

1 **Responses of marginal and intrinsic water-use efficiency to changing aridity**
2 **using FLUXNET observations**

3
4 Koong Yi¹, Kimberly A. Novick², Quan Zhang³, Lixin Wang⁴, Taehee Hwang⁵, Xi Yang⁶,
5 Kanishka Mallick^{7,8}, Martin Béland^{7,9}, Gabriel B. Senay¹⁰, Dennis Baldocchi⁷

6
7 ¹Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, CA, U.S.A.
8 ²O'Neill School of Public and Environmental Affairs, Indiana University Bloomington,
9 Bloomington, IN, U.S.A.

10 ³State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan
11 University, Wuhan, China.

12 ⁴Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI),
13 Indianapolis, IN, U.S.A.

14 ⁵Department of Geography, Indiana University Bloomington, Bloomington, IN, U.S.A.

15 ⁶Department of Environmental Sciences, University of Virginia, Charlottesville, VA, U.S.A.

16 ⁷Department of Environmental Science, Policy, and Management, University of California,
17 Berkeley, CA, U.S.A.

18 ⁸Department of Environment Research and Innovation, Luxembourg Institute of Science and
19 Technology, Belvaux, Luxembourg

20 ⁹Department of Geomatics Sciences, Laval University, Quebec City, Quebec, Canada

21 ¹⁰U.S. Geological Survey Earth Resources Observation and Science Center, North Central
22 Climate Adaptation Science Center, Fort Collins, CO, U.S.A.

23

24 Corresponding Author:
25 Koong Yi
26 Email: koongyi@gmail.com
27 Phone: +1-812-650-2930
28

29 **Abstract**

30 According to classic stomatal optimization theory, plant stomata are regulated to
31 maximize carbon assimilation for a given water loss, and a key component of stomatal
32 optimization models is marginal water-use efficiency (mWUE). While the mWUE is often
33 assumed to be constant, variability of mWUE under changing hydrologic conditions has been
34 reported. However, there has yet to be a consensus on the patterns of mWUE variabilities and
35 their relations with atmospheric aridity. We investigate the dynamics of mWUE in response to
36 vapor pressure deficit (VPD) and aridity index using carbon and water fluxes from 115 eddy
37 covariance towers available from the global database FLUXNET. We demonstrate a non-linear
38 mWUE-VPD relationship at a sub-daily scale in general; mWUE varies significantly at both low
39 and high VPD levels. However, mWUE remains relatively consistent within the mid-range of
40 VPD. Despite the highly non-linear relationship between mWUE and VPD, the relationship can
41 be informed by the strong linear relationship between ecosystem-level inherent water-use
42 efficiency (IWUE) and mWUE using the slope, m^* . We further identify site-specific m^* and its
43 variability with changing site-level aridity across six vegetation types. We suggest accurately
44 representing the relationship between IWUE and VPD using non-linear functions, such as
45 Michaelis-Menten or quadratic functions, to ensure precise estimation of mWUE variability for
46 individual sites.

47

48 **Plain Language Summary**

49 Plants employ diverse strategies for water utilization during growth. Marginal water-use
50 efficiency (mWUE) quantifies how effectively plants assimilate carbon relative to the water they
51 lose through transpiration. A scientific debate exists regarding how mWUE responds to dry
52 conditions. To investigate this, we analyze data from various vegetation types worldwide,
53 observing changes in mWUE under dry conditions. Contrary to common assumptions, mWUE is
54 not a constant; it varies significantly based on moisture levels. Additionally, we show that a
55 simpler measure called inherent water-use efficiency (IWUE) can help explain this complicated
56 relationship, which is useful for predicting plant growth under different moisture conditions.

57

58 **Keywords**

59 Climate change, drought, eddy covariance, FLUXNET, stomatal optimization theory, vapor
60 pressure deficit, water-use efficiency

61

62 **Running title**

63 Response of mWUE and IWUE to changing aridity

64 **1. Introduction**

65 Terrestrial plants mitigate global warming by sequestering atmospheric carbon dioxide
66 (CO₂) through photosynthesis (Beer et al., 2010). However, photosynthesis is inherently linked
67 with plant water loss via transpiration, as CO₂ and water vapor share the same stomatal pathway.
68 Plants risk hydraulic damage during droughts if they maintain high stomatal conductance as soil
69 water availability decreases and atmospheric demand increases, resulting in low leaf water
70 potential and xylem cavitation. Therefore, plants must balance stomatal function to optimize
71 carbon uptake while minimizing transpirational water loss and hydraulic stress (Cowan &
72 Farquhar, 1977; Katul et al., 2010; Sperry et al., 2017; Wang et al., 2020). To predict plant
73 ecophysiological responses to projected changes in atmospheric CO₂ concentration, elevated
74 atmospheric water demand, and more severe and frequent drought events, we need a mechanistic
75 understanding of how different ecosystems regulate the trade-off between photosynthetic carbon
76 assimilation and transpirational water loss.

77 While carbon uptake is usually represented through mechanistic models of
78 photosynthesis (e.g., the Michaelis-Menten equation (Michaelis & Menten, 1913; Marshall &
79 Biscoe, 1980; Thornley, 1998); the Farquhar model (Von Caemmerer, 2000; Farquhar et al.,
80 1980a)), water use (i.e., transpiration) is often described based on empirical relationships that
81 prescribe how stomatal conductance responds to environmental drivers and carbon uptakes. For
82 example, the Ball-Berry model (Ball et al., 1987) is one of the most widely used empirical
83 stomatal conductance models (Anderegg et al., 2017; Buckley, 2017; Katul et al., 2010), and has
84 been readily incorporated into many climate models (Bonan et al., 2014). It takes the form:

85
$$g_s = g_0 + g_1 \frac{A}{c_a} RH \quad (1)$$

86 where g_s is stomatal conductance ($\text{mol m}^{-2} \text{ s}^{-1}$), A is carbon assimilation rate ($\mu\text{mol m}^{-2} \text{ s}^{-1}$), c_a is
87 atmospheric CO_2 concentration (ppm), RH is relative humidity at the leaf surface, and g_0 and g_1
88 are empirically fitted parameters. To simulate the non-linear variation in g_s with changing
89 humidity, Leuning (1995) modified the Ball-Berry model by replacing relative humidity with a
90 vapor pressure deficit (VPD) response function as follows:

$$g_s = g_0 + g_1 \cdot \frac{A}{(c_a - \Gamma^*) \left(1 + \frac{VPD}{VPD_0} \right)} \quad (2)$$

91 where Γ^* is CO_2 compensation point for photosynthesis (ppm) and VPD_0 is the empirically
92 determined coefficient, representing the slope of the relationship between g_s and VPD. These
93 empirical models are relatively simple, easy to use, and work well for well-watered conditions
94 (Bonan et al., 2014). However, they have an incomplete grounding in physiological theory,
95 leading to uncertainty when they are extrapolated to predict plant function under unprecedented
96 climate conditions (Franks et al., 2018; Knauer et al., 2015, 2018; Medlyn et al., 2012; Sabot et
97 al., 2022).

99 An alternative way to enable the theoretical interpretation of leaf-level stomatal
100 conductance models is to adopt the principle of stomatal optimization theory (Anderegg et al.,
101 2018; Bonan et al., 2014; Katul et al., 2009; Katul et al., 2010; Medlyn et al., 2012; Novick et al.,
102 2016b; Sperry et al., 2017; Wolf et al., 2016). Stomatal optimization theory was originally based
103 on a hypothesis that stomata are regulated to maximize carbon assimilation (A) for a given water
104 loss (transpiration, E). A key parameter in this class of models is the so-called “marginal water-
105 use efficiency (mWUE),” here defined as the ratio of a change in E to a change in A ($\partial E / \partial A$)
106 following Cowan and Farquhar (1977), though it is sometimes defined as the inverse form
107 ($\partial A / \partial E$) (Katul et al., 2010; Manzoni et al., 2011). The optimality models often maintain the
108 mWUE constant over arbitrary time steps (e.g., daily), assuming abundant water at the canopy

109 (Buckley, 2017; Cowan & Farquhar, 1977; Makela et al., 1996). However, this may not hold true
110 at sub-daily timescales, where high atmospheric demand (i.e., VPD) during midday can decrease
111 water potential at the canopy level even when soil moisture is abundant (Anderegg et al., 2017;
112 Grossiord et al., 2020).

113 Understanding how mWUE changes under hydrologic stress is necessary for the
114 optimization models in a prognostic sense, yet no consensus on the magnitude or even direction
115 of these changes exists. For instance, Manzoni et al. (2011) and Zhou et al. (2013, 2014)
116 performed meta-analyses of leaf gas exchange measurements from previous studies that spanned
117 wide ranges of species and moisture conditions. A major difference in their approaches was the
118 proxy for plant water status; Manzoni et al. (2011) used mid-day leaf water potential, while Zhou
119 et al. (2013, 2014) used pre-dawn leaf water potential as a proxy for soil moisture availability.
120 Similarly, Lin et al. (2015) compiled a global database of leaf gas exchange measurements
121 spanning diverse plant functional types and estimated a slope parameter (g_1) (Medlyn et al.,
122 2012), which is analogous to the slope parameter from empirical models (Eqs. 1 & 2) and
123 proportional to $\sqrt{\partial E / \partial A}$ (Medlyn et al., 2012). They further evaluated the relationship between
124 g_1 and a moisture index, defined as the ratio of mean annual precipitation to the equilibrium
125 evapotranspiration. Mäkelä et al. (1996) and Lu et al. (2016) took a theoretical approach to
126 examine short- and long-term optimal stomatal behavior, respectively, in response to the soil
127 moisture availability assuming that plants are adapted to the stochastic rainfall patterns of their
128 environments. More recently, alternative stomatal optimization perspectives have been proposed,
129 which presume stomata function to maximize carbon uptake while minimizing water costs,
130 including those linked to hydraulic damage during droughts (Anderegg et al., 2018; Sperry et al.,
131 2017; Wolf et al., 2016). While promising, in contrast to the Medlyn et al. (2012) model, these

132 newer formulations have yet to be integrated into land surface model schemes (but see Kennedy
133 et al., 2019, for a study implementing plant hydraulics in the Community Land Model). While
134 theoretical expectation and many studies suggest decreasing mWUE as water stress drives
135 reductions to g_s , there is some evidence of increasing mWUE under water stress (Farquhar et al.,
136 1980b; Grieu et al., 1988; Zhou et al., 2013), although reasons for this needed to be clarified.

137 It is also important to note that canopy water status and water potential are not
138 determined solely by the availability of water supply but by the balance between water supply
139 and demand, with VPD as a major force exerted on the canopy by the atmosphere (Manzoni et
140 al., 2011, 2013; Novick et al., 2019). Thus, it is reasonable to expect that mWUE must be
141 adjusted with changing atmospheric water demand unless other factors limit the plant response
142 (e.g., compromised hydraulic conductivity under water stress, limited soil moisture availability
143 to plants) (Brodribb et al., 2005; Medlyn et al., 2012). Different plants or ecosystems may adjust
144 differently, resulting in divergent responses of mWUE to changing VPD. Understanding the
145 relationship between mWUE and VPD is important given that VPD is expected to keep
146 increasing in the future, which will exert further water stress on plants (Ficklin & Novick, 2017;
147 Grossiord et al., 2020; Novick et al., 2016a; Zhang et al., 2019). Furthermore, while soil
148 moisture is a stochastic variable due to its dependency on intermittent rainfall, VPD is smoother
149 in time and easier to monitor through various meteorological or gas exchange measurement
150 techniques. Although VPD and soil moisture limit plants' carbon uptake and water use
151 independently (Yi et al., 2019), VPD can be used as a proxy of water stress at a sub-daily scale
152 where VPD plays a primary role in regulating stomatal regulation unless severe soil moisture
153 deficiency, as suggested by the models with sub-daily timesteps (e.g., Ball-Berry model and its
154 variations), and in turn influencing the balance between carbon uptake and water loss (i.e., water-

155 use efficiency) at a sub-daily scale (Baldochi et al., 2022; Grossiord et al., 2020; Novick et al.,
156 2016a). Therefore, examining the association between mWUE and VPD would add insight into
157 the predictability of soil moisture alone.

158 The objectives of this study are 1) to investigate the variation of mWUE at an hourly
159 timescale in response to changing VPD and 2) to explore approaches for estimating mWUE
160 explicitly from the modeled relationship between intrinsic water-use efficiency (iWUE, carbon
161 assimilation per unit stomatal conductance, representing water-use efficiency at leaf level) and
162 VPD. The Ball-Berry model (Eq. 1) reveals that the parameter g_1 , which is proportional to
163 $\sqrt{\partial E / \partial A}$ (Medlyn et al., 2012), is related to A/g_s (= iWUE at leaf level). The iWUE can be more
164 straightforwardly estimated from field measurements across various spatiotemporal scales,
165 including leaf gas exchange (daily to weekly at the leaf level), dendrochronology
166 (seasonal/annual at the tree level), and eddy covariance (hourly at the stand level) (see more
167 discussion on iWUE at different scales from Beer et al., 2009 and Yi et al., 2019). Notably, the
168 inference of iWUE from tree-ring analyses provides an avenue for understanding historical
169 variations in iWUE and, potentially, mWUE. While iWUE has a mathematically simpler form
170 and thus facilitates modeling its response to water stress, the complex mathematical expression
171 of mWUE poses challenges in generalizing its variability at a sub-daily timescale. By elucidating
172 the correlation between iWUE and mWUE, we can gain insights into the response of mWUE to
173 water stress. Additionally, through site comparisons, we further explore whether there is an
174 emerging pattern in the correlation between iWUE and mWUE across different vegetation types
175 and aridity levels.

