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1. Introduction and main result

1.1. Setting of the problem

In this paper we consider the Hardy operators in a half-space, given informally by

L
(α)
λ = (−Δ)α/2

Rd
+

+ λx−α
d in L2(Rd

+) . (1)

Here and in what follows Rd
+ = Rd−1×(0, ∞) and we write x = (x′, xd) ∈ Rd−1×(0, ∞).

We are mostly interested in the fractional case α ∈ (0, 2), but our results are also new 
in the local case α = 2. The operators L(α)

λ are considered with a Dirichlet boundary 

condition for α = 2 and a certain analogue for α < 2. The precise meaning of (−Δ)α/2
Rd

+

will be explained in the next subsection; it is sometimes called the regional fractional 
Laplacian; see, e.g., [2] and [32, Section 8.4].

The constant λ is assumed to satisfy

λ ≥ λ∗

where

λ∗ := −
Γ(1+α

2 ) (
Γ(1+α

2 ) − 2α−1√π
α

)
.

π Γ(1 − 2 )
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Note that λ∗ depends on α, but not on d, and that λ∗ = −1
4 if α = 2. Also, λ∗ < 0 if 

α ∈ (0, 1) ∪ (1, 2] and λ∗ = 0 if α = 1.
The constant λ∗ plays the role of a critical coupling constant. As is well-known for 

α = 2 and shown by Bogdan and Dyda [3] for α < 2, the constant λ∗ is the optimal 
constant in Hardy’s inequality, which states that

L
(α)
λ∗

≥ 0 .

Our goal in this paper is to study the powers

(
L

(α)
λ

)s/2
with s ∈ (0, 2] .

More precisely, we are interested in the domains of these operators (which are subspaces 
containing the operator domain of L(α)

λ ) and, in particular, in the question how these 
domains for general λ ≥ λ∗ compare with the domain of this operator in the case λ = 0. 
When λ > λ∗ �= 0 and s ≤ 1, it is easy to see that the domains of (L(α)

λ )s/2 and (L(α)
0 )s/2

coincide; see, e.g., [13, Remark 1.2] for a similar argument. Our main interest is therefore 
in the case s > 1, corresponding to subspaces between the form domain and the operator 
domain. In our main result (Theorem 1 below) we will show that, for a certain explicit 
range of s, depending on λ, the domains of (L(α)

λ )s/2 and (L(α)
0 )s/2 coincide.

There are several motivations for studying this question, coming both from pure 
mathematics and from applications to nonlinear dispersive equations and mathemati-
cal physics, and we will discuss some of them in Subsection 1.3 below. There, we will 
also give references to the growing literature on the analogous question in other settings. 
Pioneering papers on this topic are those by Killip, Visan and Zhang [28] and by Killip, 
Miao, Visan, Zhang and Zheng [25].

1.2. Main result

Before presenting our results, we will first discuss the definition of the operators (1)
and then introduce a parameterization of the coupling constant λ that will be important 
in what follows.

Definition of the operators
Let us give the precise definition of L(α)

λ as selfadjoint, nonnegative operators in the 
Hilbert space L2(Rd

+). Throughout this paper, we assume that d ≥ 1, α ∈ (0, 2] and 
λ ∈ [λ∗, ∞), except where explicitly stated otherwise.

For α ∈ (0, 2), we consider the quadratic form

1
2 A(d,−α)

¨

Rd
+×Rd

+

|u(x) − u(y)|2
|x− y|d+α

dx dy + λ

ˆ

Rd
+

|u(x)|2
xα
d

dx
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with

A(d,−α) := α

21−απd/2
Γ(d+α

2 )
Γ(1 − α

2 ) , (2)

and for α = 2 we consider the quadratic form
ˆ

Rd
+

|∇u(x)|2 dx + λ

ˆ

Rd
+

x−2
d |u(x)|2 dx .

These quadratic forms are considered for functions u ∈ C1
c (Rd

+), that is, continuously 
differentiable functions whose support is a compact subset of the open set Rd

+. According 
to the classical Hardy inequality for α = 2 and its sharp extension to α < 2 by Bogdan 
and Dyda [3], these quadratic forms are nonnegative if (and only if) λ ∈ [λ∗, ∞). By a 
theorem of Friedrichs these forms therefore give rise to selfadjoint, nonnegative operators 
L

(α)
λ in L2(Rd

+) for which C1
c (Rd

+) is a form core.
The operators (L(α)

λ )s/2 appearing below are defined by the spectral theorem. We will 
use the fact that C∞

c (Rd
+) belongs to the domain of these operators for any s ∈ [0, 2]

and any α ∈ (0, 2]; see Lemma 15.

Definition of the exponent p
For given α ∈ (0, 2] (not reflected in the notation) we set M := α if α < 2 and 

M := ∞ if α = 2 and introduce the function

(−1,M) 
 p �→ C(p) := 1
π

(
Γ(α) sin πα

2 + Γ(1 + p) Γ(α− p) sin π(2p− α)
2

)
. (3)

When α = 2, one sees that the poles of Γ(α − p) cancel with the zeros of sin π(2p−α)
2

and, indeed, that C(p) = p(p − 1) for all p > −1. Similarly, for α = 1 one finds C(p) =
1
π (1 − πp cotπp).

The following properties of C are known and we refer to Appendix A for details 
and references. The function p �→ C(p) is continuous and symmetric with respect to 
p = α−1

2 , strictly increasing on [α−1
2 , M) and its value at p = α−1

2 is λ∗. Moreover, 
limp→M C(p) = +∞. Thus, for any λ ∈ [λ∗, ∞) there is a unique

p ∈ [α−1
2 ,M) with C(p) = λ . (4)

We emphasize that p depends on α, besides λ.
One can show that C(α − 1) = C(0) = 0. Thus, the case λ = 0 corresponds to 

p = (α− 1)+ := max{α− 1, 0} and the case λ > 0 to p > (α− 1)+.
Using the explicit expression of C(p) for α = 2 we see that

p = 1
(
1 +

√
1 + 4λ

)
if α = 2 . (5)
2
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Notation
We write

A ∧B := min{A,B} , A ∨B := max{A,B} .

Moreover, in order to abbreviate some statements we suppress constants and write A � B

for A, B ∈ R+ whenever there is a constant c > 0 such that A ≤ cB. The notation A ∼ B

means A � B � A and in this case we say that A and B are comparable. If we want to 
emphasize that the constant c may depend on some parameter, say τ , we write A �τ B.

Main result – equivalence of Sobolev norms
Our main result is contained in the following theorem. It states that the L2(Rd

+)-
norms generated by certain powers of L(α)

λ are comparable to those generated by the 

corresponding powers of L(α)
0 .

Theorem 1. Let α ∈ (0, 2] and let λ ≥ 0 when α < 2 and λ ≥ −1/4 when α = 2. Let p
be defined by (4), and let s ∈ (0, 2] ∩ (0, 2dα ).

(1) If s < (1 + 2p)/α, then dom(L(α)
λ )s/2 ⊂ dom(L(α)

0 )s/2 and

‖(L(α)
0 )s/2u‖L2(Rd

+) �d,α,λ,s ‖(L(α)
λ )s/2u‖L2(Rd

+) for all u ∈ dom(L(α)
λ )s/2 . (6)

Moreover, C∞
c (Rd

+) is an operator core of (L(α)
λ )s/2.

(2) If s < (1 + 2(α− 1)+)/α, then dom(L(α)
0 )s/2 ⊂ dom(L(α)

λ )s/2 and

‖(L(α)
λ )s/2u‖L2(Rd

+) �d,α,λ,s ‖(L(α)
0 )s/2u‖L2(Rd

+) for all u ∈ dom(L(α)
0 )s/2 . (7)

Moreover, C∞
c (Rd

+) is an operator core of (L(α)
0 )s/2.

In particular, for s ∈ (0, 2] with s < 1+2(p∧(α−1)+)
α we have the equality dom(L(α)

λ )s/2 =
dom(L(α)

0 )s/2 as well as the equivalence

‖(L(α)
λ )s/2u‖L2(Rd

+) ∼d,α,λ,s ‖(L(α)
0 )s/2u‖L2(Rd

+) for all u ∈ dom(L(α)
λ )s/2 .

Note also that

p ∧ (α− 1)+ =
{

(α− 1)+ if λ ≥ 0 ,
p if λ ≤ 0 .

In Section 9 we will see that the assumption s < 1+2(p∧(α−1)+)
α is necessary for the 

equality dom(L(α)
λ )s/2 = dom(L(α)

0 )s/2 (under the additional assumption α < 3/2 if 
d = 1).
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For α = 1, we have λ∗ = 0 and the assumption λ ≥ 0 in Theorem 1 is optimal, as 
is the assumption λ ≥ −1/4 for α = 2. For α ∈ (0, 2) \ {1} the restriction to λ ≥ 0
is probably technical. It comes from bounds on the heat kernel of L(α)

λ , which are an 
ingredient in our proofs and which are currently known only for λ ≥ 0 when α < 2. Since 
we expect these bounds to be true also for λ ∈ [λ∗, 0), we will accompany each of our 
main results with a remark stating the potential extension.

Remark 2. Let α ∈ (0, 2), λ ∈ [λ∗, 0) and assume that e−tL
(α)
λ (x, y) satisfies the upper 

bound in (9) below with p defined by (4). Then Theorem 1 remains valid for this value 
of λ. This follows by the same arguments as in the proof below, taking into account 
Remarks 4, 6 and 25.

We next present two important ingredients in the proof of Theorem 1 which are of 
independent interest. They concern variants of Hardy’s inequality.

Theorem 3 (Generalized Hardy inequality). Let α ∈ (0, 2] and let λ ≥ 0 when α ∈ (0, 2)
and λ ≥ −1/4 when α = 2. Let p be defined by (4). Then, if s ∈ (0, 1+2p

α ∧ 2d
α ), one has

‖x−αs/2
d u‖L2(Rd

+) �d,α,λ,s ‖(L(α)
λ )s/2u‖L2(Rd

+) for all u ∈ C∞
c (Rd

+) . (8)

Remark 4. Let α ∈ (0, 2), λ ∈ [λ∗, 0) and assume that e−tLλ(x, y) satisfies the upper 
bound in (9) below with p defined by (4). Then Theorem 3 remains valid for this value 
of λ. This follows by the same arguments as in the proof below, taking into account 
Remark 14.

It is interesting to compare the assumption s ∈ (0, 1+2p
α ∧ 2d

α ) in Theorem 3 with the 
corresponding assumption for the Hardy inequality in Rd with weight |x|−αs/2 with a 
point singularity, namely s ∈ (0, d+2p

α ∧ 2d
α ); cf. [13, Proposition 1.4] or [25, Propo-

sition 3.2]. The difference between d and 1 in this assumption reflects the different 
dimensionalities of the sets where the Hardy weight is singular.

Theorem 5 (Reversed Hardy inequality). Let α ∈ (0, 2] and let λ ≥ 0 when α < 2 and 
λ ≥ −1/4 when α = 2. Let p be defined by (4) and let s ∈ (0, 2]. Then∥∥∥((L(α)

λ )s/2 − (L(α)
0 )s/2

)
u
∥∥∥
L2(Rd

+)
�d,α,λ,s ‖x−αs/2

d u‖L2(Rd
+) for all u ∈ C∞

c (Rd
+) .

Remark 6. Let α ∈ (0, 2), λ ∈ [λ∗, 0) and assume that e−tL
(α)
λ (x, y) satisfies the upper 

bound in (9) below with p defined by (4). Then Theorem 5 remains valid for this value 
of λ. This follows by the same arguments as in the proof below, taking into account 
Remark 18.

Remark 7. We have made the choice to compare the operators L(α)
λ for general λ ≥ λ∗

with the operator L(α)
0 for the case λ = 0. This is natural given the quadratic form 
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definition of the operators L(α)
λ . For α < 2, there is another natural choice for the 

comparison operator, namely L(α)
λ0

with λ0 ∈ (0, ∞) defined by

A(d,−α)
ˆ

Rd
−

dy

|x− y|d+α
= λ0

xα
d

.

(The fact that the left side is a constant multiple of x−α
d follows by simple translation 

and dilation considerations.) By [3, p. 630], λ0 = C(α/2). With this definition of λ0, we 
have for u ∈ C1

c (Rd
+), identified with its extension by zero to Rd,

‖(−Δ)α/4u‖2
L2(Rd) = 1

2 A(d,−α)
¨

Rd×Rd

|u(x) − u(y)|2
|x− y|d+α

dx dy

= 1
2 A(d,−α)

¨

Rd
+×Rd

+

|u(x) − u(y)|2
|x− y|d+α

dx dy + λ0

ˆ

Rd
+

|u(x)|2
xα
d

dx .

In this sense the operator L(α)
λ0

is equally natural as L(α)
0 . Our arguments in this paper 

extend without significant changes to the case where we compare with L(α)
λ0

. However, 
for the sake of concreteness and conciseness we have decided to present the arguments 
in the case of comparison with the operator L(α)

0 .

Remark 8. We consider the Schrödinger operators L(α)
λ whose potential is precisely λx−α

d . 
In some applications it is necessary to allow more general potentials V satisfying λx−α

d ≤
V (x) ≤ λ̃x−α

d for all x ∈ Rd
+ with some λ∗ ≤ λ ≤ λ̃ < ∞. In this case an analogue of 

Theorem 1 holds with p defined by (4) with the given λ; in particular, it is independent 
of λ̃. This follows by a simple modification of our proofs. We have carried out the details 
in [13, Section 4] in the case of Hardy weights with point singularities and omit the 
corresponding details here.

1.3. Background and motivation

After having presented our main results, we would like to put them into context and 
discuss some previous, related results.

Homogeneous operators appear frequently in applications as model operators or as 
scaling limits of more complicated operators, and one aims at analyzing them in as 
much detail as possible to draw conclusions about the perturbed versions that appear 
in applications. From the point of view of pure mathematics and harmonic analysis 
homogeneous operators are interesting as testing grounds of how much of Euclidean 
Fourier analysis remains valid when one dispenses with translation invariance.
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A typical feature of homogeneous operators is the appearance of critical coupling 
constants. These are often related to sharp constants in Hardy-type inequalities. For 
instance, Hardy’s original inequality [20,21,36,30] is the case d = 1 of the inequality

ˆ

Rd
+

|∇u|2 dx ≥ 1
4

ˆ

Rd
+

|u|2
x2
d

dx for all u ∈ C1
c (Rd

+) .

This inequality is precisely what guarantees that the operators L(2)
λ with λ ≥ −1

4 are 
lower semibounded on C1

c (Rd
+) and therefore can be realized as selfadjoint operators in 

L2(Rd
+). The fact that the constant 1

4 in Hardy’s inequality is sharp means that the 

operators L(2)
λ with λ < −1

4 are not lower semibounded on C1
c (Rd

+) and therefore cannot 
have a lower bounded selfadjoint extension. In applications the operators L(2)

λ appear 
almost only with λ ≥ −1

4 .
Another natural extension of Hardy’s inequality to the higher dimensional case is

ˆ

Rd

|∇u|2 dx ≥ (d− 2)2

4

ˆ

Rd

|u|2
|x|2 dx for all u ∈ C1

c (Rd) if d ≥ 3 .

