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Dedicated, in admiration, to V. Maz’ya on the occasion of his 85th birthday

ABSTRACT. For 1 < p < oo we give a characterization of the Sobolev
space WHP(R?) in terms of the oscillations of a function on balls of
varying centers and radii. Our work is motivated both by the study of
trace ideal properties of commutators with singular integral operators
and by work of Nguyen and by Brezis, Van Schaftingen and Yung on
derivative-free characterizations of Sobolev spaces.

1. MAIN RESULT AND DISCUSSION

By definition, the space W1P(R?) consists of all f € Ll _(R?) whose
distributional gradient satisfies Vf € LP(R?). (This space is denoted by
L},(]Rd) in [25].) Our goal here is to discuss a necessary and sufficient criterion
for the membership to W'?(R%) in the case p > 1 that does not involve
derivatives. Throughout this paper, d > 1.

We denote Rffrl :=R? x R, and, for (a,r) € R‘fl, we set By(a) :={z €
R?: |z —a| < r}. For a function f € L (R%), let

loc
mper)i=f |f@) = 1wy do,
By(a) B,-(a)
where JEBT(a) .. = |Bp(a)|™? fBT(a) .... Finally, let v, be the measure on
R4 with
da dr
dl/p(az,r) = m .

Our main result is the following.

© 2022 by the author. This paper may be reproduced, in its entirety, for non-
commercial purposes.

2010 Mathematics Subject Classification. Primary 46E35; Secondary 47B47, 42B20.

Key words and phrases. Sobolev spaces, derivative-free characterization, commutators.

Partial support through U.S. National Science Foundation grant DMS-1954995 and
through the German Research Foundation grant EXC-2111-390814868 is acknowledged.
The author is grateful to Haim Brezis, Mario Milman, Fedor Sukochev, Jean Van Schaftin-
gen, Po-Lam Yung and Dmitriy Zanin, as well as an anonymous referee for many helpful
suggestions.



2 RUPERT L. FRANK

Theorem 1.1. Let 1 < p < oo and let f € LL (RY). Then f € W'P(RY) if

and only if my € L? (]Rffr ,Up), and

weak
(L.1) IV £ 1o ay = sup v ({my > k}).
Moreover,
(12) lim w2, ({mg > 5}) = iy |V 1y
with

P
ot (L TCR)
P f p(i)
Here and in what follows, we use the notations <, 2 and ~ to suppress
constants that only depend on d and p.

Remarks. (a) One motivation of this work comes from the study of trace
ideal properties of commutators with singular integral operators. This con-
cerns the case p =d > 1 in Theorem 1.1. We will discuss the background in
further detail in Subsection 1.1, but for now let us mention that in the con-
text of commutator bounds, Rochberg and Semmes [30] introduced a discrete
analogue of the condition my € Lweak(RiH, vg4) and raised the question of
characterizing this condition more directly. Connes, Sullivan and Teleman,
in the appendix of their paper [14] together with Semmes, announced that
this discrete condition is equivalent to f € Wl’d(Rd) and sketched a proof.
The recent paper by Lord, McDonald, Sukochev and Zanin [24], in conjunc-
tion with the results of Rochberg and Semmes [30], provides a complete
proof under the additional assumption that f € L>(R%). The latter proof,
however, relies on rather deep results in operator theory and the theory of
pseudodifferential operators. Our goal here is to provide a direct proof of
(1.1), somewhat in the spirit of the sketch in [14]. In addition, we will prove
(1.2), which is new and which, in turn, suggests a new result in the study of
trace ideal properties of commutators; see Corollary 1.2. Finally, and impor-
tantly, we generalize the above results, which are restricted top=d > 1 to
general p > 1. We are most grateful to Jean Van Schaftingen for suggesting
this after reading an earlier version of this manuscript that only concerned
the case p = d.

(b) Another motivation comes from the papers [27, 8] by Nguyen and by
Brezis, Van Schaftingen and Yung, which sparked an interest in finding char-
acterizations of membership to Sobolev spaces that do not involve derivatives
and which have led to a fast growing literature. We discuss this further in
Subsection 1.2. Here we just mention that both (1.1) and (1.2) have their
analogues in the corresponding formulas in [27, 8].