176

177 Table 1. A glossary of terms related to water-use efficiency.

Term or symbol	Definition
A	Carbon assimilation rate
c_a	Atmospheric CO ₂ concentration
E	Transpiration rate
ET	Evapotranspiration rate
g_0	Intercept parameter in Ball-Berry model (represents minimum leaf conductance)
g_1	Slope parameter in Ball-Berry model (represents marginal water-use efficiency, mWUE)
g_s	Stomatal conductance
GPP	Gross primary productivity
iWUE	Intrinsic water-use efficiency; leaf-level water-use efficiency ($= A / g_s$)
IWUE	Inherent water-use efficiency; a proxy of intrinsic water-use efficiency at the ecosystem level ($= \text{GPP} \times \text{VPD} / \text{ET} / P_a$, Beer et al., 2009)
mWUE	Marginal water-use efficiency, the ratio of a change in E to a change in A ($= \partial E / \partial A$)
P_a	Atmospheric pressure
VPD	Vapor pressure deficit

178

179 **2. Materials and Methods**

180 **2.1. FLUXNET data**

181 We obtained half-hourly measurements of carbon and energy fluxes, along with ancillary
 182 environmental data, from 115 flux towers across FLUXNET sites. These data were collected
 183 using the FLUXNET 2015 Tier 1 database (Table S1) (Pastorello et al., 2020). Eddy covariance
 184 records, which have the benefit of providing continuous meteorological and gas exchange data at
 185 the high temporal resolution, are very well suited for investigating the relationship between gas
 186 exchange dynamics, mWUE, and VPD at the ecosystem scale.

187 We selected the study sites from six vegetation types (grassland, cropland, shrubland,
 188 savanna, broadleaf forest, and needleleaf forest, based on the IGBP land cover classification

189 system) based on the data availability for the variables required for the analysis. For reliable and
190 clear mWUE analysis, we only included the sites that had at least three years of data and a strong
191 iWUE-VPD correlation. Specifically, we selected the sites that had $R^2 > 0.8$ with any of the three
192 model fits – linear, quadratic, or Michaelis-Menten –, which was the case for more than 70% of
193 the sites over three years of data (See section 2.4 for more information about the model fits). In
194 addition, we only used the data where net ecosystem exchange (NEE), latent heat flux (LE), and
195 sensible heat flux (H) were either original measurements (quality control flag = 0) or gap-filled
196 data of good quality (quality control flag = 1) to ensure data quality and make the most of the
197 data. We only used daytime data when net radiation was greater than 0 W m^{-2} without
198 precipitation. We also limited our analysis to the growing season, where daily GPP was larger
199 than 10% of the 95th percentiles of daily GPP for each site with $> 5^\circ\text{C}$ air temperature. We used
200 the GPP partitioned based on the standard daytime method (variable name:
201 GPP_DT_VUT_REF, Lasslop et al., 2010). Additional filtering criteria were applied for some
202 key variables: atmospheric CO₂ concentration between 350 ppm and 420 ppm, friction velocity
203 (u^*) greater than 0.1 m s^{-1} , and canopy conductance calculated by Penman-Monteith equation
204 (Monteith, 1965) greater than $0.05 \text{ mol m}^{-2} \text{ s}^{-1}$. Lastly, we removed outliers of the environmental
205 drivers and biological variables (i.e., air temperature, relative humidity, atmospheric CO₂
206 concentration, latent heat flux, wind speed, VPD, atmospheric pressure, friction velocity, net
207 radiation, soil water content, canopy conductance, iWUE, and mWUE) by excluding data that
208 were below the 5th or above the 95th percentiles of each variable. Note that the purpose of data
209 filtering was to remove exceptionally low or high values of the variables, which we consider
210 outliers. Our goal was to ensure that the results, especially the variability of mWUE, were not

211 unduly influenced by these outliers. We carefully examined the histograms for the variables for
212 each site to minimize data reduction while retaining useful information.

213

214 **2.2. Two different approaches describing mWUE**

215 We used two different approaches for describing the mWUE: two optimization-theory-
216 driven mWUE, the solution of “ $\partial E / \partial A$ ” suggested by Katul et al. (2010) and the “ g_1 ” parameter
217 proposed by Medlyn et al. (2012). The difference between the optimization-theory-driven
218 mWUE is based on their interpretation of stomatal optimization. Katul et al. (2010) assumed that
219 stomata are optimizing for photosynthesis limited by Rubisco activity (i.e., carbon-limited), and
220 plant stomatal optimality is subject to change (i.e., mWUE is not constant). On the other hand,
221 Medlyn et al. (2012) assumed that stomata are optimized for photosynthesis limited by RuBP-
222 regeneration (i.e., light-limited). In either case, the optimization objective should result in
223 constant mWUE values at short timescales – Katul et al. (2010) suggested approximately 10
224 minutes, while Medlyn et al. (2012) suggested daily or longer – although it may change at longer
225 timescales as hydrologic conditions evolve.

226 Following Katul et al. (2010), the $\partial E / \partial A$ emerges from an optimality condition
227 determined with a linearized variant of the Farquhar et al. (1980) photosynthesis model, defined
228 as:

$$229 \frac{\partial E}{\partial A} = 1.6 VPD c_a \left(\frac{A}{g_s} \right)^{-2} = \frac{1.6 VPD c_a}{iWUE^2} \quad (3)$$

230 where iWUE is defined as a ratio of A to g_s at the leaf-scale (Beer et al., 2009).

231 The other perspective on optimality proposed by Medlyn et al. (2012) takes an analogous
232 form to an empirical model proposed by Leuning (1995) (Eq. 2):

$$233 g_s \approx g_0 + 1.6 \left(1 + \frac{g_1}{\sqrt{VPD}} \right) \frac{A}{c_a} \quad (4)$$

234 This approach suggests that the parameter g_1 represents a slope between g_s and $A/c_a\sqrt{VPD}$ and
 235 is proportional to $\sqrt{\partial E/\partial A}$ (Lin et al., 2015; Medlyn et al., 2012). Therefore, to facilitate
 236 comparison between the two approaches, we compare $\partial E/\partial A$ with squared g_1 (i.e., g_1^2) in
 237 throughout the results. Eq. 4 was rearranged with an assumption that g_0 , which represents
 238 cuticular conductance to water vapor, is negligible (but see Manzoni et al. (2011) and Lanning et
 239 al. (2020) for discussion of the role of cuticle conductance under drier conditions):

$$240 \quad g_1 = \left(\frac{g_s c_a}{1.6 A} - 1 \right) \sqrt{VPD} = \left(\frac{c_a}{1.6 iWUE} - 1 \right) \sqrt{VPD} \quad (5)$$

241 Consequently, two different mWUE parameters, $\partial E/\partial A$ (mol $H_2O \cdot kPa \cdot mol^{-1}$ of dry air) and g_1
 242 (mol $H_2O \cdot kPa^{0.5} \cdot mol^{-1}$ of dry air), were expressed as functions of iWUE, c_a , and VPD.

243 Assuming c_a is relatively stable over a short period, we focus on how iWUE (as a biological
 244 factor) and VPD (as an indicator of water stress governing plant response at a short temporal
 245 scale, e.g., sub-daily) affect both mWUE parameters (more details discussed in section 2.5). We
 246 applied an approximation of iWUE at the ecosystem level, inherent WUE (IWUE), defined by
 247 Beer et al. (2009). IWUE ($\mu mol C mol^{-1} H_2O$) was particularly suitable for our study because
 248 IWUE can be calculated from the measurements of carbon and water fluxes by eddy covariance
 249 technique and ancillary meteorological data, i.e., GPP ($\mu mol m^{-2} s^{-1}$) from net ecosystem
 250 exchange representing canopy-level carbon assimilation, evapotranspiration rate (ET, $mol m^{-2} s^{-1}$)
 251 from latent heat flux, VPD under the assumption of equal temperatures of leaves and
 252 atmosphere, and atmospheric pressure (P_a , kPa):

$$253 \quad IWUE = \frac{GPP \cdot VPD}{ET \cdot P_a} \quad (6)$$

254
 255 Several important assumptions for the definition of IWUE include (1) small and invariant soil
 256 evaporation (E) compared to plant transpiration (T) over the course of the day (hence $\Delta ET \sim \Delta T$)

257 especially during days without rainfall (conditions we used for our analysis), (2) thermal
258 equilibrium between leaf and air, which influences VPD, and (3) disregarding of aerodynamic
259 resistance through the boundary layer that can change depending on the vegetation structure (See
260 Beer et al. (2009) for more discussion about IWUE as a proxy of ecosystem-level intrinsic
261 WUE). We confirmed the robustness of IWUE as a proxy of iWUE at the ecosystem level by
262 comparing it with a few other definitions of iWUE (the comparison results are available in the
263 Supporting information; Figs. S1 & S2). Note that IWUE and mWUE were computed using half-
264 hourly FLUXNET data; hence, their variabilities discussed here represent plant physiological
265 response at a sub-hourly scale.

266

267 **2.3. Sensitivity of mWUE parameters to moisture condition**

268 Variations of mWUE parameters in response to moisture conditions (i.e., atmospheric
269 water demand and site-level aridity) were evaluated at the individual site level and across sites.
270 For the individual sites, mWUE parameters were partitioned into discrete bins spanning a range
271 of VPD. To avoid biases from unevenly distributed data points across the range of VPD (i.e.,
272 sample sizes at low and high VPD are smaller than those for the intermediate level of VPD), data
273 binning was performed in a way that the sample sizes were evenly distributed into 30 bins across
274 the range of VPD at each site. Then, mWUE-VPD relationships were produced based on the
275 mean mWUE values generated for the different VPD bins.

276 To compare across the sites, the relationships between site-specific mWUE and aridity
277 index (AI) were evaluated (See Fig. S3 in the Supporting Information for AI at all the study
278 sites). AI was defined as the ratio of annual precipitation (P) to annual potential
279 evapotranspiration (PET) and averaged over the observation period for each site (UNEP, 1992):

280

$$AI = \frac{P}{PET} \quad (7)$$

281 The annual PET was determined by summing up the half-hourly PET values over the course of a
 282 year, employing the FAO Penman-Monteith method as outlined by Allen et al. (1998):

283

$$PET = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T_a + 273} u(e_s - e_a)}{\Delta + \gamma(1 + 0.34u)} \quad (8)$$

284 where Δ is the slope of vapor pressure curve (kPa $^{\circ}\text{C}^{-1}$), R_n is the net radiation (MJ $\text{m}^{-2} \text{ hr}^{-1}$), G is
 285 the soil heat flux density (MJ $\text{m}^{-2} \text{ hr}^{-1}$), γ is the psychrometric constant (kPa $^{\circ}\text{C}^{-1}$), T_a is the air
 286 temperature ($^{\circ}\text{C}$), u is the wind speed (m s^{-1}), e_s is the saturation vapor pressure (kPa), and e_a is
 287 the actual vapor pressure (kPa). The estimation of AI is sensitive to gaps in precipitation data.
 288 Therefore, we used long-term mean annual precipitation provided on the site information page at
 289 the FLUXNET website rather than calculating mean annual precipitation from the
 290 FLUXNET2015 dataset. For the sites where annual precipitation records were not provided, the
 291 high-frequency precipitation record in the FLUXNET2015 dataset was used.

292
 293
 294

295 **2.4. Assessing the relationship between mWUE and IWUE**

296 As a first step to conceptually understand the relationship between mWUE and IWUE,
 297 the relationship between IWUE and VPD was modeled by three hypothetical functions – linear,
 298 quadratic, and the Michaelis-Menten functions – based on the observations across the sites. The
 299 quadratic model of IWUE-VPD (hereafter IWUE_Q) depicts the case where IWUE increases with
 300 VPD until it reaches a maximum and then decreases afterward. In other words, when VPD is
 301 low, increasing IWUE with increasing VPD reflects a faster decrease of g_s than A (due to the
 302 high intercellular CO₂ concentration, c_i) while decreasing IWUE with increasing VPD at high

303 VPD reflects a faster decrease of A than g_s (low g_s at high VPD reduces c_i and eventually causes
304 the steep decline of A). The linear model (hereafter IWUE_L), on the other hand, represents a
305 simplified IWUE-VPD relationship where IWUE would keep increasing with rising VPD
306 assuming IWUE is only limited by g_s but not by photosynthetic capacity. The Michaelis-Menten
307 function (hereafter IWUE_M) represents the saturating IWUE under high VPD but does not
308 account for IWUE reduction. Thus, the linear and quadratic functions are considered plausible
309 “end-members” describing the actual response of IWUE to VPD, while the Michaelis-Menten
310 function is a more intermediate case. Mathematically, the IWUE_L, IWUE_M, and IWUE_Q take the
311 forms:

312
$$IWUE_L = m VPD + n \quad (9)$$

313
$$IWUE_M = \frac{IWUE_{max} \cdot VPD}{k + VPD} \quad (10)$$

314
$$IWUE_Q = -a (VPD - b)^2 + c \quad (11)$$

315 where m is the slope of IWUE_L, n is IWUE_L at VPD = 0, IWUE_{max} is the maximum potential
316 IWUE, k is the VPD at which IWUE proceeds at half IWUE_{max}, a represents the curvature of
317 IWUE_Q, b is the vertex, c is the maximum IWUE_Q at the vertex.

