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Dedicated, in admiration, to V. Maz’ya on the occasion of his 85th birthday

Abstract. For 1 < p < 1 we give a characterization of the Sobolev
space Ẇ 1,p(Rd) in terms of the oscillations of a function on balls of
varying centers and radii. Our work is motivated both by the study of
trace ideal properties of commutators with singular integral operators
and by work of Nguyen and by Brezis, Van Schaftingen and Yung on
derivative-free characterizations of Sobolev spaces.

1. Main result and discussion

By definition, the space Ẇ
1,p(Rd) consists of all f 2 L

1
loc(Rd) whose

distributional gradient satisfies rf 2 L
p(Rd). (This space is denoted by

L
1
p(Rd) in [25].) Our goal here is to discuss a necessary and su�cient criterion

for the membership to Ẇ
1,p(Rd) in the case p > 1 that does not involve

derivatives. Throughout this paper, d � 1.
We denote Rd+1

+ := Rd ⇥R+ and, for (a, r) 2 Rd+1
+ , we set Br(a) := {x 2

Rd : |x� a| < r}. For a function f 2 L
1
loc(Rd), let

mf (a, r) :=

 
Br(a)

�����f(x)�
 
Br(a)

f(y) dy

����� dx ,

where
�
Br(a)

. . . = |Br(a)|�1
´
Br(a)

. . .. Finally, let ⌫p be the measure on

Rd+1
+ with

d⌫p(a, r) =
da dr

rp+1
.

Our main result is the following.
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Theorem 1.1. Let 1 < p <1 and let f 2 L
1
loc(Rd). Then f 2 Ẇ

1,p(Rd) if
and only if mf 2 L

p
weak(R

d+1
+ , ⌫p), and

(1.1) krfkp
Lp(Rd)

' sup
>0


p
⌫p({mf > }) .

Moreover,

(1.2) lim
!0


p
⌫p({mf > }) = cd,p krfkpLp(Rd)

with

cd,p = p
�1

 
1p
⇡

�(d+2
2 )

�(d+3
2 )

!p

.

Here and in what follows, we use the notations ., & and ' to suppress
constants that only depend on d and p.

Remarks. (a) One motivation of this work comes from the study of trace
ideal properties of commutators with singular integral operators. This con-
cerns the case p = d > 1 in Theorem 1.1. We will discuss the background in
further detail in Subsection 1.1, but for now let us mention that in the con-
text of commutator bounds, Rochberg and Semmes [30] introduced a discrete
analogue of the condition mf 2 L

d
weak(R

d+1
+ , ⌫d) and raised the question of

characterizing this condition more directly. Connes, Sullivan and Teleman,
in the appendix of their paper [14] together with Semmes, announced that
this discrete condition is equivalent to f 2 Ẇ

1,d(Rd) and sketched a proof.
The recent paper by Lord, McDonald, Sukochev and Zanin [24], in conjunc-
tion with the results of Rochberg and Semmes [30], provides a complete
proof under the additional assumption that f 2 L

1(Rd). The latter proof,
however, relies on rather deep results in operator theory and the theory of
pseudodi↵erential operators. Our goal here is to provide a direct proof of
(1.1), somewhat in the spirit of the sketch in [14]. In addition, we will prove
(1.2), which is new and which, in turn, suggests a new result in the study of
trace ideal properties of commutators; see Corollary 1.2. Finally, and impor-
tantly, we generalize the above results, which are restricted to p = d > 1 to
general p > 1. We are most grateful to Jean Van Schaftingen for suggesting
this after reading an earlier version of this manuscript that only concerned
the case p = d.
(b) Another motivation comes from the papers [27, 8] by Nguyen and by
Brezis, Van Schaftingen and Yung, which sparked an interest in finding char-
acterizations of membership to Sobolev spaces that do not involve derivatives
and which have led to a fast growing literature. We discuss this further in
Subsection 1.2. Here we just mention that both (1.1) and (1.2) have their
analogues in the corresponding formulas in [27, 8].
(c) The functionmf appears in the characterization of other function spaces.



A CHARACTERIZATION OF Ẇ 1,p(Rd) 3

For instance, always assuming f 2 L
1
loc(Rd), one has

f 2 BMO(Rd) i↵ sup
r>0

mf (·, r) 2 L
1(Rd) ,

(1.3)

f 2 L
p(Rd) + R i↵ sup

r>0
mf (·, r) 2 L

p(Rd) , provided 1 < p <1 ,

(1.4)

f 2 Ċ
s(Rd) i↵ sup

r>0
r
�s

mf (·, r) 2 L
1(Rd) , provided 0 < s < 1 ,(1.5)

f 2 Ẇ
1,p(Rd) i↵ sup

r>0
r
�1

mf (·, r) 2 L
p(Rd) , provided 1 < p  1 .