(c) The function my appears in the characterization of other function spaces.
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For instance, always assuming f € Lilo C(Rd), one has

(1.3)
f e BMO(RY) iff supmy(-,r) € LR,
r>0
(1.4)
fe PR +R iff supmy(-,r) € LP(R?), provided 1 < p < oo,
>0
(1.5) feC*RY iff supr*my(-,r) € L°(R?Y), provided 0 < s <1,
r>0
(1.6)
c W'P(RY iff  supr tmg(-,r) € LP(RY rovided 1 < p < co.
f D £ , P p
r>0

Indeed, (1.3) is simply the definition; equivalence (1.4) can be deduced from
[2, Proposition 8.10] (we are grateful to Mario Milman for showing us this
argument, which improves that in [32, Section IV.2]); for (1.5) see [12] and
[15, Theorem 6.3], and for (1.6) see [11] and [15, Theorem 6.2]. Note that
all these classical results involve a supremum with respect to r > 0. Closer
to the criterion in Theorem 1.1 is the fact that

(L.7) feW¥rrRY) iff my € LP(RTM vy),  provided d < p < oo.

This is of relevance in connection with the trace ideal properties mentioned
in (b) and is at least implicitly contained in [30]. Seeger in [31] has identified,
in great generality, function spaces defined in terms of m as special cases
of Triebel-Lizorkin spaces. As far as we can see, however, the results there
are restricted to (possibly mixed) Lebesgue norms of m and do not contain
weak norms as in Theorem 1.1. The same applies to other derivative-free
characterizations, for instance, the textbook characterization in [23, Theo-
rem 11.75] as well as the more recent ones in [1, 34]. It seems somewhat
surprising, to us at least, that the strong norms in (1.7) are replaced by a
weak norm in the endpoint case p = d.

(d) We defined my in terms of an L'-norm. Theorem 1.1 remains valid if we
use an L? norm with certain 1 < g < 00, except, of course, that the implicit
constant in (1.1) may depend on ¢ and the value of ¢4, in (1.2) changes; see
Remark 2.2.

(e) It is worth singling out from Theorem 1.1 a sufficient condition for con-
stancy of a function. Namely, if 1 < p < oo and if f € L%OC(Rd) satisfies

my € L&eak(RiH,yp) and liminf,_,o kv, ({ms > k}) = 0, then f is con-
stant. Related, but different conditions for constancy are discussed, for
instance, in [5, 9].

(f) We have restricted ourselves in Theorem 1.1 to first order Sobolev spaces.
It is natural to expect that similar results also hold in the higher order case
where in the definition of m; not only a constant, but a low degree polyno-
mial needs to be subtracted. Many of the results mentioned in (c) extend
to this case.

(g) It is noteworthy that the case p = 1 is excluded in Theorem 1.1. Our
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proof shows that (1.2) remains valid for sufficiently regular functions on R?
(Lemma 3.1) as well as that, if m € L}Neak(Rfl, v1), then f € BV (R?). On

the other hand, it is easy to see that there is an f € BV (R%) (for instance,
the characteristic function of a ball) for which ms ¢ L} (Rfl, vi). At

weak

present, no simple characterization of the condition my € L}Neak(Riﬂ, V1)
seems to be available. In [29] Rochberg and Semmes show that for d = 1
this space strictly contains the Besov space Bil(R) and is strictly contained

in a certain weak-type Besov space.

The remainder of this paper is organized as follows. In the following two
subsections, we present our two motivations for this study, namely trace
ideal properties in Subsection 1.1 and derivative-less characterizations of
Sobolev spaces in Subsection 1.2. In Section 2, we prove the inequality > in
(1.1) and, in Section 3, we prove the inequality < in (1.1), as well as (1.2).

It is a pleasure to dedicate this paper, in great admiration, to V. Maz’ya,
whose work on Sobolev spaces has inspired many, including the present
author.

1.1. Trace ideal properties of commutators. Let us review the context
in which the question answered by Theorem 1.1 arises. There is a substantial
literature on boundedness and compactness properties of operators

K, fl:==Kf - [K,

where K is a Calderén—Zygmund singular integral operator and f is a func-
tion on R%. We identify f with the operator of multiplication by f. For
simplicity, we assume that K is homogeneous and translation-invariant, and
that its kernel is given by a function that is smooth away from the origin
with mean value zero on spheres centered at the origin. Most of the results
below hold under much weaker assumptions on K, but the present ones do
include the important special case of the Hilbert transform if d = 1 and the
Riesz transforms if d > 2. To avoid trivialities, we also assume K # 0.