318 The expected dynamics of mWUE across the FLUXNET sites in response to changing
319 VPD were simulated based on an empirically driven IWUE-VPD model to understand how the
320 mWUE metrics would respond to changing VPD and IWUE. To generate possible patterns of
321 mWUE-VPD, the range of coefficients in the IWUE models was determined empirically from
322 the data across the sites. To facilitate interpretation, the patterns were simulated by changing the
323 curvature of the quadratic equation (Eq. 11), assuming the intercept is equal to zero. For the
324 simulation of mWUE, a constant c_a was applied by calculating its average across the sites to
325 focus on the interactions among VPD, IWUE, and mWUE (Eqs. 3 & 5).

326 Lastly, we investigated how IWUE (as a biological factor) and aridity index (as an
327 environmental driver) influence the variability of mWUE. Based on the Eqs. 3 and 5, we
328 hypothesized that a simple relationship between mWUE and the inverse of IWUE (IWUE^{-1})
329 might emerge and would be affected by changing moisture conditions. Therefore, we identified a
330 relationship between mWUE and IWUE^{-1} for each study site and examined whether the
331 relationship can be generalized across the sites based on the site-specific aridity index.

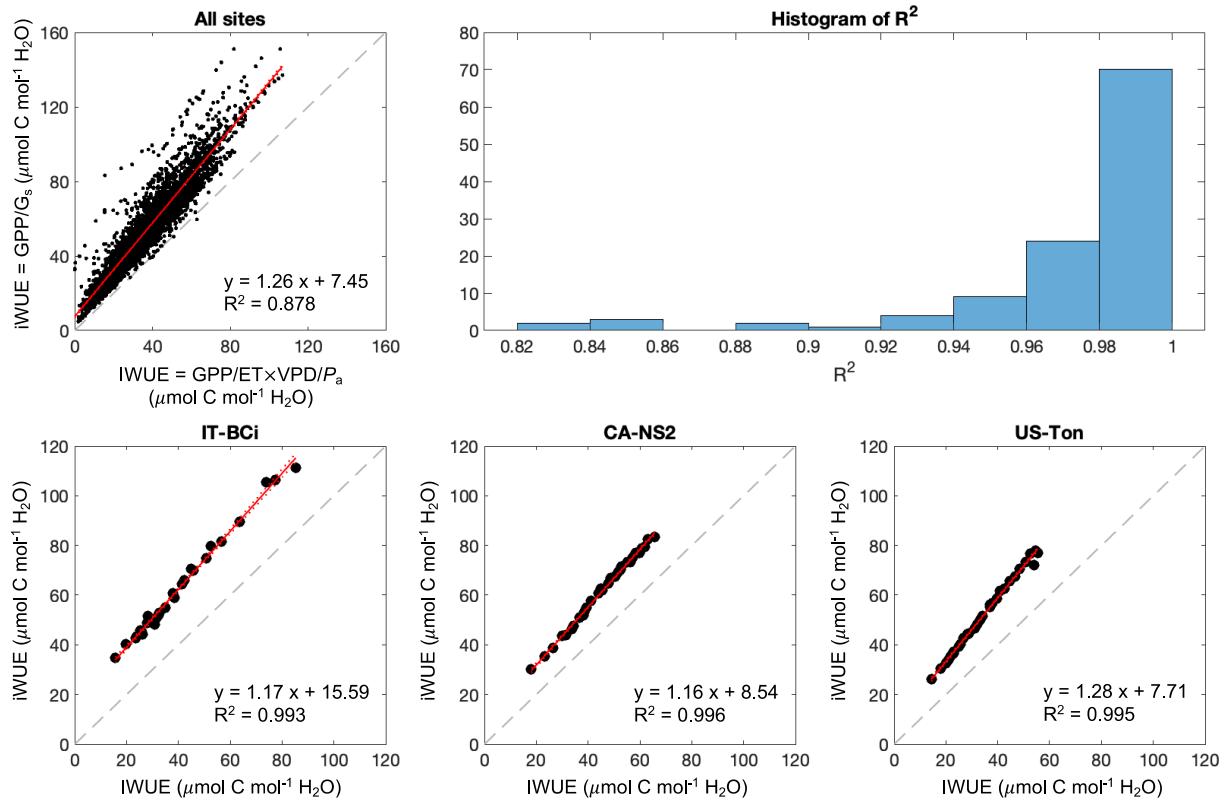
332

333 **3. Results**

334 **3.1. Empirical response of IWUE to changing VPD or AI**

335 To test the robustness of IWUE as a proxy of intrinsic water-use efficiency at the
336 ecosystem level, we first compared the two different definitions of intrinsic water-use
337 efficiencies at stand level, GPP divided by surface conductance (G_s) (i.e., $i\text{WUE} = \text{GPP}/G_s$) and
338 inherent WUE (i.e., $\text{IWUE} = \text{GPP}/\text{ET} \times \text{VPD}/P_a$). The two WUE definitions were linearly
339 correlated across the study sites (Fig. 1), and most sites had coefficients of determination larger
340 than 0.95 (Fig. 1b), suggesting the robustness of IWUE as a proxy of intrinsic water-use
341 efficiency at the ecosystem level (see the Supporting Information for an additional comparison of
342 multiple definitions of intrinsic water-use efficiency; Figs. S1 & S2). We also performed the
343 entire analysis using these two WUE definitions and observed similar results, which led to the
344 same conclusion. Therefore, we only show the results from using IWUE hereafter.

345



346

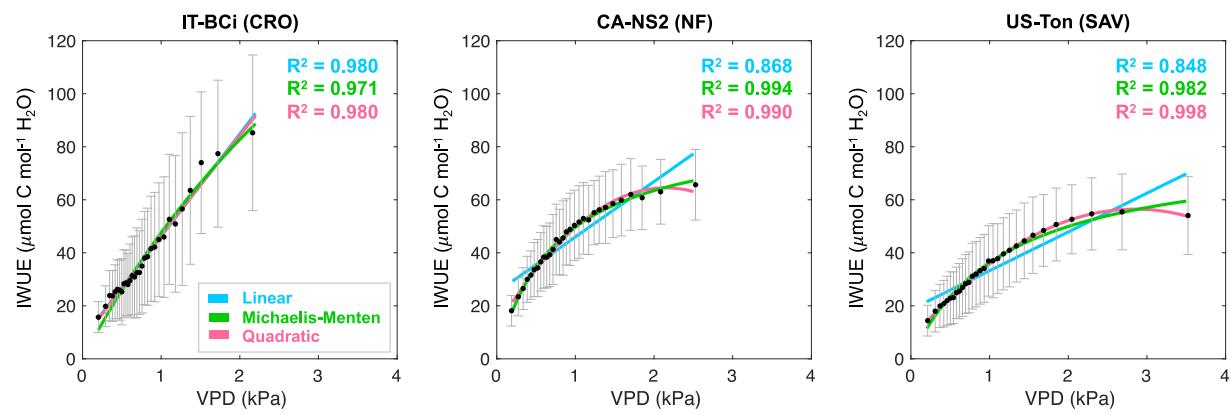
347 **Figure 1.** Comparison of two different definitions of water-use efficiencies at all sites (a) and at
 348 three sample sites (c, d, e): inherent water-use efficiency at the ecosystem level, IWUE (=
 349 $GPP/ET \times VPD/P_a$), and intrinsic water-use efficiency at the ecosystem level, iWUE (= GPP/G_s).
 350 Refer to Beer et al. (2009) for the comparison of different definitions of water-use efficiencies at
 351 leaf and ecosystem-level. Individual dots in panels a, c, d, and e indicate WUE partitioned into
 352 discrete bins spanning a range of VPD. Solid red lines indicate significant linear regressions ($P <$
 353 0.05), and dashed red lines indicate 95% confidence interval. Dashed gray lines represent 1:1
 354 lines. Panel b shows the histogram of coefficients of determination (R^2) of the linear fits between
 355 IWUE and iWUE across the study sites.

356

357 In most cases, the Michaelis-Menten model and the quadratic model explained empirical
 358 IWUE patterns across the range of VPD better than the linear model (Fig. 2 and Fig. S3 in the

359 Supporting Information). Specifically, the Michaelis-Menten model worked better for the sites
 360 where the increase of IWUE plateaued at high VPD, and the quadratic model worked better for
 361 the sites where IWUE started decreasing at very high VPD. On the other hand, the linear model
 362 often overestimated IWUE at low and high VPD, except the sites where IWUE-VPD was highly
 363 linear.

364



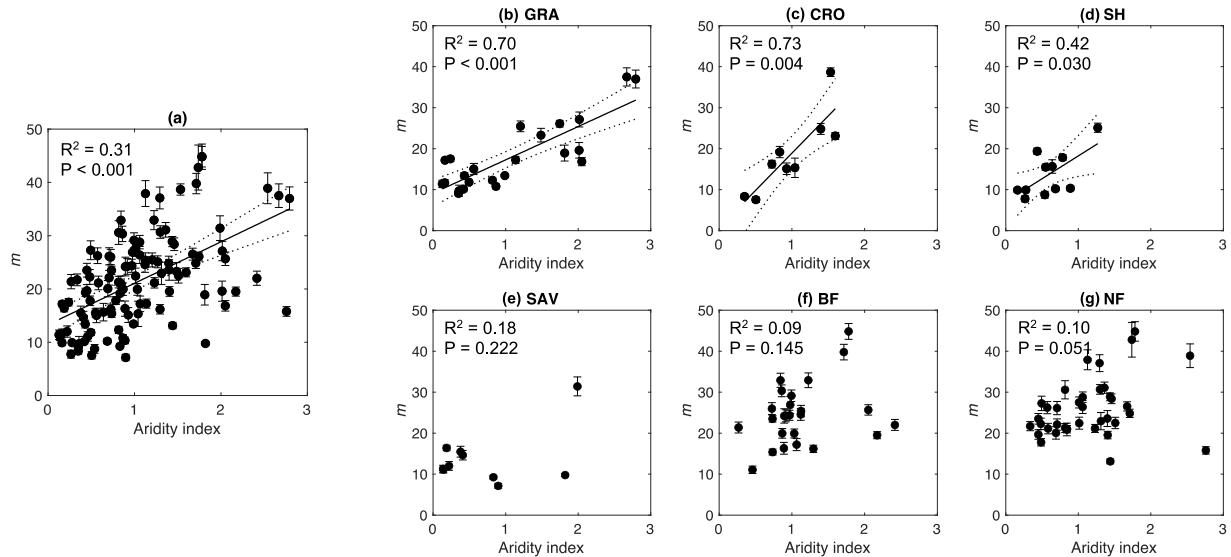
365
 366 **Figure 2.** Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten:
 367 green, quadratic: red) responses of inherent water-use efficiency (IWUE) to changing vapor
 368 pressure deficit (VPD). The examples include three sites best represented by the linear model
 369 (IT-BCi, cropland), the Michaelis-Menten function (CA-NS2, needleleaf forest), and the
 370 quadratic model (US-Ton, savannah), respectively. Each error bar (light gray) represents the
 371 standard deviation of IWUE for each VPD bin (95% confidence). See Fig. S4 in the Supporting
 372 Information for the IWUE-VPD relationships of all the study sites ($n = 115$).

373

374 When the site-specific IWUE-VPD slope values derived from the linear model (i.e., m in
 375 Eq. 9) were combined, we found increasing m with rising aridity index ($P < 0.001$, Fig. 3a).
 376 However, site-level aridity did not influence the intercept of IWUE-VPD relationship ($P > 0.05$,

377 not shown here). When the sites were divided by their vegetation types, m increased with a rising
 378 aridity index in all vegetation types. However, the trend was only significant in grasslands,
 379 croplands, and shrublands ($P < 0.05$, Fig. 3).

380



381

382 **Figure 3.** Relationship between the site-level aridity index and the regression slope of IWUE-
 383 VPD from individual sites (i.e., m in Eq. 9). Panel a shows the relationship when all sites were
 384 consolidated. The relationship is also illustrated separately for six different vegetation types in
 385 panels b to g. Each circle represents m from an individual site. Error bars represent standard
 386 errors of linear regressions. Solid lines indicate significant linear relationships ($P < 0.05$) and
 387 dashed lines indicate 95% confidence intervals.

