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1. Introduction and main result
1.1. Setting of the problem
In this paper we consider the Hardy operators in a half-space, given informally by

I = (A + x5 in PRY). W

Here and in what follows R% = R9~1 x (0, 00) and we write z = (2/, z4) € R4™! x (0, 00).

We are mostly interested in the fractional case o € (0, 2), but our results are also new

in the local case o = 2. The operators Lg\a) are considered with a Dirichlet boundary
a/2
RY
will be explained in the next subsection; it is sometimes called the regional fractional

condition for @ = 2 and a certain analogue for a < 2. The precise meaning of (—A)

Laplacian; see, e.g., [2] and [32, Section 8.4].
The constant A is assumed to satisfy

where
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Note that A\, depends on «, but not on d, and that A\, = —% if @ = 2. Also, A\, < 0 if
€(0,1)u(l,2] and A\, =0if o =1.
The constant A, plays the role of a critical coupling constant. As is well-known for
a = 2 and shown by Bogdan and Dyda [3] for @ < 2, the constant A, is the optimal
constant in Hardy’s inequality, which states that

L >o0.

Our goal in this paper is to study the powers

(LE\“))S/ * withs e (0,2,

More precisely, we are interested in the domains of these operators (which are subspaces
containing the operator domain of Lg\a)) and, in particular, in the question how these
domains for general A > A\, compare with the domain of this operator in the case A = 0.
When A > A, # 0 and s < 1, it is easy to see that the domains of (Lg\o‘))s/2 and (L{)s/2
coincide; see, e.g., [13, Remark 1.2] for a similar argument. Our main interest is therefore
in the case s > 1, corresponding to subspaces between the form domain and the operator
domain. In our main result (Theorem 1 below) we will show that, for a certain explicit
range of s, depending on A, the domains of (L O‘))8/2 and (L(()O‘))S/2 coincide.

There are several motivations for studying this question, coming both from pure
mathematics and from applications to nonlinear dispersive equations and mathemati-
cal physics, and we will discuss some of them in Subsection 1.3 below. There, we will
also give references to the growing literature on the analogous question in other settings.
Pioneering papers on this topic are those by Killip, Visan and Zhang [28] and by Killip,
Miao, Visan, Zhang and Zheng [25].

1.2. Main result

Before presenting our results, we will first discuss the definition of the operators (1)
and then introduce a parameterization of the coupling constant A that will be important
in what follows.

Definition of the operators

Let us give the precise definition of Lg\a) as selfadjoint, nonnegative operators in the
Hilbert space L?(R%). Throughout this paper, we assume that d > 1, a € (0,2] and
A € [As, 00), except where explicitly stated otherwise.

For « € (0,2), we consider the quadratic form

Juz) — u(y)l? / () ?
dz d A — - d
// |x - y|d+a ray x5

R¢ xR R¢

MI»—I
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with

~—

T

3)’

A(d, —a) = 21-ard/2 (1

and for o = 2 we consider the quadratic form

/\Vu(x)|2dx+/\/x;Q\u(x)de.
R4 R4

These quadratic forms are considered for functions u € C'Cl(R‘j_), that is, continuously
differentiable functions whose support is a compact subset of the open set R‘j_. According
to the classical Hardy inequality for o = 2 and its sharp extension to o < 2 by Bogdan
and Dyda [3], these quadratic forms are nonnegative if (and only if) A € [\, 00). By a
theorem of Friedrichs these forms therefore give rise to selfadjoint, nonnegative operators
LE\O‘) in L*(R%) for which C}(R%) is a form core.

The operators (LE\O‘))S/ 2 appearing below are defined by the spectral theorem. We will
use the fact that C2°(R%) belongs to the domain of these operators for any s € [0,2]
and any «a € (0, 2]; see Lemma 15.

Definition of the exponent p
For given a € (0,2] (not reflected in the notation) we set M := « if @ < 2 and
M := oo if & = 2 and introduce the function

(-1,M)>p— C(p) := % (F(a) sin % +T(1+p)T(a—p) sin W) . (3

When « = 2, one sees that the poles of I'(aw — p) cancel with the zeros of sin @
and, indeed, that C(p) = p(p — 1) for all p > —1. Similarly, for « = 1 one finds C(p) =
11— mpcotmp).

The following properties of C' are known and we refer to Appendix A for details
and references. The function p — C(p) is continuous and symmetric with respect to

p = O‘T_l, strictly increasing on [QT_l,M) and its value at p = QT_l is A.. Moreover,
lim,_, s C(p) = 4+o0. Thus, for any A € [\, 00) there is a unique
pe[%5E, M) with C(p) = A. (4)

We emphasize that p depends on «, besides A.

One can show that C(a — 1) = C(0) = 0. Thus, the case A = 0 corresponds to
p=(a—1)4 := max{a — 1,0} and the case A >0 to p > (a — 1)4.

Using the explicit expression of C(p) for a = 2 we see that

p:%(l—&—\/m) fa=2. (5)
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Notation
We write

AN B :=min{A4, B}, AV B :=max{A, B}.

Moreover, in order to abbreviate some statements we suppress constants and write A < B
for A, B € R whenever there is a constant ¢ > 0 such that A < ¢B. The notation A ~ B
means A < B < A and in this case we say that A and B are comparable. If we want to
emphasize that the constant ¢ may depend on some parameter, say 7, we write A <, B.

Main result — equivalence of Sobolev norms

Our main result is contained in the following theorem. It states that the L*(R%)-

norms generated by certain powers of Lg\a)

corresponding powers of L(()a).

are comparable to those generated by the

Theorem 1. Let o € (0,2] and let A > 0 when oo < 2 and X\ > —1/4 when o = 2. Let p
be defined by (4), and let s € (0,2] N (0, 24).

1) If s < (1+2p)/a, then dom L{s/2 © dom(L™)*/? and
A 0

LS 2l ety S LSl 2y for allu € dom(LSY)*/2. (6)

Moreover, C°(R%) is an operator core of (Lg\a))s/Q.

(2) If s< (1+2(a—1)4+)/x, then dom(L(ga))s/2 C dom(Lg\O‘))s/2 and
LS 20l g2y Sasans L) 2ull g2y for all u € dom(LEY) /2. (7)

Moreover, C>*(R%) is an operator core of (L(()a))s/z‘

142(pA(a—1)+)

In particular, for s € (0, 2] with s < we have the equality dorn(Lg\O‘))s/2 =

dom(L(()a))s/ 2 as well as the equivalence
LS 2l g2 gy ~asans |(E6) 2 ull g2y for all u € dom(L5)*/2
Note also that

(Oé—].)+ 1f)\20,

N a—1)L =
PA(=1) {p ifA<0.

In Section 9 we will see that the assumption s < %

equality dom(Lg\O‘))s/2 = dom(LéO‘))s/2 (under the additional assumption o < 3/2 if
d=1).

is necessary for the
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For a = 1, we have A\, = 0 and the assumption A > 0 in Theorem 1 is optimal, as
is the assumption A > —1/4 for o« = 2. For a € (0,2) \ {1} the restriction to A > 0
is probably technical. It comes from bounds on the heat kernel of LE\O‘), which are an
ingredient in our proofs and which are currently known only for A > 0 when « < 2. Since
we expect these bounds to be true also for A € [\,0), we will accompany each of our

main results with a remark stating the potential extension.

Remark 2. Let a € (0,2), A € [\,0) and assume that ety (z,y) satisfies the upper
bound in (9) below with p defined by (4). Then Theorem 1 remains valid for this value
of A. This follows by the same arguments as in the proof below, taking into account
Remarks 4, 6 and 25.

We next present two important ingredients in the proof of Theorem 1 which are of
independent interest. They concern variants of Hardy’s inequality.

Theorem 3 (Generalized Hardy inequality). Let o € (0,2] and let A > 0 when o € (0,2)
and A > —1/4 when o = 2. Let p be defined by (4). Then, if s € (0, % A %), one has

—as/2 a)\s 0o
ez 2ull ame) Saans L) 2ullpz@ey  forallue CRRYE).  (8)

Remark 4. Let a € (0,2), A € [\,,0) and assume that e~*L(z,y) satisfies the upper
bound in (9) below with p defined by (4). Then Theorem 3 remains valid for this value
of A. This follows by the same arguments as in the proof below, taking into account
Remark 14.

It is interesting to compare the assumption s € (0, % A 2a—d) in Theorem 3 with the
corresponding assumption for the Hardy inequality in R?¢ with weight \x|’“5/ 2 with a
point singularity, namely s € (0, @ A 2Ed); cf. [13, Proposition 1.4] or [25, Propo-
sition 3.2]. The difference between d and 1 in this assumption reflects the different
dimensionalities of the sets where the Hardy weight is singular.

Theorem 5 (Reversed Hardy inequality). Let o € (0,2] and let A > 0 when a < 2 and
A > —1/4 when o = 2. Let p be defined by (4) and let s € (0,2]. Then

H ((LE\Q))S/2 _ (L(()a))s/Q) u‘

—as/2 ) d
PR Sdans |24 “ullL2aey  for allu e CZ(RY).

Remark 6. Let a € (0,2), A € [\,,0) and assume that e tLs” (z,y) satisfies the upper
bound in (9) below with p defined by (4). Then Theorem 5 remains valid for this value
of A. This follows by the same arguments as in the proof below, taking into account
Remark 18.

Remark 7. We have made the choice to compare the operators LE\O‘) for general A > A,

with the operator Léa) for the case A = 0. This is natural given the quadratic form
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definition of the operators Lg\a). For a < 2, there is another natural choice for the

comparison operator, namely Lg\(z) with A\g € (0, 00) defined by

a)/L:&
|z —yldte 2g”
R

(The fact that the left side is a constant multiple of x;“ follows by simple translation
and dilation considerations.) By [3, p. 630], Ay = C(a/2). With this definition of Ag, we
have for u € C} (]Ri), identified with its extension by zero to R¢,

-8 ey = b Al —a) [ IR 4,
L2(R4) 2 |.Z‘ —y\‘“‘“
RdxRd
—19 |u(x )|2 |
—§ —Oé // |x—y‘d+0‘ d d +)\
R4 xR

(@)

In this sense the operator L) ’ is equally natural as L(()a). Our arguments in this paper

(Aa) . However,
0

extend without significant changes to the case where we compare with L
for the sake of concreteness and conciseness we have decided to present the arguments

in the case of comparison with the operator L(()a).

Remark 8. We consider the Schrédinger operators LE\a) whose potential is precisely Az “
In some applications it is necessary to allow more general potentials V' satisfying Az;* <
V(z) < Aaz;* for all x € R4 with some A\, < A < A < oo. In this case an analogue of
Theorem 1 holds with p defined by (4) with the given A; in particular, it is independent
of . This follows by a simple modification of our proofs. We have carried out the details
in [13, Section 4] in the case of Hardy weights with point singularities and omit the
corresponding details here.

1.3. Background and motivation

After having presented our main results, we would like to put them into context and
discuss some previous, related results.

Homogeneous operators appear frequently in applications as model operators or as
scaling limits of more complicated operators, and one aims at analyzing them in as
much detail as possible to draw conclusions about the perturbed versions that appear
in applications. From the point of view of pure mathematics and harmonic analysis
homogeneous operators are interesting as testing grounds of how much of Euclidean

Fourier analysis remains valid when one dispenses with translation invariance.
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A typical feature of homogeneous operators is the appearance of critical coupling
constants. These are often related to sharp constants in Hardy-type inequalities. For
instance, Hardy’s original inequality [20,21,36,30] is the case d = 1 of the inequality

1 2
/ |Vu|? dz > 1 /'Z—Ldm for all u € CH(RY).
d

R4 R¢

This inequality is precisely what guarantees that the operators LE\Q) with A > —% are

lower semibounded on C}(R%) and therefore can be realized as selfadjoint operators in

LQ(Ri). The fact that the constant i in Hardy’s inequality is sharp means that the

()
A

operators L)~ with A < —1 are not lower semibounded on C}(R% ) and therefore cannot

have a lower bounded selfadjoint extension. In applications the operators Lg\2)

appear
almost only with A > —i.