(1.6)

Indeed, (1.3) is simply the definition; equivalence (1.4) can be deduced from
[2, Proposition 8.10] (we are grateful to Mario Milman for showing us this
argument, which improves that in [32, Section IV.2]); for (1.5) see [12] and
[15, Theorem 6.3], and for (1.6) see [11] and [15, Theorem 6.2]. Note that
all these classical results involve a supremum with respect to r > 0. Closer
to the criterion in Theorem 1.1 is the fact that

f 2 Ẇ
d/p,p(Rd) i↵ mf 2 L

p(Rd+1
+ , ⌫d) , provided d < p <1 .(1.7)

This is of relevance in connection with the trace ideal properties mentioned
in (b) and is at least implicitly contained in [30]. Seeger in [31] has identified,
in great generality, function spaces defined in terms of mf as special cases
of Triebel–Lizorkin spaces. As far as we can see, however, the results there
are restricted to (possibly mixed) Lebesgue norms of mf and do not contain
weak norms as in Theorem 1.1. The same applies to other derivative-free
characterizations, for instance, the textbook characterization in [23, Theo-
rem 11.75] as well as the more recent ones in [1, 34]. It seems somewhat
surprising, to us at least, that the strong norms in (1.7) are replaced by a
weak norm in the endpoint case p = d.
(d) We defined mf in terms of an L

1-norm. Theorem 1.1 remains valid if we
use an L

q norm with certain 1  q <1, except, of course, that the implicit
constant in (1.1) may depend on q and the value of cd,p in (1.2) changes; see
Remark 2.2.
(e) It is worth singling out from Theorem 1.1 a su�cient condition for con-
stancy of a function. Namely, if 1 < p < 1 and if f 2 L

1
loc(Rd) satisfies

mf 2 L
p
weak(R

d+1
+ , ⌫p) and lim inf!0 

p
⌫p({mf > }) = 0, then f is con-

stant. Related, but di↵erent conditions for constancy are discussed, for
instance, in [5, 9].
(f) We have restricted ourselves in Theorem 1.1 to first order Sobolev spaces.
It is natural to expect that similar results also hold in the higher order case
where in the definition of mf not only a constant, but a low degree polyno-
mial needs to be subtracted. Many of the results mentioned in (c) extend
to this case.
(g) It is noteworthy that the case p = 1 is excluded in Theorem 1.1. Our
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proof shows that (1.2) remains valid for su�ciently regular functions on Rd

(Lemma 3.1) as well as that, if mf 2 L
1
weak(R

d+1
+ , ⌫1), then f 2 ˙BV (Rd). On

the other hand, it is easy to see that there is an f 2 ˙BV (Rd) (for instance,
the characteristic function of a ball) for which mf 62 L

1
weak(R

d+1
+ , ⌫1). At

present, no simple characterization of the condition mf 2 L
1
weak(R

d+1
+ , ⌫1)

seems to be available. In [29] Rochberg and Semmes show that for d = 1
this space strictly contains the Besov space Ḃ1

1,1(R) and is strictly contained
in a certain weak-type Besov space.

The remainder of this paper is organized as follows. In the following two
subsections, we present our two motivations for this study, namely trace
ideal properties in Subsection 1.1 and derivative-less characterizations of
Sobolev spaces in Subsection 1.2. In Section 2, we prove the inequality � in
(1.1) and, in Section 3, we prove the inequality  in (1.1), as well as (1.2).

It is a pleasure to dedicate this paper, in great admiration, to V. Maz’ya,
whose work on Sobolev spaces has inspired many, including the present
author.

1.1. Trace ideal properties of commutators. Let us review the context
in which the question answered by Theorem 1.1 arises. There is a substantial
literature on boundedness and compactness properties of operators

[K, f ] := Kf � fK ,

where K is a Calderón–Zygmund singular integral operator and f is a func-
tion on Rd. We identify f with the operator of multiplication by f . For
simplicity, we assume that K is homogeneous and translation-invariant, and
that its kernel is given by a function that is smooth away from the origin
with mean value zero on spheres centered at the origin. Most of the results
below hold under much weaker assumptions on K, but the present ones do
include the important special case of the Hilbert transform if d = 1 and the
Riesz transforms if d � 2. To avoid trivialities, we also assume K 6⌘ 0.

We will consider the operator [K, f ] on L
2(Rd). It is known that it is

bounded if and only if f 2 BMO(Rd), and it is compact if and only if
f 2 CMO(Rd), the closure in BMO(Rd) of compactly supported, smooth
functions; see [26, 21] for d = 1 and [13, 33] for general d. (Our references
in all of this subsection are far from complete, and in this specific case some
rather concern the periodic than the whole space case.)