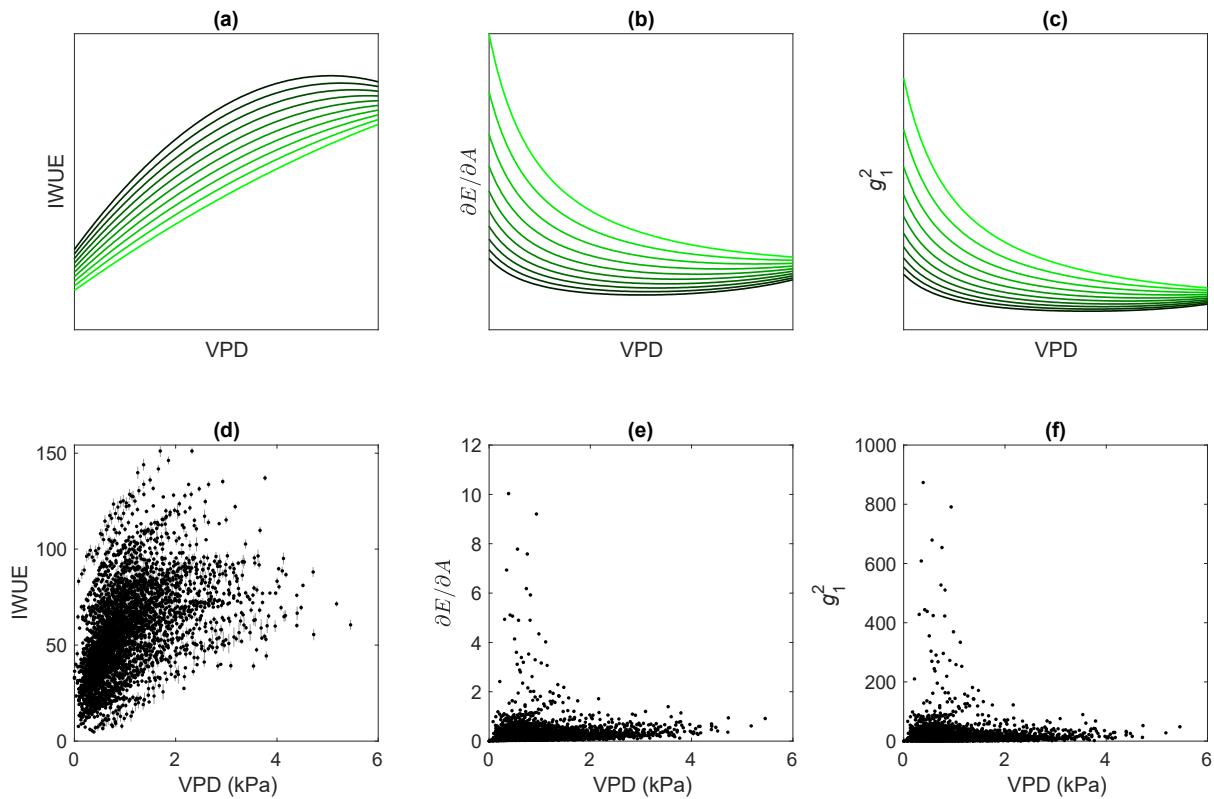
388

389 **3.2. Response of mWUE to changing VPD**

390 Both of the mWUE indices, $\partial E / \partial A$ and squared g_1 (g_1^2), showed a very similar response
 391 to changing VPD and suggested that the directional change of mWUE can be interpreted
 392 differently depending on the pattern of IWUE-VPD (Fig. 4). When the iWUE-VPD relationship

393 is strongly linear, mWUE decreased exponentially and became less variable as VPD increased
 394 (Brighter curves in Figs. 4b & 4c). However, as the iWUE-VPD relationship became more non-
 395 linear, mWUE declined at lower VPD and then increased at higher VPD (i.e., concave-up),
 396 rendering the mWUE-VPD relationship non-monotonic (Darker curves in Figs. 4b & 4c).

397



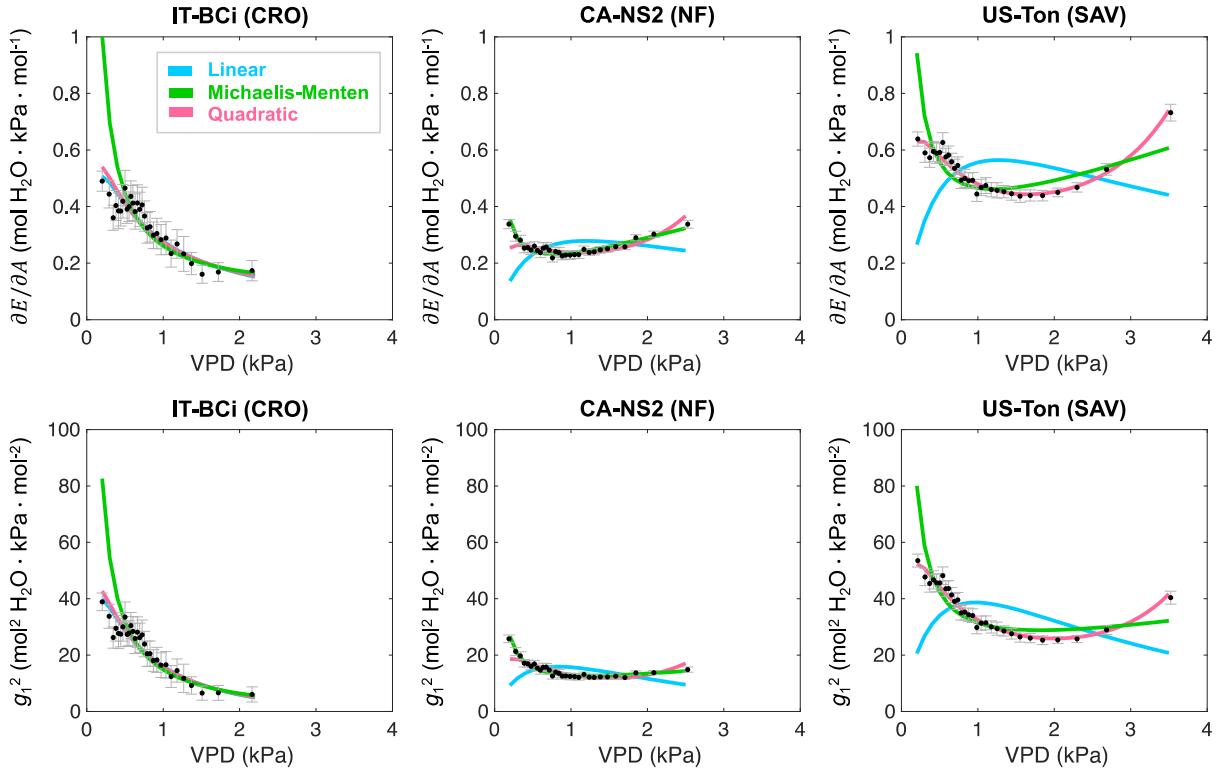
398

399 **Figure 4.** Hypothetical models of IWUE-VPD relationship (a), simulated $\partial E / \partial A$ -VPD (b) and
 400 g_1^2 -VPD (c) relationships based on typical cases, and their corresponding patterns illustrated
 401 using observations from all study sites (d, e, and f). The mWUE curves are the results of using
 402 the IWUE-VPD relationships of the corresponding colors. Note that IWUE-VPD relationships
 403 become more linear with lighter colors.

404

405 The simulated patterns of mWUE-VPD agreed well with the patterns from the empirical
406 observation when the appropriate function for the IWUE-VPD relationship was applied. We
407 show mWUE-VPD relationships from three study sites as examples (Fig. 5), of which IWUE-
408 VPD was represented best by linear, the Michaelis-Menten, and quadratic functions, respectively
409 (see Fig. 2 for their corresponding IWUE-VPD relationships. Also, see Fig. S5 in the Supporting
410 Information for the results of all study sites). As suggested by the simulation, the site with highly
411 linear IWUE-VPD (IT-BCi) showed exponentially decreasing mWUE with rising VPD. In
412 contrast, the other two sites with highly non-linear IWUE-VPD relationships had a concave-up
413 pattern of mWUE-VPD. Notably, the mWUE-VPD relationship generated using a less optimal
414 IWUE-VPD model can differ substantially from the empirical pattern. For example, application
415 of linear IWUE-VPD function to the CA-NS2 and US-Ton, the sites represented best by the
416 Michaelis-Menten and quadratic functions, respectively, generated concave-down mWUE-VPD
417 pattern that is opposite to the actual pattern (Fig. 5). The disagreements between models and
418 observations increased as VPD approached very high and very low extremes.

419



420

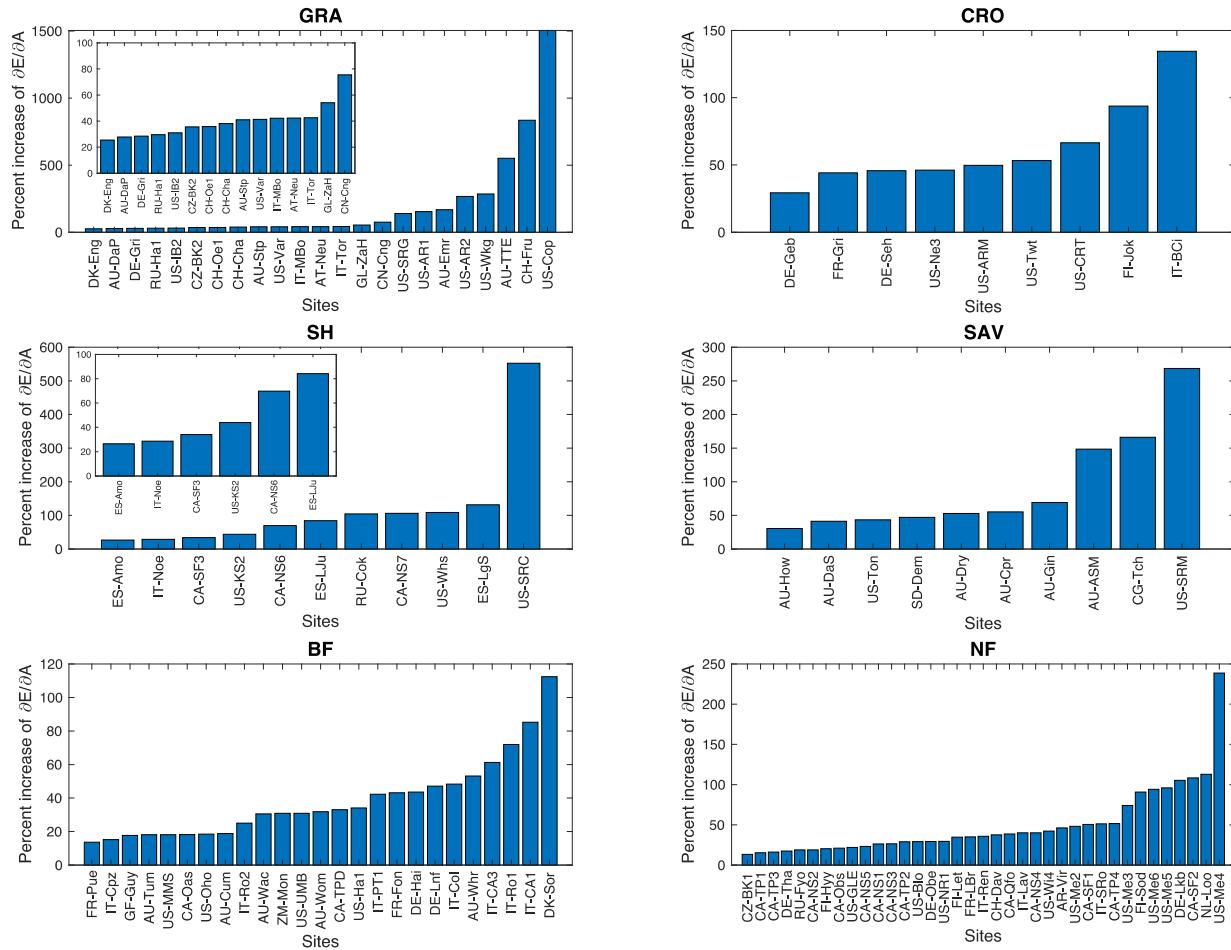
421 **Figure 5.** Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten:
422 green, quadratic: red) relationships between $\partial E / \partial A$ (analytical solution by Katul et al., 2010)
423 and vapor pressure deficit (VPD), and between g_1^2 (Medlyn et al., 2012) and VPD. The examples
424 include three sites best represented by the linear IWUE-VPD model (IT-BCi, cropland), the
425 Michaelis-Menten function (CA-NS2, needleleaf forest), and the quadratic model (US-Ton,
426 savannah), respectively. See Fig. 2 for the IWUE-VPD relationships at the corresponding sites.
427 Each error bar (light gray) represents the standard error of the mean IWUE for each VPD bin
428 (95% confidence). See Fig. S5 in the Supporting Information for the $\partial E / \partial A$ -VPD relationships
429 at the 115 study sites.

430

431 The variability of mWUE to changing VPD was substantial in most cases (Fig. 6). Out of
432 the total of 115 study sites, the percent increase of $\partial E / \partial A$ (i.e., growth in $\partial E / \partial A$ from the

433 lowest to the largest value at a site) was larger than 50% in 43 sites, and larger than 100% in 22
 434 sites. Note that the reported percent increase was determined by excluding the upper and lower
 435 10% of values. This step was taken to prevent exaggeration caused by extremely high $\partial E / \partial A$ at
 436 low VPD, which is commonly observed across the study sites (see Figure S5 in the Supporting
 437 Information for the variability of $\partial E / \partial A$ with VPD at all the study sites). As a result, the
 438 reported percent increase represents a conservative estimate overall.

