 − Δ)
p+1

2 , X2 = (1 − Δ)
p+1

2 [Mf2
, (1 − Δ)− p

2 ],

Y1 = (1 − Δ)− p+1
2 Mf2

, Y2 = Mf1
(1 − Δ)− p+1

2 .

Clearly, X1 and X2 are pseudodifferential operators of order 0. Hence, they are bounded. 

By Theorem 2.4 we have Y1, Y2 ∈ L d
p+1 ,∞. This completes the proof. �

Using standard arguments we can now weaken the regularity on f required in 

Lemma A.2.

Lemma A.3. If f ∈ Cc(Rd), then

[Mf , (1 − Δ)− p
2 ] ∈ (L d

p
,∞)0, p > 0.

Proof. Assume for definiteness that f is supported on [−1, 1]d. Choose a sequence 

{fn}n≥0 ⊂ C∞
c (Rd) supported in [−1, 1]d such that fn → f in the uniform norm. Using 

quasi-triangle and Hölder inequalities, we write

‖[Mfn−f , (1 − Δ)− p
2 ]‖ d

p
,∞ ≤ 21+ p

d ‖fn − f‖∞‖Mχ
[−1,1]d

(1 − Δ)− p
2 ]‖ d

p
,∞.

The second factor on the right hand side is finite by Theorem 2.4. Therefore,

[Mfn
, (1 − Δ)− p

2 ] → [Mf , (1 − Δ)− p
2 ]

in L d
p

,∞. Since the sequence on the left hand side belongs to (L d
p

,∞)0 by Lemma A.2, 

the assertion follows. �

The following result is a special case of [38, Theorem 1.6] (with α = 1 and β = p).

Lemma A.4. If f ∈ C∞
c (Rd), then

[(1 − Δ)
1
2 , Mf ](1 − Δ)− p

2 ∈ L d
p

,∞, p > 0.

The following lemma is a technical precursor to Lemma A.6.

Lemma A.5. If f ∈ C∞
c (Rd), then

[Dk(−Δ)− 1
2 , Mf (1 − Δ)− p

2 ] ∈ L d
p+1 ,∞, p > 0, k ∈ {1, · · · , d}.

Proof. Set

hk(s) =
sk

|s|
−

sk

(1 + |s|2)
1
2

, s ∈ R
d.
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It is immediate that

[Dk(−Δ)− 1
2 , Mf (1 − Δ)− p

2 ] − [Dk(1 − Δ)− 1
2 , Mf (1 − Δ)− p

2 ] =

= hk(∇)Mf (1 − Δ)− p
2 − Mf (1 − Δ)− p

2 hk(∇) =

= hk(∇)(1 − Δ) · (1 − Δ)−1Mf (1 − Δ)− p
2 − Mf (1 − Δ)− p+2

2 · (1 − Δ)hk(∇).

Using Theorem 2.4 as in the proof of Lemma A.2, we obtain

(1 − Δ)−1Mf (1 − Δ)− p
2 , Mf (1 − Δ)− p+2

2 ∈ L d
p+2 ,∞.

Since hk(∇) · (1 − Δ) is bounded, it follows from (8) that

[Dk(−Δ)− 1
2 , Mf (1 − Δ)− p

2 ] − [Dk(1 − Δ)− 1
2 , Mf (1 − Δ)− p

2 ] ∈ L d
p+2 ,∞. (13)

Next,

[Dk(1 − Δ)− 1
2 , Mf (1 − Δ)− p

2 ] = [Dk(1 − Δ)− 1
2 , Mf ] · (1 − Δ)− p

2 =

= MDkf (1 − Δ)− p+1
2 − Dk(1 − Δ)− 1

2 · [(1 − Δ)
1
2 , Mf ](1 − Δ)− p+1

2 .

Applying Theorem 2.4 to the first term and Theorem A.4 (applied with p + 1 instead of 

p) to the second term, we deduce that

[Dk(−Δ)− 1
2 , Mf (1 − Δ)− p

2 ] ∈ L d
p+1 ,∞. (14)

Combining (13) and (14), we complete the proof. �

The next lemma is the crucial step in proving Theorem A.1.