Having established criteria for compactness, the next questions concern
quantitative versions of this property, expressed in the decay of singular
values. We recall that the singular values of a compact operator K in a
separable Hilbert space are the square roots of the eigenvalues, counting
multiplicities, of the operator K

⇤
K. The Schatten spaces Sp and Sp

weak
consist of those K for which the sequence of singular values belongs to `p

and `
p
weak, respectively. In dimension d = 1, it was shown by Peller [28]

that, for 1  p < 1, [K, f ] 2 Sp if and only if f 2 Ḃ
1/p
p,p (R), the latter



A CHARACTERIZATION OF Ẇ 1,p(Rd) 5

being a Besov space. (In fact, Ḃ1/p
p,p (R) = Ẇ

1/p,p(R) if p > 1.) The higher
dimensional case is somewhat di↵erent and it was shown by Janson and

Wol↵ [22] that, for d < p < 1, [K, f ] 2 Sp if and only f 2 Ḃ
d/p
p,p (Rd). The

di↵erence to the one-dimensional case is that, if [K, f ] 2 Sd for d � 2, then f

is constant. The endpoint case d = p was studied in more detail by Rochberg
and Semmes [30] who showed that, again assuming d � 2, [K, f ] 2 Sd

weak if
and only if f belongs to a certain space Osc

d,1(Rd). They also improved
on the Lorentz scale the Janson–Wol↵ condition for f to be constant.

One can show that a function f belongs to the space Osc
d,1(Rd) if and

only if mf 2 L
d
weak(R

d+1
+ , ⌫d). We have not found this statement in the

literature. Its proof is not di�cult. The space Osc
d,1(Rd) is defined by the

analogue of mf with dyadic cubes instead of balls and considered not as a
function of (a, r) 2 Rd+1

+ , but as a sequence, indexed by dyadic cubes. By
definition, Osc

d,1(Rd) is the space for which this sequence belongs to `dweak.
In [29], Rochberg and Semmes address the question of whether the space

Osc
d,1(Rd) coincides with some known function space. As mentioned in

Remark (h) following Theorem 1.1, in dimension d = 1, they prove that
this space strictly contains the Besov space Ḃ1

1,1(R) and is strictly contained
in a certain weak-type Besov space. In dimensions d � 2, they show that
Osc

d,1(Rd) � Ẇ
1,d(Rd). Modulo the equivalence of the discrete condition

defining Osc
d,1(Rd) and our continuous condition, this proves � in (1.1).

In fact, our proof of that inequality uses some ideas from their argument,
but seems to us somewhat more direct.

As mentioned in Remark (a) after Theorem 1.1, the remaining inclusion
Osc

d,1(Rd) ⇢ Ẇ
1,d(Rd) is stated as a theorem in the appendix of the paper

[14] by Connes, Sullivan and Teleman, where they acknowledge a collabo-
ration with Semmes. In particular, from our ‘continuous’ point of view the
analogue of their ‘discrete’ equation (A3) is

lim sup
!0


d
⌫d({mf > }) & krfkdLd(Rd) .(1.8)

In view of these results, our contribution in the present paper in the case
p = d is, on the one hand, to fill in the details in the somewhat sketchy
presentation in the appendix of [14] and, on the other hand, to show that
the asymptotic bound (1.8) can be replaced by the limit relation (1.2). (It
is not clear to us whether one can expect a limit to exist in the discrete
setting.) Our result (1.2) shows that (1.8) and thus [14, (A3)] hold with
lim inf instead of lim sup.

Motivated by these results we obtain the following condition for constancy,
which strengthends those due to Janson–Wol↵ [22] and Rochberg–Semmes
[30]. We denote by sn([K, f ]) the sequence of singular values of [K, f ] in
nonincreasing order and repeated according to multiplicities.
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Corollary 1.2. Let d � 2 and f 2 CMO(Rd) with

lim inf
N!1

N
�1+1/d

NX

n=1

sn([K, f ]) = 0 .

Then f is constant.

Note that we do not assume a-priori that f 2 Ẇ
1,d(Rd) nor, equivalently,

that s·([K, f ]) 2 `dweak. This is in contrast to the condition for constance in
Remark (e) following Theorem 1.1. The lim inf condition in the corollary
is implied by the condition lim infn!1 n

1/d
sn([K, f ]) = 0. Since the latter

condition is satisfied whenever s·([K, f ]) belongs to a Lorentz space `d,q with
q <1, the corollary is stronger than the results in [22, 30] (although, as we
shall see, it can be proved using the methods in [22]).

Proof. We assume that f 2 CMO(Rd) is not constant and aim at prov-
ing that the lim inf in the corollary is positive. In view of the inequalityPN

n=1 sn([K, f ]) �
PN

n=1 |( n, [K, f ]'n)| for all orthonormal ( n), ('n) ⇢
L
2(Rd) (see, e.g, [19, Lemma 4.1]), it su�ces to find such orthonormal sys-

tems with |( n, [K, f ]'n)| & n
�1/d. The functions 'n are essentially con-

structed in [22, Section 3]. Indeed, the functions there are parametrized by
the points ⇠j in the intersection of Zd with a cone. Their nondecreasing
rearrangement clearly behaves like n