We will consider the operator [K, f] on L?(R?). It is known that it is
bounded if and only if f € BMO(R?), and it is compact if and only if
f € CMO(R?), the closure in BMO(RY) of compactly supported, smooth
functions; see [26, 21] for d = 1 and [13, 33] for general d. (Our references
in all of this subsection are far from complete, and in this specific case some
rather concern the periodic than the whole space case.)

Having established criteria for compactness, the next questions concern
quantitative versions of this property, expressed in the decay of singular
values. We recall that the singular values of a compact operator K in a
separable Hilbert space are the square roots of the eigenvalues, counting
multiplicities, of the operator K*K. The Schatten spaces S? and S¥
consist of those K for which the sequence of singular values belongs to ¢

and ¢ . respectively. In dimension d = 1, it was shown by Peller [28]

that, for 1 < p < oo, [K, f] € SP if and only if f € B;/pp(]R), the latter
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being a Besov space. (In fact, B;/pp(R) = WPP(R) if p > 1.) The higher
dimensional case is somewhat different and it was shown by Janson and
Wolff [22] that, for d < p < oo, [K, f] € SP if and only f € BE/P(RY). The
difference to the one-dimensional case is that, if [K, f] € S% for d > 2, then f
is constant. The endpoint case d = p was studied in more detail by Rochberg
and Semmes [30] who showed that, again assuming d > 2, [K, f] € 8¢, if
and only if f belongs to a certain space Osc®*(R?). They also improved
on the Lorentz scale the Janson—-Wolff condition for f to be constant.

One can show that a function f belongs to the space Osc®>(R%) if and
only if my € L;iveak(RiH,yd). We have not found this statement in the

literature. Its proof is not difficult. The space Osc®*(R?) is defined by the
analogue of my with dyadic cubes instead of balls and considered not as a
function of (a,r) € R‘fl, but as a sequence, indexed by dyadic cubes. By
definition, Osc®>°(R?) is the space for which this sequence belongs to ¢¢_, .

In [29], Rochberg and Semmes address the question of whether the space
Osch>*(R?) coincides with some known function space. As mentioned in
Remark (h) following Theorem 1.1, in dimension d = 1, they prove that
this space strictly contains the Besov space Bll’l(]R) and is strictly contained
in a certain weak-type Besov space. In dimensions d > 2, they show that
Osc®>®(R%) > WH4(RY). Modulo the equivalence of the discrete condition
defining Osc®>*(R%) and our continuous condition, this proves > in (1.1).
In fact, our proof of that inequality uses some ideas from their argument,
but seems to us somewhat more direct.

As mentioned in Remark (a) after Theorem 1.1, the remaining inclusion
Osc>°(RY) ¢ WH4(R?) is stated as a theorem in the appendix of the paper
[14] by Connes, Sullivan and Teleman, where they acknowledge a collabo-
ration with Semmes. In particular, from our ‘continuous’ point of view the
analogue of their ‘discrete’ equation (A3) is

(1.8) tim sup va({my > £}) 2 VS |-

KR—

In view of these results, our contribution in the present paper in the case
p = d is, on the one hand, to fill in the details in the somewhat sketchy
presentation in the appendix of [14] and, on the other hand, to show that
the asymptotic bound (1.8) can be replaced by the limit relation (1.2). (It
is not clear to us whether one can expect a limit to exist in the discrete
setting.) Our result (1.2) shows that (1.8) and thus [14, (A3)] hold with
lim inf instead of lim sup.

Motivated by these results we obtain the following condition for constancy,
which strengthends those due to Janson—Wolff [22] and Rochberg—Semmes
[30]. We denote by s,([K, f]) the sequence of singular values of [K, f] in
nonincreasing order and repeated according to multiplicities.
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Corollary 1.2. Let d > 2 and f € CMO(R?) with

N
lim inf N ~1+1/d (K, ) =0.
in in nzls (K, f)) =0

Then f is constant.