The corresponding operators −Δ +λ|x|−2 for λ ≥ − (d−2)2
4 where studied in the influential 

paper by Killip, Miao, Visan, Zhang and Zheng [25]. These authors were motivated by 
the analysis of nonlinear dispersive PDEs, more precisely, by the study of the global 
well-posedness and scattering for the nonlinear Schrödinger equation with inverse-square 
potential [26,27]. In [25] the domains of the operators (−Δ + λ|x|−2)s/2 were compared 
with the homogeneous Sobolev spaces Ḣs(Rd) and in this connection a relation between 
the power s and the coupling constant λ was observed for the first time. For an extension 
of this result, see [35]. Earlier, Killip, Visan and Zhang [28] had studied a similar question 
for the Dirichlet Laplacian on the complement of a compact, convex set, motivated again 
by questions about nonlinear Schrödinger equations. The techniques developed in [28,25]
play an important role in our analysis.

Hardy’s inequality has been generalized to powers of the Laplacian. A special case of 
a result by Herbst [22] is that

∥∥∥(−Δ)α/4u
∥∥∥2

L2(Rd)
≥ 2α

Γ(d+α
4 )2

Γ(d−α
4 )2

∥∥∥|x|−α/2u
∥∥∥2

L2(Rd)
for all u ∈ Ḣ

α
2 (Rd) if d > α .

For alternative proofs of Herbst’s inequality see [29,39,12,17]. Of particular importance is 
the case α = 1 and d = 3, since the operator 

√
−Δ + m2−m2+λ|x|−1 in L2(R3) provides 

a model for a relativistic description of an electron in the Coulomb field of a point nucleus. 
The scale invariant model problem for the latter operator is the homogeneous operator √
−Δ + λ|x|−1 and many results about the latter operator have implications for the 

quantum mechanics with relativistic effects. For instance, Lieb–Thirring inequalities for 
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the latter operator were used to solve the problem of stability of matter in the presence 
of magnetic fields [12,11].

Recently, in joint work with Heinz Siedentop and Barry Simon, we discussed the 
analogue of the strong Scott conjecture for relativistic electrons [16]. This is a quantum 
many-body problem, where the underlying one-body operator is again 

√
−Δ + m2−m2+

λ|x|−1 in L2(R3). In connection with this investigation we needed information about the 
domains of the operators (

√
−Δ+λ|x|−1)s/2. More precisely, in our approach we needed 

to know that for any λ > λ∗ there is an s > 1 such that the L2(Rd)-norms generated by 
(
√
−Δ + λ|x|−1)s/2 are equivalent to those generated by (−Δ)s/2. That this is indeed 

the case was shown in [13], thus leading to a proof of the strong Scott conjecture in 
the relativistic case. For an alternative proof see [14] and for a review about the Scott 
conjecture see [15].

In passing we mention that the papers [28,25,35] also deal with the case where the 
underlying norms are those in Lp(Rd) with p �= 2. Similarly, the results in [13], which 
concerned L2-norms, have been extended to Lp-norms with general 1 < p < ∞; see [33]
for λ > 0 and [5,6] for all λ ≥ λ∗. Proofs for p �= 2 often rely on multiplier theorems in 
the spirit of the Mikhlin–Hörmander theorem. (Note that such multiplier theorems are 
immediate consequences of the spectral theorem when p = 2.) In the local case α = 2
the proof of multiplier theorems can be based on heat kernel bounds with Gaussian 
off-diagonal decay. In the absence of such bounds the case α < 2 is substantially more 
complicated; see also [34].

In the present paper we address the analogous question in the L2-case for fractional 
operators on half-spaces. The corresponding sharp Hardy inequality in this setting is due 
to Bogdan and Dyda [3] and states that

1
2 A(d,−α)

¨

Rd
+×Rd

+

|u(x) − u(y)|2
|x− y|d+α

dx dy ≥ −λ∗

ˆ

Rd
+

|u(x)|2
xα
d

dx for all u ∈ C1
c (Rd

+) .

For an alternative proof see [18].
The main new difficulty compared to previous investigations is the presence of a 

boundary in the fractional case. Note that there is an interplay between the order α of 
the operator and the effect of the boundary. For α < 1 we expect the influence of the 
boundary to be negligible, with α = 1 being a subtle borderline case. This expectation 
manifests itself, for instance, in the appearance of the positive part (α− 1)+ in part (2) 
of Theorem 1. Related to this is the appearance, for small α and large λ, of a large extra 
factor in the Riesz kernel bounds (Theorem 11 below) when the distance of both points 
to the boundary is much smaller than their mutual distance. This is a phenomenon not 
encountered in previous studies of similar questions.

We expect our results in the model case of a homogeneous operator on a half-space to 
have applications and extensions to the study of both more general operators and more 
general domains.
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1.4. Method of proof and organization of the paper

The proof of Theorem 1 consists of two parts. In the first part, we prove the relevant 
inequalities for functions in C∞

c (Rd
+) and in the second part, we show that the latter set 

is an operator core, thereby extending the inequalities to all functions in the domain in 
the relevant operators.

The first part of the proof of Theorem 1, is an immediate consequence of Theorems 3
and 5. The main ingredient for the proof of both of these theorems are pointwise bounds 
on the heat kernels of the operators L(α)

λ , which have been proved recently by Cho, Kim, 
Song and Vondraček [9] and Song, Wu and Wu [38] for α < 2. The structure of these 
bounds is that they differ from the whole space heat kernel by a product of two extra 
factors that depend on the distance of x (resp. y) from the boundary relative to t1/α. 
This is summarized in Section 2, with some technical details deferred to Appendix B.

For the proof of Theorem 3 we use these heat kernel bounds to deduce Riesz kernel 
bounds, that is, bounds on the kernels of the operators (L(α)

λ )−s/2 with s < 2d
α ; see 

Theorem 11. For α = 2 and all λ, or for α < 2 and all not too large λ (depending on 
α and s), these Riesz kernel bounds inherit the structure of the heat kernel bounds, 
namely the whole space kernel multiplied by two extra factors. When α < 2 and λ
is large, however, this product structure of the Riesz kernel bounds is no longer valid 
and needs to be replaced by a term, which relative to the product structure becomes 
unbounded when both x and y are close to the boundary (compared to |x − y|). This 
phenomenon does not occur in previous works on related questions, such as [28,25,13].

Once the Riesz kernel bounds have been established, the generalized Hardy inequality 
in Theorem 3 follows by Schur tests; see Section 4. This is conceptually similar to [28,
25,13], but the violation of the product structure for certain λ necessitates some extra 
efforts. This will complete the proof of Theorem 3.

Turning to the proof of Theorem 5, we need bounds on the difference of the heat 
kernels of L(α)

λ and L(α)
0 . Those are derived in Section 5. The difficulty here is that in 

a certain region of space, namely when both x and y are far away from the boundary 
(compared to t1/α), but close together (compared to their distance from the boundary), 
one needs to quantify a cancellation coming from taking the difference of the heat kernels. 
Again there are similarities to earlier such arguments, but we believe that here we carry 
them out more efficiently than in [13] and that our new arguments would simplify the 
proof in [13].

Once the bounds on the difference of the heat kernels have been established, the 
reversed Hardy inequality in Theorem 5 follows by Schur tests; see Section 6. These 
Schur tests are again conceptually similar to earlier arguments, but require substantially 
more technical work.

It is perhaps worth pointing out the simple idea that guides the technical work in 
Sections 4, 5 and 6, namely to exploit the invariance of the operators L(α)

λ with respect 
to translations parallel to the boundary. This implies that the kernels of the various 
operators discussed above depend on the variables x′ and y′ only through their difference 
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x′−y′ (in fact, only on |x′−y′|), and therefore one aims at integrating out these variables. 
In this way we try to effectively reduce the problem to the one for the operator L(α)

λ

in one dimension. Once one is in one dimension, the distinction of the various regions 
(defined through the length scales xd, yd, |x − y| and t1/α) simplifies considerably and 
allows one to conclude the proof.

We also note that we could have used the invariance with respect to translations 
parallel to the boundary already at the beginning and written L(α)

λ as a direct integral of 
certain operators L(α)

λ (ξ′) in L2(R+), depending on a parameter ξ′ ∈ Rd−1, the Fourier 
variable corresponding to the space variable x′. In this way, we can rewrite all inequalities 
in Theorems 1, 3 and 5 as inequalities for the operators L(α)

λ (ξ′) with constants uniform in
ξ′. While this would have immediately reduced the problem to the one-dimensional case, 
one would have to deal with the uniformity in the parameter ξ′. Also, as far as we know, 
precise heat kernel bounds for the operators L(α)

λ (ξ′) are not available in the literature. 
(In this connection we mention the recent heat kernel bounds for (−Δ + 1)α/2 + V

(α)
λ

in L2(Rd) for certain critical potentials V (α)
λ that satisfy V (α)

λ ∼ λ|x|−α as x → 0; 
see [23,24].) We also note that precise information on the operators (− d2

dx2 + |ξ′|2)α/2
in L2(R+) (defined on C1

c (R+) via extension by zero to R, then action on R and then 
restriction back to R+) has been obtained in [31]. This information has been instrumental 
in [10]. These operators are similar, but in general different from the operators L(α)

λ (ξ′).
This concludes our discussion of the first part of the proof of Theorem 1. The second 

part, namely the proof of the operator core property, takes up Sections 7 and 8. The 
main result here is Theorem 24 in Section 8. Its proof relies once more on the heat 
kernel bounds in Section 2. The novel ingredient here is a combination of these bounds 
with Schauder theory for the Laplacian and its fractional analogue. Applying Schauder 
estimates on appropriately chosen scales we obtain local Hölder norm bounds. These 
allow us to control the commutator of (−Δ)α/2 with cut-off functions. Such bounds are 
the topic of Section 7.

We end this introduction by noting that in this paper we have restricted ourselves to 
the case where the underlying norms are L2-norms. This is the case most frequently en-
countered in applications, including the before-mentioned ones to mathematical physics. 
There are other applications, such as those in connection with nonlinear Schrödinger 
equations, where one needs Lp-norm with general 1 < p < ∞. Also from a harmonic 
analysis point of view the proof of such bounds is a formidable problem, related to 
spectral multiplier theorems; see the references above in the case of a point singularity. 
Proving an analogue in the present situation of singularities along a hyperplane is an 
open problem.

2. Heat kernel bounds for Hardy operators

Notation. In the following, we omit the superscript (α) in the notation for L(α)
λ and 

write merely Lλ ≡ L
(α)
λ when there is no danger of confusion.
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Of fundamental importance for us are pointwise bounds on the heat kernel of Lλ. We 
begin with the case α < 2.

Theorem 9. Let α ∈ (0, 2) and let λ ≥ 0. Let p be defined by (4). Then one has, for all 
x, y ∈ Rd

+ and t > 0,

e−tLλ(x, y) ∼d,α,λ

(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p

t−
d
α

(
1 ∧ t1/α

|x− y|

)d+α

. (9)

Let us give references for where this theorem is proved. For λ = 0 and α ≤ 1 the 
bound appears in [8]. (More precisely, [8] considers the reflected process, but for α ≤ 1
this coincides with the censored process that we are interested in.) For λ = 0 and 
1 < α < 2 the bound appears in [7]. (More precisely, [7] only has this bound up to some 
arbitrary, but fixed time. However, by scaling invariance, once this bound is proved for 
any given time, it follows for all times.) The case λ ≥ 0 has been treated more recently 
and the bound appears in [9]; see also [38].

Our definition of the function p �→ C(p), which relates p and the coupling constant λ, 
is seemingly different from the one used in [9]. We show that it is not in Appendix A.

As we have already said in the introduction, the restriction λ ≥ 0 in our main results 
is a consequence of this restriction in Theorem 9. We expect that the latter theorem, 
and therefore also our main results, extend to the full range λ ≥ λ∗.

We now turn the case α = 2.

Theorem 10. Let α = 2 and let λ ≥ −1
4 . Let p be given by (4), that is, by (5). Then, for 

all x, y ∈ Rd
+ and t > 0,

exp (−tLλ) (x, y) �d,λ

(
1 ∧ xd√

t

)p (
1 ∧ yd√

t

)p

t−d/2e−c|x−y|2/t , (10)

where the notation � means the same as ∼, but where the constants c in the exponential 
function are allowed to be different in the upper and the lower bounds.

While an explicit expression of the heat kernel of Lλ for α = 2 is available, it leads to 
a somewhat different heat kernel bound and we explain in Appendix B how to obtain the 
bound stated in Theorem 10, where one is willing to give up something in the constant 
c in the exponent, but insists on the product structure of the prefactor.

3. Riesz kernel bounds

In this section we use the heat kernel bounds from the previous section to prove two-
sided bounds on the kernels of the Riesz operators L−s/2

λ . They are crucial for the proof 
of the generalized Hardy inequality (Theorem 3).
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Theorem 11. Let α ∈ (0, 2] and let λ ≥ 0 when α ∈ (0, 2) and λ ≥ −1/4 when α = 2. Let 
p be defined by (4) and let s ∈ (0, 2dα ∧ 2(d+2p)

α ). Then the following holds.

(a) For all x, y ∈ Rd
+ with |x − y| ≤ xd ∨ yd,

L
−s/2
λ (x, y) ∼d,α,λ,s |x− y|α s

2−d

(
1 ∧ xd

|x− y| ∧
yd

|x− y|

)p

. (11)

(b) For all x, y ∈ Rd
+ with xd ∨ yd ≤ |x − y|,

L
−s/2
λ (x, y) ∼d,α,λ,s |x− y|α s

2−d

(
xd yd

|x− y|2
)p

·
[
1α=2

+
(
1p≤α

2 (1+ s
2 ) +

(
ln |x− y|

xd ∨ yd

)
1p=α

2 (1+ s
2 )

+
(
|x− y|
xd ∨ yd

)2p−α(1+ s
2 )

1p>α
2 (1+ s

2 )

)
1α<2

]
.

(12)

Remark 12. Let α ∈ (0, 2), λ ∈ [λ∗, 0) and assume that e−tLλ(x, y) satisfies the bound 
in (9) with p defined by (4). Then (11) and (12) remain valid. Similarly, the upper 
(resp. lower) bound in (9) implies the upper (resp. lower) bound in (11) and (12). This 
follows by the same arguments as in the proof below.

Note that when α = 2 or when α < 2 and p < α
2 (1 + s

2 ) the bound in the theorem 
can be written as

L
−s/2
λ (x, y) ∼d,α,λ,s |x− y|α s

2−d

(
1 ∧ xd

|x− y|

)p (
1 ∧ yd

|x− y|

)p

(13)

for all x, y ∈ Rd
+. This is reminiscent of the Riesz kernel bounds in [28,13]. Remarkably, 

a bound of this form does not hold globally when α < 2 and p ≥ α
2 (1 + s

2 ), and in the 
region xd ∨ yd ≤ |x − y| the Riesz kernel is larger than the right side in (13). This is 
a consequence of the slow off-diagonal decay of the heat kernel in the case α < 2. We 
will see in the following sections that this worse behavior does not lead to additional 
restrictions in the generalized Hardy inequality or the reversed Hardy inequality.

Proof. By the spectral theorem, the Riesz kernel can be represented as

L
−s/2
λ (x, y) = 1

Γ(s/2)

∞̂

0

e−tLλ(x, y) ts/2 dt

t
.

Inserting the two-sided bounds for e−tLλ(x, y) in (9) and (10) and changing variables, 
we see that the left side of (11) is comparable to
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∞̂

0

dt

t
t−

d
α+ s

2

(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p
[(

1 ∧ t1+d/α

|x− y|d+α

)
1α<2

+ exp
(
−c|x− y|2

t

)
1α=2

]

= |x− y|α s
2−d

∞̂

0

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

]

×
(

1 ∧ xd τ
1/α

|x− y|

)p (
1 ∧ yd τ

1/α

|x− y|

)p

for certain c > 0, possibly different for the upper and lower bounds. The integral is 
similar to that in [28, Lemma 5.2] (or [13, (2.3)], but with xd and yd in place of |x| and 
|y| and p in place of −δ). There are, however, some differences, in particular in the case 
α < 2 and p ≥ α

2 (1 + s
2 ), so we include the details of the bounds.