�1/d. Moreover, it is shown there that

| \[K, f ]'n| & n
�1/d on B�(⇠j). We define  n by c n := cn B�(⇠j) sgn

\[K, f ]'n

with cn chosen such that k nkL2 = 1. Then |( n, [K, f ]'n) & n
�1/d, as

claimed. ⇤
We finally mention the recent work of Lord, McDonald, Sukochev and

Zanin [24] which concerns a particular operator K, namely the sign of the
Dirac operator, that plays some role in noncommutative geometry. It is
shown that, if d � 2 and f 2 L

1(Rd), then [K, f ] 2 Sd
weak if and only if f 2

Ẇ
1,d(Rd). In fact, a simple approximation argument shows that the a-priori

assumption f 2 L
1(Rd) may be replaced by f 2 BMO(Rd), and then we

deduce by the Rochberg–Semmes result [30] (in particular, the fact that the
space Osc

d,1(Rd) is independent of K) that Osc
d,1(Rd) = Ẇ

1,d(Rd). This
argument gives a complete proof (except for the approximation argument
required to remove the boundedness assumption) of the first part of Theorem
1.1. It is, however, somewhat unsatisfactory that in order to deduce the real
analysis statement in the theorem one needs to go through rather deep
results in operator theory and the theory of pseudodi↵erential operators.
This motivated us to look for a more direct proof, closer in spirit to the
sketch in [14]. However, the intuition gained from the pseudodi↵erential
perspective in [24] was also helpful in the present argument, in particular,
in the proof of Lemma 3.1, which contains a local version of (1.2). We take
this opportunity to thank Fedor Sukochev and Dmitriy Zanin for a fruitful
discussion concerning [24].
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1.2. Derivative-less characterizations of Sobolev spaces. In the pa-
per [10], Brezis, Seeger, Van Schaftingen and Yung, unifying and extending
earlier work by Nguyen [27] (see also [4, 6, 7]) and by Brezis, Van Schaftin-
gen and Yung [8], have shown the following fact, valid for all 1 < p <1 and
� 2 R\{0}. Denoting by ⌫̃� the measure on X := {(x, y) 2 Rd⇥Rd : x 6= y}
with d⌫̃�(x, y) = |x � y|��d

dx dy, a function f 2 L
1
loc(Rd) belongs to

Ẇ
1,p(Rd) if and only if (f(x)� f(y))/|x� y|1+�/p belongs to L

p
weak(X , ⌫̃�),

and
(1.9)
krfkp

Lp(Rd)
' sup

>0

p
⌫̃�({(x, y) 2 X : |f(x)� f(y)|/|x� y|1+�/p

> }) .

Moreover, with an explicit constant c̃d,p 2 R+,

lim
p
⌫̃�({(x, y) 2 X : |f(x)� f(y)|/|x� y|1+�/p

> })
= |�|�1

c̃d,p krfkpLp(Rd)
,(1.10)

where one considers the limit  ! 1 for � > 0 and  ! 0 for � < 0.
We emphasize that the paper [10] contains many more results, including for
instance a detailed analysis of the case p = 1. Clearly, (1.1) and (1.2) share
some similarities with (1.9) and (1.10), respectively. In some vague sense one
can think of (x+y)/2 and |x�y| in (1.9) as our a and r, respectively. How-
ever, (1.9) and (1.10) are completely pointwise criteria, while the function
mf in (1.1) and (1.2) involves integrals. The similarity between (1.1)–(1.2)
and (1.9)–(1.10) is also reflected in our proofs, namely, most clearly, in the
one of (1.2), but also in the maximal function argument for � in (1.1). We
comment on this in more detail before the respective proofs.

Weak-type estimates were obtained, for instance, in [20]. The work [8] has
led to many follow-up works and we refer to [10] for a partial bibliography.
Let us mention, in particular, [16, Section 7], where it is shown that, if
1 < p <1 and f 2 Ẇ

1,p(Rd), then
(1.11)
krfkp

Lp(Rd)
. lim inf

!0

p
⌫0({(a, r) 2 Rd+1

+ : |(Prf)(a)� f(a)|/r1+1/p
> }) ,

where Prf = e
�r

p
��

f denotes the Poisson extension of f . This is remi-
niscent of (1.2). Note, however, that the measure in Rd+1

+ in (1.11) is the
usual Lebesgue measure ⌫0 and not ⌫p. Moreover, [16] only proves a one-
sided inequality. For other related estimates with derivatives of harmonic
and caloric extensions, see [17].

2. The lower bound on krfkLp

In this section we shall prove an upper bound on mf for f 2 Ẇ
1,p(Rd)

and deduce that, if 1 < p <1, then mf 2 L
p
weak(R

d+1
+ , ⌫p). We will use the

(centered) maximal function, denoted by M, somewhat in the spirit of [27]
and [8, Remark 2.3] (see also [10, Proposition 2.1]).
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Lemma 2.1. If f 2W
1,1
loc (Rd), then

mf (a, r) . rM|rf |(a) for all (a, r) 2 Rd+1
+ .

Proof. By the Poincaré inequality (see, e.g., [18, (7.45)]) we have

mf (a, r) =

 
Br(a)

�����f(x)�
 
Br(a)

f(y) dy

����� dx

. r

 
Br(a)

|rf(x)| dx for all (a, r) 2 Rd+1
+ .