439



440

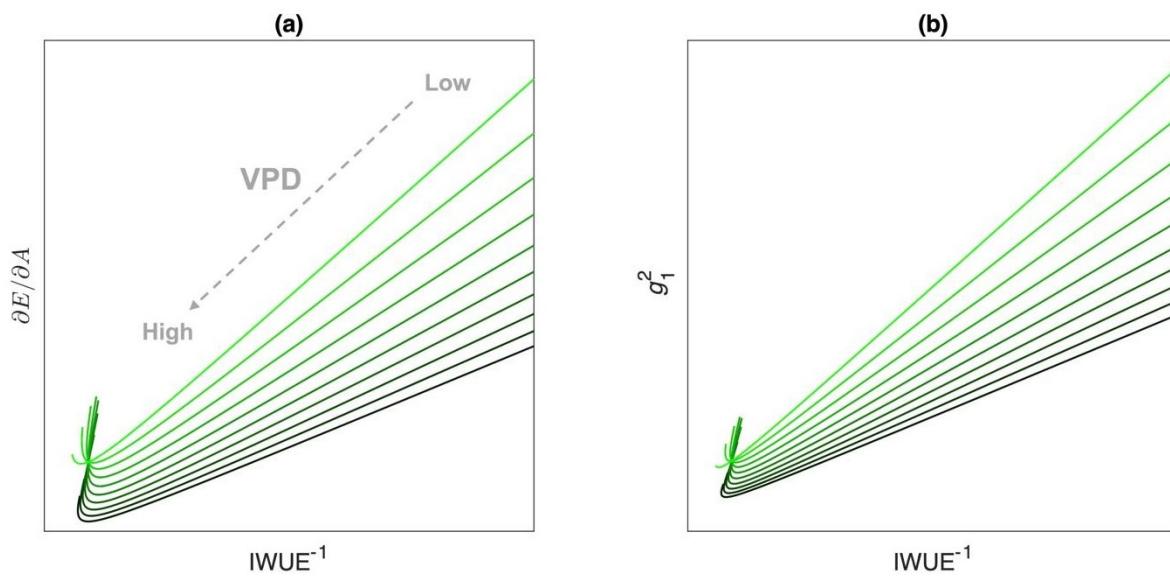
441 **Figure 6.** Sorted percent increase of $\partial E / \partial A$ (from the lowest $\partial E / \partial A$). Embedded plots in GRA
 442 and SH are zoomed in for those sites where percent increases are lower than 100%. Note that the
 443 percent increases were calculated after removing values of the highest 10% and lowest 10% to
 444 avoid exaggeration due to very high $\partial E / \partial A$ at low VPD at some sites. Therefore, the reported
 445 percent increase values are conservative estimates for most sites.

446

447 **3.3. Correlation between mWUE and IWUE**

448 Although the trend of mWUE-VPD seems hard to generalize, the simulated mWUE had a
 449 clear linear relationship with $IWUE^{-1}$ for the majority of IWUE's range regardless of the linearity
 450 of the IWUE-VPD relationship except when IWUE is very high (i.e., under high VPD, Fig. 7).
 451 While it is limited to a small portion of the entire range, there was a sharp directional change in
 452 the variation of mWUE near a point where $IWUE^{-1}$ was smallest, and strong linearities between
 453 mWUE and $IWUE^{-1}$ were found before and after the transitional point. Substantial hysteresis
 454 became more evident as the IWUE-VPD pattern became more curved (darker curves in Fig. 4).

455

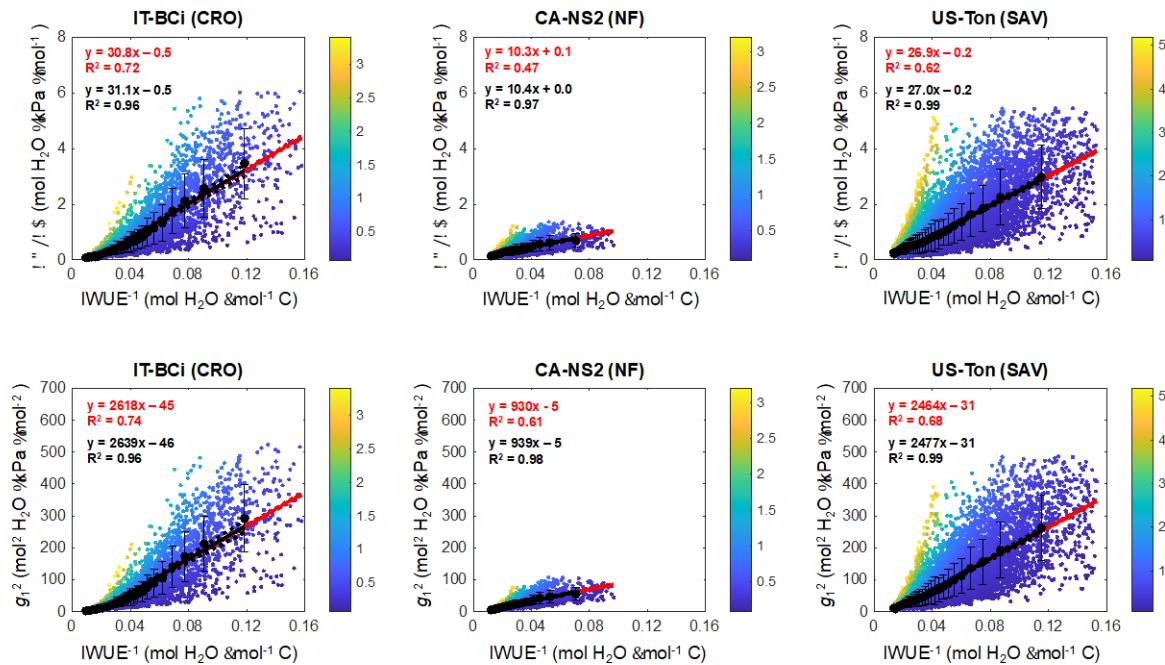


456

457 **Figure 7.** Simulated relationship between mWUE and IWUE^{-1} (based on the hypothetical
 458 IWUE-VPD model in Fig. 4). The colors of the curves correspond to those used in Fig. 4:
 459 IWUE-VPD relationships become more linear with lighter colors. Dashed arrows in panel a
 460 represent the directional change of VPD from low to high VPD.

461
 462 As predicted by the simulated mWUE-IWUE $^{-1}$ relationships (Fig. 7), the empirical
 463 mWUE-IWUE $^{-1}$ relationship was strongly linear ($P < 0.001$ at all sites, Fig. 8). A sign of
 464 hysteresis was noticeable for the site that showed decreasing iWUE under very high VPD (US-
 465 Ton, see Fig. 2 for its IWUE-VPD relationship). In contrast, hysteresis was less evident at the
 466 other sites. When the relationship was drawn by grouping data by different levels of IWUE
 467 (black dots in Fig. 8), hysteresis was not observed, and the mWUE-IWUE $^{-1}$ relationship was
 468 strongly linear.

469



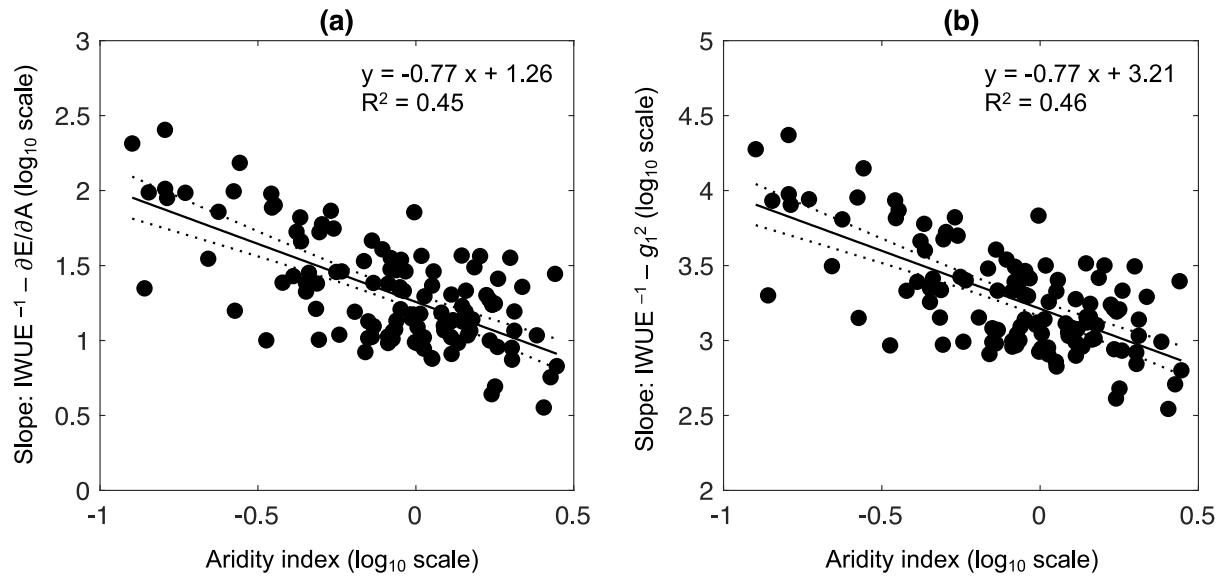
470

471 **Figure 8.** Examples of empirical relationship between mWUE and IWUE^{-1} . The examples
472 include three sites best represented by the linear IWUE-VPD model (IT-BCi, cropland), the
473 Michaelis-Menten function (CA-NS2, needleleaf forest), and the quadratic model (US-Ton,
474 savannah), respectively. See Fig. 2 for the IWUE-VPD relationships at the corresponding sites.
475 Colorful dots represent hourly data points shaded based on the level of VPD (see color bars for
476 the scale of VPD). Black dots represent data binned by IWUE^{-1} : Data binning was performed to
477 distribute sample sizes evenly across bins (~30 samples per bin). Error bars represent standard
478 deviations. The red and black solid lines indicate linear fits for hourly and binned data,
479 respectively. Dashed red lines represent confidence intervals for the slopes of linear regressions.
480 Note that red and black linear regressions and their confidence intervals overlap. See Fig. S6 in
481 the Supporting Information for the $\partial E / \partial A - \text{IWUE}^{-1}$ relationships at the 115 study sites.

482

483 We investigated whether the relationship between mWUE and IWUE^{-1} could be
484 generalized across the sites based on the site-specific AI. Specifically, the linear $\text{IWUE}^{-1} -$
485 mWUE slopes (hereafter m^*) from all study sites were merged, and their variability in response
486 to changing AI was evaluated. We found a significant linear relationship between m^* and AI
487 when both are scaled by \log_{10} ($P < 0.001$, Fig. 9). The m^* was larger at the drier sites (i.e., sites
488 of lower AI) than at the wetter sites (i.e., sites of larger AI). However, we did not find a
489 significant relationship between the $\text{IWUE}^{-1} - \text{mWUE}$ intercept and AI ($P > 0.05$, not shown
490 here).

491



492

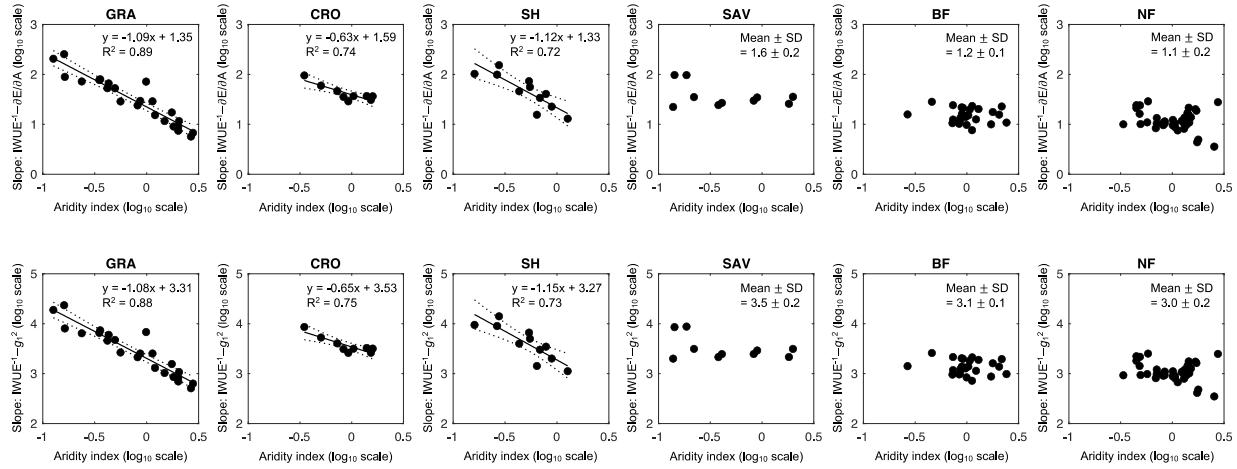
493 **Figure 9.** Relationships between IWUE⁻¹-mWUE slope and aridity index (= P/PET) derived
 494 from all the study sites ($n = 115$). Each circle represents the slope obtained from an individual
 495 site. Both the x and y axes are scaled by log₁₀. Solid red lines indicate linear regressions and
 496 dashed lines indicate confidence intervals (95% confidence interval).

497

498 We further tested whether we could find the similar relationship when the sites were grouped by
 499 the vegetation type. We found decreasing m^* with rising AI in grasslands, croplands, and
 500 shrublands ($P < 0.01$, Fig. 10). On the other hand, m^* was relatively constant across the range of
 501 AI in savannas, deciduous broadleaf forests, and evergreen needleleaf forests ($P > 0.05$, Fig. 10).