Another natural extension of Hardy’s inequality to the higher dimensional case is

—92 2 2
/|Vu|2dm2 % :Z?dx for all w € C}(RY) if d > 3.
R4 R4

The corresponding operators —A+\|z| =2 for A > — (d;2)2 where studied in the influential
paper by Killip, Miao, Visan, Zhang and Zheng [25]. These authors were motivated by
the analysis of nonlinear dispersive PDEs, more precisely, by the study of the global
well-posedness and scattering for the nonlinear Schrédinger equation with inverse-square
potential [26,27]. In [25] the domains of the operators (—A + \|z|~2)%/? were compared
with the homogeneous Sobolev spaces H* (R?) and in this connection a relation between
the power s and the coupling constant A was observed for the first time. For an extension
of this result, see [35]. Earlier, Killip, Visan and Zhang [28] had studied a similar question
for the Dirichlet Laplacian on the complement of a compact, convex set, motivated again
by questions about nonlinear Schrodinger equations. The techniques developed in [28,25]
play an important role in our analysis.

Hardy’s inequality has been generalized to powers of the Laplacian. A special case of

a result by Herbst [22] is that

2 o I‘(dza)Q —o/2 2
> 2% —=—— ||| u
L2(R4) r(%5%)?

H(—A)a/‘lu‘ for all u € H2 (R%) if d > a.

L2(R4)

For alternative proofs of Herbst’s inequality see [29,39,12,17]. Of particular importance is
the case o = 1 and d = 3, since the operator v/—A + m2—m?+ x|~ in L?(R?) provides
a model for a relativistic description of an electron in the Coulomb field of a point nucleus.
The scale invariant model problem for the latter operator is the homogeneous operator
V/—=A + Mz|7! and many results about the latter operator have implications for the
quantum mechanics with relativistic effects. For instance, Lieb—Thirring inequalities for
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the latter operator were used to solve the problem of stability of matter in the presence
of magnetic fields [12,11].

Recently, in joint work with Heinz Siedentop and Barry Simon, we discussed the
analogue of the strong Scott conjecture for relativistic electrons [16]. This is a quantum
many-body problem, where the underlying one-body operator is again v—A + m2—m?+
Alz|~% in L2(R3). In connection with this investigation we needed information about the
domains of the operators (v/—A 4 A|z|~1)*/2. More precisely, in our approach we needed
to know that for any A > ), there is an s > 1 such that the L?(R?)-norms generated by
(V=A + \|z|~1)*/? are equivalent to those generated by (—A)*/2. That this is indeed
the case was shown in [13], thus leading to a proof of the strong Scott conjecture in
the relativistic case. For an alternative proof see [14] and for a review about the Scott
conjecture see [15].

In passing we mention that the papers [28,25,35] also deal with the case where the
underlying norms are those in LP(R%) with p # 2. Similarly, the results in [13], which
concerned L?-norms, have been extended to LP-norms with general 1 < p < oo; see [33]
for A > 0 and [5,6] for all A > A,. Proofs for p # 2 often rely on multiplier theorems in
the spirit of the Mikhlin—-Hoérmander theorem. (Note that such multiplier theorems are
immediate consequences of the spectral theorem when p = 2.) In the local case o = 2
the proof of multiplier theorems can be based on heat kernel bounds with Gaussian
off-diagonal decay. In the absence of such bounds the case a < 2 is substantially more
complicated; see also [34].

In the present paper we address the analogous question in the L2-case for fractional
operators on half-spaces. The corresponding sharp Hardy inequality in this setting is due
to Bogdan and Dyda [3] and states that

|u(z) — u(y)? Iu 1R
, — Q) // |x— |d+a drdy > —\, d:cforalluEC(]R)

R4 xR4

l\’)l»—A

For an alternative proof see [18].

The main new difficulty compared to previous investigations is the presence of a
boundary in the fractional case. Note that there is an interplay between the order « of
the operator and the effect of the boundary. For a < 1 we expect the influence of the
boundary to be negligible, with @ = 1 being a subtle borderline case. This expectation
manifests itself, for instance, in the appearance of the positive part (. — 1) in part (2)
of Theorem 1. Related to this is the appearance, for small « and large A, of a large extra
factor in the Riesz kernel bounds (Theorem 11 below) when the distance of both points
to the boundary is much smaller than their mutual distance. This is a phenomenon not
encountered in previous studies of similar questions.

We expect our results in the model case of a homogeneous operator on a half-space to
have applications and extensions to the study of both more general operators and more
general domains.
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1.4. Method of proof and organization of the paper

The proof of Theorem 1 consists of two parts. In the first part, we prove the relevant
inequalities for functions in Cé’o(Ri) and in the second part, we show that the latter set
is an operator core, thereby extending the inequalities to all functions in the domain in
the relevant operators.

The first part of the proof of Theorem 1, is an immediate consequence of Theorems 3
and 5. The main ingredient for the proof of both of these theorems are pointwise bounds
on the heat kernels of the operators Lf\a), which have been proved recently by Cho, Kim,
Song and Vondracek [9] and Song, Wu and Wu [38] for o < 2. The structure of these
bounds is that they differ from the whole space heat kernel by a product of two extra
factors that depend on the distance of = (resp. y) from the boundary relative to /<.
This is summarized in Section 2, with some technical details deferred to Appendix B.

For the proof of Theorem 3 we use these heat kernel bounds to deduce Riesz kernel
bounds, that is, bounds on the kernels of the operators (Lf\a))’s/ 2 with s < 24; see
Theorem 11. For o« = 2 and all A, or for a@ < 2 and all not too large A (depending on
a and s), these Riesz kernel bounds inherit the structure of the heat kernel bounds,
namely the whole space kernel multiplied by two extra factors. When o < 2 and A
is large, however, this product structure of the Riesz kernel bounds is no longer valid
and needs to be replaced by a term, which relative to the product structure becomes
unbounded when both z and y are close to the boundary (compared to |z — y|). This
phenomenon does not occur in previous works on related questions, such as [28,25,13].

Once the Riesz kernel bounds have been established, the generalized Hardy inequality
in Theorem 3 follows by Schur tests; see Section 4. This is conceptually similar to [28,
25,13], but the violation of the product structure for certain A necessitates some extra
efforts. This will complete the proof of Theorem 3.

Turning to the proof of Theorem 5, we need bounds on the difference of the heat
kernels of LE\O‘) and L(()a). Those are derived in Section 5. The difficulty here is that in
a certain region of space, namely when both x and y are far away from the boundary
(compared to t'/%), but close together (compared to their distance from the boundary),
one needs to quantify a cancellation coming from taking the difference of the heat kernels.
Again there are similarities to earlier such arguments, but we believe that here we carry
them out more efficiently than in [13] and that our new arguments would simplify the
proof in [13].

Once the bounds on the difference of the heat kernels have been established, the
reversed Hardy inequality in Theorem 5 follows by Schur tests; see Section 6. These
Schur tests are again conceptually similar to earlier arguments, but require substantially
more technical work.

It is perhaps worth pointing out the simple idea that guides the technical work in

) with respect

Sections 4, 5 and 6, namely to exploit the invariance of the operators Lg\a
to translations parallel to the boundary. This implies that the kernels of the various

operators discussed above depend on the variables 2’ and ¢’ only through their difference
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a2’ —y/ (in fact, only on |2’ —y'|), and therefore one aims at integrating out these variables.
In this way we try to effectively reduce the problem to the one for the operator L(Aa)
in one dimension. Once one is in one dimension, the distinction of the various regions
(defined through the length scales 4, ya, |z — y| and t'/®) simplifies considerably and
allows one to conclude the proof.

We also note that we could have used the invariance with respect to translations
parallel to the boundary already at the beginning and written LE\O‘) as a direct integral of
certain operators Lg\a)(f’) in L?(R ), depending on a parameter & € R?~! the Fourier
variable corresponding to the space variable z’. In this way, we can rewrite all inequalities
in Theorems 1, 3 and 5 as inequalities for the operators Lg\a) (&) with constants uniform in
&’. While this would have immediately reduced the problem to the one-dimensional case,
one would have to deal with the uniformity in the parameter £’. Also, as far as we know,
precise heat kernel bounds for the operators L(f)(g’ ) are not available in the literature.
(In this connection we mention the recent heat kernel bounds for (—A + 1)*/2 4 V)fa)
in L2(RY) for certain critical potentials V/\(O‘) that satisfy V)fa) ~ Az|~* as x — 0;
see [23,24].) We also note that precise information on the operators (—% + |€'2)2/2
in L?(R,) (defined on C}(R,) via extension by zero to R, then action on R and then
restriction back to R ) has been obtained in [31]. This information has been instrumental
in [10]. These operators are similar, but in general different from the operators LE\O‘)(E’ ).

This concludes our discussion of the first part of the proof of Theorem 1. The second
part, namely the proof of the operator core property, takes up Sections 7 and 8. The
main result here is Theorem 24 in Section 8. Its proof relies once more on the heat
kernel bounds in Section 2. The novel ingredient here is a combination of these bounds
with Schauder theory for the Laplacian and its fractional analogue. Applying Schauder
estimates on appropriately chosen scales we obtain local Holder norm bounds. These

/2 with cut-off functions. Such bounds are

allow us to control the commutator of (—A)
the topic of Section 7.

We end this introduction by noting that in this paper we have restricted ourselves to
the case where the underlying norms are L?-norms. This is the case most frequently en-
countered in applications, including the before-mentioned ones to mathematical physics.
There are other applications, such as those in connection with nonlinear Schrédinger
equations, where one needs LP-norm with general 1 < p < oo. Also from a harmonic
analysis point of view the proof of such bounds is a formidable problem, related to
spectral multiplier theorems; see the references above in the case of a point singularity.
Proving an analogue in the present situation of singularities along a hyperplane is an
open problem.

2. Heat kernel bounds for Hardy operators

Notation. In the following, we omit the superscript («) in the notation for Lg\a) and
write merely Ly = Lg\a) when there is no danger of confusion.
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Of fundamental importance for us are pointwise bounds on the heat kernel of Ly. We
begin with the case a < 2.

Theorem 9. Let o € (0,2) and let X > 0. Let p be defined by (4). Then one has, for all
m,yeR‘i and t >0,

tL Tq \P Ya \P, _4 e\
e (ar,y) d,a, A (1/\ tl/a) (1/\ tl/oc) t <1/\ |a:—y|) ’ (9)

Let us give references for where this theorem is proved. For A = 0 and a < 1 the
bound appears in [8]. (More precisely, [8] considers the reflected process, but for o <1
this coincides with the censored process that we are interested in.) For A = 0 and
1 < a < 2 the bound appears in [7]. (More precisely, [7] only has this bound up to some
arbitrary, but fixed time. However, by scaling invariance, once this bound is proved for
any given time, it follows for all times.) The case A > 0 has been treated more recently
and the bound appears in [9]; see also [38].

Our definition of the function p — C(p), which relates p and the coupling constant A,
is seemingly different from the one used in [9]. We show that it is not in Appendix A.

As we have already said in the introduction, the restriction A > 0 in our main results
is a consequence of this restriction in Theorem 9. We expect that the latter theorem,
and therefore also our main results, extend to the full range A > A,.

We now turn the case o = 2.

Theorem 10. Let o = 2 and let A > —i. Let p be given by (4), that is, by (5). Then, for
all x,y € Ri and t >0,

p p
- Ld Yd —d/2, —clz—y|?/t
exp (—tLy) (x,y) < 1A 1A t e , 10
Xp( )‘)( y) d7>\( \/E) ( \/i) ( )

where the notation < means the same as ~, but where the constants c in the exponential
function are allowed to be different in the upper and the lower bounds.

While an explicit expression of the heat kernel of Ly for a = 2 is available, it leads to
a somewhat different heat kernel bound and we explain in Appendix B how to obtain the
bound stated in Theorem 10, where one is willing to give up something in the constant
c in the exponent, but insists on the product structure of the prefactor.

3. Riesz kernel bounds
In this section we use the heat kernel bounds from the previous section to prove two-

sided bounds on the kernels of the Riesz operators L;s/ 2, They are crucial for the proof
of the generalized Hardy inequality (Theorem 3).
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Theorem 11. Let o € (0,2] and let X > 0 when o € (0,2) and A > —1/4 when oo = 2. Let
p be defined by (4) and let s € (0, % A @). Then the following holds.