Since the right side is bounded from above by rM|rf |(a), the lemma fol-
lows. ⇤

Proof of Theorem 1.1. First part. Let 1<p<1 and f 2 Ẇ
1,p(Rd). Then,

by Lemma 2.1,

⌫p({mf > })  ⌫p({(a, r) 2 Rd+1
+ : rM|rf |(a) > /C}) for all  > 0 .

For fixed a 2 Rd, we computeˆ 1

0
(rM|rf |(a) > /C)

dr

rp+1
= p

�1

✓
CM|rf |(a)



◆p

and, thus,

⌫p({(a, r) 2 Rd+1
+ : rM|rf |(a) > /C})  p

�1
C

p

p

ˆ
Rd

(M|rf |(a))p da .

The claimed bound now follows from the boundedness of the maximal func-
tion on L

p(Rd). (It is at this last step that the assumption p > 1 enters.) ⇤

We note that the above argument fits into the framework of [16, Ap-
pendix]. Indeed, we deduce from Lemma 2.1 and the boundedness of the
maximal function that for the operator Ttf(x) := t

�1
mf (x, t) the assump-

tion [16, (9.1)] is satisfied. Therefore, [16, (9.2)] with � = �p gives the
bound & in (1.1). We are grateful to Po-Lam Yung for this remark.

Remark 2.2. For 1  q <1, f 2 L
q
loc(Rd) and (a, r) 2 Rd+1

+ , let

m
(q)
f (a, r) :=

  
Br(a)

�����f(x)�
 
Br(a)

f(y) dy

�����

q

dx

!1/q

.

Then clearly m
(q)
f (a, r) is nondecreasing in q. We claim that, if 1 < p <1,

if f 2 Ẇ
1,p(Rd) and if 1  q < dp/(d � p) for p < d and 1  q < 1 for

p � d, then m
(q)
f 2 L

p
weak(R

d+1
+ , ⌫p) and

(2.1) sup
>0


p
⌫p({m(q)

f > }) . krfkp
Lp(Rd)

.
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(In this and the following remark, implicit constants may also depend on
q.) Indeed, given q as in the claim choose 1  t < min{p, d} such that
q < dt/(d� t) and follow the proof of [18, (7.45)]) to deduce that

m
(q)
f (a, r) . r

  
Br(a)

|rf(x)|t dx
!1/t

for all (a, r) 2 Rd+1
+ .

Bounding the right side by r(M(|rf |t)(a)1/t we can argue as in the proof
of Theorem 1.1 above and obtain (2.1).

Remark 2.3. Another variation concerns the quantity, defined for f 2
L
q
loc(Rd) and (a, r) 2 Rd+1

+ ,

m̃
(q)
f (a, r) :=

  
Br(a)

 
Br(a)

|f(x)� f(y)|q dy dx
!1/q

.

Then clearly m̃
(q)
f (a, r) � m

(q)
f (a, r). On the other hand, by adding and

subtracting the mean of f on Br(a) and using the triangle inequality in L
q,

we see that m̃
(q)
f (a, r)  2m(q)

f (a, r). We deduce from Remark 2.2 that, if

1 < p <1, f 2 Ẇ
1,p(Rd) and q as in that remark, then

(2.2) sup
>0


p
⌫p(m̃

(q)
f > ) . krfkp

Lp(Rd)
.

We are grateful to Jean Van Schaftingen for suggesting this argument, which
simplifies significantly our original one.

3. The upper bound on krfkLp

In this section we prove that, if f 2 L
1
loc(Rd) satisfiesmf 2 L

p
weak(R

d+1
+ , ⌫p)

for some 1 < p < 1, then f 2 Ẇ
1,p(Rd) and the asymptotics (1.2) hold.

Our proof uses some ideas from [27, 8], which, in turn, is inspired by [3].
We begin by computing the asymptotics of ⌫p({mf > }) as ! 0. The

di↵erence from the limit relation (1.2) in Theorem 1.1 is twofold. On the
one hand, here we consider more regular functions, but on the other hand,
we study a localized version of the asymptotics. The constant cd,p is defined
in Theorem 1.1.

Lemma 3.1. Let f 2 L
1
loc(Rd). Let ⌦ ⇢ Rd be a convex, open set and

assume that f 2 C
1(⌦) and rf is (globally) Lipschitz on ⌦. Then for any

bounded, open set ! ⇢ Rd with ! ⇢ ⌦,

lim
!0


p
⌫p({mf > } \ (! ⇥ R+)) = cd,p

ˆ
!
|rf |p dx .

If ⌦ = Rd and rf is compactly supported, then the assertion remains valid
for ! = Rd.
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Proof. Step 1. Let us denote by A the Lipschitz constant of rf on ⌦. We
claim that

(3.1)
��mf (a, r)� c

0
d r |rf(a)|

��  CAr
2 for all a 2 ! , r  dist(!,⌦c)

with

c
0
d :=

1p
⇡

�(d+2
2 )

�(d+3
2 )

.