502

503



504

505 **Figure 10.** Relationships between log-transformed IWUE⁻¹-mWUE slope and aridity index in
 506 different vegetation types (GRA: grassland, CRO: cropland, SH: shrubland, SAV: savanna, BF:
 507 broadleaf forest, NF: needleleaf forest). Each circle represents the log-transformed slope
 508 obtained from an individual site. Solid lines indicate significant linear relationships ($P < 0.05$)
 509 and dashed lines indicate 95% confidence intervals.

510

511 **4. Discussion**

512 Stomatal optimization theory, which originated with the work of Cowan and Farquhar
 513 (1977), has experienced a recent surge in popularity as the vegetation modeling community
 514 continually seeks ways to inject more theoretical rigor into Earth system models (Anderegg et
 515 al., 2018; Bassiouni & Vico, 2021; Bonan et al., 2014; Feng et al., 2022; Katul et al., 2010; Katul
 516 et al., 2009; Lin et al., 2018; Lin et al., 2015; Lu et al., 2020; Lu et al., 2016; Medlyn et al., 2012,
 517 2017; Novick et al., 2016b; Sabot et al., 2022; Sperry et al., 2017; Wolf et al., 2016). The
 518 marginal water-use efficiency (mWUE) is a key parameter in this type of model, but we still
 519 need a clear understanding of how mWUE is regulated biologically and environmentally. Lin et
 520 al. (2018) previously suggested suboptimal mWUE in response to VPD at a sub-daily scale by

521 estimating site-specific, best-fitted exponent for VPD based on the variation model of optimality
522 theory (Medlyn model), which inspired our study. In comparison, our study is unique in
523 analyzing the dynamics of mWUE observed at the hourly timescale in response to changing VPD
524 owing to the long-term continuous carbon and water flux data from the network of eddy
525 covariance towers.

526 Another motivation for our study was the conflicting arguments over the dynamics of
527 mWUE in response to water stress. While mWUE is in general considered to be nearly constant
528 during a day under stable soil moisture conditions (Berninger & Hari, 1993; Fites & Teskey,
529 1988; Hall & Schulze, 1980; Hari et al., 2000), several studies showed that mWUE changed with
530 different levels of water stress. For example, theoretical considerations suggest a monotonic
531 decrease of mWUE with higher water stress when the stochasticity of rainfall depths is neglected
532 (Cowan, 1982; Makela et al., 1996), while some empirical estimates showed that mWUE
533 increases under severe water stress (Farquhar et al., 1980b; Grieu et al., 1988). On the other
534 hand, Manzoni et al. (2011) performed a meta-analysis of 50 species to estimate mWUE from
535 gas exchange observations along gradients of soil moisture and showed that mWUE decreases
536 under mild water stress but increases under severe water stress (note that they defined $\lambda =$
537 $\partial A / \partial E$, which is inverse of the definition used by Cowan & Farquhar (1977) and this study).
538

539 **4.1. Relationship between IWUE and VPD**

540 Based on the two equations of stomatal optimization theory (Eqs. 3 & 5), we first
541 characterized the variability of mWUE based on the relationship between IWUE and VPD,
542 representing biological and environmental factors, respectively. We show that the variability of
543 IWUE must be modeled accurately to emulate the variability of mWUE in response to water

544 stress correctly. For example, as demonstrated in Fig. 5 (CA-NS2 & US-Ton), oversimplifying
545 the IWUE-VPD relationship by modeling it with a linear function can incorrectly interpret
546 mWUE variability.

547 The non-linear IWUE-VPD relationship is presumably driven by different rates of carbon
548 assimilation and water loss in response to changing VPD at an hourly scale, reflecting the
549 balance between stomatal and non-stomatal limitations to photosynthesis at the leaf level
550 (Farquhar, 1978; Jones, 2014). Under low to moderate VPD conditions, photosynthesis is less
551 sensitive to changing intercellular CO₂ concentration because stomatal conductance is high
552 enough to maintain the high intercellular CO₂ when VPD is low to moderate. Therefore, the
553 quantity of reduced water loss by stomatal closure (ET at an ecosystem level) outweighs the
554 quantity of reduced carbon assimilation (GPP at an ecosystem level) when VPD rises (i.e.,
555 $|\Delta GPP| < |\Delta ET|$), resulting in the increasing phase of IWUE. As VPD keeps increasing,
556 photosynthesis can be limited when the reduction of stomatal conductance under high VPD
557 conditions substantially reduces intercellular CO₂ concentration (i.e., $|\Delta GPP| \approx |\Delta ET|$),
558 resulting in the steady phase of IWUE. As VPD becomes excessively high, photosynthesis will
559 be further suppressed by high temperature (Yamori et al., 2014) and low leaf water potential
560 (Lawlor & Tezara, 2009) that are associated with dry conditions (i.e., $|\Delta A| > |\Delta g_s|$), leading to
561 the decreasing phase of IWUE.

562 Therefore, assuming a linear IWUE-VPD relationship may not only fail to emulate
563 observations but also oversimplify the physiological responses to water stress. Our analysis
564 recommends employing the Michaelis-Menten function for most sites while utilizing a quadratic
565 function for sites exhibiting extreme cases where IWUE declines under high VPD conditions.
566 The Michaelis-Menten function can be beneficial to characterize the IWUE-VPD relationship

567 since the maximum potential IWUE and the rate of IWUE increase can be identified during
568 parameterization (Eq. 10). While the quadratic function can emulate IWUE-VPD relationships
569 very well or performs even better than the Michaelis-Menten function in some cases where
570 IWUE decreases at high VPD, it is parameterized empirically and as a result, lacks mechanistic
571 information. Nevertheless, the quadratic function is preferable to the linear function.

572 It is also important to consider the definition of water-use efficiency for accuracy. We
573 used inherent water-use efficiency (IWUE) as a proxy of intrinsic water-use efficiency (iWUE)
574 at the ecosystem level as suggested by Beer et al. (2009), which can be estimated by GPP and ET
575 inferred from the flux tower observations. This approximation is particularly useful over a more
576 common ecosystem-level $iWUE = GPP/G_s$ because IWUE requires fewer variables and is easier
577 to extrapolate to a larger scale. However, it is important to note that ET/VPD in the equation of
578 IWUE (Eq. 6) is a proxy of canopy conductance, assuming the canopy is well coupled to the
579 atmosphere, boundary layer resistance is small, and thermal equilibrium between leaf and air is
580 achieved (Beer et al., 2009). In other words, IWUE under non-equilibrium between canopies and
581 atmosphere can be overestimated due to the higher VPD than the vapor pressure gradient near
582 the canopy surface (i.e., the difference between intercellular vapor pressure (e_i) and atmospheric
583 vapor pressure (e_a), $e_i - e_a$). Difference between leaf and air temperature can also influence the e_i
584 – e_a ; if leaf temperature is higher than air temperature (as it often is, e.g., Novick & Barnes,
585 2023; Yi et al., 2020), e_i will increase while e_a remains constant, resulting in larger $e_i - e_a$ than
586 measured VPD and consequently underestimate IWUE. Therefore, it is important to address this
587 potential bias to quantify iWUE accurately. According to our results, there was a strong
588 correlation between the two ecosystem-level iWUE proxies at the site level (Fig. 1), implying
589 that the choice of ecosystem-level iWUE definition is unlikely to influence our interpretation of

590 the iWUE and mWUE variabilities substantially. Furthermore, our comparison of multiple
591 definitions of iWUE using a mechanistic model, CANVEG (see the Supporting Information for
592 more details), suggested that IWUE is a good proxy of leaf-level iWUE and meets the general
593 assumptions to address scaling issues. Thus, we conclude that eddy covariance observation of
594 carbon and water fluxes is suitable to model the variability of intrinsic water-use efficiency in
595 response to changing VPD.

596 It is worth mentioning that there was a stronger linear relationship between the slope of
597 IWUE-VPD and aridity index (Fig. 4) in the ecosystems characterized by lower vegetation types
598 (e.g., grasslands, croplands, and shrubland). In contrast, ecosystems with higher vegetation (e.g.,
599 savannahs, broadleaf forests, and needleleaf forests) exhibited a weaker relationship. This
600 observation implies a potential link between water-use efficiency and the vertical structure of
601 vegetation, although the exact underlying mechanism remains uncertain.

602

603 **4.2. Modeling the variability of mWUE**

604 We compared two solutions of mWUE by Katul et al. (2010) ($\partial E / \partial A$) and Medlyn et al.
605 (2012) (g_1) developed based on different assumptions on stomatal optimality (carbon-limited vs.
606 light-limited) for more robust conclusion. Despite the difference in the assumption, both
607 solutions yielded very similar results throughout our analysis, confirming that the optimality
608 assumption had little impact on evaluating the variability of mWUE in response to changing
609 moisture conditions.

610 We characterized the trend of mWUE by using VPD as an environmental driver (Figs. 4
611 & 5), where its variability in response to VPD was unique and not necessarily unidirectional,
612 thus making it hard to generalize with commonly available functions. Specifically, the variability

613 of mWUE was simpler and decreased exponentially with rising VPD when the IWUE-VPD
614 relationship was more linear, making it easy to model the mWUE-VPD relationship (Figs. 4 &
615 5). However, the variability of mWUE was not unidirectional when the IWUE-VPD relationship
616 was non-linear, as observed in most cases (Fig. S5 in the Supporting Information); high
617 variability in mWUE is usually observed at low- and high-ends of VPD. On the other hand, when
618 mWUE was calculated under conditions of moderate VPD level only, the variability of mWUE
619 can be overlooked and considered constant. This complex pattern signifies the importance of a
620 comprehensive view of IWUE and mWUE across the full potential range of VPD. Observation
621 under conditions of a partial range of environmental factors is common in many types of field
622 measurements that have coarser time resolution (hourly vs. daily to weekly, e.g., eddy covariance
623 vs. leaf gas exchange measurements) unless they are performed frequently over a long period to
624 cover non-typical conditions. We were able to estimate precise variability of mWUE matching
625 with the hypothetical models owing to the large amount of data (FLUXNET2015) collected
626 every half-hour over the long period throughout the network of flux towers (total 1,036 site years
627 with many sites offering data collected over more than a decade), highlighting the value of long-
628 term, continuous measurements. Overall, our result of the mWUE-VPD relationship supports the
629 results of Manzoni et al. (2011) among the various conflicting results over the response of
630 mWUE in response to water stress, which found decreasing mWUE under mild water stress and
631 increasing mWUE under severe water stress from a meta-analysis of gas exchange observations.

632 As a solution to model unique patterns of mWUE, we attempt to address its variability
633 with information that can be obtained easily from various types of field measurements (e.g., eddy
634 covariance, gas exchange, and tree-ring cores) and modeled empirically – IWUE. The
635 relationship between mWUE and IWUE was inferred from the two equations of the optimization

636 theory (Eqs. 3 & 5). We found a strong linear correlation between $IWUE^{-1}$ and $mWUE$ from both
637 empirical data (Fig. 8) and modeling exercise (Fig. 7). In other words, the variability of $mWUE$
638 in response to changing VPD can be characterized by 1) the function of $IWUE$ -VPD relationship
639 and 2) the slope between $IWUE^{-1}$ and $mWUE$. The relationship between $IWUE$ -VPD is
640 relatively simple and can be identified with various field measurements. This raises the question
641 of whether a simple way exists to identify the slope between $IWUE^{-1}$ and $mWUE$. By
642 synthesizing the $IWUE^{-1}$ - $mWUE$ slopes across the sites, we found that the $IWUE$ - $mWUE$ slope
643 is highly correlated with the site-specific aridity index that can be characterized for different
644 vegetation types (Fig. 9). The correlation is conceivable from the equations of $mWUE$ (Eqs. 3 &
645 5). If, for instance, Eq. 3 is rearranged,

$$\frac{\partial E / \partial A}{IWUE^{-2}} \propto VPD \quad (12)$$

646 indicating that the slope between $mWUE$ and the inverse of $IWUE$ is proportional to VPD,
647 which is commensurate with aridity index at a site-level. The correlation between the $IWUE^{-1}$ -
648 $mWUE$ slope and the aridity index at a site level implies that the aridity index is a good surrogate
649 for the site-specific $IWUE^{-1}$ - $mWUE$ slope.

650 We further illustrated how the correlations between the $IWUE^{-1}$ - $mWUE$ slope (m^*) and
651 aridity index (AI) vary across vegetation types (Fig. 10). Among the vegetation types, GRA,
652 CRO, and SH had strong correlations between m^* and AI, which suggested using different m^*
653 depending on the site-level dryness. On the other hand, the low variability of m^* observed in
654 SAV, BF, and NF suggests that constant m^* can generate a reasonably accurate $mWUE$ -VPD
655 relationship regardless of the site-level dryness. Although the reasons for this difference are not
656 entirely clear, this empirical relationship will help more accurately model the variability of
657 $mWUE$ in response to changing VPD across the sites and biomes. Growth in data availability

659 across the flux tower network will ensure the coverage of the full potential range of
660 environmental factors. More data availability can be achieved by consistently collecting good-
661 quality data from existing study sites and establishing new sites in underrepresented areas.
662 Furthermore, it will also help the development of m^* in detail, for instance, based on the plant
663 water-use strategies, with the aid of conjoined field measurements such as water potential (ψ) of
664 soil and plant.