Note that we do not assume a-priori that f € W4(R%) nor, equivalently,
that s.([K, f]) € ¢4_,,.. This is in contrast to the condition for constance in
Remark (e) following Theorem 1.1. The liminf condition in the corollary
is implied by the condition lim inf,, . n/%s,([K, f]) = 0. Since the latter
condition is satisfied whenever s.([K, f]) belongs to a Lorentz space £%9 with
q < 00, the corollary is stronger than the results in [22, 30] (although, as we

shall see, it can be proved using the methods in [22]).

Proof. We assume that f € CMO(R?) is not constant and aim at prov-
ing that the liminf in the corollary is positive. In view of the inequality
Yol sn([K, £)) = Y0, [(@n, [K, fln)| for all orthonormal (vn), (¢n) C
L2(RY) (see, e.g, [19, Lemma 4.1]), it suffices to find such orthonormal sys-
tems with |(¢n, [K, flen)| = n~ Y% The functions ¢, are essentially con-
structed in [22, Section 3]. Indeed, the functions there are parametrized by
the points §; in the intersection of Z% with a cone. Their nondecreasing
rearrangement clearly behaves like n=1/4. Moreover, it is shown there that

—

IIK, flen| = n~ 4 on Bs(&5). We define 1, by vy, := cnlpy(e;) sen K, flen
with ¢, chosen such that ||[¢y||z2 = 1. Then |(¥n, [K, flen) 2 n~1/d) as

~

claimed. O

We finally mention the recent work of Lord, McDonald, Sukochev and
Zanin [24] which concerns a particular operator K, namely the sign of the
Dirac operator, that plays some role in noncommutative geometry. It is
shown that, if d > 2 and f € L™®(R?), then [K, f] € ngeak if and only if f €
WL4(RY). In fact, a simple approximation argument shows that the a-priori
assumption f € L>°(R%) may be replaced by f € BMO(RY), and then we
deduce by the Rochberg—Semmes result [30] (in particular, the fact that the
space Osc®®(R?) is independent of K) that Osc®>°(R%) = W4(R%). This
argument gives a complete proof (except for the approximation argument
required to remove the boundedness assumption) of the first part of Theorem
1.1. It is, however, somewhat unsatisfactory that in order to deduce the real
analysis statement in the theorem one needs to go through rather deep
results in operator theory and the theory of pseudodifferential operators.
This motivated us to look for a more direct proof, closer in spirit to the
sketch in [14]. However, the intuition gained from the pseudodifferential
perspective in [24] was also helpful in the present argument, in particular,
in the proof of Lemma 3.1, which contains a local version of (1.2). We take
this opportunity to thank Fedor Sukochev and Dmitriy Zanin for a fruitful
discussion concerning [24].
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1.2. Derivative-less characterizations of Sobolev spaces. In the pa-
per [10], Brezis, Seeger, Van Schaftingen and Yung, unifying and extending
earlier work by Nguyen [27] (see also [4, 6, 7]) and by Brezis, Van Schaftin-
gen and Yung [8], have shown the following fact, valid for all 1 < p < oo and
v € R\ {0}. Denoting by #, the measure on X := {(z,y) € RIxR?: x # y}
with di,(z,y) = |z — y""?drdy, a function f € L} _(R?) belongs to
WP (R?) if and only if (f(z) — f(y))/]z — y|*/P belongs to L (X, 1),
and

(1.9)

19 £ W gty = sup 57 25 () € X+ 1f(2) = F)l/ I = "+ > ).
K
Moreover, with an explicit constant ¢4, € R4,

1imffp’77({(w y) € X |f(x) = f)l/|lx —y["TP > k})
(1.10) = [ Cap IV A1 gy

where one considers the limit Kk — oo for v > 0 and Kk — 0 for v < 0.
We emphasize that the paper [10] contains many more results, including for
instance a detailed analysis of the case p = 1. Clearly, (1.1) and (1.2) share
some similarities with (1.9) and (1.10), respectively. In some vague sense one
can think of (z+y)/2 and |z —y| in (1.9) as our a and r, respectively. How-
ever, (1.9) and (1.10) are completely pointwise criteria, while the function
my in (1.1) and (1.2) involves integrals. The similarity between (1.1)—(1.2)
and (1.9)—(1.10) is also reflected in our proofs, namely, most clearly, in the
one of (1.2), but also in the maximal function argument for > in (1.1). We
comment on this in more detail before the respective proofs.