To prove this, we note that

|f(y)� f(x)�rf(x) · (y � x)|  A|x� y|2 for all x, y 2 ⌦ .

(Here we used the convexity of ⌦ to write f(y)� f(x) = rf(⇠) · (y � x) for
some ⇠ 2 ⌦ between x and y.) Now let a and r be as in (3.1). Then, for all
x 2 ⌦,

�����f(x)�
 
Br(a)

f(y) dy �rf(x) · (x� a)

�����


 
Br(a)

|f(x)� f(y)�rf(x) · (x� y)| dy

 A

 
Br(a)

|x� y|2 dy

= A

⇣
|x� a|2 + d

d+2r
2
⌘
,

so�����

���f(x)�
 
Br(a)

f(y) dy
���� |rf(a) · (x� a)|

�����



�����f(x)�
 
Br(a)

f(y) dy �rf(x) · (x� a)

�����+ |(rf(x)�rf(a)) · (x� a)|

 A

⇣
2|x� a|2 + d

d+2r
2
⌘

and, integrating with respect to x 2 Br(a),
�����mf (a, r)�

 
Br(a)

|rf(a) · (x� a)| dx

�����


 
Br(a)

�����

�����f(x)�
 
Br(a)

f(y) dy

������ |rf(a) · (x� a)|

����� dx

 A

 
Br(a)

⇣
2|x� a|2 + d

d+2r
2
⌘
dx = 3d

d+2 Ar
2
.

It remains to note that 
Br(a)

|rf(a) · (x� a)| dx = c
0
d r |rf(a)| ,
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since, for v 2 Rd,
 
Br(a)

|v · (x� a)| dx =

´ r
0 ⇢

d
d⇢´ r

0 ⇢
d�1 d⇢

´
Sd�1 |v · !| d!

|Sd�1|

=
d

d+ 1
r |v|

´ ⇡
0 | cos ✓| sind�2

✓ d✓´ ⇡
0 sind�2

✓ d✓

and, with B denoting the beta function,
´ ⇡
0 | cos ✓| sind�2

✓ d✓´ ⇡
0 sind�2

✓ d✓
=

´ 1
�1 |t|(1� t

2)(d�3)/2
dt´ 1

�1(1� t2)(d�3)/2 dt
=

´ 1
0 (1� u)(d�3)/2

du´ 1
0 u�1/2(1� u)(d�3)/2 du

=
B(1, d�1

2 )

B(12 ,
d�1
2 )

=
1p
⇡

�(d2)

�(d+1
2 )

.

This proves (3.1).

Step 2. It follows from (3.1) that, abbreviating � := dist(!,⌦c),

{(a, r) 2 ! ⇥ (0, �] : c
0
dr|rf(a)|� CAr

2
> }

⇢ {(a, r) 2 ! ⇥ (0, �] : mf (a, r) > }
⇢ {(a, r) 2 ! ⇥ (0, �] : c

0
dr|rf(a)|+ CAr

2
> } .(3.2)

In this step we will show that
(3.3)

lim
!0


p
⌫p({(a, r) 2 ! ⇥ R+ : c

0
dr|rf(a)| ± CAr

2
> } = cd,p

ˆ
!
|rf(a)|p da .

Since

⌫p(! ⇥ (�,1)) = |!|
ˆ 1

�

dr

rp+1
<1 ,

this, together with (3.2), proves the assertion in the lemma.
The proof of (3.3) is elementary, but somewhat lengthy. The basic obser-

vation is that

⌫p({(a, r) 2 ! ⇥ R+ : c
0
dr|rf(a)| > }) =

ˆ
!

ˆ 1

/(c0d|rf(a)|)

dr

rp+1
da

= p
�1

ˆ
!

✓
c
0
d|rf(a)|



◆p

da

= cd,p
�p

ˆ
!
|rf(a)|p da .

To include the perturbation ±CAr
2, we exploit the fact that, since r�p�1 is

not integrable near r = 0, only the small r behavior of the bound in (3.1) is
relevant and therefore the error term CAr

2 is negligible compared with the
main term.
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Let us give the details of the proof of (3.3). We begin with the + case.
We have c

0
dr|rf(a)|+ CAr

2
>  if and only if r > R with

R :=

s


CA
+

✓
c0d|rf(a)|

2CA

◆2

�
c
0
d|rf(a)|
2CA

.

Thus,
ˆ 1

0
(c0dr|rf(a)|+ CAr

2
> )

dr

rp+1
= p

�1
R

�p
.

We rewrite

p
�1

R
�p = p

�1

0

BB@

r


CA +
⇣
c0d|rf(a)|

2CA

⌘2
+

c0d|rf(a)|
2CA


CA

1

CCA

p

=
cd,p

p

✓r
CA
c02d
+

�
1
2 |rf(a)|

�2
+ 1

2 |rf(a)|
◆p

.