We shall show that for all T, S > 0 with |T− 1
α − S− 1

α | ≤ 1 we have

∞̂

0

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)p (
1 ∧ (τ/S)1/α

)p

∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 ∧ T− 1

α ∧ S− 1
α

)p

if T ∧ S ≤ 1,

(TS)−
p
α

[
1α=2

+
(
1p≤α

2 (1+ s
2 ) + ln (T ∧ S)1p=α

2 (1+ s
2 ) + (T ∧ S)

2p
α −1− s

2

)
1α<2

] if T ∧ S ≥ 1.

Setting T := (|x − y|/xd)α, S := (|x − y|/yd)α, we easily deduce from this the assertion. 
Note that the bound |T− 1

α − S− 1
α | ≤ 1 comes from |xd − yd| ≤ |x − y|.

To prove the above assertion, by symmetry we may assume that S ≤ T .
Case S ≤ T ≤ 1. In this case we have S− 1

α ≤ T− 1
α + 1 ≤ 2T− 1

α and so S ∼ T . Thus, 
the relevant integral is comparable to

∞̂

0

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)2p
,

and we claim that this is comparable to 1. Indeed,

∞̂

T

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)2p

=
∞̂

T

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

]
∼ 1 ,
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since T ≤ 1 and since the integral converges at both zero (according to the assumption 
s
2 < d

α ) and infinity. For a lower bound we drop the integral between 0 and T and for an 
upper bound, we estimate it by

T̂

0

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)2p

≤
T̂

0

dτ

τ
τ−1− s

2 τ
d
α+1(τ/T )

2p
α ∼ T− s

2+ d
α ≤ 1 ,

since αs2 < d ∧ (d + 2p) ensures the convergence of the integral and the last inequality.
Case S ≤ 1 ≤ T . In this case we have S− 1

α ≤ T− 1
α + 1 ≤ 2 and so S ∼ 1. Thus, the 

relevant integral is comparable to

∞̂

0

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)p (
1 ∧ τ1/α

)p

,

and we claim that this is comparable to T− p
α . Indeed, we have, using s2 < d+2p

α ,

1ˆ

0

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)p (
1 ∧ τ1/α

)p

∼ T− p
α

1ˆ

0

dτ

τ
τ−1− s

2 τ
d
α+1τ

2p
α ∼ T− p

α .

For a lower bound we drop the integral between 1 and ∞ and for an upper bound, we 
estimate, using 1 + s

2 − p
α > 0 when α < 2 (as a consequence of s > 0 and p < α),

T̂

1

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)p (
1 ∧ τ1/α

)p

∼
T̂

1

dτ

τ
τ−1− s

2

[
1α<2 + τ

d
2 +1e−cτ1α=2

]
(τ/T )

p
α � T− p

α

and, using again 1 + s
2 − p

α ≥ 0 when α < 2,

∞̂
dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)p (
1 ∧ τ1/α

)p
T
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=
∞̂

T

dτ

τ
τ−1− s

2

[
1α<2 + τ

d
2 +1e−cτ1α=2

]
∼ T−1− s

2 1α<2 + T−1− s
2+ d

2 e−cT1α=2 � T− p
α .

Case 1 ≤ S ≤ T . We split the relevant integral into three pieces, by cutting at S and 
at T . For the first integral we find, using s < 2(d+2p)

α ,

Ŝ

0

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)p (
1 ∧ (τ/S)1/α

)p

= (ST )−
p
α

Ŝ

0

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

]
τ

2p
α

∼ (ST )−
p
α

((
1p≤α

2 (1+ s
2 ) + (lnS)1p=α

2 (1+ s
2 ) + S

2p
α −1− s

2 1p>α
2 (1+ s

2 )

)
1α<2 + 1α=2

)
.

This term is of the claimed form. Thus, for a lower bound we can drop the integral 
between S and ∞.

We bound the second integral from above by

T̂

S

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)p (
1 ∧ (τ/S)1/α

)p

= T− p
α

T̂

S

dτ

τ
τ−1− s

2

[
1α<2 + τ

d
2 +1e−cτ1α=2

]
τ

p
α

� T− p
α

(
S−1− s

2+ p
α 1α<2 + S−1− s

2+ p
α+ d

2 e−cS1α=2

)
.

When α < 2 and p > α
2 (1 + s

2 ), this upper bound equals the size of the first integral, 
and for p ≤ α

2 (1 + s
2 ) we bound T− p

αS−1− s
2+ p

α ≤ (TS)− p
α . When α = 2, have clearly 

T− p
αS−1− s

2+ p
α+ d

2 e−cS � (TS)− p
α .

We bound the third integral exactly as in the case S ≤ 1 ≤ T and obtain

∞̂

T

dτ

τ
τ−1− s

2

[(
1 ∧ τ

d
α+1

)
1α<2 + τ

d
2 +1e−cτ1α=2

] (
1 ∧ (τ/T )1/α

)p (
1 ∧ (τ/S)1/α

)p

=
∞̂

T

dτ

τ
τ−1− s

2

[
1α<2 + τ

d
2 +1e−cτ1α=2

]
∼ T−1− s

2 1α<2 + T−1− s
2+ d

2 e−cT1α=2 .

When α < 2 and p ≤ α
2 (1 + s

2 ), we bound

T−1− s
2 ≤ (ST )− 1

2 (1+ s
2 ) ≤ (ST )−

p
α

(
1p≤α (1+ s ) + (lnS)1p=α (1+ s )

)

2 2 2 2
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and when α < 2 and p > α
2 (1 + s

2), we bound, recalling pα < 1 + s
2 ,

T−1− s
2 ≤ (ST )−

p
αS

2p
α −1− s

2 .

When α = 2, we have p ≥ 1
2 > 0 and therefore T−1− s

2+ d
2 e−cT � (ST )− p

α . This completes 
the proof. �
4. Proof of the generalized Hardy inequality (Theorem 3)

We first prove a theorem that is closely related to Theorem 3.

Theorem 13. Let α ∈ (0, 2] and let λ ≥ 0 when α ∈ (0, 2) and λ ≥ −1/4 when α = 2. Let 
p be defined by (4). Then, if s ∈ (0, 1+2p

α ∧ 2d
α ), one has

‖x−αs/2
d L

−s/2
λ g‖L2(Rd

+) �d,α,λ,s ‖g‖L2(Rd
+) for all g ∈ L2(Rd

+) . (14)

Conversely, if (14) holds for some s ∈ (0, 2dα ∧ 2(d+2p)
α ), then s < 1+2p

α .

Remark 14. Let α ∈ (0, 2), λ ∈ [λ∗, 0) and assume that e−tLλ(x, y) satisfies the bound in 
(9) with p defined by (4). Then the assertions of Theorem 13 remain valid. Similarly, the 
upper (resp. lower) bound in (9) implies the sufficiency (resp. necessity) of the assumption 
s < 1+2p

α for the validity of (14). This follows by the same arguments as in the proof 
below, taking into account Remark 12.

The basic strategy of the proof is to use Theorem 11 in order to replace the operator 
L
−s/2
λ by one with a more explicit kernel.

Proof. We assume throughout that α, λ and p are as in the statement of the theorem 
and that s ∈ (0, 2dα ∧ 2(d+2p)

α ).

Necessity of the assumption s < 1+2p
α . We consider a similar example as in [25, 

p. 1283]. Let w = (0, 0, ..., 2) ∈ Rd
+ and 0 ≤ ϕ ∈ C∞

c (Rd
+) with ϕ ≥ 1 in B1/2(w). 

We use part (a) of Theorem 11. (More precisely, we also use part (b) to see that the 
bound in part (a) is also valid for xd ∨ yd < |x − y| ≤ 2(xd ∨ yd).) This shows that, for 
x ∈ Rd

+ with |x| ≤ 1, we have

(L−s/2
λ ϕ)(x) ≥

ˆ

Rd
+

dy 1|x−y|≤2yd
L
−s/2
λ (x, y)ϕ(y)

�
ˆ

Rd
+

dy 1|x−y|≤2yd
1|y−w|≤ 1

2
|x− y|α s

2−d

(
1 ∧ xd

|x− y| ∧
yd

|x− y|

)p

� xp
d

ˆ

Rd

dy 1|x−y|≤2yd
1|y−w|≤ 1

2
� xp

d .
+
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In the third inequality we used the fact that |x − y| ∼ 1 and 1 ∧ xd

|x−y| ∧
yd

|x−y| ∼
xd

|x−y| on 

the domain of integration. (Indeed, clearly, 1
2 ≤ |x − y| ≤ |x| + |y−w| + |w| ≤ 7

2 , xd ≤ 1
and yd ≥ 3

2 .) In the fourth inequality we used the fact that the inequality |x −y| ≤ 2yd is 
satisfied for all y with |y−w| ≤ 1

2 . (Indeed, |x −y| ≤ |x′−y′| +(yd−xd) ≤ |x′| + |y′| +yd, 
where |x′| ≤ |x| ≤ 1 ≤ 2

3yd and |y′| ≤ |y − w| ≤ 1
2 ≤ 1

3yd.)
This allows us to bound

‖x−αs
2

d L
−s/2
λ ϕ‖L2(Rd

+) ≥ ‖1|x|≤1x
−αs

2
d L

−s/2
λ ϕ‖L2(Rd

+) � ‖1|x|≤1x
p−αs

2
d ‖L2(Rd

+) .

Since the right side is infinite if s ≥ 1+2p
α , we see that the inequality s < 1+2p

α is necessary 
for the validity of (14).

Sufficiency of the assumption s < 1+2p
α . We shall prove the L2(Rd

+)-boundedness of 
the operator with kernel x−αs

2
d L

− s
2

λ (x, y). By the upper bounds in Theorem 11, it suffices 
to prove the L2(Rd

+)-boundedness of the operator with kernel K(x, y), defined to be 

x
−αs

2
d times the function appearing in the bounds in Theorem 11. We will divide K into 

four pieces supported in essentially disjoint sets and show boundedness of the resulting 
four operators. To that end we perform Schur tests as in [25, Proposition 3.2] (with s in 
place of αs2 and σ in place of −p). These Schur tests involve weights and the weights are 
chosen differently for the four different pieces of K.

The four regions are defined by |x − y| ≤ 4(xd ∧ yd), 4xd ≤ |x − y| ≤ 4yd, 4yd ≤
|x −y| ≤ 4xd and 4(xd∨yd) ≤ |x −y|. The factors of 4 will be convenient in some regions 
and we observe that Theorem 11 as stated is equivalent to a variant of Theorem 11 where 
the distinction between parts (a) and (b) includes similar factors of 4.

Case |x − y| ≤ 4(xd ∧ yd). In this case we have 1 ∧ xd

|x−y| ∧
yd

|x−y| ∼ 1 and therefore the 
kernel becomes

K(x, y) ∼ x
−α s

2
d |x− y|α s

2−d .

For the first half of the Schur test we bound
ˆ

|x−y|≤4(xd∧yd)

x
−α s

2
d |x− y|α s

2−d dy ≤
ˆ

|x−y|≤4xd

x
−α s

2
d |x− y|α s

2−d dy � 1 .

For the second half of the Schur test, we note that yd ≤ xd+|x −y| ≤ xd+4(xd∧yd) ≤ 5xd

and therefore x
−α s

2
d in the kernel can be replaced by y

−α s
2

d . Therefore, the second half 
of the Schur test is similar to the first, and we deduce the L2(Rd

+)-boundedness of the 
piece of K in this region.

Case 4xd ≤ |x − y| ≤ 4yd. In this case, we have 1 ∧ xd

|x−y| ∧
yd

|x−y| ∼
xd

|x−y| and therefore 
the kernel becomes

K(x, y) = x
p−αs

2
d |x− y|αs

2 −d−p .
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We perform a Schur test with weight

w(x, y) =
(

xd

|x− y|

)β

with αs

2 − p < β < 1 + p− αs

2 .

The assumption s < 1+2p
α guarantees that one can find such a β.

For the first half of the Schur test we bound

ˆ

4xd≤|x−y|≤4yd

w(x, y)K(x, y) dy � x
−αs

2 +p+β

d

ˆ

|x−y|≥xd/4

|x− y|αs
2 −d−p−β dy � 1 ,

where the finiteness of the integral comes from the choice of β. For the second half of 
the Schur test we note that in our region we have |x − y| ≥ yd − xd ≥ yd − |x − y|/4, so 
|x − y| ≥ 4yd/5. We bound

ˆ

4xd≤|x−y|≤4yd

w(x, y)−1 K(x, y) dx

�
ˆ

4yd/5≤|x−y|≤4yd

x
−αs

2 +p−β

d |x− y|αs
2 −d−p+β dx

=
ˆ

4/5≤|w|≤4

(wd + 1)−αs
2 +p−β |w|αs

2 −d−p+β1{wd>−1} dw < ∞ ,

where we changed variables x − y = ydw and where the finiteness of the integral comes 
from the choice of β. We deduce the L2(Rd

+)-boundedness of the piece of K in this region.
Case 4yd ≤ |x − y| ≤ 4xd. In this case, we have 1 ∧ xd

|x−y| ∧
yd

|x−y| ∼
yd

|x−y| and therefore 
the kernel becomes

K(x, y) = x
−αs

2
d ypd|x− y|αs

2 −d−p .

We perform a Schur test with weight

w(x, y) =
(
|x− y|
yd

)γ

with − p < γ < 1 + p .

Since p ≥ α−1
2 > −1

2 it is possible to find such a γ.
Similarly as in the previous case (but with x and y interchanged), we have |x − y| ≥

4xd/5 and, in particular, yd ≤ xd ∼ |x − y|. Therefore, for the first half of the Schur test 
we bound
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ˆ

4yd≤|x−y|≤4xd

w(x, y)K(x, y) dy � x−d−p+γ
d

ˆ

4yd≤|x−y|≤4xd

yp−γ
d dy

≤ x−d−p+γ
d

ˆ

|x′−y′|≤4xd , yd≤xd

yp−γ
d dy

=
ˆ

|w′|≤4 ,wd≤1

wp−γ
d dw < ∞ ,

where the finiteness of the integral comes for the choice of γ. For the second half of the 
Schur test we bound, using again xd ∼ |x − y|,

ˆ

4yd≤|x−y|≤4xd

w(x, y)−1 K(x, y) dx � yp+γ
d

ˆ

|x−y|≥4yd

|x− y|−d−p−γ dx

=
ˆ

|w|≥4

|w|−d−p−γ dw < ∞ ,

where the finiteness of the integral comes from the choice of γ. We deduce the L2(Rd
+)-

boundedness of the piece of K in this region.
Case 4(xd ∨ yd) ≤ |x − y|. In this region the kernel is

K(x, y) = x
−α s

2
d |x− y|α s

2−d

(
xd yd

|x− y|2
)p

·
[
1α=2

+
(

1p≤α
2 (1+ s

2 ) +
(

ln |x− y|
xd ∨ yd

)
1p=α

2 (1+ s
2 ) +

(
|x− y|
xd ∨ yd

)2p−α(1+ s
2 )

1p>α
2 (1+ s

2 )

)
1α<2

]
.

We perform a Schur test with weight

w(x, y) =
(

xd

|x− y|

)β ( |x− y|
yd

)γ

with αs
2 − p < β < 1 + p− αs

2 , −p < γ < 1 + p .