Lemma A.6. If f ∈ Cc(Rd) and if g ∈ C(Sd−1), then

[g(∇(−Δ)− 1
2 ), Mf (1 − Δ)− p

2 ] ∈ (L d
p

,∞)0, p > 0.

Proof. If g ∈ C(Sd−1) is a monomial, then Lemma A.5 and the Leibniz rule yield

[g(∇(−Δ)− 1
2 ), Mf (1 − Δ)− p

2 ] ∈ L d
p+1 ,∞.

If g ∈ C(Sd−1) is a polynomial, then we obtain by linearity

[g(∇(−Δ)− 1
2 ), Mf (1 − Δ)− p

2 ] ∈ L d
p+1 ,∞ ⊂ (L d

p
,∞)0.

Consider now the general case. Fix g ∈ C(Sd−1) and choose a sequence of polynomials 

{gn}n≥0 ∈ C(Sd−1) such that gn → g in the uniform norm. Using quasi-triangle and 

Hölder inequalities, we write
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‖[(gn − g)(∇(−Δ)− 1
2 ), Mf (1 − Δ)− p

2 ]‖ d
p

,∞ ≤ 21+ p
d ‖gn − g‖∞‖Mf (1 − Δ)− p

2 ‖ d
p

,∞.

The second factor on the right hand side is finite by Theorem 2.4. Therefore,

[gn(∇(−Δ)− 1
2 ), Mf (1 − Δ)− p

2 ] → [g(∇(−Δ)− 1
2 ), Mf (1 − Δ)− p

2 ]

in L d
p

,∞. Since the sequence on the left is in (L d
p

,∞)0, the assertion follows. �

Next, we derive an approximation result for operators T ∈ Π.

Lemma A.7. Let T ∈ Π. There are {fn,l}n,l≥1 ⊂ (C0 + C)(Rd), {gn,l}n,l≥1 ⊂ C(Sd−1)

and {Sn}n≥0 ⊂ K(L2(Rd)) such that, with the limit in the uniform norm,

T = lim
n→∞

Tn, Tn :=

ln∑

l=1

Mfn,l
gn,l(∇(−Δ)− 1

2 ) + Sn.

Proof. If T ∈ Π, then we can find a sequence {Tn}n≥0 ⊂ Π such that Tn → T in the 

uniform norm and such that

Tn =

ln∑

l=1

kn∏

k=1

Mfn,k,l
gn,k,l(∇(−Δ)− 1

2 ).

Here, fn,k,l ∈ (C0 + C)(Rd) and gn,k,l ∈ C(Sd−1) for every n, every k and every l.

By [31, Lemma 5.8], the operator

kn∏

k=1

Mfn,k,l
gn,k,l(∇(−Δ)− 1

2 ) − M∏kn
k=1 fn,k,l

(

kn∏

k=1

gn,k,l)(∇(−Δ)− 1
2 )

is compact. Setting

fn,l =

kn∏

k=1

fn,k,l, gn,l =

kn∏

k=1

gn,k,l, 1 ≤ l ≤ ln

the assertion follows. �

We are now in position to prove the main result of this appendix.

Proof of Theorem A.1. Let T ∈ Π and let Tn ∈ Π be as in Lemma A.7. Let φ ∈ C∞
c (Rd). 

By the Leibniz rule, we have

[Tn, Mφ(1 − Δ)− p
2 ] =

ln∑

l=1

[Mfn,l
, Mφ(1 − Δ)− p

2 ] · gn,l(∇(−Δ)− 1
2 )+
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+

ln∑

l=1

Mfn,l
· [gn,l(∇(−Δ)− 1

2 ), Mφ(1 − Δ)− p
2 ]+

+ [Sn, Mφ(1 − Δ)− p
2 ]. (15)

The commutators on the right hand side of (15) belong to (L d
p

,∞)0. Indeed,

[Mfn,l
, Mφ(1 − Δ)− p

2 ] = [Mfn,lφ, (1 − Δ)− p
2 ] − [Mφ, (1 − Δ)− p

2 ] · Mfn,l
.