Thus,

⌫p({(a, r) 2 ! ⇥ R+ : c
0
dr|rf(a)|+ CAr

2
> })

=
cd,p

p

ˆ
!

✓r
CA
c02d
+

�
1
2 |rf(a)|

�2
+ 1

2 |rf(a)|
◆p

da .

Dominated convergence (recalling that ! has finite measure) implies (3.3)
with +.

We turn to the proof of (3.3) with -. Assuming  < (c0d|rf(a)|)2/(4AC),
we have c

0
dr|rf(a)|� CAr

2
>  if and only if R� < r < R+ with

R± :=
c
0
d|rf(a)|
2CA

±

s✓
c0d|rf(a)|

2CA

◆2

� 

CA
.

Thus, if  < (c0d|rf(a)|)2/(4AC),
ˆ 1

0
(c0dr|rf(a)|� CAr

2
> )

dr

rp+1
= p

�1
⇣
R

�p
� �R

�p
+

⌘
.

We rewrite, similarly as before,

p
�1

R
�p
� =

cd,p

p

✓r�
1
2 |rf(a)|

�2 � CA
c02d
+ 1

2 |rf(a)|
◆p

.

Thus,


p
⌫p({(a, r) 2 ! ⇥ R+ : c

0
dr|rf(a)|� CAr

2
> }) = I1()� I2() ,
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where

I1() := cd,p

ˆ
!\{|rf |>

p
4CA/c0d}

✓⇣�
1
2 |rf(a)|

�2 � CA
c02d


⌘ 1
2
+ 1

2 |rf(a)|
◆p

da ,

I2() :=
p

p

ˆ
!\{|rf |>

p
4CA/c0d}

 
c0d|rf(a)|

2CA +

✓⇣
c0d|rf(a)|

2CA

⌘2
� 

CA

◆ 1
2

!�p

da .

By monotone convergence, I1() ! cd,pkrfkpLp(!). For I2(), we note that

on {|rf | >
p
4CA/c

0
d}

c0d|rf(a)|
2CA +

✓⇣
c0d|rf(a)|

2CA

⌘2
� 

CA

◆1/2

�
r



CA
,

so


p
p
�1

 
c0d|rf(a)|

2CA +

✓⇣
c0d|rf(a)|

2CA

⌘2
� 

CA

◆1/2
!�p

 p/2p�1(CA)p/2 .

Thus, using again the fact that ! has finite measure, I2() ! 0. This
completes the proof of (3.3) with -.

Step 3. Finally, we assume that f is constant in {|x| � R0}. Applying
what we have proved so far with ! = {|x| < 2R0}, we obtain

lim
!0


p
⌫p({mf > } \ {(a, r) : |a| < 2R0})

= cd,p

ˆ
|a|<2R0

|rf |p dx = cd,p

ˆ
Rd

|rf |p dx .

Thus, it su�ces to prove that p⌫p({mf > } \ {(a, r) : |a| � 2R0}) ! 0.
The constancy assumption on f implies that mf (a, r) = 0 for |a|� r � R0.
Thus, it su�ces to consider the intersection of {mf > } with {R0 + r >

|a| � 2R0}.
We write f = g+c where g is supported in {|x|  R0} and c is a constant.

Then

mf (a, r) =

 
Br(a)

���g(x)�
 
Br(a)

g(y) dy
���dx  2|Br(a)|�1

ˆ
Rd
|g(x)| dx =: �r�d

,

and we conclude that, if mf (a, r) > , then r < (�/)1/d. Thus,ˆ
|a|�2R0

ˆ 1

|a|�R0

(mf (r, a) > )
dr

rp+1
da


ˆ
R0+(�/)1/d>|a|�2R0

ˆ 1

|a|�R0

dr

rp+1
da

= p
�1

ˆ
R0+(�/)1/d>|a|�2R0

da

(|a|�R0)p
.

When p > d this is uniformly bounded in , when p = d it is bounded by a
constant times ln+(�/(Rd

0)) and when p < d it is bounded by a constant
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times (�/)(d�p)/d. In any case, the bound, multiplied by p, tends to zero
as ! 0, as claimed. ⇤

Lemma 3.2. Let 1 < p < 1. There is a constant Cd,p < 1 such that for
all f 2 L

1
loc(Rd) and all 0  ' 2 L

1
c(Rd) with

´
' dx = 1,

sup
>0


p
⌫p({m'⇤f > })  Cd,p sup

>0

p
⌫p({mf > }) .

Proof. We bound, using Minkowski’s inequality,

m'⇤f (a, r) =

 
Br(a)

�����

ˆ
Rd
'(z)

 
f(x� z)�

 
Br(a)

f(y � z) dy

!
dz

����� dx


ˆ
Rd
'(z)

 
Br(a)

�����f(x� z)�
 
Br(a)

f(y � z) dy

����� dx dz

=

ˆ
Rd
'(z)mf (a� z, r) dz .