When α < 2 and p > α
2 (1 + s

2 ), we also assume that

−1 − α < β − γ < 1 + α .

A possible parameter choice that satisfies all the constraints is β = γ = 1
2 .

For the first Schur test we boundˆ

4(xd∨yd)≤|x−y|

w(x, y)K(x, y) dy =
∑
R∈2Z

ˆ

4(xd∨yd)≤|x−y|

1R≤|x−y|<2Rw(x, y)K(x, y) dy

�
∑

2xd<R∈2Z

ˆ

Rd
+

1|x′−y′|<2R12yd<RwR(x, y)KR(x, y) dy ,
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where wR and KR are defined as w and K, but with |x − y| at each occurrence replaced 
by R. For fixed R ∈ 2Z with R > 2xd, we carry out the y′-integration and, if α < 2 and 
p = α

2 (1 + s
2 ), we bound xd ∨ yd ≥ yd. In this way, we obtain

ˆ

Rd
+

1|x′−y′|<2R12yd<RwR(x, y)KR(x, y) dy � x
−αs

2 +p+β

d R
αs
2 −2p−β+γ−1

×
R/2ˆ

0

dyd y
p−γ
d ·

[
1α=2

+
(

1p≤α
2 (1+ s

2 ) +
(

ln R

yd

)
1p=α

2 (1+ s
2 ) +

(
R

xd ∨ yd

)2p−α(1+ s
2 )

1p>α
2 (1+ s

2 )

)
1α<2

]

� x
−αs

2 +p+β

d R
αs
2 −p−β + xα+β−γ+1

d R−α−β+γ−11p>α
2 (1+ s

2 )1α<2 .

Here the assumption p − γ > −1 guarantees the yd-integral to converge near zero. The 
additional term in case α < 2 and p > α

2 (1 + s
2 ) comes from the integral between 0 and 

xd.
Summing with respect to R we obtain

∑
2xd<R∈2Z

(
x
−αs

2 +p+β

d R
αs
2 −p−β + xα+β−γ+1

d R−α−β+γ−11p>α
2 (1+ s

2 )1α<2

)
∼ 1 .

Here the assumptions β > αs
2 − p and β − γ > −1 − α guarantee the convergence of the 

R-sum.
For the second Schur test we bound similarly

ˆ

4(xd∨yd)≤|x−y|

w(x, y)−1K(x, y) dx

=
∑
R∈2Z

ˆ

4(xd∨yd)≤|x−y|

1R≤|x−y|<2Rw(x, y)−1K(x, y) dx

�
∑

2yd<R∈2Z

ˆ

Rd
+

1|x′−y′|<2R12xd<RwR(x, y)−1KR(x, y) dx .

For fixed R ∈ 2Z with R > 2yd, we carry out the x′-integration and, if p = α
2 (1 + s

2), we 
bound xd ∨ yd ≥ xd. In this way, we obtain

ˆ

Rd

1|x′−y′|<2R12xd<RwR(x, y)−1KR(x, y) dx � yp+γ
d R

αs
2 −2p+β−γ−1
+
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×
R/2ˆ

0

dxd x
−αs

2 +p−β

d ·
[
1α=2

+
(

1p≤α
2 (1+ s

2 ) +
(

ln R

xd

)
1p=α

2 (1+ s
2 ) +

(
R

xd ∨ yd

)2p−α(1+ s
2 )

1p>α
2 (1+ s

2 )

)
1α<2

]
� yp+γ

d R−p−γ + yα−β+γ+1
d R−α+β−γ−11p>α

2 (1+ s
2 )1α<2 .

Here the assumption β < 1 + p − αs
2 guarantees the convergence of the xd-integral near 

zero. The additional term in case α < 2 and p > α
2 (1 + s

2 ) comes from the integral 
between 0 and yd.

Summing with respect to R we obtain∑
2yd<R∈2Z

(
yp+γ
d R−p−γ + yα−β+γ+1

d R−α+β−γ−11p>α
2 (1+ s

2 )1α<2

)
∼ 1 .

Here the assumptions γ > −p and β−γ < 1 +α guarantee the convergence of the R-sum. 
This concludes the Schur test and we deduce the L2(Rd

+) boundedness of the piece of K
in this last region. �

To deduce Theorem 3 from Theorem 13 we need the following lemma.

Lemma 15. Let α, s ∈ (0, 2] and λ ≥ λ∗. Then C∞
c (Rd

+) ⊂ domL
s/2
λ .

Proof. Since the domains are nested as s decreases, it suffices to consider the case s = 2. 
The case α = 2 is classical, so we may assume α < 2. Let f ∈ C∞

c (Rd
+). By definition of 

the Friedrichs extension, we need to find a g ∈ L2(Rd
+) such that

1
2 A(d,−α)

¨

Rd
+×Rd

+

(u(x) − u(y))(f(x) − f(y))
|x− y|d+α

dx dy + λ

ˆ

Rd
+

u(x)f(x)
xα
d

dx

=
ˆ

Rd
+

u(x)g(x) dx

for all u ∈ C1
c (Rd

+). By polarizing the computation in Remark 7, identifying both f and 
u with their extension by zero to Rd, we see that this is equivalent to

ˆ

Rd

(−Δ)α/4u(x)(−Δ)α/4f(x) dx + (λ− λ0)
ˆ

Rd
+

u(x)f(x)
xα
d

dx =
ˆ

Rd
+

u(x)g(x) dx .

This holds with g := ((−Δ)α/2f)|Rd
+

+ (λ − λ0)x−α
d f . Indeed, the first term belongs to 

L2(Rd
+) since |ξ|αf̂ ∈ L2(Rd) and the second one since x−α

d is bounded on the support 
of f . This completes the proof. �
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Proof of Theorem 3. For given f ∈ C∞
c (Rd

+), g := L
s/2
λ f ∈ L2(Rd

+) by Lemma 15, so 
Theorem 3 follows from Theorem 13. �
Remark 16. The same proof, without invoking Lemma 15, shows that the generalized 
Hardy inequality (8) holds for all f ∈ domL

s/2
λ under the assumptions of Theorem 3.

5. Difference of heat kernels

A key tool for the proof of the reversed Hardy inequality (Theorem 5) are bounds for 
the difference between the heat kernels of L0 and Lλ, i.e.,

Kα
t (x, y) := e−tL0(x, y) − e−tLλ(x, y) .

Given α ∈ (0, 2] and λ ≥ λ∗, let p be defined by (4) and set

q := min{p, (α− 1)+} .

We formulate our bounds in terms of the functions

Jα
t (x, y) :=

(
1xd∨yd≤t1/α + 1xd∨yd≥t1/α1|x−y|≥(xd∧yd)/2

) (
1 ∧ xd

t1/α

)q (
1 ∧ yd

t1/α

)q

× t−
d
α

[(
1 ∧ t1+

d
α

|x− y|d+α

)
1α<2 + exp

(
−c

|x− y|2
t

)
1α=2

]

and, with some appropriate constant c > 0,

Mα
t (x, y) := 1xd∨yd≥t1/α1|x−y|≤(xd∧yd)/2

× t1−
d
α

(xd ∨ yd)α

[(
1 ∧ t1+

d
α

|x− y|d+α

)
1α<2 + exp

(
−c

|x− y|2
t

)
1α=2

]
.

Theorem 17. Let α ∈ (0, 2] and let λ ≥ 0 when α ∈ (0, 2) and λ ≥ −1/4 when α = 2. 
Then, for all x, y ∈ Rd

+ and t > 0, one has

|Kα
t (x, y)| � Jα

t (x, y) + Mα
t (x, y) . (15)

Remark 18. Let α ∈ (0, 2), λ ∈ [λ∗, 0) and assume that e−tLλ(x, y) satisfies the upper 
bound in (9) with p defined by (4). Then (15) remains valid. This follows by the same 
arguments as in the proof below.

Proof. We assume λ �= 0 without loss generality as the claim is trivial when λ = 0. By 
scaling, it suffices to consider t = 1 and, by symmetry, it suffices to consider xd ≤ yd. 
We now drop the subscript t in Kα

t , Jα
t , and Mα

t .
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By the triangle inequality and the bounds (9) and (10), we obtain

|Kα(x, y)| �
[
(1 ∧ xd)p (1 ∧ yd)p + (1 ∧ xd)(α−1)+ (1 ∧ yd)(α−1)+

]
×

[(
1 ∧ |x− y|−d−α

)
1α<2 + e−c|x−y|21α=2

]
.

For an upper bound we can replace both exponents p and (α − 1)+ by q and arrive at 
the claimed bound in the regions where yd ≤ 1 and where yd ≥ 1 and |x − y| ≥ xd/2.

In the following we concentrate on the region where yd ≥ 1 and |x − y| ≤ xd/2. Note 
that in this region we have yd ≤ xd + |x − y| ≤ (3/2)xd, so xd ∼ yd ≥ 1.

By Duhamel’s formula, i.e.,

e−L0 − e−Lλ = λ

1ˆ

0

ds e−(1−s)L0x−α
d e−sLλ ,

and the bounds (9) and (10), we conclude

|Kα(x, y)| �
1ˆ

0

ds

ˆ

Rd
+

dz

zαd
s−

d
α (1 − s)− d

α

(
1 ∧ zd

(1 − s)1/α

)(α−1)+ (
1 ∧ zd

s1/α

)p

×
[(

1 ∧ (1 − s)1+ d
α

|x− z|d+α

)(
1 ∧ s1+ d

α

|y − z|d+α

)
1α<2

+ exp
(
−c

(
|x− z|2
1 − s

+ |y − z|2
s

))
1α=2

]
.

Note that here we dropped the factors(
1 ∧ xd

(1 − s)1/α

)(α−1)+ (
1 ∧ yd

s1/α

)p

∼ 1 , (16)

since xd ∼ yd ≥ 1 and s ∈ [0, 1].
We divide the z integration at zd = xd/2, leading to the bound

|Kα(x, y)| � kα<(x, y) + kα>(x, y)

with

kα>(x, y) :=
1ˆ

0

ds

ˆ

zd>xd/2

dz

zαd
s−

d
α (1 − s)− d

α

(
1 ∧ zd

(1 − s)1/α

)(α−1)+ (
1 ∧ zd

s1/α

)p

×
[(

1 ∧ (1 − s)1+ d
α

|x− z|d+α

)(
1 ∧ s1+ d

α

|y − z|d+α

)
1α<2
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+ exp
(
−c

(
|x− z|2
1 − s

+ |y − z|2
s

))
1α=2

]
.

and similarly for kα<.

We discuss kα< and kα> separately and begin with the latter. We bound z−α
d � x−α

d �
y−α
d and we bound

(
1 ∧ zd

(1 − s) 1
α

)(α−1)+ (
1 ∧ zd

s1/α

)p

≤
(

1 ∧ zd

(1 − s) 1
α

)q (
1 ∧ zd

s1/α

)q

.

Now we enlarge the zd-integration to all of (0, ∞) and reinsert the trivial factors (16), 
but with both exponents replaced by q. Noting that q is the exponent corresponding to 
the operator L−λ− (where λ− = (−λ) ∨ 0), we conclude that

kα>(x, y) � 1
yαd

1ˆ

0

ds

ˆ

Rd
+

dz e−(1−s)L−λ− (x, z)e−sL−λ− (z, y) = 1
yαd

1ˆ

0

ds e−L−λ− (x, y)

∼ Mα(x, y) ,

where we used the semigroup property of exp(−sL−λ−) and the heat kernel bounds and 
we dropped again trivial factors as in (16) (with exponents q).

It remains to deal with kα<, where we integrate over zd < xd/2. We first discuss the 
case α < 2. We begin by carrying out the z′-integration. Computations are simplified 
if we use the fact that |xd − zd| ∼ xd by the choice of the cut-off in the integral and 
similarly |yd − zd| ∼ yd ∼ xd (since |zd| ≤ xd/2 ≤ yd/2). Thus, |x − z| ∼ |x′ − z′| + xd

and |y − z| ∼ |y′ − z′| + xd and the integral to be computed is comparable to

ˆ

Rd−1

dz′

(
1 ∧ (1 − s)1+ d

α

xd+α
d + |x′ − z′|d+α

)(
1 ∧ s1+ d

α

xd+α
d + |y′ − z′|d+α

)
. (17)

We simplify the integrand, using s ∈ [0, 1] and xd ∼ yd ≥ 1,

1 ∧ (1 − s)1+ d
α

xd+α
d + |x′ − z′|d+α

∼ (1 − s)1+ d
α

xd+α
d + |x′ − z′|d+α

and

1 ∧ s1+ d
α

xd+α
d + |y′ − z′|d+α

∼ s1+ d
α

xd+α
d + |y′ − z′|d+α

.

Using Lemma 22 we see that the integral (17) is comparable to
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s1+ d
α (1 − s)1+ d

α
x−α−1
d

xd+α
d + |x′ − y′|d+α

.

For an upper bound, one can remove the term |x′ − y′| in the denominator. Thus, we 
have shown that

kα<(x, y) � x−d−2α−1
d

1ˆ

0

ds

xd/2ˆ

0

dzd
zαd

s(1 − s)
(

1 ∧ zd
(1 − s)1/α

)(α−1)+ (
1 ∧ zd

s1/α

)p

.

Next, we carry out the s-integration for fixed zd ∈ [0, xd/2]. The integral coming from 
s ≤ 1/2 is

∼
1/2ˆ

0

ds s (1 ∧ zd)(α−1)+
(
1 ∧ zd

s1/α

)p

∼ (1 ∧ zd)(α−1)++p .

Here we used p < α. Similarly, the integral coming from s ≥ 1/2 is

∼
1ˆ

1/2

ds (1 − s)
(

1 ∧ zd
(1 − s)1/α

)(α−1)+
(1 ∧ zd)p ∼ (1 ∧ zd)(α−1)++p .

This leads to the bound

kα<(x, y) � x−d−2α−1
d

xd/2ˆ

0

dzd
zαd

(1 ∧ zd)(α−1)++p

∼ x−d−2α−1
d

(
1α≥1 + (ln(1 + xd))1α=1 + x1−α

d 1α<1
)
.

In the last computation, we used the fact that, if α ≥ 1, then p > 0 (note that for 
α = 1, this inequality is ensured by the assumption λ > λ∗ = 0), and if α < 1, then 
p − α ≥ α−1

2 − α > −1.
Finally, we note that, since xd � 1,

x−d−2α−1
d

(
1α≤1 + (ln(1 + xd))1α=1 + x1−α

d 1α<1
)
� x−α

d

(
1 ∧ x−d−α

d

)
.

Since xd ∼ yd and xd/2 ≥ |x − y|, we deduce that kα<(x, y) � Mα(x, y) if α < 2.

It remains to treat the case α = 2. The argument is similar, but slightly simpler. The 
z′-integral can be done explicitly, yielding

ˆ
dz′ exp

(
−c

(
|x− z|2
1 − s

+ |y − z|2
s

))

Rd−1
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= const s
d−1
2 (1 − s)

d−1
2 exp

(
−c

(
|x′ − y′|2 + (xd − zd)2

1 − s
+ (yd − zd)2

s

))
.

For s ∈ [0, 1] and all xd, yd, zd ≥ 0 we bound

(xd − zd)2

1 − s
+ (yd − zd)2

s
≥ (xd − zd)2 + (yd − zd)2 ≥ 1

2(xd − yd)2 .

Also, as before, using the restriction zd < xd/2 and yd ≥ xd,

(xd − zd)2

1 − s
+ (yd − zd)2

s
≥ (xd − zd)2 + (yd − zd)2 � x2

d .