Weak-type estimates were obtained, for instance, in [20]. The work [8] has
led to many follow-up works and we refer to [10] for a partial bibliography.
Let us mention, in particular, [16, Section 7], where it is shown that, if
1 <p<ooand f € WhP(R?), then
(1.11)

IV F1175 oy < liminf 5 vo({(a,r) € REY 2 |(Pof)(a) = f(a)|/r P > w})

where P, f = e VA f denotes the Poisson extension of f. This is remi-
niscent of (1.2). Note, however, that the measure in Ri“ in (1.11) is the
usual Lebesgue measure vy and not v,. Moreover, [16] only proves a one-
sided inequality. For other related estimates with derivatives of harmonic
and caloric extensions, see [17].

2. THE LOWER BOUND ON ||V f||z»

In this section we shall prove an upper bound on my for f € WiP(RY)
and deduce that, if 1 < p < oo, then my € Lweak(]RiH, vp). We will use the
(centered) maximal function, denoted by M, somewhat in the spirit of [27]
and [8, Remark 2.3] (see also [10, Proposition 2.1]).
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Lemma 2.1. If f € I/Vll’l(]Rd), then

my(a,r) SrM|V fl(a) for all (a,r) € RE.

Proof. By the Poincaré inequality (see, e.g., [18, (7.45)]) we have

my(a,r) = ]fg MR ]fg e

< 7’][ |V f(z)|dx for all (a,r) € R‘fl :
By (a)

dr

Since the right side is bounded from above by M|V f|(a), the lemma fol-
lows. g

Proof of Theorem 1.1. First part. Let 1 <p<oo and f € Wl’p(]Rd). Then,
by Lemma 2.1,

vp({my > k}) < vp({(a,r) € REL . v M|V f|(a) > /CY}) for all Kk > 0.

For fixed a € R?, we compute

/Ooo 1(rM|V f|(a) > £/C) rziljil ! (CMfff(a))

and, thus,

v({(a,r) € BRI s eMIV (@) > w/CY) < 2

/ (M|Vf|(a))" da.
]Rd

The claimed bound now follows from the boundedness of the maximal func-
tion on LP(R?). (It is at this last step that the assumption p > 1 enters.) [

We note that the above argument fits into the framework of [16, Ap-
pendix]. Indeed, we deduce from Lemma 2.1 and the boundedness of the
maximal function that for the operator T} f(z) := ¢ 'mys(z,t) the assump-
tion [16, (9.1)] is satisfied. Therefore, [16, (9.2)] with v = —p gives the
bound 2 in (1.1). We are grateful to Po-Lam Yung for this remark.

Remark 2.2. For 1 < ¢ < oo, f € L (R?) and (a,r) € Rfl, let

loc
q 1/q
m;q) (a,r) := ][ dz .
By (a)

f(a) - ]é L

Then clearly m;q) (a,r) is nondecreasing in q. We claim that, if 1 < p < oo,
if fe W' (RY andif 1 < ¢ < dp/(d—p) for p < dand 1< q < oo for

p > d, then mgcq) € IP_ (RE™ 1) and

(2.1) sup vy ({mff) > 1}) S V1]

P
Lr(R4) *
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(In this and the following remark, implicit constants may also depend on
q.) Indeed, given ¢ as in the claim choose 1 < t < min{p,d} such that
q < dt/(d —t) and follow the proof of [18, (7.45)]) to deduce that

1/t
m® (a,r) <7 (7[ Vi@ d:c> for all (a,r) € R
By (a)

Bounding the right side by 7(M(|Vf[*)(a)/* we can argue as in the proof
of Theorem 1.1 above and obtain (2.1).

Remark 2.3. Another variation concerns the quantity, defined for f €
LL (RY) and (a,r) € RT™,

1/q
9 a,r) = T) — aq dm) )
@ (a,r) (][T@ ][T(@'f( ) — F(y)l7 dy

Then clearly Th;q) (a,r) > mgcq) (a,r). On the other hand, by adding and

subtracting the mean of f on B,(a) and using the triangle inequality in L9,
we see that mgfq) (a,r) < 2m§f1)(a,r). We deduce from Remark 2.2 that, if
l<p<oo, fe€ Wl’p(Rd) and ¢ as in that remark, then

(2.2) sup k7w, (') > k) < |V F]

p
P
k>0 Lr(R9)

We are grateful to Jean Van Schaftingen for suggesting this argument, which
simplifies significantly our original one.