Passing to a norm in L
p
weak(R

d+1
+ , ⌫p) which is equivalent to the quasi-norm

in the statement of the lemma (this is possible since p > 1), we obtain the
assertion from Minkowski’s inequality. ⇤

Proof of Theorem 1.1. Second part. Throughout this proof, let 1 < p < 1
and let f 2 L

1
loc(Rd) with mf 2 L

p
weak(R

d+1
+ , ⌫p). We proceed in two steps.

Step 1. Let 0  ' 2 C
2
c (Rd) with

´
' dx = 1 and set 't(x) := t

�d
'(x/t).

Note that 't ⇤ f 2 C
2(Rd) with D

2('t ⇤ f) 2 L
1
loc(Rd). Thus, by Lemma

3.1, for any bounded, open set ! ⇢ Rd,

lim
!0


p
⌫p({m't⇤f > } \ (! ⇥ R+)) = cd,p

ˆ
!
|r('t ⇤ f)|p dx .

On the other hand, by Lemma 3.2,

lim
!0


p
⌫p({m't⇤f > } \ (! ⇥ R+))  lim inf

!0

p
⌫p({m't⇤f > })

 sup
>0


p
⌫p({m't⇤f > })

 Cd,p sup
>0


p
⌫p({mf > }) .

Thus, ˆ
!
|r('t ⇤ f)|p dx  c

�1
d,pCd,p sup

>0

p
⌫p({mf > }) =: C 0

,

where the right side depends neither on t nor on !. By monotone conver-
gence, we conclude that r('t ⇤ f) 2 L

p(Rd) andˆ
Rd

|r('t ⇤ f)|p dx  C
0
.
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By weak compactness (using again p > 1), we deduce that for a sequence
tj ! 0, r('tj ⇤f)* F in L

p(Rd). On the other hand, 't⇤f ! f in L
1
loc(Rd)

as t! 0. Thus, for any � 2 C
1
c (Rd

,Rd),ˆ
Rd
�·F dx 

ˆ
Rd
�·r('tj⇤f) dx = �

ˆ
Rd
(r·�)'tj⇤f dx! �

ˆ
Rd
(r·�)f dx .

This proves that f 2 Ẇ
1,p(Rd) with rf = F . Moreover, by weak conver-

gence, ˆ
Rd

|rf |p dx  lim inf
j!1

ˆ
Rd

|r('tj ⇤ f)|p dx

 C
0 = c

�1
d,pCd,p sup

>0

p
⌫p({mf > }) ,

which proves the claimed upper bound on krfkLp(Rd) in (1.1).

Step 2. It remains to deduce the limit relation (1.2) for f . This follows by
a density argument, using the fact that there is a sequence (fn) ⇢ C

2(Rd)
with rfn compactly supported such that rfn ! rf in L

p(Rd); see, for
instance, [23, Theorem 11.43]. Note that |mfn �mf |  mfn�f . Thus, for
any � 2 (0, 1),

⌫p({mf > })  ⌫p({mfn +mfn�f > })
 ⌫p({mfn > (1� �)}) + ⌫p({mfn�f > �}),

⌫p({mfn >


1��})  ⌫p({mf +mfn�f >


1��})
 ⌫p({mf > }) + ⌫p({mfn�f >

�
1��}) .

By the first part of Theorem 1.1, we deduce that

lim sup
!0


p
⌫p({mf > })

 lim sup
!0


p
⌫p({mfn >(1� �)}) + C�

�pkr(fn � f)kp
Lp(Rd)

,

lim inf
!0


p
⌫p({mfn >


1��})

 lim inf
!0


p
⌫p({mf > }) + C�

�p(1� �)pkr(fn � f)kp
Lp(Rd)

.

On the other hand, by Lemma 3.1,

lim
!0


p
⌫p({mfn > ↵}) = ↵

�p
cd,pkrfnkpLp(Rd)

.

Thus, we have shown that

lim sup
!0


p
⌫p({mf > })

 (1� �)�p
cd,pkrfnkpLp(Rd)

+ C�
�pkr(fn � f)kp

Lp(Rd)
,

(1� �)pcd,pkrfnkdLp(Rd)

 lim inf
!0


p
⌫p({mf > }) + C�

�p(1� �)pkr(fn � f)kp
Lp(Rd)

.



16 RUPERT L. FRANK

Letting first n ! 1 and then � ! 0, we obtain (1.2). This completes the
proof of Theorem 1.1. ⇤

Similarly as in Section 2, let us view the above proof from within the
framework of [16, Appendix]. Let again Ttf(x) := t

�1
mf (x, t). Then (3.1)

in the proof of Lemma 3.1 shows that assumption [16, (9.3)] with g = c
0
d|rf |

is satisfied for f 2 C
1(Rd) with rf compactly supported. Therefore, [16,

(9.4)] with � = �p gives (1.2) for such f . On the other hand, as far as
we can see, [16] does not consider the question whether mf 2 L

p
weak(Rd

, ⌫p)

implies f 2 Ẇ
1,p(Rd). We are grateful to Po-Lam Yung for this remark.
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