(a) For all z,y € RY with |x — y| < za V ya,

L52(0, ) ~oaons |5 — g7 (1 ATy y—) (1)
A ’ e lz—y| " |z —y

(b) For all z,y € RL with x4V ya < |z —yl,

p
_ s_ ZdYd
L)\ S/Z(xay) ~d,a, N\, s |l’ - y|a2 d < ) : |}-o¢-2

|z —y|?
W—M
2 a(l
L (lz=ul N (+)1 X
TaV Yd P>5(1+3) o<zl

Remark 12. Let a € (0,2), A € [\,,0) and assume that e~'L2(z,y) satisfies the bound
n (9) with p defined by (4). Then (11) and (12) remain valid. Similarly, the upper
(resp. lower) bound in (9) implies the upper (resp. lower) bound in (11) and (12). This
follows by the same arguments as in the proof below.

Note that when o = 2 or when a < 2 and p < §(1 + §) the bound in the theorem
can be written as

—s/2 s d b Ya b
L/\s (Z,Y) ~dars |x—y|*2~ (1 A —) (1 A ) (13)

lz —yl |z — y|

for all z,y € ]Rd This is reminiscent of the Riesz kernel bounds in [28,13]. Remarkably,
a bound of this form does not hold globally when o@ < 2 and p > §(1 + 3), and in the
region x4 V yg < |z — y| the Riesz kernel is larger than the right 51de in (13). This is
a consequence of the slow off-diagonal decay of the heat kernel in the case a < 2. We
will see in the following sections that this worse behavior does not lead to additional
restrictions in the generalized Hardy inequality or the reversed Hardy inequality.

Proof. By the spectral theorem, the Riesz kernel can be represented as

. 17 dt
Ly /2(x,y) = %) /e_tLA(x,y)ts/Q—.
0

t

Inserting the two-sided bounds for e=**(z,) in (9) and (10) and changing variables,
we see that the left side of (11) is comparable to
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x d 1+d/«
t _da.s Tq \P Ya \? t
¢+ at 4 Z4 -
T (lﬁ\ﬂ/a> (1 ﬂ/a) 1A e ) Lace
0

cle — y|?
+ exp (—%) lazg]
o0

s dr s
=z — y\%_d/7 T2 [(1 A T%—H) loco+ T%+1€_m—1a:2:|

0
1/a\ P 1/a\ P
(1T (1Al
|z -yl |z —yl
for certain ¢ > 0, possibly different for the upper and lower bounds. The integral is
similar to that in [28, Lemma 5.2] (or [13, (2.3)], but with 24 and y4 in place of |z| and
ly| and p in place of —d). There are, however, some differences, in particular in the case

a < 2andp> §(1+ 3), so we include the details of the bounds.
We shall show that for all T, S > 0 with [T~ — S~ a| < 1 we have

o0

/?T*P% [(1A78) e + 787 e 10| (1A (/1)) (10 (/) )
0

OAI“iASﬂ%p FTAS <1
~{(TS)~% [1a:2

2 _q_s ifTAS>1.
+ (Legars +MTAS) Lmg e +(TAS)FT75) Loy

Setting T := (| — y|/zqa)*, S := (| — y|/ya)*, we easily deduce from this the assertion.
Note that the bound |T~& — S~=| < 1 comes from |zq — yq| < |z — y].

To prove the above assertion, by symmetry we may assume that S <T.

Case S < T < 1. In this case we have S—= < T—= +1< 2T—% and so S ~ T. Thus,
the relevant integral is comparable to

(oo}
dr _,_s

— 73 Kl A T%H) lo<co2 + T%+1e_m’1a:2} (1 A (T/T)l/a)
-

2p
)

0

and we claim that this is comparable to 1. Indeed,

o0
d s 2p
/“417—1—5[(1/\r%+1)1a<24—r%+1e—”1a22}<1A(T/Tjﬂa)
.
T
7d
— [ L1 [(1 A Tg-H) lo<o + T%He_”la:g} ~1,
.

T
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since T' < 1 and since the integral converges at both zero (according to the assumption
5 < %) and infinity. For a lower bound we drop the integral between 0 and T" and for an
upper bound, we estimate it by

T
/d—T 173 [(1 A T%+1) lo<co+ T%+1G_CT1Q:2] (1 A (T/T)l/a)zp
) T
T
< /(i_—TT_l_%Tg""l(T/T)%p ~T 38 <1,
0

since §* < d A (d + 2p) ensures the convergence of the integral and the last inequality.
Case S <1 < T. In this case we have S—= < T-= +1<2andso S ~ 1. Thus, the
relevant integral is comparable to

oo
d s P P
& -1-5 [(1 A Tg+1> loco + T%He_”la:z} (1 A (T/T)l/“> (1 /\Tl/a) )
-

0

d+2p

« )

and we claim that this is comparable to T4 . Indeed, we have, using 5 <

For a lower bound we drop the integral between 1 and oo and for an upper bound, we
estimate, using 14+ 5 — £ > 0 when o < 2 (as a consequence of s > 0 and p < ),

/d% 773 {(1 A T%-H) lo<o + T%+le_071a:2} (1 A (T/T)l/o‘)p (1 A Tl/“)p

N/fflfé [1a<2 +T%+1e*”1a:2} (r/T)& <T@

and, using again 1 + 5 — £ > 0 when a < 2,

o

. P p
/ dr i3 [(1 A T%+l) lo<o+ T%He_”la:g} (1 A (T/T)l/o‘> (1 A Tl/o‘>
-
T
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o0
dT__z d _ _1_s _1_s4d _ _p
=) 7T [1a<2+72+1e “Tla:2} ~T T o+ T 2 e Ty ST
-
T

Case 1 < S <T. We split the relevant integral into three pieces, by cutting at S and

at T'. For the first integral we find, using s < 2d+2p)

le% )

S
dr

/7 1% [(1 A T%“) Loco + T%“e*cqaﬁ} (1 A (T/T)l/a>p (1 A (T/S)l/a>p
0
S

p [ d s ,
=(ST) = / a =3 [(1 A T%"H) loco+ T%+1e_67—1a:2] T

a5

T
0

P 2p _q_s
~ (ST)" = <<1p§%(1+%) + (I8 aqpsy + 5" 21p>%(1+g)) la<a + 1a:2) :

This term is of the claimed form. Thus, for a lower bound we can drop the integral
between S and oc.
We bound the second integral from above by

T
/d—T 12 Kl /\T%"H) loco+ T%'He_”la:g} (1 A (T/T)l/a>p (1 A (T/S)l/o‘)p
ST
T
=T & /d—TT_l_% [1a<2 + T%+1e_071a:2:| ra
)T
ST 8 (ST L0 4 57151, ).

When a < 2 and p > §(1 + 3), this upper bound equals the size of the first integral,
and for p < $(1 + 5) we bound T-«S8~173+t8 < (T'S)~«. When a = 2, have clearly
T-wS§-1mstEtEeeS < (TS)~%.

We bound the third integral exactly as in the case S <1 < T and obtain

Ood s p p
L=t [(1Ar85) Laca + 78 e T 1aa] (14 (1/T)V2) " (17 (/)
-
T
dr  _i_s dy1 —cr —1-= —1—242 _cT
- 5T ’ [1a<2 +T727 € 1a:2} ~T loce +T 2T2e " la=2.
-
T

When o < 2 and p < §(1 + 3), we bound

7175 < (ST)"2 ) < (ST) 74 (1p§%(1+g) + (1n5)1p:%(1+;)>
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and when o < 2 and p > §(1+ 3), we bound, recalling £ <1+ 3,
T~175 < (ST) &5 1%,

When a = 2, we have p > % > 0 and therefore T-1=3+5¢=<T < (ST)~«. This completes
the proof. O

4. Proof of the generalized Hardy inequality (Theorem 3)

We first prove a theorem that is closely related to Theorem 3.

Theorem 13. Let o € (0,2] and let A > 0 when a € (0,2) and A > —1/4 when oo = 2. Let
p be defined by (4). Then, if s € (0, 2222 A 22) one has

—as/2 —s/2
[Eomadi Sadd Ilrerey Sdans 19lewey — forallg e L*(RY). (14)

Conversely, if (14) holds for some s € (0, % A M), then s < %.

[0

Remark 14. Let a € (0,2), A € [\, 0) and assume that e ="' (z, y) satisfies the bound in
(9) with p defined by (4). Then the assertions of Theorem 13 remain valid. Similarly, the
upper (resp. lower) bound in (9) implies the sufficiency (resp. necessity) of the assumption
s < % for the validity of (14). This follows by the same arguments as in the proof
below, taking into account Remark 12.

The basic strategy of the proof is to use Theorem 11 in order to replace the operator

L;S/ 2 by one with a more explicit kernel.

Proof. We assume throughout that «, A\ and p are as in the statement of the theorem
and that s € (0, 24 A @).

Necessity of the assumption s < 12&‘ We consider a similar example as in [25,
p. 1283]. Let w = (0,0,...,2) € R% and 0 < ¢ € C*(RY) with ¢ > 1 in By a(w).
We use part (a) of Theorem 11. (More precisely, we also use part (b) to see that the
bound in part (a) is also valid for x4 V yq < |z — y| < 2(z4 V ya).) This shows that, for
z € RY with |z| < 1, we have

(L;S/Q@)(ﬁﬂ) 2 /dy1\w—y|§2ydL;S/2(z’y)<p(y)
R

> [ dy1 1 i " va_\’
2| Ayl yi<oy,Liy—wj<lr =yl "N V=l
RY

p p
2 Ly / dy 1‘$—y\§29d1\y—w|§% 2 Ly
R
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In the third inequality we used the fact that |z —y| ~ 1 and 1 A |z@y| A |myjy| ~ ‘z’”jyl on
the domain of integration. (Indeed, clearly, 2 < |z —y| < |z[+ |y —w|+|w| < %, 24 < 1
and ygq > %) In the fourth inequality we used the fact that the inequality |z —y| < 2y4 is
satisfied for all y with |y —w| < 3. (Indeed, |z —y| < |2/ —y/|+ (ya— za) < |2+ Y| +Ya,
where |2/| < [z <1< 2yq and |y'| < |y —w| < 5 < §ya.)

This allows us to bound

as

— _ 2 —_as _ 2 p_ﬂ
g * L3 20l e ey > Ma<azyg * L3 0l e @e) 2 a2l ame) -

Since the right side is infinite if s > %, we see that the inequality s < % is necessary
for the validity of (14).

Sufficiency of the assumption s < %. We shall prove the L2 (Ri)—boundedness of
the operator with kernel x;%L;% (z,y). By the upper bounds in Theorem 11, it suffices
to prove the LQ(R‘i)—boundedness of the operator with kernel K(x,y), defined to be
x;7 times the function appearing in the bounds in Theorem 11. We will divide K into
four pieces supported in essentially disjoint sets and show boundedness of the resulting
four operators. To that end we perform Schur tests as in [25, Proposition 3.2] (with s in
place of %* and ¢ in place of —p). These Schur tests involve weights and the weights are
chosen differently for the four different pieces of K.

The four regions are defined by |z — y| < 4(x4 A ya), 4zq < |z — y| < 4yq, dys <
|z —y| < 4xq and 4(xqVya) < |z —y|. The factors of 4 will be convenient in some regions
and we observe that Theorem 11 as stated is equivalent to a variant of Theorem 11 where
the distinction between parts (a) and (b) includes similar factors of 4.

Case |z —y| < 4(zq Ayq). In this case we have 1 A |;’Tdy‘ A ‘zyfdyl ~ 1 and therefore the
kernel becomes

K(z,y) ~ ;3o —y|379,

For the first half of the Schur test we bound

/ 2y e — gl dy < / 2y e gy < 1.

|lz—y|<4(zanya) |z—y|<4zq

For the second half of the Schur test, we note that yg < xq+|r—y| < xq+4(xaAyq) < 524
and therefore z;“2 in the kernel can be replaced by y, . Therefore, the second half
of the Schur test is similar to the first, and we deduce the L?(R% )-boundedness of the

piece of K in this region.

Case 424 < |z —y| < 4y4. In this case, we have 1 A |f_dy‘ A i w—dyl and therefore

~J
[z—y] [E3
the kernel becomes

K(z,y) = a7 % |o—y| ¥4,
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We perform a Schur test with weight

B
T4 . Qs as
LY) = th ——p< <l - —.
w(z,y) <|a:y|> with —- —p g +p 5

The assumption s < % guarantees that one can find such a .
For the first half of the Schur test we bound

w(z,y) K (z,y) dy < z; TP / o —y| TPy <1,

dzg<|r—y|<4yaq lz—y|>xa/4

where the finiteness of the integral comes from the choice of 5. For the second half of
the Schur test we note that in our region we have |x — y| > yq — x4 > ya — |z — y|/4, so
|z —y| > 4yq/5. We bound

-1
w(z,y)” K(z,y)dz
dzg<|z—y|<dyq
-5 +p—B as _q—
S T, ° z —y| % P dy
dya/5<|z—y|<4yaq

= (wq + 1)7%+p75|w|%7d7p+ﬂ1{wd>_1} dw < 00,

4/5<]w|<4

where we changed variables  — y = yqw and where the finiteness of the integral comes
from the choice of 8. We deduce the LQ(Ri)—boundedness of the piece of K in this region.