Combining these two bounds gives

exp
(
−c

(
|x′ − y′|2 + (xd − zd)2

1 − s
+ (yd − zd)2

s

))
≤ exp(−c̃x2

d) exp
(
− c

4 |x− y|2
)

� x−2
d exp

(
− c

4 |x− y|2
)

= M2(x, y) ,

where M2(x, y) is now defined with c being one quarter of the constant in the heat kernel 
bound. (Obviously, the bound on k2

> remains valid if c is decreased.)
Thus, to prove that k2

<(x, y) � M2(x, y) it suffices to prove that

1ˆ

0

ds

xd/2ˆ

0

dzd
z2
d

s−
1
2 (1 − s)− 1

2

(
1 ∧ zd

(1 − s)1/2

)(
1 ∧ zd

s1/2

)p

� 1 .

To prove this, we first perform the s-integral for fixed zd ∈ [0, xd/2] and find

1ˆ

0

ds s−
1
2 (1 − s)− 1

2

(
1 ∧ zd

(1 − s)1/2

)(
1 ∧ zd

s1/2

)p

∼ (1 ∧ zd)p+1
(
1 + ln(1 + 1

zd
)
)
1p≤1 + (1 ∧ zd)21p>1 .

We omit the detail of this computation. Since the right side, multiplied by z−2
d , is inte-

grable over (0, ∞) (for p ≤ 1, we use p > 1/2 > 0), we obtain the claimed bound. �
6. Proof of the reversed Hardy inequality (Theorem 5)

Proof of Theorem 5. Step 1. The assertion for s = 2 follows from Lλ − L0 = λx−α
d . In 

the following we assume 0 < s < 2 and λ �= 0. By the spectral theorem, we have, for 
f ∈ C∞

c (Rd
+),
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(
L
s/2
λ − L

s/2
0

)
f = − 1

Γ(−s/2)

∞̂

0

dt

t
t−s/2 (e−tL0 − e−tLλ

)
f

= − 1
Γ(−s/2)

∞̂

0

dt

t
t−s/2

ˆ

Rd
+

dyKα
t (·, y)f(y) .

(Here we use Lemma 15, which guarantees that C∞
c (Rd

+) ⊂ domL
s/2
λ ∩ domL

s/2
0 .) Ab-

breviating g(y) := y
−αs/2
d |f(y)|, it suffices to show that the right side of

∥∥∥(Ls/2
λ − L

s/2
0

)
f
∥∥∥
L2(Rd

+)
�

∥∥∥∥∥∥∥
ˆ

Rd
+

dy

∞̂

0

dt

t
t−

s
2Kα

t (·, y)yα
s
2

d g(y)

∥∥∥∥∥∥∥
L2(Rd

+)

is bounded by a multiple of ‖g‖L2(Rd
+). By the pointwise bound of Theorem 17 it suffices 

to show the L2(Rd
+)-boundedness of the operator associated to the kernel

∞̂

0

dt t−1−s/2 (Jα
t (x, y) + Mα

t (x, y)) yαs/2d , x, y ∈ Rd
+ , (18)

with Mα
t and Jα

t defined in the previous section. This L2(Rd
+)-boundedness will be shown 

in the following two steps, which therefore will conclude the proof of Theorem 5.

Step 2. We begin with the kernel coming from the Mα
t -part of (18). As discussed in 

the proof of Theorem 17, on the support of Mα
t (x, y) we have xd ∼ yd. Hence,

∞̂

0

dt

t
t−

s
2 Mα

t (x, y)y
αs
2

d ∼
∞̂

0

dt

t
t−

s
2 Mα

t (x, y)(xdyd)
αs
4 .

This replaces the kernel by a symmetric one and we only have to perform a single Schur 
test instead of two. We obtain

sup
x∈Rd

+

ˆ

Rd
+

dy

∞̂

0

dt

t
t−

s
2 Mα

t (x, y)(xdyd)
αs
4

� sup
x∈Rd

+

ˆ

yd∼xd

dy

ˆ

t≤(xd∨yd)α

dt

t
t−

s
2 (xdyd)

αs
4

× t1−
d
α

(xd ∨ yd)α

[(
1 ∧ t1+

d
α

|x− y|d+α

)
1α<2 + exp

(
−c

|x− y|2
t

)
1α=2

]
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� sup
x∈Rd

+

x
αs
2 −α

d

ˆ

yd∼xd

dy

ˆ

t�xα
d

dt

t
t−

s
2+1− d

α

(
1 ∧ t1+

d
α

|x− y|d+α

)
.

We now interchange the order of integration and do the y-integral first. We bound

ˆ

yd∼xd

dy

(
1 ∧ t1+

d
α

|x− y|d+α

)
≤
ˆ

Rd

dy

(
1 ∧ t1+

d
α

|x− y|d+α

)
∼ t

d
α .

Therefore, the supremum over x ∈ Rd
+ above is � supx∈Rd

+
x

αs
2 −α

d

´ Cxα
d

0 dt t−
s
2 < ∞. 

Thus, the Schur test implies the L2(Rd
+)-boundedness of the corresponding operator.

Step 3. We now study the kernel coming from the Jα
t -part of (18). Two preliminary 

steps will simplify our computations. First, if α = 2 we bound exp
(
−c |x−y|2

t

)
� 1 ∧

t1+
d
α

|x−y|d+α . Second, we replace each of the two factors (1 ∧ . . .)q by (1 ∧ . . .)−r with

−r := q ∧ 0 ,

where we recall q = min{p, (α− 1)+}. Thus, Jα
t ≤ J̃α

t with

J̃α
t (x, y) :=

(
1xd∨yd≤t1/α + 1xd∨yd≥t1/α1|x−y|≥(xd∧yd)/2

) (
1 ∧ xd

t1/α

)−r (
1 ∧ yd

t1/α

)−r

× t−
d
α

(
1 ∧ t1+

d
α

|x− y|d+α

)
,

and it suffices to prove the assertion with J̃α
t instead of Jα

t .
For that purpose we insert the cut-offs 1xd∨yd≤t1/α and 1xd∨yd≥t1/α and bound the 

two terms separately. We have

∞̂

0

dt t−1− s
2 J̃α

t (x, y)1xd∨yd≤t1/α y
αs
2

d

∼ y
αs
2

d (xdyd)−r

∞̂

(xd∨yd)α

dt t−1− s
2+ 2r

α − d
α

(
1 ∧ t1+

d
α

|x− y|d+α

)

� y
αs
2

d (xdyd)−r
[
(|x− y|∨xd∨yd)−

αs
2 +2r−d + 1xd∨yd≤|x−y||x− y|−d−α(xd∨yd)2r+α−αs

2
]
.

The first term here comes from the t-integral from (|x −y| ∨xd∨yd)α to ∞. This integral 
converges since − s

2 + 2r
α − d

α < 0. (Note that s > 0 and 2r ≤ (1 − α)+ < 1.) The second 
term comes from an upper bound on the integral between (xd∨yd)α and |x −y|α, in fact, 
from an upper bound on the integral between 0 and |x − y|α. This integral converges 
since − s + 2r + 1 > 0.
2 α
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The above bound can be simplified since (using r ≥ 0)

1xd∨yd≤|x−y||x− y|−d−α(xd ∨ yd)2r+α−αs
2 ≤ (|x− y| ∨ xd ∨ yd)−

αs
2 +2r−d .

We now turn to the contribution to J̃α
t from {xd ∨ yd ≥ t1/α}. We have

∞̂

0

dt t−1− s
2 J̃α

t (x, y)1xd∨yd≥t1/α y
αs
2

d

∼ y
αs
2

d

(xd∨yd)αˆ

0

dt t−1− s
2− d

α

(
1 ∧ xd ∧ yd

t1/α

)−r
(

1 ∧ t1+
d
α

|x− y|d+α

)
1|x−y|≥(xd∧yd)/2

≤ y
αs
2

d |x− y|−d−α

(xd∨yd)αˆ

0

dt t−
s
2

(
1 ∧ xd ∧ yd

t1/α

)−r

1|x−y|≥(xd∧yd)/2

� y
αs
2

d |x− y|−d−α
[
(xd ∧ yd)α−

αs
2 + (xd ∧ yd)−r(xd ∨ yd)r+α−αs

2
]
1|x−y|≥(xd∧yd)/2 .

The first term here comes from the integral from 0 to (xd ∧ yd)α. This converges since 
s < 2. The second term comes from an upper bound on the integral from (xd ∧ yd)α to 
(xd ∨ yd)α, in fact, from an upper bound on the integral between 0 and (xd ∨ yd)α. This 
integral converges since − s

2 + r
α > −1.

The above bound can be simplified since (using r ≥ 0)

(xd ∧ yd)α−
αs
2 ≤ (xd ∧ yd)−r(xd ∨ yd)r+α−αs

2 .

To summarize, we have shown that

∞̂

0

dt t−1− s
2 J̃α

t (x, y) y
αs
2

d � y
αs
2

d (xdyd)−r(|x− y| ∨ xd ∨ yd)−
αs
2 +2r−d

+ y
αs
2

d |x− y|−d−α(xd ∧ yd)−r(xd ∨ yd)r+α−αs
2 1|x−y|≥(xd∧yd)/2.

We claim that this is

�
(
|x− y| ∨ xd ∨ yd√

xdyd

)2r (|x− y| ∨ xd ∨ yd)α

(|x− y| ∨ (xd ∧ yd))d+α
. (19)

Indeed, for the terms involving s this follows from yd ≤ xd ∨ yd ≤ |x − y| ∨ xd ∨ yd and 
for those involving r it follows from r ≥ 0 and

|x− y| ∨ xd ∨ yd√ ≥ xd ∨ yd√ =
√

xd ∨ yd
.

xdyd xdyd xd ∧ yd
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Moreover,

(|x− y| ∨ xd ∨ yd)−d ≤ (|x− y| ∨ xd ∨ yd)α

(|x− y| ∨ (xd ∧ yd))d+α
,

and

|x− y|−d−α(xd ∨ yd)α−
αs
2 1|x−y|≥(xd∧yd)/2 � (|x− y| ∨ xd ∨ yd)α−

αs
2

(|x− y| ∨ (xd ∧ yd))d+α
.

This proves that (19) is an upper bound on the quantity of interest. The claimed L2(Rd
+)-

boundedness now follows from Proposition 19 below, noting that r ≤ (1 − α)+/2 <
1/2. �
Proposition 19. Let α > 0 and 0 ≤ r < 1

2 . Then the integral operator with integral kernel

(
|x− y| ∨ xd ∨ yd√

xdyd

)2r (|x− y| ∨ xd ∨ yd)α

(|x− y| ∨ (xd ∧ yd))d+α

is bounded on L2(Rd
+).

Proof. Step 1. We denote the kernel in the proposition by k(x, y). As a preliminary step 
to the main argument, let us carry out the integration over the Rd−1-variables. We claim 
that

ˆ

Rd−1

dy′ k(x, y) �
(
xd ∨ yd√
xdyd

)2r (xd ∨ yd)α

(|xd − yd| ∨ (xd ∧ yd))1+α
. (20)

Note that the kernel on the right side is the kernel corresponding to the case d = 1 of 
the proposition. (Indeed, one has |xd − yd| ≤ xd ∨ yd, so xd ∨ yd = |xd − yd| ∨ xd ∨ yd.)

To prove (20), we distinguish between the regions where |x − y| ≷ xd ∨ yd. We find

ˆ

Rd−1

dy′ k(x, y) �
(
xd ∨ yd√
xdyd

)2r ˆ

|x′−y′|<xd∨yd

dy′
(xd ∨ yd)α

(|x′ − y′| ∨ |xd − yd| ∨ (xd ∧ yd))d+α

+
ˆ

|x−y|>xd∨yd

dy′
(
|x− y|
√
xdyd

)2r 1
|x− y|d .

(21)

In the first integral we scale y′ = x′ + (|xd − yd| ∨ (xd ∧ yd))w and obtain

(
xd ∨ yd√
xdyd

)2r ˆ
′ ′

dy′
(xd ∨ yd)α

(|x′ − y′| ∨ |xd − yd| ∨ (xd ∧ yd))d+α
|x −y |<xd∨yd
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=
(
xd ∨ yd√
xdyd

)2r (xd ∨ yd)α

(|xd − yd| ∨ (xd ∧ yd))1+α

ˆ

|w|<(xd∨yd)/(|xd−yd|∨(xd∧yd))

dw

(|w| ∨ 1)d+α
.

Bounding the latter integral by a constant, we obtain a term of the form (20).
We turn now to the second integral in (21) and claim that

ˆ

|x−y|>xd∨yd

dy′
(
|x− y|
√
xdyd

)2r 1
|x− y|d �

(
xd ∨ yd√
xdyd

)2r 1
xd ∨ yd

. (22)

Since |xd − yd| ∨ (xd ∧ yd) ≤ xd ∨ yd, this will prove (20).
To prove (22) we first restrict the integral to |x′−y′| > (xd∨yd)/2 and find, changing 

variables y′ = x′ + |xd − yd|w,

ˆ

|x′−y′|>(xd∨yd)/2

dy′
(
|x− y|
√
xdyd

)2r 1
|x− y|d

= |xd − yd|2r−1

(xdyd)r

ˆ

|w|>(xd∨yd)/(2|xd−yd|)

dw

(1 + |w|2)(d−2r)/2

∼
(
xd ∨ yd√
xdyd

)2r

(xd ∨ yd)−1 .

Here we used r < 1
2 . This bound is of the form (22).

It remains to compute the integral in (22) where the restriction |x − y| > xd ∨ yd is 
replaced by |x′ − y′| ≤ (xd ∨ yd)/2. In the latter region we have

1
4 (xd ∨ yd)2 + |xd − yd|2 ≥ |x− y|2 ≥ (xd ∨ yd)2 ,

and therefore |xd−yd| � xd∨yd. Clearly |xd−yd| ≤ xd∨yd and therefore |x −y| ∼ xd∨yd. 
Thus,

ˆ

2|x′−y′|≤xd∨yd<|x−y|

dy′
(
|x− y|
√
xdyd

)2r 1
|x− y|d

∼
(
xd ∨ yd√
xdyd

)2r 1
(xd ∨ yd)d

ˆ

2|x′−y′|≤xd∨yd<|x−y|

dy′

�
(
xd ∨ yd√
xdyd

)2r 1
xd ∨ yd

,

which is again of the form (22). This completes the proof of (20).
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Step 2. We perform weighted Schur tests for the operator with kernel given by the 
right side of (20). As weight we choose

w(x, y) =
(
xd

yd

)β

with r < β < 1 − r .

Since r < 1
2 , it is possible to find such a β.

For the first part of the Schur test, we use (20) to bound

ˆ

Rd
+

dy w(x, y)k(x, y) ∼
∞̂

0

dyd

(
xd

yd

)β (
xd ∨ yd√
xdyd

)2r (xd ∨ yd)α

(|xd − yd| ∨ (xd ∧ yd))1+α

=
∞̂

0

dt t−β−r (1 ∨ t)α+2r

(|1 − t| ∨ (1 ∧ t))1+α

∼
∞̂

0

dt t−β−r(1 ∧ t−1+2r) < ∞ .