3. THE UPPER BOUND ON ||V f]|L»

In this section we prove that, if f € L (R?) satisfies m; € Lfveak(]RiH, Vp)
for some 1 < p < oo, then f € WP(R%) and the asymptotics (1.2) hold.
Our proof uses some ideas from [27, 8], which, in turn, is inspired by [3].

We begin by computing the asymptotics of v,({m¢ > k}) as K — 0. The
difference from the limit relation (1.2) in Theorem 1.1 is twofold. On the
one hand, here we consider more regular functions, but on the other hand,
we study a localized version of the asymptotics. The constant ¢y ), is defined

in Theorem 1.1.

Lemma 3.1. Let f € LL (R?). Let @ C R? be a convez, open set and
assume that f € CY(Q) and V f is (globally) Lipschitz on Q. Then for any
bounded, open set w C R* with @ C Q,

lir% KPrp({my > Kk} N(w x Ry)) = Cd,p/ IV fIPda.
KR—r w

If Q=R and Vf is compactly supported, then the assertion remains valid
for w = R4,
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Proof. Step 1. Let us denote by A the Lipschitz constant of Vf on 2. We
claim that

(3.1) |mf(a,r) —dyr |Vf(a)|’ < CAr? for all a € w, r < dist(w, Q°)
with

/
To prove this, we note that
[f(y) = f@) =V f(@)- (y—2)| < Az —y*  forallz,yeQ.

(Here we used the convexity of Q to write f(y) — f(x) = Vf(§) - (y — z) for
some & € Q) between x and y.) Now let @ and r be as in (3.1). Then, for all
x € €,

[\

‘f(w) —]{B IR CREE
s][ F@) = F(y) — V(@) - (x— )| dy
By (a)

<Al fe-yPy
Bi-(a)

:A<|x—a|2+d%‘£2r2),

SO

s@—f sy = 195@ e —a)

<

+[(Vf(z) = Vf(a)) - (z —a)

f) - 7{9 @ VE) e

<A (2]3: —af* + ﬁﬂ)

and, integrating with respect to x € B,.(a),

my(a,r) - ]é PRAZICRERIEE

<f s@-F sway
Br(a) Br(a)
2 d .2 _ 3d 2
<A7{37'(a)(2|x—a| +mr)dx—d—+214r .
It remains to note that

f Vf(a) - (z—a)|dx = &y [V f(a)],
By(a)

—|Vf(a) (x —a)l| dx
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since, for v € R?,

][ ‘U (.flj*a/)‘dl': Tgpddp de*l |U7 w‘dw
() Jo P tdp |S4=1]

o | cos ] sin?=2 6 df
rfol foﬂ sin?=2 6 d

T d+1
and, with B denoting the beta function,
o | cos 0] sin?=2 6 df B f_ll |t](1 — ¢2)d=3)/2 gt B f01(1 — u)d=3)/2 gy
Josin=20do 1 (1—2)d=2ar [luml/2(1 - w)@-3)/2 dy
I(4
d

2

b5U,%) 1
B(3,%Y v (4R

This proves (3.1).
Step 2. Tt follows from (3.1) that, abbreviating ¢ := dist(w, Q°),
{(a,7) € w x (0,6] : yr|Vf(a)| — CAr?* > Kk}
c {(a,7) e wx(0,6]: mg(a,r) > K}
(3.2) c{(a,r) €w x (0,8]: |V fla)|+ CAr? > K} .

In this step we will show that
(3.3)

lim kPv,({(a,r) € w x Ry = yr|Vf(a)| £ CAr? > K} = cd,p/ |V f(a)lPda.

rk—0

Since
> dr
vyl (6.00) = ol [ o <o,

this, together with (3.2), proves the assertion in the lemma.
The proof of (3.3) is elementary, but somewhat lengthy. The basic obser-
vation is that

yp({(a, r)ewxRy: ¢ur|Vf(a) > k}) = /w/fc/(cﬁlvf(a))

[ (ALY,

= cd7p/-€_p/ |V f(a)lPda.