. T Y. Y.
Case 4y, < |z —y| < 4x4. In this case, we have 1A |I_dy| A |I_dy| ~ |z_d

i and therefore

the kernel becomes
K(x,y) =, * gyl —y| %47,

We perform a Schur test with weight

_ ¥
w(x,y):(u> with —p<vy<1+4p.

Since p > O‘T’l > —% it is possible to find such a 7.

Similarly as in the previous case (but with « and y interchanged), we have |z — y| >
4x4/5 and, in particular, yq < x4 ~ |x — y|. Therefore, for the first half of the Schur test
we bound
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—d—p+y p—
w(z,y) K(z,y)dy < z, yq ' dy
dyg<|oz—y|<dzq dyg<|z—y|<dzq

—d—p+vy p—

<z, Yy ' dy
|z’ —y'|<4zq, ya<za
= wh™ 7 dw < o0,
Jw'|<4 ,wa<1

where the finiteness of the integral comes for the choice of «y. For the second half of the
Schur test we bound, using again x4 ~ |z — ¥,

wleg) K)o ST [ eyl ds
dya<|z—y|<dzq le—y|>4ya
= / |w| =P dw < oo,
|w|>4
where the finiteness of the integral comes from the choice of 7. We deduce the L?(R%)-

boundedness of the piece of K in this region.
Case 4(zq V yq) < |z — y|. In this region the kernel is

p
—ad s _ :]Cd d
Kiep) = "y (20 ) [1"‘_2

x| oyl )
| bzga+yp + (I L—ga+gp + Lsg+s) | Ta<z |

Tq V Yd

We perform a Schur test with weight

za \ (le=yl\" o
w(x,y): ‘x—y| " WlthT_p<B<1+P—7,—p<7<1—|—p.

When o < 2 and p > §(1 + 3), we also assume that

—l-a<f—-v<1l+a.

1

A possible parameter choice that satisfies all the constraints is § = v = 3.

For the first Schur test we bound

w(z,y)K(x,y)dy = Z / 1p<|p—y|<2rw(z,y) K (2,y) dy

z
4(zqVya)<|z—yl RE2%4 (24 Vya)<|z—y|

N Z /1\z'fy'|<2312yd<RwR(w7y)KR(x,y)dy,
2$d<RGQZR1
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where wgr and Kg are defined as w and K, but with |z — y| at each occurrence replaced
by R. For fixed R € 2Z with R > 2x4, we carry out the 3/-integration and, if o < 2 and
p=5(1+3), we bound 24 V yq > ya. In this way, we obtain

_ﬂ_t'_ + as _ _ _
/ 1y <orlope<rwr (@ y) Kr(e,y) dy < vy T PP RY ~20-8t7-1

R1

R/2
X /dydys_’y' lla_2
0

R R 2p—a(1+3)
o lessars F <1n%> L=ga+s) + <deyd) Lp>g+3) | la<z

< x;%ﬂ?*‘ﬁR%—p—ﬁ + ngrﬁ*’YJrlR—a—ﬁ-‘r’Y—

1
1pse4s)la<e-

Here the assumption p — v > —1 guarantees the yg-integral to converge near zero. The

5

additional term in case o < 2 and p > §(1 + 5) comes from the integral between 0 and
Xq.
Summing with respect to R we obtain

— % p+B pas g +B—v+1 p—a—pB+y—
> (xd : R P8 4 ot Prtl gma=fty 11p>%<1+%)1a<2) ~1.
2z4<Re2Z

Here the assumptions 8 > 5* —p and 3 —v > —1 — a guarantee the convergence of the
R-sum.
For the second Schur test we bound similarly

w(z,y) K (z,y) dx
4(xqVya)<|z—y|

= Z / 1r<jo—y|<2rw(2,y) ' K(2,y) dz

YA
RE2%4 (2 4vya) <|z—y|

Y Lo —y|<2rlo2,<rwR (2, y) " Kr(z,y) da.
2W<REQZR1

For fixed R € 2% with R > 2y4, we carry out the z’-integration and, if p = S+ 3), we
bound x4V yq > x4. In this way, we obtain

/ 1)y —yi<2rlo0,<rWR(2,y)  Kp(z,y)dz < yh IR A
R4
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R/2

X /dmd x;fﬂ)fﬁ- lla_g

0
R R 2p—a(l+3)
1,<o s In— ) 1,2 s 1,52 s 1,
+< pg2(1+2)+(nmd) p2(1+2)+<$d\/yd> >0+ <2

< ytziH—'nyp*'y + yg—ﬁ+w+1Rfa+ﬁ*v*

~

1
1p>%(1+%)1a<2 .

Here the assumption 3 < 1+ p — §* guarantees the convergence of the z4-integral near
zero. The additional term in case o < 2 and p > §(1 + 3) comes from the integral
between 0 and yg.

Summing with respect to R we obtain

o — 15— o~
Z (strvR P 7+yg B+l p—atf—y 11p>%(1+%)1a<2) ~1.
2yq<Re2%

Here the assumptions v > —p and §—+ < 1+« guarantee the convergence of the R-sum.
This concludes the Schur test and we deduce the L?(R%) boundedness of the piece of K
in this last region. O

To deduce Theorem 3 from Theorem 13 we need the following lemma.
Lemma 15. Let v, s € (0,2] and A > A,. Then C2°(R%) C dom Li/z.

Proof. Since the domains are nested as s decreases, it suffices to consider the case s = 2.
The case a = 2 is classical, so we may assume a < 2. Let f € C2°(R%). By definition of
the Friedrichs extension, we need to find a g € LQ(]R{i) such that

bty [ EELEUD 0 4y, [ ),

|z —yld+e a
R4 xR% R4

~ [ W@t do

RY

for all u € C}(R%). By polarizing the computation in Remark 7, identifying both f and
u with their extension by zero to R?, we see that this is equivalent to

[ CRFTR@ 8w e+ 0= 20) [ %dx: [ w@gta) .
R4 RY RY

This holds with g := ((fA)O‘/2f)|Ri + (A — Xo)z;* f. Indeed, the first term belongs to

L*(R%) since €|*f € L2(RY) and the second one since xz,;“ is bounded on the support
of f. This completes the proof. O
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Proof of Theorem 3. For given f € C*(R%), g := Li/Qf € L*(R%) by Lemma 15, so
Theorem 3 follows from Theorem 13. O

Remark 16. The same proof, without invoking Lemma 15, shows that the generalized
Hardy inequality (8) holds for all f € dom Li/ % under the assumptions of Theorem 3.

5. Difference of heat kernels

A key tool for the proof of the reversed Hardy inequality (Theorem 5) are bounds for
the difference between the heat kernels of Ly and L, i.e.,

K (z,y) = e " (a,y) —e N (z,y).
Given a € (0,2] and A > A, let p be defined by (4) and set
¢ :=min{p, (e —1)4}.

We formulate our bounds in terms of the functions

Tg \1 Ya \?
Jta(xay) = (11d,\/yd§tl/"‘ + 1Id\/yd2t1/"‘1\I*y|2(1d/\yd)/2> (1 A m> (1 A W)

4 i+e x—y2
Xt @ l(l/\m) 1a<2+€Xp <—C| 7 | >1a—2

and, with some appropriate constant ¢ > 0,

Mz, y) =1, vy >e1/0 Loyl <(zanya) /2

-2 g \x—y|2
X ———— IN—— |1 — 1o—2o|.
(md\/yd)o‘ l( |x—y\d+a a<2+exp< c 7 ) a=2

Theorem 17. Let « € (0,2] and let A > 0 when « € (0,2) and A > —1/4 when o = 2.
Then, for all x,y € R‘i and t > 0, one has

K7 (2, y)] S T3 (@, y) + M (2, y).- (15)

Remark 18. Let a € (0,2), A € [\,,0) and assume that e~ 2> (z,y) satisfies the upper
bound in (9) with p defined by (4). Then (15) remains valid. This follows by the same
arguments as in the proof below.

Proof. We assume A # 0 without loss generality as the claim is trivial when A = 0. By
scaling, it suffices to consider ¢ = 1 and, by symmetry, it suffices to consider x4 < yg4.
We now drop the subscript ¢ in K, J&, and M.
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By the triangle inequality and the bounds (9) and (10), we obtain
K (@,9)| S [(UAzal (LA g + (L aea) @™ (1A ga) @]
x [N L2 =y 702) Lacs + e 1,0

For an upper bound we can replace both exponents p and (o — 1)+ by ¢ and arrive at
the claimed bound in the regions where y4 < 1 and where y4 > 1 and |z — y| > z4/2.

In the following we concentrate on the region where y4 > 1 and |z — y| < x4/2. Note
that in this region we have yg < x4+ |z — y| < (3/2)xq, s0 4 ~ yq > 1.
By Duhamel’s formula, i.e.,

1
e—Lo o e—L/\ _ )\/ds e—(l—s)Lox;ae—sLx ,
0

and the bounds (9) and (10), we conclude

1
dz d d 2d (a=1)+ zZd \P
@ < — s a(l—8) « - B
K (m,y)|N/ds ot (1/\ (1_8)1/a) (1n22)
0 R

w2 |y 2P
+exp | —c¢ + lo—2| -
1—s S
Note that here we dropped the factors

(a=1)+
Td Ya \P
(1/\(15)1/a) (1/\51/a> 1, (16)

since xg ~ yq4 > 1 and s € [0, 1].

We divide the z integration at zq = x4/2, leading to the bound

(K (2, y)| S k2 (2, y) + kS (2,y)



R.L. Frank, K. Merz / Journal of Functional Analysis 285 (2023) 110104 25
2 2
xr—z —Z
+exp | —c | | + v | 1o—2| .
1-s5 s

We discuss k2 and k2 separately and begin with the latter. We bound z;* <z, <

and similarly for £.

y, " and we bound

(a=1)4 q
(1—s)a st/ (1—s)a /

Now we enlarge the zg-integration to all of (0,00) and reinsert the trivial factors (16),
but with both exponents replaced by g. Noting that ¢ is the exponent corresponding to
the operator L_y_ (where A_ = (=\) V 0), we conclude that

1

1
kS (z,y) S —a/als/dze_(l_s)L*L (z,2)e L= (2 —a/dse > (z,y)
Ya o Ya

0

~ M*(z,y),

where we used the semigroup property of exp(—sL_»_) and the heat kernel bounds and
we dropped again trivial factors as in (16) (with exponents ¢).

It remains to deal with k%, where we integrate over zq < x4 /2. We first discuss the
case a < 2. We begin by carrying out the z'-integration. Computations are simplified
if we use the fact that |zq — 24| ~ x4 by the choice of the cut-off in the integral and
similarly |yq — 24| ~ yq ~ x4 (since |zq| < z4/2 < yq/2). Thus, |z — 2| ~ |2/ — 2| + 24
and |y — z| ~ |y — 2’| + x4 and the integral to be computed is comparable to

4 d
/dz' 1A — A=)t 1A — o (17)
T B R L

Rd-1

We simplify the integrand, using s € [0,1] and x4 ~ yg > 1,

(D L A (e b

d+a + |z — 2l |dte xﬁ*“ + |z — 2 |dte

and

d d
R e

~Y .
gy = e 2y — e

Using Lemma 22 we see that the integral (17) is comparable to
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—a—1
Lq

ngra + | — yf|dte '

51+§(1 — 3)1+g
For an upper bound, one can remove the term |z’ — ¢’| in the denominator. Thus, we
have shown that

1 zq/2

(a=1)4

dz Z 2q4 \P
o d 2a—1 d d d
K@) 3 /d/ (“m) (1h 7))

0

Next, we carry out the s-integration for fixed z4 € [0, z4/2]. The integral coming from
s<1/2is

1/2

~ / dss (1A zd)(o‘_l)+ (1 A T)p ~ (LA zg)le Dt
0

Here we used p < «. Similarly, the integral coming from s > 1/2 is

1
(a=1)4
<[t (1 gTh) A @Az,

1—s
1/2

This leads to the bound

zq/2
d
ke (2, y) < —d 2a-1 / sz 1Az )(a71)++p
d
~ Jﬂgd_m_l (1a21 + (In(1 +24))1o=1 + Iﬂé_alaa) .