665

666 **4.3. Implications for future research**

667 It is important to note that plant response to water stress is not only determined by the
668 water demand (i.e., atmospheric dryness or VPD) but also by the availability of water sources
669 (i.e., soil moisture). While volumetric soil moisture content (θ) is often considered as a metric of
670 soil water available to plants, soil water potential (ψ_s) is the driving force of water flows that
671 becomes available to plants by moving along gradients of water potential through the plant (stem
672 and leaf) and eventually to the air. Moreover, ψ_s is not only determined by the θ but also by soil
673 physical properties, and thus can differ even under conditions of the same θ (Campbell, 1974;
674 van Genuchten, 1980). Unlike ψ_s , θ is widely measured and usually available with flux data, and
675 carbon and water fluxes are often explained as a function of θ (Green et al., 2019; Novick et al.,
676 2016a). However, θ may not characterize soil moisture availability to plants properly, and its
677 relationship with carbon and water fluxes is usually nonlinear and threshold-driven (Feldman et
678 al., 2019; Novick et al., 2022; Stocker et al., 2018), making the modeling of the relationship
679 between IWUE and soil moisture availability challenging. Therefore, enhanced accessibility to
680 ψ_s data by improving the ease and reliability of ψ_s observations, for example, by building a
681 centralized and standardized network of ψ (Novick et al., 2022) will be a necessary step to better

682 characterize the impact of soil moisture availability on plant responses such as IWUE and
683 mWUE.

684 In this study, we tested the two stomatal optimization models (Katul et al., 2010; Medlyn
685 et al., 2012) that are elaborations of the original Cowan & Farquhar model (1977) with little
686 modifications because our goal was to characterize variability of mWUE in response to dryness
687 (VPD and aridity index) using IWUE that can be calculated from the extensive, long-term
688 continuous data from the network of eddy covariance. Meanwhile, more recent optimization
689 models are incorporating additional physiological penalties than the water loss, for instance,
690 damage to the vascular system induced by water stress (Anderegg et al., 2018; Sperry et al.,
691 2017; Wolf et al., 2016), which will enhance prediction of long-term plant responses to climate
692 change. While monitoring the integrity of the vascular system, which can be informed by the
693 dynamics of hydraulic conductivity, has not been widely conducted, recent advances in
694 psychrometric approaches allowing continuous measurements of plant ψ (e.g., PSY1 by ICT
695 International) and ψ_s (e.g., TEROS 21 by Meter Group) are now enabling the monitoring the
696 dynamics of hydraulic conductivity. Moreover, the relationship between plant and soil ψ can be
697 used to identify plant water-use strategies (e.g., isohydry framework; Martinez-Vilalta et al.,
698 2014), which will help develop m^* based on plant water-use strategies. The measurements of
699 carbon and water fluxes using the eddy covariance technique with the aid of the centralized and
700 standardized deployment of ψ sensors (Novick et al., 2022) will have a great potential to test
701 models and theories of stomatal optimization and advance our knowledge of it.

702

703 **Acknowledgments**

704 We thank FLUXNET/AmeriFlux community for managing their sites, collecting and
705 processing data, and making data available to public and broader scientific community. K.Y. and
706 G.B.S. acknowledge support from the NSF Division of Earth Sciences (Grant # 2012893)
707 through CUAHSI and the USGS John Wesley Powell Center for Analysis and Synthesis. K.A.N
708 and T.H. were supported by the NASA Carbon Science Program (Grant # NNX17AE69G).
709 K.A.N. also acknowledges support from the NSF Division of Environmental Biology (Grant #
710 1552747), the NSF Division of Integrative Organismal Systems (Grant #2006196), and the
711 AmeriFlux Management Project. L.W. was supported by the NSF Division of Earth Sciences
712 (Grant # 1554894). X.Y. was supported by the NSF Division of Integrative Organismal Systems
713 (Grant # 2005574). K.M. was supported by the INTER Mobility Fellowship from the FNR
714 Luxembourg (INTER/MOBILITY/2020/14521920/MONASTIC). The findings and conclusions
715 in this publication are those of the authors and should not be construed to represent any official
716 USDA or U.S. Government determination or policy.

717

718 **Author Contributions**

719 K.Y., K.A.N., and D.B. conceptualized the research and developed the methodology.
720 K.Y., D.B., and M.B. analyzed the data, and K.A.N, Q.Z., L.W., T.H., X.Y., K.M., and G.B.S.
721 validated the analysis. K.Y. visualized the data analysis. K.Y. wrote the manuscript with input
722 and revisions from all authors.

723

724 **Conflict of Interest**

725 The authors declare that they have no conflict of interest.

726

727 **Data Availability**

728 The data that support the findings of this study are openly available in the FLUXNET
729 Data Portal at <https://fluxnet.org/data/fluxnet2015-dataset/>. The list of DOIs for the individual
730 FLUXNET sites used in this study is available in the Supporting Information (Table S1).

731

732 **References**

733 Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines
734 for computing crop water requirements-FAO Irrigation and drainage paper 56. *FAO,*
735 *Rome*, 300(9), D05109.

736 Anderegg, W. R. L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D. J., Jansen, S., Kolb, T.,
737 Li, S., Meinzer, F. C., Pita, P., de Dios, V. R., Sperry, J. S., Wolfe, B. T., & Pacala, S.
738 (2018). Woody plants optimise stomatal behaviour relative to hydraulic risk. *Ecology*
739 *Letters*, 21(7), 968–977. <https://doi.org/10.1111/ele.12962>

740 Anderegg, W. R. L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D. J., Jansen, S., Kolb, T.,
741 Li, S., Meinzer, F., Pita, P., de Dios, V. R., Sperry, J. S., Wolfe, B. T., & Pacala, S.
742 (2017). Plant water potential improves prediction of empirical stomatal models. *PLoS*
743 *One*, 12(10), e0185481. <https://doi.org/10.1371/journal.pone.0185481>

744 Baldocchi, D. D., & Harley, P. C. (1995). Scaling carbon dioxide and water vapour exchange
745 from leaf to canopy in a deciduous forest. II. Model testing and application. *Plant, Cell &*
746 *Environment*, 18(10), 1157–1173. <https://doi.org/10.1111/j.1365-3040.1995.tb00626.x>

747 Baldocchi, D., & Meyers, T. (1998). On using eco-physiological, micrometeorological and
748 biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over

749 vegetation: A perspective. *Agricultural and Forest Meteorology*, 90(1), 1–25.

750 [https://doi.org/10.1016/S0168-1923\(97\)00072-5](https://doi.org/10.1016/S0168-1923(97)00072-5)

751 Baldocchi, D. D., Keeney, N., Rey-Sanchez, C., & Fisher, J. B. (2022). Atmospheric humidity

752 deficits tell us how soil moisture deficits down-regulate ecosystem evaporation. *Advances*

753 in Water Resources, 159, 104100. <https://doi.org/10.1016/j.advwatres.2021.104100>

754 Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A Model Predicting Stomatal Conductance

755 and its Contribution to the Control of Photosynthesis under Different Environmental

756 Conditions. In: Biggins, J. (Ed.), *Progress in Photosynthesis Research*. pp. 221–224.

757 Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0519-6_48

758 Bassiouni, M., & Vico, G. (2021). Parsimony vs predictive and functional performance of three

759 stomatal optimization principles in a big-leaf framework. *New Phytologist*, 231(2), 586–

760 600. <https://doi.org/10.1111/nph.17392>

761 Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D., Soussana, J.-F.,

762 Ammann, C., Buchmann, N., Frank, D., Gianelle, D., Janssens, I. A., Knohl, A., Köstner,

763 B., Moors, E., Roupsard, O., Verbeeck, H., Vesala, T., Williams, C. A., & Wohlfahrt, G.

764 (2009). Temporal and among-site variability of inherent water use efficiency at the

765 ecosystem level. *Global Biogeochemical Cycles*, 23(2).

766 <https://doi.org/10.1029/2008GB003233>

767 Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C.,

768 Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G.,

769 Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., ...

770 Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and

771 covariation with climate. *Science*, 329(5993), 834–838.

772 <https://doi.org/10.1126/science.1184984>

773 Béland, M., & Baldocchi, D. D. (2021). Vertical structure heterogeneity in broadleaf forests:

774 Effects on light interception and canopy photosynthesis. *Agricultural and Forest*

775 *Meteorology*, 307, 108525. <https://doi.org/10.1016/j.agrformet.2021.108525>

776 Béland, M., & Kobayashi, H. (2021). Mapping forest leaf area density from multiview terrestrial

777 lidar. *Methods in Ecology and Evolution*, 12(4), 619–633. <https://doi.org/10.1111/2041->

778 210X.13550

779 Berninger, F., & Hari, P. (1993). Optimal regulation of gas exchange: Evidence from field data.

780 *Annals of Botany*, 71(2), 135–140. <https://doi.org/10.1006/anbo.1993.1017>

781 Bonan, G. B., Williams, M., Fisher, R. A., & Oleson, K. W. (2014). Modeling stomatal

782 conductance in the earth system: Linking leaf water-use efficiency and water transport

783 along the soil-plant-atmosphere continuum. *Geoscientific Model Development*, 7(5),

784 2193–2222. <https://doi.org/10.5194/gmd-7-2193-2014>

785 Brodribb, T. J., Holbrook, N. M., Zwieniecki, M. A., & Palma, B. (2005). Leaf hydraulic

786 capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima. *New*

787 *Phytologist*, 165(3), 839–846. <https://doi.org/10.1111/j.1469-8137.2004.01259.x>

788 Buckley, T. N. (2017). Modeling stomatal conductance. *Plant Physiology*, 174(2), 572–582.

789 <https://doi.org/10.1104/pp.16.01772>

790 Campbell, G. S. (1974). A simple method for determining unsaturated conductivity from

791 moisture retention data. *Soil Science*, 117(6), 311-314. <https://doi.org/10.1097/00010694->

792 197406000-00001

793 Von Caemmerer, S. (2000). *Biochemical models of leaf photosynthesis*. Csiro publishing.

794 <https://doi.org/10.1071/9780643103405>

795 Cowan, I. R. (1982). Regulation of Water Use in Relation to Carbon Gain in Higher Plants. In:

796 O. L. Lange, P. S. Nobel, C. B. Osmond, & H. Ziegler (Eds.), *Physiological Plant*

797 *Ecology II: Water Relations and Carbon Assimilation*, pp. 589–613. Springer.

798 https://doi.org/10.1007/978-3-642-68150-9_18

799 Cowan, I. R., & Farquhar, G. D. (1977). Stomatal function in relation to leaf metabolism and

800 environment. *Symposia of the Society for Experimental Biology*, 31, 471–505.

801 Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980a). A biochemical model of

802 photosynthetic CO₂ assimilation in leaves of C₃ species. *Planta*, 149(1), 78–90.

803 <https://doi.org/10.1007/BF00386231>

804 Farquhar, G. D., Schulze, E. D., & Kuppers, M. (1980b). Responses to humidity by stomata of

805 *Nicotiana glauca* L. and *Corylus avellana* L. are consistent with the optimization of

806 carbon dioxide uptake with respect to water loss. *Australian Journal of Plant Physiology*,

807 7(3), 315–327. <https://doi.org/10.1071/PP9800315>

808 Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D., & Entekhabi, D. (2019).

809 Satellite-based assessment of land surface energy partitioning–soil moisture relationships

810 and effects of confounding variables. *Water Resources Research*, 55(12), 10657–10677.

811 <https://doi.org/10.1029/2019WR025874>

812 Feng, X., Lu, Y., Jiang, M., Katul, G., Manzoni, S., Mrad, A., & Vico, G. (2022). Instantaneous

813 stomatal optimization results in suboptimal carbon gain due to legacy effects. *Plant, Cell*

814 & Environment

45(11), 3189–3204. <https://doi.org/10.1111/pce.14427>

815 Ficklin, D. L., & Novick, K. A. (2017). Historic and projected changes in vapor pressure deficit
816 suggest a continental-scale drying of the United States atmosphere. *Journal of*
817 *Geophysical Research: Atmospheres*, 122(4), 2061–2079.
818 <https://doi.org/10.1002/2016JD025855>

819 Finnigan, J. J., & Raupach, M. R. (1987). Transfer processes in plant canopies in relation to
820 stomatal characteristics. *Stomatal Function*, 385–429.
821 <https://www.cabdirect.org/cabdirect/abstract/19880712530>

822 Fites, J. A., & Teskey, R. O. (1988). CO₂ and water vapor exchange of *Pinus taeda* in relation to
823 stomatal behavior: Test of an optimization hypothesis. *Canadian Journal of Forest*
824 *Research*, 18(2), 150–157. <https://doi.org/10.1139/x88-024>

825 Franks, P. J., Bonan, G. B., Berry, J. A., Lombardozzi, D. L., Holbrook, N. M., Herold, N., &
826 Oleson, K. W. (2018). Comparing optimal and empirical stomatal conductance models
827 for application in Earth system models. *Global Change Biology*, 24(12), 5708–5723.
828 <https://doi.org/10.1111/gcb.14445>

829 van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity
830 of unsaturated soils. *Soil Science Society of America Journal*, 44(5), 892–898.
831 <https://doi.org/10.2136/sssaj1980.03615995004400050002x>

832 Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., &
833 Gentine, P. (2019). Large influence of soil moisture on long-term terrestrial carbon
834 uptake. *Nature*, 565(7740), 476–479. <https://doi.org/10.1038/s41586-018-0848-x>

835 Grieu, P., Guehl, J. M., & Aussennac, G. (1988). The effects of soil and atmospheric drought on
836 photosynthesis and stomatal control of gas exchange in three coniferous species.