dr

To include the perturbation =C Ar?, we exploit the fact that, since r P~ is
not integrable near r = 0, only the small r behavior of the bound in (3.1) is
relevant and therefore the error term CAr? is negligible compared with the
main term.
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Let us give the details of the proof of (3.3). We begin with the + case.
We have c;r|V f(a)| + CAr? > & if and only if r > R with

R::\/ i +(C&|Vf<a>\>2_cgrw<a>y

CA 2C A 2C A
Thus,
& dr o
/0 1(cyr|Vf(a)| + CAr? > k) A =P p7,
We rewrite
p GVI@I\? | lVi(a)
g \/CAJr ( glez ) + 504
p =p m
CA
Cd,p CA 1 2,1 ?
= (% (191D + HVI@)
Thus,

vpo({(a,7) Ew xRy : r|Vf(a)| + CAr? > k})
) G+ (3 a)))” + 2 a ’ a.
= [ (\[%n+ Qo)+ vs@) a

KP

Dominated convergence (recalling that w has finite measure) implies (3.3)
with +.

We turn to the proof of (3.3) with -. Assuming x < (c;|Vf(a)|)?/(4AC),
we have ;r|V f(a)| — CAr? > k if and only if R_ < r < Ry with

_ V() V@ &
R*"wiﬂw) “oa

Thus, if £ < (¢}|V f(a)])?/(4A0),

°° dr _ _ _
/0 1(cr|Vf(a)| — CAr? > k) =P ! (R,p—Rer) )

We rewrite, similarly as before,

p
p =% (V@) - Ge Vs

Thus,
KPup({(a,r) Ew x Ry : dyr|Vf(a)| — CAr? > k}) = I1(k) — Ia(k),
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where

[V

P
=c Lvi(a 2—C,A/<C —|—1Vfa>da,
d’p/wﬁ{|Vf|>\/4CA/~t/cfi}(((2‘ ( )D 2 ) 2’ ( )’

1\ —P
o )|V f(a) ( Avi@\?_ « )2
=5 + - da .
O 4014/{/051}( 2CA ( 2CA ) CA

By monotone convergence, I (k) — cd,pHVszzp(w). For I»(k), we note that

on {|Vf| > v4CAk/c,}

IO ((c;mf(a)l)? _ N>1/2 o [
2CA 2C A CA = CA’

SO

, , 2 12\ 77
,{Pp—l (chVCff(‘a) + ((Cd|2vc{4(1a)|) _ Cl’iA> ) < Kp/2p_1(CA)p/2,

Thus, using again the fact that w has finite measure, Is(k) — 0. This
completes the proof of (3.3) with -.

Step 3. Finally, we assume that f is constant in {|z| > Rp}. Applying
what we have proved so far with w = {|z| < 2Ry}, we obtain

lim 570, ({my > K} N {(a,7) : || < 2Ro})

:cd,p/ Vf|pda::cd7p/ [V fIP dx .
la|<2Ro R4

Thus, it suffices to prove that kPv,({m; > s} N {(a,7) : |a| > 2Rp}) — 0.
The constancy assumption on f implies that my(a,r) = 0 for |a| —r > Ry.
Thus, it suffices to consider the intersection of {m; > s} with {Ry +r >
|a| > 2R0}

We write f = g+c where g is supported in {|z| < Rp} and ¢ is a constant.
Then

and we conclude that, if m(a,r) > &, then r < (v/k)"/?. Thus,
/ / )5 1) -2 da
(mg(r,a) >k
la|>2Ro J]al— RO s Pt

dr
/ / —T da
Ro+(v/K)\/4>]a|>2Ro J]a|—Ro T

—1/ da
p __ da
Ro+(v/r)/4>(a>2R, (la] = Ro)?

When p > d this is uniformly bounded in &, when p = d it is bounded by a
constant times In (y/(kR4)) and when p < d it is bounded by a constant

D, o dfdr <2AB@ [ lo@lde =0~
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times (y/k)(@ P/ In any case, the bound, multiplied by x?, tends to zero
as k — 0, as claimed. O