In the last computation, we used the fact that, if @ > 1, then p > 0 (note that for
a = 1, this inequality is ensured by the assumption A > A, = 0), and if a < 1, then
p—a> 942 —a>—1.

Flnally7 we note that, since xg 2 1,

2,472 (La<r + (In(1 4 24)) 1ozt + 25 *Lact) Sap* LAz 97%).

Since x4 ~ yq and x4/2 > |z — y|, we deduce that k2 (z,y) < M*(z,y) if o < 2.

It remains to treat the case o = 2. The argument is similar, but slightly simpler. The
z'-integral can be done explicitly, yielding

2 2
/ 42 exp (_C(le —Zs| Ly 82\ >)
Rd—1
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.2 .2
= const s°2 (1-y9) =N exp ( <|m’ —9)? + (za = 24) + (ya = za) )) .

1—s s

For s € [0,1] and all x4, Y4, 24 > 0 we bound

Tq — 24)> —zq)?
(72 ~ 7a) +(yd 2 > (za — 2a)” + (ya — 24)” >

N2
1-s s (%4 =ya)"-

DN | =

Also, as before, using the restriction zq < x4/2 and yq > x4,

(x4 — za)? n (Ya — za)?

> R C 2> 2
s S > (vq — 2a)" + (ya — 2a)” 2 g

Combining these two bounds gives

_ 2 _ 2
exp <C (|$/ B y/|2 + (xd Zd) + (yd Zd) )) < exp(—éx?i) exp (7§|(E _ y|2)

1—s s

_ C
Sagexp (~Slo ) = M(a,p),

where M?(z,y) is now defined with ¢ being one quarter of the constant in the heat kernel
bound. (Obviously, the bound on k2 remains valid if ¢ is decreased.)
Thus, to prove that k2 (z,y) < M?(z,y) it suffices to prove that

1

dzd 71 1 Zd Zd \P
— pl . — <
/ds/ ) (1/\(1—5)1/2)(1/\31/2) < 1.

0

To prove this, we first perform the s-integral for fixed z4 € [0, 24/2] and find

1
_1 _1 Zd Zd P
/d8821*8 2(1/\@)(1/\@)
0
~ (1A Zd)erl <1 +In(1+ i)) 1,<1+ (1A Zd)21p>1 .

We omit the detail of this computation. Since the right side, multiplied by zd_z, is inte-
grable over (0,00) (for p < 1, we use p > 1/2 > 0), we obtain the claimed bound. O

6. Proof of the reversed Hardy inequality (Theorem 5)

Proof of Theorem 5. Step 1. The assertion for s = 2 follows from Ly — Lo = Az;“. In
the following we assume 0 < s < 2 and A # 0. By the spectral theorem, we have, for
f e CERY),
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s/2 _ 1s/2 _ 1 00@ —s/2 (,—tLo _ —tL
(LA Ly )f_ F(—s/2)/ N Gl e R
0

ey 7 et [ayKp i),
R

(Here we use Lemma 15, which guarantees that C2°(R%) C dom LS/ N dom LS/2 ) Ab-
breviating g(y) := vy, a5/2|f( )|, it suffices to show that the right side of

(7 )

r2Ri) < /dy/—t‘ﬂ(o‘ )va 9(y)

L2(RY)

is bounded by a multiple of ||9HL2(1R1)~ By the pointwise bound of Theorem 17 it suffices
to show the L? (Ri)—boundedness of the operator associated to the kernel

/ a1 (2 () + M (2,9) 557 . 2,y € RY, (18)
0

with M and J¢ defined in the previous section. This L?(R% )-boundedness will be shown
in the following two steps, which therefore will conclude the proof of Theorem 5

Step 2. We begin with the kernel coming from the MX-part of (18). As discussed in
the proof of Theorem 17, on the support of M (x,y) we have x4 ~ y4. Hence,

dt _ s « S oodt _ s o as
/7t 2 M (2, y)y, ”/Tt 2 M (2,y)(xaya) T .
0 0

This replaces the kernel by a symmetric one and we only have to perform a single Schur
test instead of two. We obtain

o0
dt s - as
sup /dy/?t 2 M (z,y)(zaya) 4
0

mGRiRd

dt s o
S sup / dy / —t72 (zaya) *
acE]Ri 3

Ya~Td  t<(xaVya)®

- e |z —y|?
X — IN— |1 e —c—— | 1,=
@2V 52" l( Iz — y|d+a a<2 T exp ( c 7 ) a=2

o
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as_ dt . it
S sup z/ “ / dy / S Al B e | -
zGRi t |‘T - y|

Ya~Td  tSx§

We now interchange the order of integration and do the y-integral first. We bound

e g 4
[ o (rn g ) < [ (10 g ) <
Rd

Ya~Td

~

Therefore, the supremum over z € R% above is < SUP, R x?fq fOng dtt~3% < oo.
Thus, the Schur test implies the L*(R%)-boundedness of the corresponding operator.
Step 3. We now study the kernel coming from the JX-part of (18). Two preliminary

2
steps will simplify our computations. First, if « = 2 we bound exp (—c@) <1A

d
%. Second, we replace each of the two factors (1 A...)9 by (1 A...)”" with

—r:=qAQ0,

where we recall ¢ = min{p, (a — 1); }. Thus, J® < J& with

TJa rqg \ " Ya \ "
(@, y) = (1ﬂvdvyd§t1/“ + ldeydztl/a1|$—y|2(9€dAyd)/2) (1 A m) (1 A m)

. $l+g
Xt @ 1/\m y

and it suffices to prove the assertion with J® instead of J2.
For that purpose we insert the cut-offs 1, ., <;1/o and 1, ,, ~;1/. and bound the
two terms separately. We have

o0

/dt t_l_%jta(xa y) 1xdvdet1/0‘ ydT
0
o0
1+4
0 F () C1-gezod £
Ya (Taya) / dtt 2 (1/\ |x_yd+a>

(xaVya)™
as
<

<y (raya) ™" [(J = yIVeaVya) T4 1, vpe< eyl — YT (@aVya) O]

The first term here comes from the t-integral from (|z —y| Vx4V yqa)® to co. This integral

converges since —% + 2- — £ < 0. (Note that s > 0 and 2r < (1 — )4 < 1.) The second

(0% (0%
term comes from an upper bound on the integral between (x4Vyq)® and |z —y|%, in fact,
from an upper bound on the integral between 0 and |z — y|®. This integral converges

since—§+%+1>0.
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The above bound can be simplified since (using r > 0)

Loavya<io—yl T =y~ (@a Vya) 7T < (lz—y| Vaa Vye) T T

We now turn to the contribution to J&* from {z4 V yq > t'/*}. We have

o0
/dttilf%jta(x, Y) 1zd\/yd2t1/a ydT
0
(zaVya)® .
5 —1-s_d Ta ANyYd\ " tra
~ YL / dtt—1-5-4 (1/\ T ) (1/\ =g | vl
0

(zaVya)®

as —d— _s TaNYa\~"
<y lz — y| d—a / dtt™ 2 (1/\ /o ) llx—y\Z(xd/\yd)/Q

0

Syl e =y [(@a A ya)*™ T + @a Aya) " (@a VY)Y T ] Lasy > (runya)/2 -

The first term here comes from the integral from 0 to (zg4 A yq)®. This converges since
s < 2. The second term comes from an upper bound on the integral from (x4 A yq)* to

(x4 Vya)®, in fact, from an upper bound on the integral between 0 and (x4 V y4)®. This
integral converges since —3 + = > —1.

The above bound can be simplified since (using r > 0)
(a Aya)®™ % < (zaAya) "(@aVya) 7.

To summarize, we have shown that

as as
2 2

o0
/dt 2N @)yl S s (@aya) (e =yl Vaa Vyg) T T
0

g o=yl (@a Aya) T (@a Y ya) T Loy > anga) 2

We claim that this is

2r a
<(|x—y\/deyd> ((|x—y\/deyd) (19)

~ VZaYd le —y| V (zq Aya))dte

Indeed, for the terms involving s this follows from y; < x4 Vyq < |z — y| V x4 V yq and
for those involving 7 it follows from r > 0 and

|33—y|\/3?d\/yd>l‘d\/yd Tq VvV Yd

VTayd T V/Taya Nazanyd
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Moreover,

(lz =yl VaaVya)®
|z =yl V (xq A ya))d+e’

(Jz —y|VagVys) * < (

and

—d—a a—as (Jo —y|VaaVy)* T
- v S T < .
|z —y[™"(xa V ya) o =vl2(earva)/2 S ([ [V (2 A ya)J 50

This proves that (19) is an upper bound on the quantity of interest. The claimed Lz(Ri)—
boundedness now follows from Proposition 19 below, noting that r < (1 — a)4+/2 <
1/2. O

Proposition 19. Let a« > 0 and 0 < r < % Then the integral operator with integral kernel

2
<|1’y|\/$d\/yd> " (lz =yl Vg Vya)®
(

VZa¥d |z —y| V (zq Aya))dte

is bounded on L*(R4).

Proof. Step 1. We denote the kernel in the proposition by k(z,y). As a preliminary step
to the main argument, let us carry out the integration over the R4~ !-variables. We claim
that

/ dy/ k(l’ y) < <.’Ed \/ yd)zr (fEd \/ yd)a (20)
Ri-1 N\ VEdYa (|za — yal V (za Aya))tte

Note that the kernel on the right side is the kernel corresponding to the case d = 1 of
the proposition. (Indeed, one has |zq — yi| < g V Yd, SO q V Yqg = |Ta — ya| V Ta V ya.)
To prove (20), we distinguish between the regions where |z — y| Z x4 V yq. We find

2r
V Y (za Vya)*
dy' k(z,y) S (L > / dy’
/ Y k(z,y) Tayd Y (|2 = y'| V|za — yal V (za A ya))dTe

Rd—1 |z’ —y'|<xaVya
2r
lz —yl 1
+ dy' ( :
VZdYd |z — Z/|d
|z—y|>2aVya

(21)

In the first integral we scale y' = 2’ + (|xg — ya| V (x4 A ya))w and obtain

2
(Id Vv yd) " dy (za V ya)®
VZa¥d (|z' = y'| V]za — yal V (xa Aya))dte

|z' —y' |[<xaVya
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_ (xd\/yd)% (za V ya)® dw
V/Zaya (|1za — yal V (wa Aya))t T (Jw| v 1)d+e

|lwl<(zaVya)/(|za—yalV(zaAya))

Bounding the latter integral by a constant, we obtain a term of the form (20).
We turn now to the second integral in (21) and claim that

2r 2r
v (|x—y> 1 (SUdVyd) 1 (22)
VZdYd [z —yl* ™\ TaYa ZqV Yd
lz—y|>zaVya
Since |xg — ya| V (xa A ya) < xq V ya, this will prove (20).
To prove (22) we first restrict the integral to |z’ —y'| > (x4 Vyq)/2 and find, changing
variables ' = 2’ + |z4 — ya|w,

2r
d
VZTdYd r—=y
|z’ —y'|>(xaVya)/2 | ‘
_ |zq — ya|*" 1 / dw
(xdyd)r (1+ |w|2)(d—27')/2

[w|>(zaVya)/(2|za—yal)

20V 2r
~ ( d yd) (xdvyd)_l’
\VTdYd

Here we used r < i. This bound is of the form (22).
It remains to compute the integral in (22) where the restriction |z — y| > x4 V yq is
replaced by 2" — ¢'| < (24 V yq)/2. In the latter region we have

1(@aVya)® +lwa —yal* > |z —y> > (xa Vya)?,

and therefore |xq—yq| 2 xqVyaq. Clearly |4 —yq4| < x4Vyq and therefore |z —y| ~ x4Vyq.
Thus,

2r
VZTdYd |z —y|d

2|z’ —y'|<zaVya<|z—y|

- (xdvyd>27 1 / dy'
VZTdaYd (xq V ya)?