Hence, the first commutator on the right hand side of (15) belongs to (L d
p

,∞)0 by 

Lemma A.3. The second commutator on the right hand side of (15) belongs to (L d
p

,∞)0

by Lemma A.6. The third commutator on the right hand side of (15) belongs to (L d
p

,∞)0

since Mφ(1 − Δ)− p
2 ∈ L d

p
,∞ and since Sn is compact. Therefore,

[Tn, Mφ(1 − Δ)− p
2 ] ∈ (L d

p
,∞)0.

Since Tn → T in the uniform norm and since Mφ(1 − Δ)− p
2 ∈ L d

p
,∞ by Theorem 2.4, it 

follows that

[Tn, Mφ(1 − Δ)− p
2 ] → [T, Mφ(1 − Δ)− p

2 ] ,

where the limit is taken in L d
p

,∞. Since the sequence on the left hand side belongs to 

(L d
p

,∞)0, it follows that

[T, Mφ(1 − Δ)− p
2 ] ∈ (L d

p
,∞)0.

Suppose now that T ∈ Π is compactly supported, that is, T = MφT = TMφ for some 

φ ∈ C∞
c (Rd). We have

[T, (1 − Δ)− p
2 ] = T (1 − Δ)− p

2 − (1 − Δ)− p
2 T =

= TMφ(1 − Δ)− p
2 − (1 − Δ)− p

2 MφT = [T, Mφ(1 − Δ)− p
2 ] + [Mφ, (1 − Δ)− p

2 ] · T.

The first term belongs to (L d
p

,∞)0 as we have just shown above, and the second one does 

by Lemma A.2. This completes the proof. �

References

[1] H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (2) (1990) 167–170.
[2] J. Arazy, S.D. Fisher, J. Peetre, Hankel operators on weighted Bergman spaces, Am. J. Math. 

110 (6) (1988) 989–1053.
[3] J. Arazy, S.D. Fisher, S. Janson, J. Peetre, Membership of Hankel operators on the ball in unitary 

ideals, J. Lond. Math. Soc. (2) 43 (3) (1991) 485–508.



52 R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738

[4] M.Sh. Birman, G.E. Karadzhov, M.Z. Solomyak, Boundedness conditions and spectrum estimates 
for the operators b(X)a(D) and their analogs, in: Estimates and Asymptotics for Discrete Spectra 
of Integral and Differential Equations, Leningrad, 1989–90, in: Adv. Soviet Math., vol. 7, Amer. 
Math. Soc., Providence, RI, 1991, pp. 85–106.

[5] M.Sh. Birman, M. Solomyak, Asymptotics of the spectrum of weakly polar integral operators, 
(Russian) Izv. Akad. Nauk SSSR, Ser. Mat. 34 (5) (1970) 1142–1158, English translation in: Math. 
USSR Izv. 4 (1970), no. 5, 1151–1168.

[6] M.Sh. Birman, M.Z. Solomjak, Estimates for the singular numbers of integral operators, Usp. Mat. 
Nauk 32 (193) (1977) 17–84, 1. English translation in: Russ. Math. Surv. 32 (1977), no. 1, 15–89.

[7] M.Sh. Birman, M.Z. Solomyak, Asymptotic behavior of the spectrum of pseudodifferential operators 
with anisotropically homogeneous symbols I,II (Russian), Vestn. Leningr. Univ. 13 (3) (1977) 13–21; 
13 (3) (1979) 5–10. English translation in: Vestn. Leningr. Univ., Math. 10 (1982), 237–247; 12 
(1980), 155–161.

[8] M.S. Birman, M. Solomyak, Spectral Theory of Selfadjoint Operators in Hilbert Space, Translated 
from the 1980 Russian original Mathematics and Its Applications (Soviet Series), D. Reidel Pub-
lishing Co., Dordrecht, 1987.

[9] A. Calderón, Commutators of singular integral operators, Proc. Natl. Acad. Sci. USA 53 (1965) 
1092–1099.

[10] A. Calderón, Commutators, singular integrals on Lipschitz curves and applications, in: Proceedings 
of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 
pp. 85–96.