Lemma 3.2. Let 1 < p < oco. There is a constant Cq, < 00 such that for
all f € L (R?) and all 0 < ¢ € LL(R?) with [@dz =1,

sup vy ({mysp > K}) < Cqp sup kPrp({my > K}) .
K>0 k>0

Proof. We bound, using Minkowski’s inequality,

morslar) = f. . IKC (f(x -9-f =) dy> az
<2

_ /Rd o(2)my(a — z,7) dz |

dx

dx dz

fla—2) - ][B =

Passing to a norm in Lfveak(RiH, vp) which is equivalent to the quasi-norm

in the statement of the lemma (this is possible since p > 1), we obtain the
assertion from Minkowski’s inequality. O

Proof of Theorem 1.1. Second part. Throughout this proof, let 1 < p < oo
and let f € L (RY) with my € L? (Ri“, vp). We proceed in two steps.

weak

Step 1. Let 0 < ¢ € C3(RY) with [ pdz =1 and set p(x) =t~ %p(z/t).
Note that ¢ * f € C2(R?) with D?(¢p; * f) € LS (R?). Thus, by Lemma
3.1, for any bounded, open set w C R%,

rk—0

lim &P, ({mepp > K} N (w X Ry)) = Cd,p/ V(e x [P da .

On the other hand, by Lemma 3.2,
iig% KPup({mypp> K} N (w x Ry)) < lirﬁn_}glf KPup({mgp,«f > K})
< sup &y (g > 1))
x>0
< Cypsup kPrp({ms > K}).
k>0
Thus,
/ IV (¢ * f)IP doe < c;;) Cap su% KPrp({my > k}) =1 C',
w K>

where the right side depends neither on ¢ nor on w. By monotone conver-
gence, we conclude that V(g; * f) € LP(RY) and

/ V(g f)IPde < C".
]Rd
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By weak compactness (using again p > 1), we deduce that for a sequence
tj =0, V(g *f) = Fin LP(RY). On the other hand, py* f — fin LL (R9)
as t — 0. Thus, for any ® € C}(R? R?),

/Rd@.Fda; — /qu).v(gotj*f) dr = —/Rd(v.q))%j*fdx N _/Rd(v"p)fd”

This proves that f € WP(R%) with Vf = F. Moreover, by weak conver-
gence,

/ |IVfIPdr < liminf/ IV(pt; * [P dx
R4 J]—00 Rd

<C'= ccz; Cap su% kPvp({my > Kk}),

K>

which proves the claimed upper bound on ||V f||1» () in (1.1).

Step 2. It remains to deduce the limit relation (1.2) for f. This follows by
a density argument, using the fact that there is a sequence (f,) C C%(R?)
with Vf, compactly supported such that Vf, — Vf in LP(R?%); see, for
instance, [23, Theorem 11.43]. Note that |my, —my| < my,_¢. Thus, for
any ¢ € (0,1),

vp({my > K}) < vy

<vp

vp({ms, > 151 < vy

{ms, +mp,—j > r})

{my, > (1 =06)r}) +vp({my,—y> dr}),
{my+mp, > 151

vp({ms > r}) +vp({ms,—y > 7%51) -

By the first part of Theorem 1.1, we deduce that

/_\AAA

| /\

lim sup kPvp({my > K})
0

K—
< limsup wPup({my, > (1= 0)k}) + Co PV (fu = PILpga)
K—
lim inf 5Pvp({myg, > 1%551)
< Timinf &7 ({mg > 1)) + O3 P~ 8PV (fo— P
On the other hand, by Lemma 3.1,
lim 5P, ({my, > an}) = 0 eap |V full g -

Thus, we have shown that
lim sup kPvp({ms > K})
k—0
< (1= 0)PeaplVinlllpgay + COPIV(Fn = N gay
(1- 5)pcd,p‘|vanLp(Rd)

< lim inf KPup({my > k}) +C67P(1 = 6)P||V(fn )HLp RY)
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Letting first n — oo and then 6 — 0, we obtain (1.2). This completes the
proof of Theorem 1.1. O

Similarly as in Section 2, let us view the above proof from within the
framework of [16, Appendix]. Let again T} f(z) := t *mg(z,t). Then (3.1)
in the proof of Lemma 3.1 shows that assumption [16, (9.3)] with g = ¢/,|V f|
is satisfied for f € C'(R?) with Vf compactly supported. Therefore, [16,
(9.4)] with v = —p gives (1.2) for such f. On the other hand, as far as

we can see, [16] does not consider the question whether my € L eak(Rd, Vp)

implies f € WP(R%). We are grateful to Po-Lam Yung for this remark.
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