2|z’ —y'|<zaVya<|z—y|

< (xd\/yd>2r 1
~ \ VZa¥d TgVyq'

which is again of the form (22). This completes the proof of (20).
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Step 2. We perform weighted Schur tests for the operator with kernel given by the
right side of (20). As weight we choose

Tq A
w(:c,y)<yd> withr<g<1l-—r.

Since r < % 3, it is possible to find such a j.
For the ﬁrst part of the Schur test, we use (20) to bound

/ dyw(z,y)k /dy — vy e\ (za v )"
J d VTaYd (lza — yal vV (xa Aya))tte
Rd

4
) (1=t v (1ALt

o0
~ /dtt—ﬁ—”(l AT < oo
0
The finiteness of the last integral uses the assumptions r < 8 < 1 —r.

For the second part of the Schur test, we note that, by symmetry, (20) remains valid
with dy’ replaced by dz’. Thus,

00 B 2r
V Yd (Ta V ya)®
/ ey 0 o VZdYd (lza = yal V (za A ya))'*e

R
< 1\/t)a+2r
= [ dtt= BT ( <
/ (T =tV (TAg)Ta =%

as before. The L?(R%)-boundedness therefore follows from the Schur test. O
7. Commutator bounds

Throughout this section we assume that 0 < o < 2. Our goal is to bound the com-
mutators

|z —y| oo

(~A)*7 (o) = Ad, —a) [ SE =S ) 4,
R4

for functions v supported in @. In general the integral on the right side does not converge
absolutely and should be understood as a principal value integral (whose convergence
we will follow from our results).
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We will impose certain boundedness and decay assumptions on v, as well as, for a« > 1,
mild regularity assumptions. The function ¢ is a cut-off function and we are interested
in tracking the dependence of the commutator on the size of the transition zone, where
¢ switches from zero to one.

This section is split into three parts, corresponding to different choices of the cut-off
function (. In Subsection 7.1 we will consider a cut off at a large distance from the origin,
in Subsection 7.2 a cut off at a small distance from the boundary hyperplane, and in
Subsection 7.3 the combination of both.

The assumption on v will always be of the form

lo(z)| < (1A |z|797) (1 A zq)P for all z € R (23)

with a certain parameter p > O‘T_l This bound is reminiscent of the heat kernel bound
in Theorem 9 and, in fact, in the next section we will use this theorem to verify (23) in
our application where v € et Cfo(Ri). There, the parameter p will depend on A as
in our main result, but in this section p is an arbitrary parameter.

The additional regularity assumptions will be formulated in terms of the following
Hoélder seminorms. For a function u on a set 2 and 0 < 8 < 2, we write

[u(z) —u(y)] .
SUDyye ~ [o—yl? ifo<p <1,
[U]Cﬁ(n) = Ja my_ . . (24)
sup$7yeﬂm+l(y)| if1<pB<2.

Our assumption on v will then read
[U]Cﬁ(Bzm () < (1A ‘.73|7d7a) (1A xd)piﬁ for all x € Ri with £, :=1A %’ . (25)
We will always assume that > a — 1.

7.1. Radial cut-off

In this subsection we bound the term

o) i= [ A=) dy,
Rd

where v is supported in M. Concerning the function x we assume that, for a certain
parameter R > 1,

0<x<1, x(@)=1liflz[<R, x(@)=0if|z|>2R, |[Vx|SR', (26)
as well as, if a > 1,

[D*x| S R7*. (27)
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Here D% denotes the Hessian of y.
Lemma 20. Let 0 < o < 2. Let R > 1, assume that x satisfies (26) and, if « > 1 also
(27). Let p > 51, assume that v satisfies (23) and, if « > 1, also (25) with some
8>a—1.
(a) If a < 1, then
[I(z)| < 1|I/‘SRZ~1’7‘172'JZ + 1‘w|>R|fc|7‘i70‘ for allz € RY.
(b) If a > 1, then
1(2)] S Ljaj<r R + Lgspla| 747
+ 1 ogR! ((1 Axg)~P=otD- 11, 1In s + la=1ln R)
d
for all x € RY .
(¢) In either case,
—a—d/2
1]l L2gaey S B™*7Y7.

In the formulation of (b) we recall the notation a_ := max{—a, 0}.

Proof of Lemma 20. Case a < 1. Step 1. We claim that

1 1
< [ -
1) S e | sl + 1, s [ lay
ly[>R ly|<2R

1 1
TR L<nR / W\U(@)Idy- (28)

B jyl<sr

To prove (28) we note that, if |z| < %, then

1
1@l =| [ s [ bl

lyI>R ly|[>R

If |z| > 4R, then

I(2)] = /s / m%wwdy.

ly|<2R ly|<2R
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Finally, if £ < |z < 4R, then

()] < / Mﬁwwdw / m%my)my

ly|>8R Iy\Sg
1 1
TR / =yt Wy,
B yl<sr

where we used |x(x) — x(y)| < R~ |2 — y|, which follows from the gradient bound on Y.
Combining the above bounds, we obtain (28).

Step 2. We now insert the bounds on v into the right side of (28). We clearly have

[ anlr ey ay s
ly|<2R

and

1 e o
/ e (LA AN Ya) dy S R
ly|>R

The last bound is clear if p > 0 (which is the only case relevant when A > 0). When
p < 0 the same bound is valid for the integral restricted to y4 > 1. For the integral with
the opposite restriction is easily seen to be bounded by R~9~!~2% (Note that in this
integral one has |y| ~ |y|.) Finally, if £ < |z < 4R, then, since o € (0, 1),

1
(AW Aya)Pd
| e A A dy
B y<sr

e 1A yq)? e

SRda / ( dySRdgoH_l.
|z — y|dtet
B jyi<sr

Here, for an upper bound, we replace the integral over {% < |y| < 8R} by the integral
over |z —y| < 12R. For p > 0 we can drop the factor (1 A ygq)P. For p < 0 we argue
similarly as before by distinguishing the cases y4 < 1 and yq > 1.

This proves the claimed pointwise bound in (a). The L2-bound in (c) follows by a
simple integration. O

It remains to prove Lemma 20 for o > 1. We discuss the first part of the argument in
greater generality since it will also be useful in the next subsection. We are interested in
bounding
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¢(x) —<(y)

|z — y|dt+e
d

v(y) dy,

where ¢ is C? and v is Hélder continuous with some exponent 3. In the setting of
Lemma 20 we have ¢ = x.
We fix a local length scale ¢,., depending on = € Ri, and we decompose

) =) y) dy - S = €W () () dy
AL S e
((z) — ¢ Vi(z) (y —=x
b o) / () (ﬁ’;fmdia) =24y e
ly—z|<Le
+ [ Em .
|[y—x| >y

Note that because of the principal value we were free to introduce the term V{(z) - (y —
x), which contributes zero to the integral (because of oddness), but makes it converge
absolutely. We will always bound the first term by

[ g,

|z — y|dte
‘y_xlgéz
dy (30)
< [U]Cﬁ(B[x (m))[(]cl(Bgl,(a:)) / W dy
S Wles s, (2)) [Cler (s, (o la TP

for some 8 > « — 1. Similarly, we will bound the second term by

C(z) —C(y) +V((z) - (y —=x
(z) (ﬁ—m;J (y )dy
ly—|<ts (31)

dy —
< v(@)l[¢le2(s,, (+) / W dy < lv(@)[Cle2m,, (I))Ei

|yfm|§£m

v(x)

After these preliminaries we return to the proof of Lemma 20.

Proof of Lemma 20. Case o« > 1. We apply the preceding discussion with ¢ = y. For
the first term in (29) we use the bound (30) and note that [x]c1(s,, ()) vanishes unless
|#| ~ R, in which case it is < R™!. This leads to a bound
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Lomr(LA 2|7 (L Azg)P >R,
Similarly, for the second term in (29) using the bound (31) we obtain
1\1|~R(1 A\ |Z‘|_d_a)(1 A l‘d)p_a+2R_2 .

Since 1 A zg < 1 < R, this bound on the second term is smaller than the bound on the
first term and can be ignored.
We now turn to the third term in (29),

We claim that

~ 1 1
’I(f)’ S ligj<ar / WW(?M dy + 1|m|>§|$|m / lv(y)| dy
ly|>R ly|<2R

1 Lig—y|>e
1 ) —— dy . 32
+ §<\z|§4RR / |z — yldta—1 lv(y)| dy (32)

LE<lyl<sr

This is proved in the exact same way as (28).

We now insert the bounds on v into the right side of (32). The first two terms are
bounded as in the case o < 1. The bound for the third term in (32), however, is different
now, since |z — y|~?7**! is not locally integrable. We claim that

Liz—y|>e
——— |y d
| el
B yi<sr

< gl ((1 Azg) D= 41 Il 41,0 R) .

Zd

Indeed, the factor of R~%~ comes from one factor in the bound on v, so it suffices to
prove

lizy|>e,
/ W(l A ya)? dy
L<lyl<sr

S(AA acd)_(p_‘”'l)* +1,—n_1ln L 4+1,,InR.

1Azq

We split the y-integral according to whether y4 > 3 or yq < 3. Beginning with the former
case, we note that |z — y| > |zqg — ya| > 1 if 24 < 2. Thus, for all 24 > 0,
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Lo y>0, Lyg>3 Lo y>1
/ o gpiret LAV Ay S / T gdra 1

B oyi<sr F<lvi<sr
S ]. + (ln R)]-azl .

Next, we consider the integral over y; < 3. Performing the y’-integration over all of
R, we obtain

1oy, Lya<s
/ —“; _y|y|;l+,ff§ (1 Aya)P dy

B yi<sr

3
P p
< / Y T dy S / Vg,
L |2/ — g/ |dra1 4 |z — yg|tte—t + 05T ) |zg — ya|® + £
Ya>

This integral is easily seen to be

(p—a+1)_ 1

—a -
Sy g1+ 1y zg<1+1In 1p—a-1-
d

1
1Nz
(To prove this for 24 < 3/2 we split the y4-integral at yq = 2x4.) This proves the claimed
bound.

Combining all these bounds, we obtain the claimed pointwise bound on I in statement
(b) of Lemma 20. The L?-bound in (c) follows by integration. One easily verifies that

the ‘additional’ term (compared to the case o < 1) is subdominant. Here we note that
2(p — a+ 1) > —1, which makes the relevant z4-integral finite near the origin. O

7.2. Boundary cut-off

In this subsection we bound the term
_ [0(z)—0(y)

Ra
As before, the function v will be supported in ]R_i. Concerning the function 6 we assume
that, for a certain parameter r < 1,

0<0<1, O(x) =0ifxg <7, O(x) =1if g > 2r, Vo <ty (33)

as well as, if a > 1and d =1,

|D20| < r 2. (34)

To simplify matters, we assume that 6 is only a function of the last coordinate x4 of
x = (2, xq).
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Lemma 21. Let 0 < a < 2. Let r < 1 and assume that 6 satisfies (33) and, if « > 1 and
d=1, also (34). Let (XT_l < p < «, assume that v satisfies (23) and, if « > 1 and d =1,
also (25) with some > o — 1. Then

e P
[II(z) S | r AxHO‘

> (14 20) (1A Jz]747%) for all z € RY.
d

In particular

11| p2rey S rpmotl/2,

Proof of Lemma 21. Case d > 2 or d > 1 and o < 1. Step 1. We claim that

1
| =yl +y

()] € Loyar /

Yd>r

1
tp | o(v)] dy

|x/ _ yl‘d—‘,—a + ‘,L.ngOt

o)l dy (35)
d

Yya<2r

1 |4 — yal
+1%<zd§4r; / |f£/7y/|d+a+|$d*yd|d+a|v(y)|dy'

£<yd§87“

To prove (35) we argue in the same way as we did for (28). We note that, if x4 < g,
then

1
II(x)| = / 5/ v(y)|dy .
11(2)] )

a>T Yda>T

If x4 > 4r, then

1
[11(z)| = /5/ o lv()ldy.
|$/7y/|d+a+xd+

a<ar ya<2r

Finally, if § <24 < 47, then

1 1
1I(z)| < / v(y)|dy + / v(y)| d
11() gl [y
Ya>8r yd§£
1 lzd — Yl
- d
+ r / |2/ _y/‘d+a ¥ Jzq —yd|d+a‘v(y>| Y,

T <va<sr
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where we used |0(z) — 0(y)| < 77 |xg — ya|, which follows from the gradient bound on 6
and the fact that it only depends on the last coordinate. Combining the above bounds,
we obtain (35).