[11] M. Caspers, S. Montgomery-Smith, D. Potapov, F. Sukochev, The best constants for operator 
Lipschitz functions on Schatten classes, J. Funct. Anal. 267 (10) (2014) 3557–3579.

[12] M. Caspers, F. Sukochev, D. Zanin, Weak type operator Lipschitz and commutator estimates for 
commuting tuples, Ann. Inst. Fourier (Grenoble) 68 (4) (2018) 1643–1669.

[13] Y. Chen, Y. Ding, G. Hong, Commutators with fractional differentiation and new characterizations 
of BMO-Sobolev spaces, Anal. PDE 9 (6) (2016) 1497–1522.

[14] V. Chilin, F. Sukochev, Weak convergence in non-commutative symmetric spaces, J. Oper. Theory 
31 (1994) 35–65.

[15] R.R. Coifman, A. McIntosh, Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L2

pour les courbes lipschitziennes, Ann. Math. (2) 116 (2) (1982) 361–387.
[16] R.R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals, 

Trans. Am. Math. Soc. 212 (1975) 315–331.
[17] R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, 

Ann. Math. (2) 103 (3) (1976) 611–635.
[18] A. Connes, F. Sukochev, D. Zanin, Trace theorem for quasi-Fuchsian groups, Mat. Sb. 208 (2017) 

59–90.
[19] A. Connes, D. Sullivan, N. Teleman, Quasiconformal mappings, operators on Hilbert space, and 

local formulae for characteristic classes, Topology 33 (4) (1994) 663–681.
[20] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger 

operators, Ann. Math. (2) 106 (1) (1977) 93–100.
[21] M. Engliš, R. Rochberg, The Dixmier trace of Hankel operators on the Bergman space, J. Funct. 

Anal. 257 (5) (2009) 1445–1479.
[22] M. Feldman, R. Rochberg, Singular value estimates for commutators and Hankel operators on the 

unit ball and the Heisenberg group, in: Analysis and Partial Differential Equations, in: Lecture 
Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 121–159.

[23] R.L. Frank, Cwikel’s theorem and the CLR inequality, J. Spectr. Theory 4 (1) (2014) 1–21.
[24] R.L. Frank, F. Sukochev, D. Zanin, Asymptotics of singular values for quantum derivatives, Trans. 

Am. Math. Soc. 376 (3) (2023) 2047–2088.
[25] J. Huang, F. Sukochev, D. Zanin, Operator θ-Hölder functions with respect to ‖ · ‖p, 0 < p ≤ ∞, J. 

Lond. Math. Soc. (2) 105 (4) (2022) 2436–2477.
[26] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (2) (1978) 

263–270.
[27] S. Janson, J. Peetre, Paracommutators–boundedness and Schatten-von Neumann properties, Trans. 

Am. Math. Soc. 305 (2) (1988) 467–504.
[28] S. Janson, R. Rochberg, Intermediate Hankel operators on the Bergman space, J. Oper. Theory 

29 (1) (1993) 137–155.
[29] S. Janson, T.H. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 

20 (2) (1982) 301–310.



R.L. Frank et al. / Advances in Mathematics 450 (2024) 109738 53

[30] E. Kissin, D. Potapov, V. Shulman, F. Sukochev, Operator smoothness in Schatten norms for 
functions of several variables: Lipschitz conditions, differentiability and unbounded derivations, 
Proc. Lond. Math. Soc. (3) 105 (4) (2012) 661–702.

[31] Y. Kordyukov, F. Sukochev, D. Zanin, C∗-algebraic approach to the principal symbol. III, J. Non-
commut. Geom. (2024), in press.

[32] S. Krein, Y. Petunin, E. Semenov, Interpolation of Linear Operators, Trans. Math. Mon., vol. 54, 
AMS, Providence, 1982.

[33] G. Leoni, A First Course in Sobolev Spaces, second edition, Graduate Studies in Mathematics, 
vol. 181, American Mathematical Society, Providence, RI, 2017.

[34] G. Levitina, F. Sukochev, D. Zanin, Cwikel estimates revisited, Proc. Lond. Math. Soc. (3) 120 (2) 
(2020) 265–304.