The finiteness of the last integral uses the assumptions r < β < 1 − r.
For the second part of the Schur test, we note that, by symmetry, (20) remains valid 

with dy′ replaced by dx′. Thus,

ˆ

Rd
+

dxw(x, y)−1k(x, y) ∼
∞̂

0

dxd

(
yd
xd

)β (
xd ∨ yd√
xdyd

)2r (xd ∨ yd)α

(|xd − yd| ∨ (xd ∧ yd))1+α

=
∞̂

0

dt t−β−r (1 ∨ t)α+2r

(|1 − t| ∨ (1 ∧ t))1+α
< ∞ ,

as before. The L2(Rd
+)-boundedness therefore follows from the Schur test. �

7. Commutator bounds

Throughout this section we assume that 0 < α < 2. Our goal is to bound the com-
mutators

[(−Δ)α/2, ζ]v(x) = A(d,−α)
ˆ

Rd

ζ(x) − ζ(y)
|x− y|d+α

v(y) dy

for functions v supported in Rd
+. In general the integral on the right side does not converge 

absolutely and should be understood as a principal value integral (whose convergence 
we will follow from our results).
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We will impose certain boundedness and decay assumptions on v, as well as, for α ≥ 1, 
mild regularity assumptions. The function ζ is a cut-off function and we are interested 
in tracking the dependence of the commutator on the size of the transition zone, where 
ζ switches from zero to one.

This section is split into three parts, corresponding to different choices of the cut-off 
function ζ. In Subsection 7.1 we will consider a cut off at a large distance from the origin, 
in Subsection 7.2 a cut off at a small distance from the boundary hyperplane, and in 
Subsection 7.3 the combination of both.

The assumption on v will always be of the form

|v(x)| ≤ (1 ∧ |x|−d−α)(1 ∧ xd)p for all x ∈ Rd
+ (23)

with a certain parameter p ≥ α−1
2 . This bound is reminiscent of the heat kernel bound 

in Theorem 9 and, in fact, in the next section we will use this theorem to verify (23) in 
our application where v ∈ e−tLλC∞

c (Rd
+). There, the parameter p will depend on λ as 

in our main result, but in this section p is an arbitrary parameter.
The additional regularity assumptions will be formulated in terms of the following 

Hölder seminorms. For a function u on a set Ω and 0 < β ≤ 2, we write

[u]Cβ(Ω) :=
{

supx,y∈Ω
|u(x)−u(y)|

|x−y|β if 0 < β ≤ 1 ,
supx,y∈Ω

|∇u(x)−∇u(y)|
|x−y|β−1 if 1 < β ≤ 2 .

(24)

Our assumption on v will then read

[v]Cβ(B�x (x)) ≤ (1 ∧ |x|−d−α) (1 ∧ xd)p−β for all x ∈ Rd
+ with 
x := 1 ∧ xd

2 . (25)

We will always assume that β > α− 1.

7.1. Radial cut-off

In this subsection we bound the term

I(x) :=
ˆ

Rd

χ(x) − χ(y)
|x− y|d+α

v(y) dy ,

where v is supported in Rd
+. Concerning the function χ we assume that, for a certain 

parameter R ≥ 1,

0 ≤ χ ≤ 1 , χ(x) = 1 if |x| ≤ R , χ(x) = 0 if |x| ≥ 2R , |∇χ| � R−1 , (26)

as well as, if α ≥ 1,

|D2χ| � R−2 . (27)
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Here D2χ denotes the Hessian of χ.

Lemma 20. Let 0 < α < 2. Let R ≥ 1, assume that χ satisfies (26) and, if α ≥ 1 also 
(27). Let p ≥ α−1

2 , assume that v satisfies (23) and, if α ≥ 1, also (25) with some 
β > α− 1.

(a) If α < 1, then

|I(x)| � 1|x|≤RR
−d−2α + 1|x|>R|x|−d−α for all x ∈ Rd

+ .

(b) If α ≥ 1, then

|I(x)| � 1|x|≤RR
−d−2α + 1|x|>R|x|−d−α

+ 1|x|∼RR
−d−α−1

(
(1 ∧ xd)−(p−α+1)− + 1p=α−1 ln 1

1∧xd
+ 1α=1 lnR

)
for all x ∈ Rd

+ .

(c) In either case,

‖I‖L2(Rd
+) � R−α−d/2 .

In the formulation of (b) we recall the notation a− := max{−a, 0}.

Proof of Lemma 20. Case α < 1. Step 1. We claim that

|I(x)| � 1|x|≤4R

ˆ

|y|>R

1
|y|d+α

|v(y)| dy + 1
|x|>R

2

1
|x|d+α

ˆ

|y|≤2R

|v(y)| dy

+ 1R
2 <|x|≤4R

1
R

ˆ

R
4 <|y|≤8R

1
|x− y|d+α−1 |v(y)| dy . (28)

To prove (28) we note that, if |x| ≤ R
2 , then

|I(x)| =

∣∣∣∣∣∣∣
ˆ

|y|>R

. . .

∣∣∣∣∣∣∣ �
ˆ

|y|>R

1
|y|d+α

|v(y)| dy .

If |x| > 4R, then

|I(x)| =

∣∣∣∣∣∣∣
ˆ

. . .

∣∣∣∣∣∣∣ �
ˆ 1

|x|d+α
|v(y)| dy .
|y|≤2R |y|≤2R
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Finally, if R2 < |x| ≤ 4R, then

|I(x)| �
ˆ

|y|>8R

1
|y|d+α

|v(y)| dy +
ˆ

|y|≤R
4

1
|x|d+α

|v(y)| dy

+ 1
R

ˆ

R
4 <|y|≤8R

1
|x− y|d+α−1 |v(y)| dy ,

where we used |χ(x) − χ(y)| � R−1|x − y|, which follows from the gradient bound on χ. 
Combining the above bounds, we obtain (28).

Step 2. We now insert the bounds on v into the right side of (28). We clearly have
ˆ

|y|≤2R

(1 ∧ |y|−d−α)(1 ∧ yd)p dy � 1

and
ˆ

|y|>R

1
|y|d+α

(1 ∧ |y|−d−α)(1 ∧ yd)p dy � R−d−2α .

The last bound is clear if p ≥ 0 (which is the only case relevant when λ ≥ 0). When 
p < 0 the same bound is valid for the integral restricted to yd ≥ 1. For the integral with 
the opposite restriction is easily seen to be bounded by R−d−1−2α. (Note that in this 
integral one has |y′| ∼ |y|.) Finally, if R2 < |x| ≤ 4R, then, since α ∈ (0, 1),

ˆ

R
4 <|y|≤8R

1
|x− y|d+α−1 (1 ∧ |y|−d−α)(1 ∧ yd)p dy

� R−d−α

ˆ

R
4 <|y|≤8R

(1 ∧ yd)p

|x− y|d+α−1 dy � R−d−2α+1 .

Here, for an upper bound, we replace the integral over {R
4 < |y| ≤ 8R} by the integral 

over |x − y| ≤ 12R. For p ≥ 0 we can drop the factor (1 ∧ yd)p. For p < 0 we argue 
similarly as before by distinguishing the cases yd ≤ 1 and yd > 1.

This proves the claimed pointwise bound in (a). The L2-bound in (c) follows by a 
simple integration. �

It remains to prove Lemma 20 for α ≥ 1. We discuss the first part of the argument in 
greater generality since it will also be useful in the next subsection. We are interested in 
bounding
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ˆ

Rd

ζ(x) − ζ(y)
|x− y|d+α

v(y) dy ,

where ζ is C2 and v is Hölder continuous with some exponent β. In the setting of 
Lemma 20 we have ζ = χ.

We fix a local length scale 
x, depending on x ∈ Rd
+, and we decompose

ˆ

Rd

ζ(x) − ζ(y)
|x− y|d+α

v(y) dy =
ˆ

|y−x|≤�x

ζ(x) − ζ(y)
|x− y|d+α

(v(y) − v(x)) dy

+ v(x)
ˆ

|y−x|≤�x

ζ(x) − ζ(y) + ∇ζ(x) · (y − x)
|x− y|d+α

dy

+
ˆ

|y−x|>�x

ζ(x) − ζ(y)
|x− y|d+α

v(y) dy .

(29)

Note that because of the principal value we were free to introduce the term ∇ζ(x) · (y−
x), which contributes zero to the integral (because of oddness), but makes it converge 
absolutely. We will always bound the first term by∣∣∣∣∣∣∣

ˆ

|y−x|≤�x

ζ(x) − ζ(y)
|x− y|d+α

(v(y) − v(x)) dy

∣∣∣∣∣∣∣
≤ [v]Cβ(B�x (x))[ζ]C1(B�x (x))

ˆ

|y−x|≤�x

dy

|x− y|d+α−1−β
dy

� [v]Cβ(B�x (x))[ζ]C1(B�x (x))

−α+1+β
x

(30)

for some β > α− 1. Similarly, we will bound the second term by∣∣∣∣∣∣∣v(x)
ˆ

|y−x|≤�x

ζ(x) − ζ(y) + ∇ζ(x) · (y − x)
|x− y|d+α

dy

∣∣∣∣∣∣∣
≤ |v(x)|[ζ]C2(B�x (x))

ˆ

|y−x|≤�x

dy

|x− y|d+α−2 dy � |v(x)|[ζ]C2(B�x (x))

2−α
x .

(31)

After these preliminaries we return to the proof of Lemma 20.

Proof of Lemma 20. Case α ≥ 1. We apply the preceding discussion with ζ = χ. For 
the first term in (29) we use the bound (30) and note that [χ]C1(B�x (x)) vanishes unless 
|x| ∼ R, in which case it is � R−1. This leads to a bound
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1|x|∼R(1 ∧ |x|−d−α)(1 ∧ xd)p−α+1R−1 .

Similarly, for the second term in (29) using the bound (31) we obtain

1|x|∼R(1 ∧ |x|−d−α)(1 ∧ xd)p−α+2R−2 .

Since 1 ∧ xd ≤ 1 ≤ R, this bound on the second term is smaller than the bound on the 
first term and can be ignored.

We now turn to the third term in (29),

Ĩ(x) :=
ˆ

|y−x|>�x

χ(x) − χ(y)
|x− y|d+α

v(y) dy .

We claim that∣∣∣Ĩ(x)
∣∣∣ � 1|x|≤4R

ˆ

|y|>R

1
|y|d+α

|v(y)| dy + 1
|x|>R

2

1
|x|d+α

ˆ

|y|≤2R

|v(y)| dy

+ 1R
2 <|x|≤4R

1
R

ˆ

R
4 <|y|≤8R

1|x−y|>�x

|x− y|d+α−1 |v(y)| dy . (32)

This is proved in the exact same way as (28).
We now insert the bounds on v into the right side of (32). The first two terms are 

bounded as in the case α < 1. The bound for the third term in (32), however, is different 
now, since |x − y|−d−α+1 is not locally integrable. We claim that

ˆ

R
4 <|y|≤8R

1|x−y|>�x

|x− y|d+α−1 |v(y)| dy

� R−d−α
(
(1 ∧ xd)−(p−α+1)− + 1p=α−1 ln 1

1∧xd
+ 1α=1 lnR

)
.

Indeed, the factor of R−d−α comes from one factor in the bound on v, so it suffices to 
prove

ˆ

R
4 <|y|≤8R

1|x−y|>�x

|x− y|d+α−1 (1 ∧ yd)p dy

� (1 ∧ xd)−(p−α+1)− + 1p=α−1 ln 1
1∧xd

+ 1α=1 lnR .

We split the y-integral according to whether yd > 3 or yd ≤ 3. Beginning with the former 
case, we note that |x − y| ≥ |xd − yd| > 1 if xd ≤ 2. Thus, for all xd > 0,
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ˆ

R
4 <|y|≤8R

1|x−y|>�x1yd>3

|x− y|d+α−1 (1 ∧ yd)p dy �
ˆ

R
4 <|y|≤8R

1|x−y|>1

|x− y|d+α−1 dy

≤ 1 + (lnR)1α=1 .

Next, we consider the integral over yd ≤ 3. Performing the y′-integration over all of 
Rd−1, we obtain

ˆ

R
4 <|y|≤8R

1|x−y|>�x1yd≤3

|x− y|d+α−1 (1 ∧ yd)p dy

�
ˆ

yd≤3

ypd
|x′ − y′|d+α−1 + |xd − yd|d+α−1 + 
d+α−1

x

dy �
3ˆ

0

ypd
|xd − yd|α + 
αx

dyd

This integral is easily seen to be

� x−α
d 1xd>1 + x

−(p−α+1)−
d 1xd≤1 + ln 1

1 ∧ xd
1p=α−1 .

(To prove this for xd ≤ 3/2 we split the yd-integral at yd = 2xd.) This proves the claimed 
bound.

Combining all these bounds, we obtain the claimed pointwise bound on I in statement 
(b) of Lemma 20. The L2-bound in (c) follows by integration. One easily verifies that 
the ‘additional’ term (compared to the case α < 1) is subdominant. Here we note that 
2(p − α + 1) > −1, which makes the relevant xd-integral finite near the origin. �
7.2. Boundary cut-off

In this subsection we bound the term

II(x) :=
ˆ

Rd

θ(x) − θ(y)
|x− y|d+α

v(y) dy .

As before, the function v will be supported in Rd
+. Concerning the function θ we assume 

that, for a certain parameter r ≤ 1,

0 ≤ θ ≤ 1 , θ(x) = 0 if xd ≤ r , θ(x) = 1 if xd ≥ 2r , |∇θ| � r−1 , (33)

as well as, if α ≥ 1 and d = 1,

|D2θ| � r−2 . (34)

To simplify matters, we assume that θ is only a function of the last coordinate xd of 
x = (x′, xd).
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Lemma 21. Let 0 < α < 2. Let r ≤ 1 and assume that θ satisfies (33) and, if α ≥ 1 and 
d = 1, also (34). Let α−1

2 ≤ p < α, assume that v satisfies (23) and, if α ≥ 1 and d = 1, 
also (25) with some β > α− 1. Then

|II(x)| �
(
rp−α ∧ rp+1

x1+α
d

)
(1 + xd)1+α(1 ∧ |x|−d−α) for all x ∈ Rd

+ .

In particular

‖II‖L2(Rd
+) � rp−α+1/2 .

Proof of Lemma 21. Case d ≥ 2 or d ≥ 1 and α < 1. Step 1. We claim that

|II(x)| � 1xd≤4r

ˆ

yd>r

1
|x′ − y′|d+α + yd+α

d

|v(y)| dy (35)

+ 1xd>
r
2

ˆ

yd≤2r

1
|x′ − y′|d+α + xd+α

d

|v(y)| dy

+ 1 r
2<xd≤4r

1
r

ˆ
r
4<yd≤8r

|xd − yd|
|x′ − y′|d+α + |xd − yd|d+α

|v(y)| dy .

To prove (35) we argue in the same way as we did for (28). We note that, if xd ≤ r
2 , 

then

|II(x)| =

∣∣∣∣∣∣
ˆ

yd>r

. . .

∣∣∣∣∣∣ �
ˆ

yd>r

1
|x′ − y′|d+α + yd+α

d

|v(y)| dy .

If xd > 4r, then

|II(x)| =

∣∣∣∣∣∣
ˆ

yd≤2r

. . .

∣∣∣∣∣∣ �
ˆ

yd≤2r

1
|x′ − y′|d+α + xd+α

d

|v(y)| dy .

Finally, if r2 < xd ≤ 4r, then

|II(x)| �
ˆ

yd>8r

1
|x′ − y′|d+α + yd+α

d

|v(y)| dy +
ˆ

yd≤ r
4

1
|x′ − y′|d+α + xd+α

d

|v(y)| dy

+ 1
r

ˆ
r
4<yd≤8r

|xd − yd|
|x′ − y′|d+α + |xd − yd|d+α

|v(y)| dy ,
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where we used |θ(x) − θ(y)| � r−1|xd − yd|, which follows from the gradient bound on θ
and the fact that it only depends on the last coordinate. Combining the above bounds, 
we obtain (35).