Step 2. We now insert the bounds on v into the right side of (35). In the two integrals
with an upper bound on y4 we use 1 A |y|~9=% ~ 1 A|y/|~9~“. This allows us to compute
the y4-integral in the second integral. In this way, we obtain

1
1) S Logear [ (LA Jy79)(1 A ya)? dy
< L
1

+1 f’f’erl / 1A /fdfad/

Ta>3 L ‘3?/ _ y/|d+a + ngra( |y | ) Y

-1 |Za — Yal e

+1%<$d§4TTp / |m’—y’\d+°‘+\$d—yd|d+a 1INy “) dy .(36)

s
1 <ya<8r

A straightforward computation shows that, if § < x4 < 4r, then

|Za — ydl r?
dyq ~ . 37
: | e 2 — g/ .
4 <ya<8r

(Indeed, we substitute yq = x4 + |2’ — 3’|t and note that the upper and lower bounds in
the t integral are of order r.) We note that (37) requires the assumption o < 1if d =1
(with the convention that terms involving z’ or ' are absent).

If we substitute (37) into (36), we see that the third term on the right side of (36) is
bounded from above by a constant times the second term and can therefore be dropped.

We now perform the 3 integral in the first and second integrals in (36) using Lemma 22
below. (We note that 1 A [y/|747% ~ (1 + |y/|4T*) 7L and 1 A Jy[~97* ~ ((1 + ya)?T* +
|y/|9T)~1.) In this way, we obtain

—l-«a
Yd
[I(z)] S 1u,<ar / (14 yq)dte + [o/|d+e (1 A ya)’ dya
Yda>T

L _— xdflfa(l_’_xd)l-i-a
Tl (1 + zq)d+a + |o/[d+a

Finally, we compute

yd—l—a ,rp—a
1A ya)P dyg ~ ———— .
| vt 0w e
Ya>r

The dominant contribution comes from the integral over [r, 1] and we used p < .
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This yields the claimed pointwise bound. (Note that for x4 < 4r we have (1 +
|z[9T9) =1 ~ 1 A |2|~97%.) The L2-bound follows by simple integration. The dominant
contribution comes from the x4-integral over [0,1]. O

Lemma 22. Let N > 1. Then for all 3 >0 and all a,b € RN, r,5 > 0,

/ : (rs)? dx < (r+s)?

rN+B 4+ |z — a|N+B) (sNHB + |z — bINHB) ~ (r 4+ s)N+B 4 |a — b|N+A

RN

Proof of Lemma 22. By symmetry we may assume that r < s. By translation and dila-
tion, we may and will assume b = 0 and s = 1. Thus, it suffices to show

/ r8 dx < (1+7)s (38)
(

rNTE 4 |z — a[NTBY (1 + [2[NHB) ~ (1 + r)N+B £ [q[N+5

RN

We distinguish between |a| <1+ 7.
Case |a] < 14r. The right side of (38) is comparable to 1,1 +r’N1T21. When r < 1,
we bound the left side of (38) from above by

3 dz B dz 1
rN8 |z —a|N+8 ) 14 |z|N+B )

RN RN

When r > 1, we bound the left side of (38) from above by

d
’I“ﬁ / i ~ r_N.
TNJrﬂ(l + |:L-|N+5)
RN

Case |a| > 1 +r. The right side of (38) is comparable to (1+7)% |a| =¥ ~#. We bound
the left side of (38) from above by

B

r
/ (rN+8 |z — a|NTB)(1 + |2|N+5) (1|x|<% + 1%g|z|§2\a\ + 1\z|22\a\> dx
RN

B
Srﬂ/ dz +/ " Liz|€llal/2,2la] s
la|NFB(1 + |z|N+5) (rN+8 4 |z — a|N+B)|z|N+5
RN RN

4B dx 1
|x|2N+2[3 |z[>2]al
RN

dz
rN+B 4 |x|N+8

B
+pBlg) N8 < LA

Sl N N S [

This concludes the proof. O
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Proof of Lemma 21. Case d =1 and « > 1. In fact, we will argue for general d > 1,
assuming (25) and (34). We argue as explained in the previous section around (29),
choosing ¢ = 6.

For the first term in (29) we use the bound (30) and note that [0]c1(p,, (»)) Vanishes
unless x4 ~ r, in which case it is of order r—!. This leads to a bound

Loy (LA 2|79 A A )Pt
Similarly, for the second term in (29) we use the bound (31) and obtain
Toyr (LA 2| 7979 (1 A 2g)P~ o+ 2072,

Since 1 A x4 ~ r for x4 ~ r, the two bounds are of the same order.
We now turn to the third term in (29), which we denote by IT(x). We claim that

1
|l — yf|dte 4 yg-i-a lv(y)| dy

}ﬁ(x)’ S log<ar /

Yda>T

1 L d
+ xd>g |.TI _y,|d+a +m§+°“v(y)| Y
Yya<2r

1 |Za — Yal
T A e LA

T <va<8r

This is proved in the exact same way as (35).

We now insert the bounds on v into the right side of (39). The first two terms are
bounded as in the proof of Lemma 21. The bound for the third term, however, is different
now. Noting that 1 A |y|=4=% ~ (14 |y/|9"*)~! on the domain of integration, we arrive
on the following upper bound on the third term

- 1
1 p—1 |Ta — Yal du .
L<ag<dr’” ) / |/ — y/|4Fe + |zg — ya|dte [y/]dte +1 Y
Z<deST

Computing the y4-integral using (37) and the y'-integral using Lemma 22, we can bound
1 1

1r PPl / dy
5 <wa<4r o |£C/ _ y/|d+a + ngra |y/|d+a +1

/

N

—Q

rP

L crasar T grjdta -

N

Combining all these bounds we obtain the claimed pointwise bound. The L2-bound
follows as before. O
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7.83. Combined cut-off

We now combine Lemmas 20 and 21.
Corollary 23. Let 0 < o < 2. Let 0 < r <1 < R < 00, assume that x and 6 satisfy (26)
and (33) and, if « > 1, also (27) and (34). Let 51 < p < «, assume that v satisfies
(23) and, if a > 1, also (25) with some 8 > a — 1. Then

(=872 X80l oy S P72 4 RO,

Proof. We decompose

L__[(—A)*2 xOlv(z) = 0(x / / v(y)d
A(d,—a) [( ) X |I y|d+a | y\d“‘ ) (y) Y

and bound the L2-norms of the two terms on the right side separately. For the first term
we can drop the term 0(x) € [0, 1] and apply Lemma 20. For the second term we apply
Lemma 21, noting that the product v satisfies its assumptions. This is clear for a < 1.
For o > 1 we use

[xv]cs (B, (a))

X[l Lo (B, (@) [V]es (B, (a)) + [[VlL (B, () Xl o5 (B, () if <1,
< 9 Ixllze (B, [Vles (B, ) + VUl Lo (B, (@) [X]cs-1(B, (a))
HIVXllLe (B, () [V]cs-1(B,(a)) T IVllLe (B, () [X]cs (B (a)) HB>1.

All factors involving x on the right side are < 1 by (26), (27) and R > 1. Moreover, we
note that if v satisfies (23) and (25) for some 5 = fy > 0, then it satisfies (25) for any
0 < B < Bo. We conclude that v satisfies (25) with the same 5 as v does. O

8. Density of CZ° (]R )

Our goal in this section is to prove the following theorem. It will be the main ingredient
to prove the operator core property stated in Theorem 1.

Theorem 24. Let o € (0,2] and let A > 0 when o < 2 and A > —1/4 when o = 2. Let p be
defined by (4), and let s € (0,2]. Assume that s < (1+2p)/a. Then for any f € L*(R%)
there is a sequence (p,,) C C(RY) such that

L%, — fin L*(R%).

s/2

If, in addition f € dom L, """, then the sequence can be chosen such that, in addition,

on — Ly f in L2(RY) .
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Remark 25. Let a € (0,2), A € [\,0) and assume that e 'L (z,y) satisfies the upper
bound in (9) with p defined by (4). Then Theorem 24 remains valid for this value of \.
This follows by the same arguments as in the proof below, since Lemma 26 remains valid
for this value of .

Our strategy of proof of this theorem uses some ideas of [28, Lemma 4.4]. The
basic strategy is to first prove Theorem 24 for f of a special form, namely, f €
Lf\/ze’tL*Cfo(R‘j_) for some 0 < t < oo. To do this, we will use the following point-
wise bounds on functions in e=*#xC2°(R4). For the definition of the Hélder seminorm
see (24).

Lemma 26. Let o, A and p be as in Theorem 2/. Let 0 < t < oo and ¢ € e tEAC® (Ri).
Then, for all z € R4,

(@) S (LA za)P (LA |2]7979), (40)
[La(@)] S (LA za)P (LA |2]7979), (41)
[(=A)* (@) S (LA za)P (LA 2|47, (42)
[Wlcom, @) S AAzP PAA 2|77 withly :=1A%, 0<B<a. (43)

We remark that for o = 2 the decay in these bounds can be greatly improved, but it
is convenient for us to have a unified statement.

Proof of Lemma 26. We write ¢ = e~*/*k. The bound (40) follows immediately from
Theorems 9 and 10. For the bound (41) we write Lyi) = e tIxT k. For a = 2 we have
Lyk € C(R%) and so the claimed bound follows again from Theorem 10. For 0 < a < 2
one easily verifies that

|Lak(@)] S 1A x|~

and then one uses this bound and Theorem 9 to again deduce (41). We omit the details
of this computation.

To prove (42) we recall the definition of A¢ from Remark 7. As shown there, we have
(—=A)*/? = Ly, on functions supported on M. Thus,

(—A)* 2 = Lyth — (A= Xo)z .

Therefore (42) follows from (40) and (41).
Finally, to prove (43) we use Schauder estimates. These bounds state that for a func-
tion u on RY, for a € R%, 7 > 0 and for 0 < 8 < a, one has

[Wes(B, a(a) Sesd T ullLoe (8o @) + 7Pl - —al = *ull LBy, (a)e)

+ (= A)* 2| oo (B, (a)) - (44)



46 R.L. Frank, K. Merz / Journal of Functional Analysis 285 (2023) 110104

For o = 2 this bound is classical and can be deduced, for instance, from [19, Theorem
3.9 and its proof]. (Indeed, in this case the term involving the norm on Bs,.(a)¢ is not
needed.) For 0 < a < 2 the bound appears, for instance, in [37, Corollary 2.5].

We apply (44) with a = z and r = 20, with f = 1A % Using (40) and (42) we easily
find that

Z;5||¢|‘L°°(B4gm(z)) <@ /\xd)pfﬁ(l A |x|fdfo¢)7
Zg_ﬁ||(_A)a/2¢HL°°(B4ZI @) 5 (1 A {L‘d)p_ﬂ(l A |x|—d—a) )
Moreover, using (40) a computation whose details we omit shows that
PN - =2l (B, () S (LA za)P P (LA L] 7979).

Inserting these bounds into (44) we obtain (43) with £, instead of £,. The bound
with ¢, follows by a simple covering argument, using for a given = the bound in By, ()
together with the bounds in By, (y) for y € By, (v) \ By (z). O

Proof of Theorem 24. Step 1. We first prove this theorem for f of a special form, namely,
where f € Lf\/ze_tL*Cgo(Ri) for some 0 < t < oco.

Let 0 < t < oo and let ¥ € e 120 (R?). For parameters 0 < 7 < 1 < R < oo to be
determined, we let x and 6 be functions as in Corollary 23 and we abbreviate

= x0.
Then, by (40),
o = llrema) < Naa<2rllre®ey + 1Lo> Yl 2we) S P12 | prad/2
Moreover,
[Lx(e = V)l zeey < (1= XO) Lavll L2 ray + ”[(_A)a/g’xe]w”L?(Ri)
and, by (41),
(1— XQ)LMPHL?(]Ri) < ppH1/2 | pma—d/2
For a < 2 we apply Corollary 23 and find
-2)%/2 X0l pagug) S 72 4 B2,

The same bound holds for o = 2 as well, as follows by writing

[—A, X0l = =2V (x0) - Vi — A(x0)y
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and using the pointwise bounds (40) and (43). Thus, for all o < 2,
[Lx(p = )2 mey S ppmotl/2 y pre=d/2,
Since 0 < s < 2 we have, by the spectral theorem,
12520 = W)l z2me) < 9 = ¥l pz i, 1EaGe =) ot -
Inserting the above bounds, we conclude that
||LS/2(<,0 1/))||L2(]Rd) < pptl/2-as/2 | poa—d/2

Since, by assumption s < (1 + 2p)/a, this tends to zero as r — 0 and R — oco. Note
also that ||¢ — wHL?(Ri) tends to zero, proving the second assertion of the theorem for

f=L5".