[35] S. Lord, E. McDonald, F. Sukochev, D. Zanin, Quantum differentiability of essentially bounded 
functions on Euclidean space, J. Funct. Anal. 273 (2017) 2353–2387.

[36] S. Lord, F. Sukochev, D. Zanin, Singular Traces: Theory and Applications, vol. 46, Walter de 
Gruyter, 2012.

[37] S. Lord, F. Sukochev, D. Zanin, Singular Traces. vol. 1–Theory, vol. 46/1, 2nd edition, Walter de 
Gruyter, Berlin, 2021.

[38] E. McDonald, F. Sukochev, X. Xiong, Quantum differentiability on noncommutative Euclidean 
spaces, Commun. Math. Phys. 379 (2) (2020) 491–542.

[39] E. McDonald, F. Sukochev, D. Zanin, A C∗-algebraic approach to the principal symbol II, Math. 
Ann. 374 (1–2) (2019) 273–322.

[40] M.A.M. Murray, Commutators with fractional differentiation and BMO Sobolev spaces, Indiana 
Univ. Math. J. 34 (1) (1985) 205–215.

[41] L.Z. Peng, R. Rochberg, Z.J. Wu, Orthogonal polynomials and middle Hankel operators on Bergman 
spaces, Stud. Math. 102 (1) (1992) 57–75.

[42] D. Potapov, F. Sukochev, Unbounded Fredholm modules and double operator integrals, J. Reine 
Angew. Math. 626 (2009) 159–185.

[43] D. Potapov, F. Sukochev, Operator-Lipschitz functions in Schatten-von Neumann classes, Acta 
Math. 207 (2) (2011) 375–389.

[44] R. Rochberg, S. Semmes, Nearly weakly orthonormal sequences, singular value estimates, and 
Calderon–Zygmund operators, J. Funct. Anal. 86 (2) (1989) 237–306.

[45] B. Simon, Trace Ideals and Their Applications, second edition, Mathematical Surveys and Mono-
graphs, vol. 120, American Mathematical Society, Providence, RI, 2005.

[46] E. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical 
Series, vol. 30, Princeton University Press, Princeton, N.J.

[47] R.S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (4) (1980) 
539–558.

[48] F. Sukochev, D. Zanin, A C∗-algebraic approach to the principal symbol. I, J. Oper. Theory 80 (2) 
(2018) 481–522.

[49] F. Sukochev, D. Zanin, The Connes character formula for locally compact spectral triples, Astérisque 
445 (2023), 150 pp.

[50] F. Sukochev, D. Zanin, Optimal constants in non-commutative Hölder inequality for quasi-norms, 
Proc. Am. Math. Soc. 149 (9) (2021) 3813–3817.

[51] H. Triebel, Theory of Function Spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, 
Basel, 1983.

[52] A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J. (2) 30 (1) (1978) 
163–171.

[53] J. van Neerven, Functional Analysis, Cambridge Studies in Advanced Mathematics, vol. 201, Cam-
bridge University Press, 2023.

[54] A. Youssfi, Regularity properties of commutators and BMO-Triebel–Lizorkin spaces, Ann. Inst. 
Fourier (Grenoble) 45 (3) (1995) 795–807.


	Endpoint Schatten class properties of commutators
	1 Introduction and main results
	1.1 Background and motivations
	1.2 Main results
	1.3 Comparison with known results
	Case ε∈(0,1)
	Case ε∈(−d/2,0)
	Case ε=1

	1.4 Outline of the paper
	1.5 Acknowledgments

	2 Preliminaries
	3 Domain and codomain of the commutator [(−Δ)ε/2,Mf]
	4 Proof of Theorem 1.1 (I) and Theorem 1.2 (I)
	5 Approximate expression for commutator
	6 Spectral asymptotics for pseudo-differential operators
	6.1 An abstract result on spectral asymptotics
	6.2 Proof of Theorem 6.1
	6.3 Asymptotics for d=1

	7 Proof of Theorem 1.1 (ii) and Theorem 1.2 (ii)
	8 Proof of Theorems 1.1 and 1.2 (iii)
	9 Proof of Theorem 1.3
	Appendix A Commutator estimate
	References