Step 2. We now insert the bounds on v into the right side of (35). In the two integrals 
with an upper bound on yd we use 1 ∧ |y|−d−α ∼ 1 ∧ |y′|−d−α. This allows us to compute 
the yd-integral in the second integral. In this way, we obtain

|II(x)| � 1xd≤4r

ˆ

yd>r

1
|x′ − y′|d+α + yd+α

d

(1 ∧ |y|−d−α)(1 ∧ yd)p dy

+ 1xd>
r
2
rp+1

ˆ

Rd−1

1
|x′ − y′|d+α + xd+α

d

(1 ∧ |y′|−d−α) dy′

+ 1 r
2<xd≤4rr

p−1
ˆ

r
4<yd≤8r

|xd − yd|
|x′ − y′|d+α + |xd − yd|d+α

(1 ∧ |y′|−d−α) dy .(36)

A straightforward computation shows that, if r2 < xd ≤ 4r, then

ˆ
r
4<yd≤8r

|xd − yd|
|x′ − y′|d+α + |xd − yd|d+α

dyd ∼ r2

|x′ − y′|d+α + xd+α
d

. (37)

(Indeed, we substitute yd = xd + |x′ − y′|t and note that the upper and lower bounds in 
the t integral are of order r.) We note that (37) requires the assumption α < 1 if d = 1
(with the convention that terms involving x′ or y′ are absent).

If we substitute (37) into (36), we see that the third term on the right side of (36) is 
bounded from above by a constant times the second term and can therefore be dropped.

We now perform the y′ integral in the first and second integrals in (36) using Lemma 22
below. (We note that 1 ∧ |y′|−d−α ∼ (1 + |y′|d+α)−1 and 1 ∧ |y|−d−α ∼ ((1 + yd)d+α +
|y′|d+α)−1.) In this way, we obtain

|II(x)| � 1xd≤4r

ˆ

yd>r

y−1−α
d

(1 + yd)d+α + |x′|d+α
(1 ∧ yd)p dyd

+ 1
xd>

r
2
rp+1 x−1−α

d (1 + xd)1+α

(1 + xd)d+α + |x′|d+α
.

Finally, we compute

ˆ

yd>r

y−1−α
d

(1 + yd)d+α + |x′|d+α
(1 ∧ yd)p dyd ∼ rp−α

1 + |x′|d+α
.

The dominant contribution comes from the integral over [r, 1] and we used p < α.
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This yields the claimed pointwise bound. (Note that for xd ≤ 4r we have (1 +
|x′|d+α)−1 ∼ 1 ∧ |x|−d−α.) The L2-bound follows by simple integration. The dominant 
contribution comes from the xd-integral over [0, 1]. �
Lemma 22. Let N ≥ 1. Then for all β > 0 and all a, b ∈ RN , r, s > 0,

ˆ

RN

(rs)β dx
(rN+β + |x− a|N+β)(sN+β + |x− b|N+β) � (r + s)β

(r + s)N+β + |a− b|N+β
.

Proof of Lemma 22. By symmetry we may assume that r ≤ s. By translation and dila-
tion, we may and will assume b = 0 and s = 1. Thus, it suffices to show

ˆ

RN

rβ dx

(rN+β + |x− a|N+β)(1 + |x|N+β) � (1 + r)β

(1 + r)N+β + |a|N+β
. (38)

We distinguish between |a| ≶ 1 + r.
Case |a| ≤ 1 +r. The right side of (38) is comparable to 1r<1+r−N1r≥1. When r < 1, 

we bound the left side of (38) from above by

rβ
ˆ

RN

dx

rN+β + |x− a|N+β
=

ˆ

RN

dx

1 + |x|N+β
∼ 1.

When r ≥ 1, we bound the left side of (38) from above by

rβ
ˆ

RN

dx

rN+β(1 + |x|N+β) ∼ r−N .

Case |a| ≥ 1 + r. The right side of (38) is comparable to (1 + r)β |a|−N−β . We bound 
the left side of (38) from above by

ˆ

RN

rβ

(rN+β + |x− a|N+β)(1 + |x|N+β)

(
1|x|< |a|

2
+ 1 |a|

2 ≤|x|≤2|a| + 1|x|≥2|a|

)
dx

� rβ
ˆ

RN

dx

|a|N+β(1 + |x|N+β) +
ˆ

RN

rβ1|x|∈[|a|/2,2|a|]
(rN+β + |x− a|N+β)|x|N+β

dx

+ rβ
ˆ

RN

dx

|x|2N+2β 1|x|≥2|a|

� rβ |a|−N−β + |a|−N−βrβ
ˆ

RN

dx

rN+β + |x|N+β
+ rβ |a|−N−2β � 1 + rβ

|a|N+β
.

This concludes the proof. �
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Proof of Lemma 21. Case d = 1 and α ≥ 1. In fact, we will argue for general d ≥ 1, 
assuming (25) and (34). We argue as explained in the previous section around (29), 
choosing ζ = θ.

For the first term in (29) we use the bound (30) and note that [θ]C1(B�x (x)) vanishes 
unless xd ∼ r, in which case it is of order r−1. This leads to a bound

1xd∼r(1 ∧ |x|−d−α)(1 ∧ xd)p−α+1r−1 .

Similarly, for the second term in (29) we use the bound (31) and obtain

1xd∼r(1 ∧ |x|−d−α)(1 ∧ xd)p−α+2r−2 .

Since 1 ∧ xd ∼ r for xd ∼ r, the two bounds are of the same order.
We now turn to the third term in (29), which we denote by ĨI(x). We claim that∣∣∣ĨI(x)

∣∣∣ � 1xd≤4r

ˆ

yd>r

1
|x′ − y′|d+α + yd+α

d

|v(y)| dy

+ 1
xd>

r
2

ˆ

yd≤2r

1
|x′ − y′|d+α + xd+α

d

|v(y)| dy

+ 1 r
2<xd≤4r

1
r

ˆ
r
4<yd≤8r

|xd − yd|
|x′ − y′|d+α + |xd − yd|d+α

|v(y)| dy . (39)

This is proved in the exact same way as (35).
We now insert the bounds on v into the right side of (39). The first two terms are 

bounded as in the proof of Lemma 21. The bound for the third term, however, is different 
now. Noting that 1 ∧ |y|−d−α ∼ (1 + |y′|d+α)−1 on the domain of integration, we arrive 
on the following upper bound on the third term

1 r
2<xd≤4rr

p−1
ˆ

r
4<yd≤8r

|xd − yd|
|x′ − y′|d+α + |xd − yd|d+α

1
|y′|d+α + 1 dy .

Computing the yd-integral using (37) and the y′-integral using Lemma 22, we can bound

� 1 r
2<xd≤4rr

p+1
ˆ

Rd−1

1
|x′ − y′|d+α + xd+α

d

1
|y′|d+α + 1 dy′

� 1 r
2<xd≤4r

rp−α

1 + |x′|d+α
.

Combining all these bounds we obtain the claimed pointwise bound. The L2-bound 
follows as before. �
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7.3. Combined cut-off

We now combine Lemmas 20 and 21.

Corollary 23. Let 0 < α < 2. Let 0 < r ≤ 1 ≤ R < ∞, assume that χ and θ satisfy (26)
and (33) and, if α ≥ 1, also (27) and (34). Let α−1

2 ≤ p < α, assume that v satisfies 
(23) and, if α ≥ 1, also (25) with some β > α− 1. Then

‖[(−Δ)α/2, χθ]v‖L2(Rd
+) � rp−α+1/2 + R−α−d/2 .

Proof. We decompose

1
A(d,−α) [(−Δ)α/2, χθ]v(x) = θ(x)

ˆ

Rd

χ(x) − χ(y)
|x− y|d+α

v(y) dy +
ˆ

Rd

θ(x) − θ(y)
|x− y|d+α

χ(y)v(y) dy

and bound the L2-norms of the two terms on the right side separately. For the first term 
we can drop the term θ(x) ∈ [0, 1] and apply Lemma 20. For the second term we apply 
Lemma 21, noting that the product χv satisfies its assumptions. This is clear for α < 1. 
For α ≥ 1 we use

[χv]Cβ(Br(a))

≤

⎧⎪⎪⎨⎪⎪⎩
‖χ‖L∞(Br(a))[v]Cβ(Br(a)) + ‖v‖L∞(Br(a))[χ]Cβ(Br(a)) if β ≤ 1 ,
‖χ‖L∞(Br(a))[v]Cβ(Br(a)) + ‖∇v‖L∞(Br(a))[χ]Cβ−1(Br(a))

+‖∇χ‖L∞(Br(a))[v]Cβ−1(Br(a)) + ‖v‖L∞(Br(a))[χ]Cβ(Br(a)) if β > 1 .

All factors involving χ on the right side are � 1 by (26), (27) and R ≥ 1. Moreover, we 
note that if v satisfies (23) and (25) for some β = β0 > 0, then it satisfies (25) for any 
0 < β < β0. We conclude that χv satisfies (25) with the same β as v does. �
8. Density of C∞

c (Rd
+)

Our goal in this section is to prove the following theorem. It will be the main ingredient 
to prove the operator core property stated in Theorem 1.

Theorem 24. Let α ∈ (0, 2] and let λ ≥ 0 when α < 2 and λ ≥ −1/4 when α = 2. Let p be 
defined by (4), and let s ∈ (0, 2]. Assume that s < (1 + 2p)/α. Then for any f ∈ L2(Rd

+)
there is a sequence (ϕn) ⊂ C∞

c (Rd
+) such that

L
s/2
λ ϕn → f in L2(Rd

+) .

If, in addition f ∈ domL
−s/2
λ , then the sequence can be chosen such that, in addition,

ϕn → L
−s/2
λ f in L2(Rd

+) .
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Remark 25. Let α ∈ (0, 2), λ ∈ [λ∗, 0) and assume that e−tLλ(x, y) satisfies the upper 
bound in (9) with p defined by (4). Then Theorem 24 remains valid for this value of λ. 
This follows by the same arguments as in the proof below, since Lemma 26 remains valid 
for this value of λ.

Our strategy of proof of this theorem uses some ideas of [28, Lemma 4.4]. The 
basic strategy is to first prove Theorem 24 for f of a special form, namely, f ∈
L
s/2
λ e−tLλC∞

c (Rd
+) for some 0 < t < ∞. To do this, we will use the following point-

wise bounds on functions in e−tLλC∞
c (Rd

+). For the definition of the Hölder seminorm 
see (24).

Lemma 26. Let α, λ and p be as in Theorem 24. Let 0 < t < ∞ and ψ ∈ e−tLλC∞
c (Rd

+). 
Then, for all x ∈ Rd

+,

|ψ(x)| � (1 ∧ xd)p(1 ∧ |x|−d−α) , (40)

|Lλψ(x)| � (1 ∧ xd)p(1 ∧ |x|−d−α) , (41)

|(−Δ)α/2ψ(x)| � (1 ∧ xd)p−α(1 ∧ |x|−d−α) , (42)

[ψ]Cβ(B�x (x)) � (1 ∧ xd)p−β(1 ∧ |x|−d−α) with 
x := 1 ∧ xd

2 , 0 < β < α . (43)

We remark that for α = 2 the decay in these bounds can be greatly improved, but it 
is convenient for us to have a unified statement.

Proof of Lemma 26. We write ψ = e−tLλk. The bound (40) follows immediately from 
Theorems 9 and 10. For the bound (41) we write Lλψ = e−tLλLλk. For α = 2 we have 
Lλk ∈ C∞

c (Rd
+) and so the claimed bound follows again from Theorem 10. For 0 < α < 2

one easily verifies that

|Lλk(x)| � 1 ∧ |x|−d−α

and then one uses this bound and Theorem 9 to again deduce (41). We omit the details 
of this computation.

To prove (42) we recall the definition of λ0 from Remark 7. As shown there, we have 
(−Δ)α/2 = Lλ0 on functions supported on Rd

+. Thus,

(−Δ)α/2ψ = Lλψ − (λ− λ0)x−α
d ψ .

Therefore (42) follows from (40) and (41).
Finally, to prove (43) we use Schauder estimates. These bounds state that for a func-

tion u on Rd, for a ∈ Rd, r > 0 and for 0 < β < α, one has

[u]Cβ(Br/2(a)) �α,β,d r−β‖u‖L∞(B2r(a)) + rα−β‖| · −a|−d−αu‖L1(B2r(a)c)

+ rα−β‖(−Δ)α/2u‖L∞(B2r(a)) . (44)
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For α = 2 this bound is classical and can be deduced, for instance, from [19, Theorem 
3.9 and its proof]. (Indeed, in this case the term involving the norm on B2r(a)c is not 
needed.) For 0 < α < 2 the bound appears, for instance, in [37, Corollary 2.5].

We apply (44) with a = x and r = 2
̃x with 
̃x = 1 ∧ xd

8 . Using (40) and (42) we easily 
find that


̃−β
x ‖ψ‖L∞(B4�̃x (x)) � (1 ∧ xd)p−β(1 ∧ |x|−d−α) ,


̃α−β
x ‖(−Δ)α/2ψ‖L∞(B4�̃x (x)) � (1 ∧ xd)p−β(1 ∧ |x|−d−α) .

Moreover, using (40) a computation whose details we omit shows that


̃α−β
x ‖| · −x|−d−αψ‖L1(B4�̃x (x)c) � (1 ∧ xd)p−β(1 ∧ |x|−d−α) .

Inserting these bounds into (44) we obtain (43) with 
̃x instead of 
x. The bound 
with 
x follows by a simple covering argument, using for a given x the bound in B�x(x)
together with the bounds in B�y(y) for y ∈ B�x(x) \B�̃x

(x). �
Proof of Theorem 24. Step 1. We first prove this theorem for f of a special form, namely, 
where f ∈ L

s/2
λ e−tLλC∞

c (Rd
+) for some 0 < t < ∞.

Let 0 < t < ∞ and let ψ ∈ e−tLλC∞
c (Rd). For parameters 0 < r ≤ 1 ≤ R < ∞ to be 

determined, we let χ and θ be functions as in Corollary 23 and we abbreviate

ϕ := χθψ .

Then, by (40),

‖ϕ− ψ‖L2(Rd
+) ≤ ‖1xd≤2rψ‖L2(Rd

+) + ‖1|x|>Rψ‖L2(Rd
+) � rp+1/2 + R−α−d/2 .

Moreover,

‖Lλ(ϕ− ψ)‖L2(Rd
+) ≤ ‖(1 − χθ)Lλψ‖L2(Rd

+) + ‖[(−Δ)α/2, χθ]ψ‖L2(Rd
+)

and, by (41),

‖(1 − χθ)Lλψ‖L2(Rd
+) � rp+1/2 + R−α−d/2 .

For α < 2 we apply Corollary 23 and find

‖[(−Δ)α/2, χθ]ψ‖L2(Rd
+) � rp−α+1/2 + R−α−d/2 .

The same bound holds for α = 2 as well, as follows by writing

[−Δ, χθ]ψ = −2∇(χθ) · ∇ψ − Δ(χθ)ψ
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and using the pointwise bounds (40) and (43). Thus, for all α ≤ 2,

‖Lλ(ϕ− ψ)‖L2(Rd
+) � rp−α+1/2 + R−α−d/2 .