Step 2. We now prove Theorem 24 in the general case.

Let f € L*(R%) and € > 0. By the spectral theorem, we have e /2 f — fast — 0
and e I f — 0 as t — oo. (The latter convergence uses the fact that 0 is not an
eigenvalue of Ly.) Therefore, there are t; > 0 such that ||e”f11x f — f||L2(Ri) < ¢ and
ty < oo such that [Je™25 f|| 12(ga) < e. Then, with ¢ :=t,/2 and T := t5/2,

[[(e72Hx —e72TEry f — fllzzwaey < lle 5> f — £l L2 ®e) +lle” BEN f|| p2(ray < 2€.

Since C2°(R4) is dense in L?(R%) and since L;s/2(e*tLA — e~ TLx) is bounded (since
5 €[0,2]), there is a k € C°(R%) such that

= L;S/Z(e_tL* _ e—TLA)fHLQ(Ri) <e.

We define ¢ := (e t'* + e~ TEN)k and write

—2tLy

e — €

—2TLx _ Lf\/Q(e’tL* _,'_efTLA)L;S/?(eftLA e

7TL)\)

to find
s/2 s/2, — — —s/2, _— _
LS = Fll ey < LS 2 (7> + e TE) 1k — Ly ™2 (75> — e T2 £l 2 e
(e — e TN f — fll 2
< (1252 Br + e B +2) e

According to Step 1 (applied both to Li/ze’mk and to Li/ze*TLA k) there is a p € O
such that
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s/2 s/2
HLA/ Y- LA/ YllLaraey <e.
It follows that
12320 = Flliemg) < (IL3/ 25 + 7T +3) e

This proves the first assertion of the theorem.

For the second assertion we assume that f € dom L;s/ . Then we choose ti1,t2 €

. e _ —s/2 —s/2
(0,00) such that, in addition, we have [e"ErL} / f—-1L, / f||L2(Ri) < ¢ and
— —s5/2 — — —5/2 —s5/2
le=22 L3 fll 2 (rgy < & Then [[(e=%Ex — e 2T )L %2 f — L2 f|l 2 gay < 2.
Moreover, by Step 1, we may assume, in addition, that |j¢ — w”Lz(Ri) < e. From this
one deduces, similarly as before,

—s/2 _ _
lo = L3 fllramay < (e + 7T +3) e,
which completes the proof of the theorem. O

9. Proof of the main result

Proof of Theorem 1. We begin with the proof of (6) and (7) for functions u € C2°(R%).
Using just the triangle inequality, the claims are an immediate consequence of the usual
Hardy inequality, as well as its reversed and generalized versions in Theorems 3 and 5.
The argument is as in [25,13] and we omit the details.

We now extend (6) to all v € dom Li/Q. According to Theorem 24 (applied to f =
L§/2u) there is a sequence (¢,,) C C2°(R%) such that ¢, — u in L?*(R%) and L§/2<pn —
L“;/zu in L*(R4). It follows from inequality (6), applied to ¢, — ¢m, that (LS/Qgpn) is
Cauchy in L?*(R%) and therefore convergent to some f € L*(R%). Since the operator
LS/ % is closed, we conclude that v € dom Lg/ % and Lg/ *u = f. The claimed inequality
(6) for u now follows by passing to the limit in the inequality for ¢,,.

The extension of (7) follows similarly. We only note that the p that corresponds to
A =01is (a—1)4. Therefore the assumption s < (1+2(a—1)1 )/« in Theorem 1 coincides

with the assumption in Theorem 24 (applied with A =0). O
We now discuss optimality of the assumptions in Theorem 1.

Proposition 27. Let o € (0,2] and let A > 0 when a € (0,2) and X\ > —1/4 when o = 2.
Let p be defined by (4), and let s € (0,2].

(1) IfA<0, p<d—1/2 and dom(L5)*/2 ¢ dom(L{™)*/2, then s < (1 + 2p)/a.
(2) IfA >0, (a—1)4 < d—1/2 and dom(LS)*/2 c (L{V)*/2, then s < (142(a—1))/a.

Note that the ‘additional” assumptions p < d —1/2 and (o — 1)y < d — 1/2 are
automatically satisfied when d > 2 or when d = 1 and o < 3/2.
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Remark 28. Let a € (0,2), A € [\,,0) and assume that e~*L(z,7) satisfies the lower
bound in (9) with p defined in (4). Then part (1) in Proposition 27 remains valid for this
value of A. This follows by the same arguments as in the proof below.

Proof. We prove part (1), the other part being proved similarly. We will prove the
w A 24 Note that the assumption
A < 0 (which is equivalent to p < (. — 1)) and the assumption p < d — 1/2 imply that
14+2p 14+2(a—1)4 A 2_d>
a a

assertion under the additional assumption s <

the interval | is nonempty. Thus our proof will show that in this

interval the inclusion dom Li/ ? ¢ dom LS/ % fails. By operator monotonicity of taking

roots (see, e.g., [1, Section 10.4]) it then follows that the inequality also fails for all
5> 14+2(a—1) 4 A 2d

Thus, assume that s < % A %. Let u € e_L*C’éX’(Rd) Then u € dom LS/2
dom LS/Z. Applying Theorem 13 with A = 0 and g = LS/Qu (here we need the upper
bound on s) we infer that sc;as/2u € LQ(Ri). Using the lower bound in Theorem 9 and
arguing as in the necessity part of the proof of Theorem 13 we deduce that s < (142p)/«,
as claimed. O
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Appendix A. Definition of the exponent p

Throughout this appendix we assume « € (0,2). For p € (=1, «), we set

1

/tp—l tapl)dt

1—¢)l+e

0
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The function C is defined in [9, Remark 3.3] for d = 1 by
(=La)3p—Clp) = A(l, —a)v(a, p)

and in [9, Equation (3.4)] for d > 2 by

(-1,a) 3 p— C(p) := A(d, —)

|S9=2| a+l d—1
5 Bl—— 5 ) @)

with the beta function B. Let us show that these definitions coincide with our definition

(3) and, in particular, that they are independent of d.
First, recalling the formula for A(d, —a) from (2) and |S?2| =

d—1
2 2

find
F(%),we n

A(d, —a)

|S94=2| a+l d—1
B — A1, —q).
2 2 ' 2 A(l, —a)

This already shows the independence of d. Thus, from now on d = 1. Moreover, by the
reflection and duplication formulas of the gamma function, we obtain

sin T&

ﬂ2 Lla+1). (45)

A(l, —a) =
Next, according to [3, (2.2)] we have for « 21 and a > p > —1
(a,p) = ;[( +1-a)(p+2—a)B(p+1,2—«)

~(1-a)2-a)B(1,2 =) +p(p - 1)Bla—p,2 - a)].

Expressing the beta functions as gamma functions and using its functional equation, we
find

B 1 Fp+1)I'2-a) Ca MNa—-p)T(2—a)
(on) = s ety -0+ R )
_l_F(la)[ I'(p+1) I'a—p)
o o F'p—a+1) ['(—p)

Using the reflection formula for the gamma function, we obtain

L(p+1) n ['(a—p)
Fp—a+1) TI(-p)

= —%F(l +p)l(a—p)(sina(p —a) +sinmp).

Inserting this into (46) and combining it with (45) we obtain

sin & gin &

C(p) = 7r2 I'o) + T(a)T(1 — a)I(1 4+ p)T'(a — p) 7r22 (sin7(p — «) + sin7p) .
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The claimed formula (3) now follows from I'(@)T'(1 — a) = 7/ sin(m) (by the reflection
formula) and

sin T* 29 —
(sin7(p — a) 4 sin7p) = sin w .

sin T

Having established the equality between our definition of C' and that in [9], we can
use its properties established in [9, Subsection 3.1], namely, its strict monotonicity on
[0

[%,a), its divergence at p = a and its vanishing at p = a — 1,0. Its symmetry with

respect to p = 21 is immediate from (3).

Appendix B. Proof of Theorem 10

Throughout this section, we assume a = 2.
Step 1. By separation of variables, we have

—2
e—tLA (l‘, y) — etA]Rdfl (:L‘/, y/) . e—t(—AR++>\xd )(.’L'd7 yd) )
Since the first factor is equal to (47rt)_%e_|’”/_y,|2/4t, we see that the theorem in di-
mensions d > 2 follows from its special case for d = 1. Thus, in what follows we consider
the latter case.

Step 2. It is convenient to work with a unitarily equivalent version of L. Namely for
1 > 0 we consider the nonnegative quadratic form

o0
/|u’|27’2”Jr1 dr
0

defined for u € C}(R,). By a theorem of Friedrichs this form gives rise to a selfadjoint,
nonnegative operator £, in the Hilbert space L?(R,,7?#*1dr). We note that functions
u in the operator domain of £,, are twice weakly differentiable and £,u = —u" — (2u +
Dr—t/.

It is well-known that the operator £, can be diagonalized by a Hankel transform,
which, in particular, gives an integral formula for its heat kernel. The resulting integral
over Bessel functions can be carried out using standard formulas and one arrives at the
explicit expression

e ton(r, 5) = (2¢) L (é)“ - exp <—T2L52> I, (g) (47)

This formula appears, for instance, in [4, p. 75]. We emphasize that this is the heat kernel

with respect to the underlying measure 724! dr, that is
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(et f)(r) = [ e ()1 (5) 4 s,
0

Using the facts that

27H 1
1 —H - 1 2% = —
iuréz I,(2) = T and Zlgrolozze I.(2) N

we immediately obtain from (47) that
. vl o1\ AT AN
e—tﬁu(r,s) ~ (1 /\ %)’u 2 <—> . t_% . eXp <_u> . (48)
TS

Next, we show that there is a 0 < ¢ < 1 such that for all r,s,¢ > 0 one has

o) (o) Q) (52

< e tu(r,s) (49)

) (o) (B ()

In fact, we show that this holds for any 0 < ¢ < 1, but the constant that our proof gives
for the second “<” diverges as ¢ approaches 1.
Note that (1A Z=)(1 A =) and 1 A 5* coincide when either r, s < Vtorr s>/t and

Vit NG
that the former is never larger than the latter for any r,s. In view of (48), this proves

=

the first “<” in (49) and shows that we only need to prove the second “<” in the regions
r<+vt<sands <+ Vi<r. By symmetry, it suffices to consider the former region.
Moreover, by scaling, we can suppose ¢t = 1/4. We abbreviate p := u + 1/2 and show
that there is a 0 < ¢ < 1 such that, for all »r <1/2 < s,

(LArs)Pexp (—(r —s)?) SrP-exp (—c(r —s)?). (50)
This will clearly imply the second “<” in (49).
For the proof of (50) we distinguish between rs < 1 and rs > 1 and start with the
former case. Here we need to show

s exp(—(r — 8)?) < exp(—c(r — s5)?).

This can be inferred by taking the p-th root and the inequalities s = (s —r) + r <
(s —r) 4+ 1/2. The term corresponding to (s — r) can be controlled by taking ¢ < 1
arbitrary. To prove (50) when rs > 1 we need to show

exp (—(r—s)%) SrP-exp (—c(r —s)?) .



R.L. Frank, K. Merz / Journal of Functional Analysis 285 (2023) 110104 53

This can be inferred by multiplying by r?, taking the p-th root and the inequalities
r 1 <s=(s—r)+7r<(s—r)+1/2. As before, the term corresponding to (s — r) can
be controlled by taking ¢ < 1 arbitrary. This completes the proof of (50).

Step 3. It remains to translate the result from the operator £,, to the operator L.
The operator U, defined by (U f)(z) = T2 f(x), is unitary from L2(R,r2*1dr) to
L*(Ry,dz). It maps C!(R ) into itself and, for a function u from this space, we find by
an integration by parts

JUway@P + (2 = Ha 2 uu@l) de = [ P ar.
0 0

This implies that
ULy U = L,
and, consequently, for all ¢,z,y > 0,
et () = (ay) e o ).
In view of (49) we obtain the assertion in Theorem 10. O
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