Since 0 < s ≤ 2 we have, by the spectral theorem,

‖Ls/2
λ (ϕ− ψ)‖L2(Rd

+) ≤ ‖ϕ− ψ‖1−s/2
L2(Rd

+)‖Lλ(ϕ− ψ)‖s/2
L2(Rd

+) .

Inserting the above bounds, we conclude that

‖Ls/2
λ (ϕ− ψ)‖L2(Rd

+) � rp+1/2−αs/2 + R−α−d/2 .

Since, by assumption s < (1 + 2p)/α, this tends to zero as r → 0 and R → ∞. Note 
also that ‖ϕ − ψ‖L2(Rd

+) tends to zero, proving the second assertion of the theorem for 
f = L

s/2
λ ψ.

Step 2. We now prove Theorem 24 in the general case.
Let f ∈ L2(Rd

+) and ε > 0. By the spectral theorem, we have e−tLλf → f as t → 0
and e−tLλf → 0 as t → ∞. (The latter convergence uses the fact that 0 is not an 
eigenvalue of Lλ.) Therefore, there are t1 > 0 such that ‖e−t1Lλf − f‖L2(Rd

+) ≤ ε and 

t2 < ∞ such that ‖e−t2Lλf‖L2(Rd) ≤ ε. Then, with t := t1/2 and T := t2/2,

‖(e−2tLλ − e−2TLλ)f − f‖L2(Rd
+) ≤ ‖e−t1Lλf − f‖L2(Rd

+) + ‖e−t2Lλf‖L2(Rd) ≤ 2ε .

Since C∞
c (Rd

+) is dense in L2(Rd
+) and since L−s/2

λ (e−tLλ − e−TLλ) is bounded (since 
s ∈ [0, 2]), there is a k ∈ C∞

c (Rd
+) such that

‖k − L
−s/2
λ (e−tLλ − e−TLλ)f‖L2(Rd

+) ≤ ε .

We define ψ := (e−tLλ + e−TLλ)k and write

e−2tLλ − e−2TLλ = L
s/2
λ (e−tLλ + e−TLλ)L−s/2

λ (e−tLλ − e−TLλ)

to find

‖Ls/2
λ ψ − f‖L2(Rd

+) ≤ ‖Ls/2
λ (e−tLλ + e−TLλ)‖‖k − L

−s/2
λ (e−tLλ − e−TLλ)f‖L2(Rd

+)

+ ‖(e−2tLλ − e−2TLλ)f − f‖L2(Rd
+)

≤
(
‖Ls/2

λ (e−tLλ + e−TLλ)‖ + 2
)
ε .

According to Step 1 (applied both to Ls/2
λ e−tLλk and to Ls/2

λ e−TLλk) there is a ϕ ∈ C∞
c

such that
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‖Ls/2
λ ϕ− L

s/2
λ ψ‖L2(Rd

+) ≤ ε .

It follows that

‖Ls/2
λ ϕ− f‖L2(Rd

+) ≤
(
‖Ls/2

λ (e−tLλ + e−TLλ)‖ + 3
)
ε .

This proves the first assertion of the theorem.
For the second assertion we assume that f ∈ domL

−s/2
λ . Then we choose t1, t2 ∈

(0, ∞) such that, in addition, we have ‖e−t1LλL
−s/2
λ f − L

−s/2
λ f‖L2(Rd

+) ≤ ε and 

‖e−t2LλL
−s/2
λ f‖L2(Rd

+) ≤ ε. Then ‖(e−2tLλ − e−2TLλ)L−s/2
λ f − L

−s/2
λ f‖L2(Rd

+) ≤ 2ε. 
Moreover, by Step 1, we may assume, in addition, that ‖ϕ − ψ‖L2(Rd

+) ≤ ε. From this 
one deduces, similarly as before,

‖ϕ− L
−s/2
λ f‖L2(Rd

+) ≤
(
‖e−tLλ + e−TLλ‖ + 3

)
ε ,

which completes the proof of the theorem. �
9. Proof of the main result

Proof of Theorem 1. We begin with the proof of (6) and (7) for functions u ∈ C∞
c (Rd

+). 
Using just the triangle inequality, the claims are an immediate consequence of the usual 
Hardy inequality, as well as its reversed and generalized versions in Theorems 3 and 5. 
The argument is as in [25,13] and we omit the details.

We now extend (6) to all u ∈ domL
s/2
λ . According to Theorem 24 (applied to f =

L
s/2
λ u) there is a sequence (ϕn) ⊂ C∞

c (Rd
+) such that ϕn → u in L2(Rd

+) and Ls/2
λ ϕn →

L
s/2
λ u in L2(Rd

+). It follows from inequality (6), applied to ϕn − ϕm, that (Ls/2
0 ϕn) is 

Cauchy in L2(Rd
+) and therefore convergent to some f ∈ L2(Rd

+). Since the operator 
L
s/2
0 is closed, we conclude that u ∈ domL

s/2
0 and Ls/2

0 u = f . The claimed inequality 
(6) for u now follows by passing to the limit in the inequality for ϕn.

The extension of (7) follows similarly. We only note that the p that corresponds to 
λ = 0 is (α−1)+. Therefore the assumption s < (1 +2(α−1)+)/α in Theorem 1 coincides 
with the assumption in Theorem 24 (applied with λ = 0). �

We now discuss optimality of the assumptions in Theorem 1.

Proposition 27. Let α ∈ (0, 2] and let λ ≥ 0 when α ∈ (0, 2) and λ ≥ −1/4 when α = 2. 
Let p be defined by (4), and let s ∈ (0, 2].

(1) If λ < 0, p < d − 1/2 and dom(L(α)
λ )s/2 ⊂ dom(L(α)

0 )s/2, then s < (1 + 2p)/α.
(2) If λ > 0, (α−1)+ < d −1/2 and dom(L(α)

0 )s/2 ⊂ (L(α)
λ )s/2, then s < (1 +2(α−1)+)/α.

Note that the ‘additional’ assumptions p < d − 1/2 and (α − 1)+ < d − 1/2 are 
automatically satisfied when d ≥ 2 or when d = 1 and α ≤ 3/2.
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Remark 28. Let α ∈ (0, 2), λ ∈ [λ∗, 0) and assume that e−tLλ(x, y) satisfies the lower 
bound in (9) with p defined in (4). Then part (1) in Proposition 27 remains valid for this 
value of λ. This follows by the same arguments as in the proof below.

Proof. We prove part (1), the other part being proved similarly. We will prove the 
assertion under the additional assumption s < 1+2(α−1)+

α ∧ 2d
α . Note that the assumption 

λ < 0 (which is equivalent to p < (α− 1)+) and the assumption p < d − 1/2 imply that 
the interval [ 1+2p

α , 1+2(α−1)+
α ∧ 2d

α ) is nonempty. Thus our proof will show that in this 
interval the inclusion domL

s/2
λ ⊂ domL

s/2
0 fails. By operator monotonicity of taking 

roots (see, e.g., [1, Section 10.4]) it then follows that the inequality also fails for all 
s ≥ 1+2(α−1)+

α ∧ 2d
α .

Thus, assume that s < 1+2(α−1)+
α ∧ 2d

α . Let u ∈ e−LλC∞
c (Rd

+). Then u ∈ domL
s/2
λ ⊂

domL
s/2
0 . Applying Theorem 13 with λ = 0 and g = L

s/2
0 u (here we need the upper 

bound on s) we infer that x−αs/2
d u ∈ L2(Rd

+). Using the lower bound in Theorem 9 and 
arguing as in the necessity part of the proof of Theorem 13 we deduce that s < (1 +2p)/α, 
as claimed. �
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Appendix A. Definition of the exponent p

Throughout this appendix we assume α ∈ (0, 2). For p ∈ (−1, α), we set

γ(α, p) :=
1ˆ

0

(tp − 1)(1 − tα−p−1)
(1 − t)1+α

dt .
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The function C is defined in [9, Remark 3.3] for d = 1 by

(−1, α) 
 p �→ C(p) := A(1,−α) γ(α, p)

and in [9, Equation (3.4)] for d ≥ 2 by

(−1, α) 
 p �→ C(p) := A(d,−α) |S
d−2|
2 B

(
α + 1

2 ,
d− 1

2

)
γ(α, p)

with the beta function B. Let us show that these definitions coincide with our definition 
(3) and, in particular, that they are independent of d.

First, recalling the formula for A(d, −α) from (2) and |Sd−2| = 2π
d−1
2

Γ( d−1
2 ) , we find

A(d,−α) |S
d−2|
2 B

(
α + 1

2 ,
d− 1

2

)
= A(1,−α) .

This already shows the independence of d. Thus, from now on d = 1. Moreover, by the 
reflection and duplication formulas of the gamma function, we obtain

A(1,−α) =
sin πα

2
π

Γ(α + 1) . (45)

Next, according to [3, (2.2)] we have for α �= 1 and α > p > −1

γ(α, p) = 1
α(α− 1) [(p + 1 − α)(p + 2 − α)B(p + 1, 2 − α)

−(1 − α)(2 − α)B(1, 2 − α) + p(p− 1)B(α− p, 2 − α)] .

Expressing the beta functions as gamma functions and using its functional equation, we 
find

γ(α, p) = 1
α(α− 1)

[
Γ(p + 1) Γ(2 − α)

Γ(p− α + 1) − (1 − α) + Γ(α− p) Γ(2 − α)
Γ(−p)

]
= 1

α
− Γ(1 − α)

α

[
Γ(p + 1)

Γ(p− α + 1) + Γ(α− p)
Γ(−p)

]
.

(46)

Using the reflection formula for the gamma function, we obtain

Γ(p + 1)
Γ(p− α + 1) + Γ(α− p)

Γ(−p) = − 1
π

Γ(1 + p)Γ(α− p) (sin π(p− α) + sin πp) .

Inserting this into (46) and combining it with (45) we obtain

C(p) =
sin πα

2 Γ(α) + Γ(α)Γ(1 − α)Γ(1 + p)Γ(α− p)
sin πα

2 (sin π(p− α) + sin πp) .

π π2
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The claimed formula (3) now follows from Γ(α)Γ(1 − α) = π/ sin(πα) (by the reflection 
formula) and

sin πα
2

sin πα
(sin π(p− α) + sin πp) = sin π(2p− α)

2 .

Having established the equality between our definition of C and that in [9], we can 
use its properties established in [9, Subsection 3.1], namely, its strict monotonicity on 
[α−1

2 , α), its divergence at p = α and its vanishing at p = α − 1, 0. Its symmetry with 
respect to p = α−1

2 is immediate from (3).

Appendix B. Proof of Theorem 10

Throughout this section, we assume α = 2.
Step 1. By separation of variables, we have

e−tLλ(x, y) = etΔRd−1 (x′, y′) · e−t(−ΔR++λx−2
d )(xd, yd) .

Since the first factor is equal to (4πt)− d−1
2 e−|x′−y′|2/4t, we see that the theorem in di-

mensions d ≥ 2 follows from its special case for d = 1. Thus, in what follows we consider 
the latter case.

Step 2. It is convenient to work with a unitarily equivalent version of Lλ. Namely for 
μ ≥ 0 we consider the nonnegative quadratic form

∞̂

0

|u′|2r2μ+1 dr

defined for u ∈ C1
c (R+). By a theorem of Friedrichs this form gives rise to a selfadjoint, 

nonnegative operator Lμ in the Hilbert space L2(R+, r2μ+1dr). We note that functions 
u in the operator domain of Lμ are twice weakly differentiable and Lμu = −u′′ − (2μ +
1)r−1u′.

It is well-known that the operator Lμ can be diagonalized by a Hankel transform, 
which, in particular, gives an integral formula for its heat kernel. The resulting integral 
over Bessel functions can be carried out using standard formulas and one arrives at the 
explicit expression

e−tLμ(r, s) = (2t)−1
(

1
rs

)μ

· exp
(
−r2 + s2

4t

)
Iμ

(rs
2t

)
(47)

This formula appears, for instance, in [4, p. 75]. We emphasize that this is the heat kernel 
with respect to the underlying measure r2μ+1 dr, that is
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(e−tLμf)(r) =
∞̂

0

e−tLμ(r, s)f(s) s2μ+1 ds .

Using the facts that

lim
z→0

z−μIμ(z) = 2−μ

Γ(1 + μ) and lim
z→∞

z
1
2 e−zIμ(z) = 1√

2π
,

we immediately obtain from (47) that

e−tLμ(r, s) ∼
(
1 ∧ r · s

t

)μ+ 1
2
(

1
rs

)μ+ 1
2

· t− 1
2 · exp

(
− (r − s)2

4t

)
. (48)

Next, we show that there is a 0 < c < 1 such that for all r, s, t > 0 one has

(
1 ∧ r√

t

)μ+ 1
2
(

1 ∧ s√
t

)μ+ 1
2
(

1
rs

)μ+ 1
2

· t− 1
2 · exp

(
− (r − s)2

4t

)
� e−tLμ(r, s)

�
(

1 ∧ r√
t

)μ+ 1
2
(

1 ∧ s√
t

)μ+ 1
2
(

1
rs

)μ+ 1
2

· t− 1
2 · exp

(
−c

(r − s)2

4t

)
.

(49)

In fact, we show that this holds for any 0 < c < 1, but the constant that our proof gives 
for the second “�” diverges as c approaches 1.

Note that (1 ∧ r√
t
)(1 ∧ s√

t
) and 1 ∧ rs

t coincide when either r, s ≤
√
t or r, s ≥

√
t and 

that the former is never larger than the latter for any r, s. In view of (48), this proves 
the first “�” in (49) and shows that we only need to prove the second “�” in the regions 
r ≤

√
t ≤ s and s ≤

√
t ≤ r. By symmetry, it suffices to consider the former region. 

Moreover, by scaling, we can suppose t = 1/4. We abbreviate p := μ + 1/2 and show 
that there is a 0 < c < 1 such that, for all r ≤ 1/2 ≤ s,

(1 ∧ rs)p exp
(
−(r − s)2

)
� rp · exp

(
−c(r − s)2

)
. (50)

This will clearly imply the second “�” in (49).
For the proof of (50) we distinguish between rs ≤ 1 and rs ≥ 1 and start with the 

former case. Here we need to show

sp exp(−(r − s)2) � exp(−c(r − s)2) .

This can be inferred by taking the p-th root and the inequalities s = (s − r) + r ≤
(s − r) + 1/2. The term corresponding to (s − r) can be controlled by taking c < 1
arbitrary. To prove (50) when rs ≥ 1 we need to show

exp
(
−(r − s)2

)
� rp · exp

(
−c(r − s)2

)
.
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This can be inferred by multiplying by rp, taking the p-th root and the inequalities 
r−1 ≤ s = (s − r) + r ≤ (s − r) + 1/2. As before, the term corresponding to (s − r) can 
be controlled by taking c < 1 arbitrary. This completes the proof of (50).

Step 3. It remains to translate the result from the operator Lμ to the operator Lλ. 
The operator U , defined by (Uf)(x) = xμ+ 1

2 f(x), is unitary from L2(R+, r2μ+1 dr) to 
L2(R+, dx). It maps C1

c (R+) into itself and, for a function u from this space, we find by 
an integration by parts

∞̂

0

(
|(Uu)′(x)|2 + (μ2 − 1

4 )x−2|Uu(x)|2
)
dx =

∞̂

0

|u′(r)|2r2μ+1 dr .

This implies that

U∗Lμ2−1/4U = Lμ

and, consequently, for all t, x, y > 0,

e−tLμ2−1/4(x, y) = (xy)μ+ 1
2 e−tLμ(x, y) .

In view of (49) we obtain the assertion in Theorem 10. �
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