837 *Physiologia Plantarum*, 73(1), 97–104. <https://doi.org/10.1111/j.1399->

838 3054.1988.tb09199.x

839 Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W.,

840 Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit.

841 *New Phytologist*, 226(6), 1550–1566. <https://doi.org/10.1111/nph.16485>

842 Hall, A. E., & Schulze, E.-D. (1980). Stomatal response to environment and a possible

843 interrelation between stomatal effects on transpiration and CO₂ assimilation. *Plant, Cell*

844 & *Environment*, 3(6), 467–474. <https://doi.org/10.1111/1365-3040.ep11587040>

845 Hari, P., Mäkelä, A., & Pohja, T. (2000). Surprising implications of the optimality hypothesis of

846 stomatal regulation gain support in a field test. *Functional Plant Biology*, 27(1), 77–80.

847 <https://doi.org/10.1071/pp99050>

848 Katul, G. G., Palmroth, S., & Oren, R. (2009). Leaf stomatal responses to vapour pressure deficit

849 under current and CO₂-enriched atmosphere explained by the economics of gas exchange.

850 *Plant, Cell & Environment*, 32(8), 968–979. <https://doi.org/10.1111/j.1365->

851 3040.2009.01977.x

852 Katul, G., Manzoni, S., Palmroth, S., & Oren, R. (2010). A stomatal optimization theory to

853 describe the effects of atmospheric CO₂ on leaf photosynthesis and transpiration. *Annals*

854 *of Botany*, 105(3), 431–442. <https://doi.org/10.1093/aob/mcp292>

855 Kelliher, F. M., Leuning, R., Raupach, M. R., & Schulze, E.-D. (1995). Maximum conductances

856 for evaporation from global vegetation types. *Agricultural and Forest Meteorology*,

857 73(1), 1–16. [https://doi.org/10.1016/0168-1923\(94\)02178-M](https://doi.org/10.1016/0168-1923(94)02178-M)

858 Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D M., Fisher, R., Lola da Costa, A. C., &

859 Gentine, P. (2019). Implementing plant hydraulics in the Community Land Model,

860 version 5. *Journal of Advances in Modeling Earth Sysntems*, 11(2), 485–513.

861 <https://doi.org/10.1029/2018MS001500>

862 Knauer, J., Werner, C., & Zaehle, S. (2015). Evaluating stomatal models and their atmospheric

863 drought response in a land surface scheme: A multibiome analysis. *Journal of*

864 *Geophysical Research: Biogeosciences*, 120(10), 1894–1911.

865 <https://doi.org/10.1002/2015JG003114>

866 Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M., De

867 Kauwe, M. G., Werner, C., Keitel, C., Kolari, P., Limousin, J.-M., & Linderson, M.-L.

868 (2018). Towards physiologically meaningful water-use efficiency estimates from eddy

869 covariance data. *Global Change Biology*, 24(2), 694–710.

870 <https://doi.org/10.1111/gcb.13893>

871 Lanning, M., Wang, L., & Novick, K. A. (2020). The importance of cuticular permeance in

872 assessing plant water–use strategies. *Tree Physiology*, 40(4), 425–432.

873 <https://doi.org/10.1093/treephys/tpaa020>

874 Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., &

875 Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and

876 respiration using a light response curve approach: critical issues and global evaluation.

877 *Global Change Biology*, 16(1), 187–208. <https://doi.org/10.1111/j.1365-2486.2009.02041.x>

878

879 Lawlor, D. W., & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic

880 capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration

881 of processes. *Annals of Botany*, 103(4), 561–579. <https://doi.org/10.1093/aob/mcn244>

882 Leuning, R. (1995). A critical appraisal of a combined stomatal-photosynthesis model for C₃
883 plants. *Plant, Cell & Environment.*, 18(4), 339–355. <https://doi.org/10.1111/j.1365-3040.1995.tb00370.x>

885 Lin, C., Gentine, P., Huang, Y., Guan, K., Kimm, H., & Zhou, S. (2018). Diel ecosystem
886 conductance response to vapor pressure deficit is suboptimal and independent of soil
887 moisture. *Agricultural and Forest Meteorology*, 250–251, 24–34.
888 <https://doi.org/10.1016/j.agrformet.2017.12.078>

889 Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S., Eamus, D., de
890 Dios, V. R., Mitchell, P., Ellsworth, D. S., de Beeck, M. O., Wallin, G., Uddling, J.,
891 Tarvainen, L., Linderson, M.-L., Cernusak, L. A., Nippert, J. B., Ocheltree, T. W.,
892 Tissue, D. T., ... Wingate, L. (2015). Optimal stomatal behaviour around the world.
893 *Nature Climate Change*, 5(5), 459–464. <https://doi.org/10.1038/nclimate2550>

894 Lu, Y., Duursma, R. A., Farrior, C. E., Medlyn, B. E., & Feng, X. (2020). Optimal stomatal
895 drought response shaped by competition for water and hydraulic risk can explain plant
896 trait covariation. *New Phytologist*, 225(3), 1206–1217. <https://doi.org/10.1111/nph.16207>

897 Lu, Y. J., Duursma, R. A., & Medlyn, B. E. (2016). Optimal stomatal behaviour under stochastic
898 rainfall. *Journal of Theoretical Biology*, 394, 160–171.
899 <https://doi.org/10.1016/j.jtbi.2016.01.003>

900 Mäkelä, A., Berninger, F., & Hari, P. (1996). Optimal control of gas exchange during drought:
901 Theoretical analysis. *Annals of Botany*, 77(5), 461–467.
902 <https://www.jstor.org/stable/42764687>

903 Manzoni, S., Vico, G., Katul, G., Fay, P. A., Polley, W., Palmroth, S., & Porporato, A. (2011).
904 Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-

905 analysis across plant functional types and climates. *Functional Ecology*, 25(3), 456–467.

906 <https://doi.org/10.1111/j.1365-2435.2010.01822.x>

907 Manzoni, S., Vico, G., Palmroth, S., Porporato, A., & Katul, G. (2013). Optimization of stomatal
908 conductance for maximum carbon gain under dynamic soil moisture. *Advances in Water
909 Resources*, 62, 90–105. <https://doi.org/10.1016/j.advwatres.2013.09.020>

910 Marshall, B. & Biscoe, P. V. (1980). A model for C₃ leaves describing the dependence of net
911 photosynthesis on irradiance, *Journal of Experimental Botany*, 31(1), 29–
912 39. <https://doi.org/10.1093/jxb/31.1.29>

913 Martinez-Vilalta, J., Poyatos, R., Aguade, D., Retana, J., & Mencuccini, M. (2014). A new look
914 at water transport regulation in plants. *New Phytologist*, 204(1), 105–115.
915 <https://doi.org/10.1111/nph.12912>

916 Medlyn, B. E., De Kauwe, M. G., Lin, Y.-S., Knauer, J., Duursma, R. A., Williams, C. A.,
917 Arneth, A., Clement, R., Isaac, P., Limousin, J.-M., Linderson, M.-L., Meir, P., Martin-
918 StPaul, N., & Wingate, L. (2017). How do leaf and ecosystem measures of water-use
919 efficiency compare? *New Phytologist*, 216(3), 758–770.
920 <https://doi.org/10.1111/nph.14626>.

921 Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Colin Prentice, I., Barton, C. V. M.,
922 Crous, K. Y., de Angelis, P., Freeman, M., & Wingate, L. (2012). Reconciling the
923 optimal and empirical approaches to modelling stomatal conductance. *Global Change
924 Biology*, 18(11), 3476–3476. <https://doi.org/10.1111/j.1365-2486.2012.02790.x>

925 Michaelis, L. & Menten, M. L. (1913). Die kinetik der invertinwirkung. *Biochem. z*, 49(333–
926 369), 352.

927 Monteith, J. L. (1965). Evaporation and environment. *Symposia of the Society for Experimental*
928 *Biology*, 19, 205–234.

929 Novick, K. A., & Barnes, M. L. (2023). A practical exploration of land cover impacts on surface
930 and air temperature when they are most consequential. *Environmental Research: Climate*,
931 2(2), 025007. <https://doi.org/10.1088/2752-5295/acdf9>

932 Novick, K. A., Ficklin, D. L., Baldocchi, D., Davis, K. J., Ghezzehei, T. A., Konings, A. G.,
933 MacBean, N., Raoult, N., Scott, R. L., Shi, Y., Sulman, B. N., & Wood, J. D. (2022).
934 Confronting the water potential information gap. *Nature Geoscience*, 15, 158–164.
935 <https://doi.org/10.1038/s41561-022-00909-2>

936 Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S.
937 A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., & Phillips, R. P.
938 (2016a). The increasing importance of atmospheric demand for ecosystem water and
939 carbon fluxes. *Nature Climate Change*, 6, 1023–1027.
940 <https://doi.org/10.1038/nclimate3114>

941 Novick, K. A., Konings, A. G., & Gentine, P. (2019). Beyond soil water potential: An expanded
942 view on isohydricity including land-atmosphere interactions and phenology. *Plant, Cell
943 & Environment*, 42(6), 1802–1815. <https://doi.org/10.1111/pce.13517>

944 Novick, K. A., Miniat, C. F., & Vose, J. M. (2016b). Drought limitations to leaf-level gas
945 exchange: Results from a model linking stomatal optimization and cohesion-tension
946 theory. *Plant, Cell & Environment*, 39(3), 583–596. <https://doi.org/10.1111/pce.12657>

947 Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C.,
948 Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca,
949 A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., ... Papale, D.

950 (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy
951 covariance data. *Scientific Data*, 7, 225. <https://doi.org/10.1038/s41597-020-0534-3>

952 Paw U, K. T., & Meyers, T. P. (1989). Investigations with a higher-order canopy turbulence
953 model into mean source-sink levels and bulk canopy resistances. *Agricultural and Forest
954 Meteorology*, 47(2), 259–271. [https://doi.org/10.1016/0168-1923\(89\)90099-3](https://doi.org/10.1016/0168-1923(89)90099-3)

955 Sabot, M. E. B., De Kauwe, M. G., Pitman, A. J., Medlyn, B. E., Ellsworth, D. S., Martin-StPaul,
956 N. K., Wu, J., Choat, B., Limousin, J.-M., Mitchell, P. J., Rogers, A., & Serbin, S. P.
957 (2022). One stomatal model to rule them all? Toward improved representation of carbon
958 and water exchange in global models. *Journal of Advances in Modeling Earth Systems*,
959 14(4), e2021MS002761. <https://doi.org/10.1029/2021MS002761>

960 Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay, D. S., Wang, Y., &
961 Love, D. M. (2017). Predicting stomatal responses to the environment from the
962 optimization of photosynthetic gain and hydraulic cost. *Plant, Cell & Environment*,
963 40(6), 816–830. <https://doi.org/10.1111/pce.12852>

964 Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Peñuelas, J., & Seneviratne, S. I.
965 (2018). Quantifying soil moisture impacts on light use efficiency across biomes. *New
966 Phytologist*, 218(4), 1430–1449. <https://doi.org/10.1111/nph.15123>

967 Thornley, J. H. (1976). *Mathematical Models in Plant Physiology*. Academic Press (Inc.)
968 London, Ltd.

969 United Nations Environment Programme (1992). World Atlas of Desertification.
970 <https://wedocs.unep.org/20.500.11822/42137>.

971 Wang, Y., Sperry, J. S., Anderegg, W. R. L., Venturas, M. D., & Trugman, A. T. (2020). A
972 theoretical and empirical assessment of stomatal optimization modeling. *New*
973 *Phytologist*, 227(2), 311–325. <https://doi.org/10.1111/nph.16572>

974 Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Wofsy, S. C., Shaver, G. R.,
975 Melillo, J. M., Munger, J. W., Fan, S. M., & Nadelhoffer, K. J. (1996). Modelling the
976 soil-plant-atmosphere continuum in a *Quercus-Acer* stand at Harvard Forest: The
977 regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties.
978 *Plant Cell, and Environment.*, 19(8), 911–927. <https://doi.org/10.1111/j.1365-3040.1996.tb00456.x>

980 Wolf, A., Anderegg, W. R. L., & Pacala, S. W. (2016). Optimal stomatal behavior with
981 competition for water and risk of hydraulic impairment. *Proceedings of the National*
982 *Academy of Sciences*, 113(46), E7222–E7230. <https://doi.org/10.1073/pnas.1615144113>

983 Yamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C₃,
984 C₄, and CAM plants: Temperature acclimation and temperature adaptation.
985 *Photosynthesis Research*, 119(1), 101–117. <https://doi.org/10.1007/s11120-013-9874-6>

986 Yi, K., Maxwell, J. T., Wenzel, M. K., Roman, D. T., Sauer, P. E., Phillips, R. P., & Novick, K.
987 A. (2019). Linking variation in intrinsic water-use efficiency to isohydricity: A
988 comparison at multiple spatiotemporal scales. *New Phytologist*, 221(1), 195–208.
989 <https://doi.org/10.1111/nph.15384>

990 Yi, K., Smith, J. W., Jablonski, A. D., Tatham, E. A., Scanlon, T. M., Lerdau, M. T., Novick, K.
991 A., & Yang, X. (2020). High heterogeneity in canopy temperature among co-occurring
992 tree species in a temperate forest. *Journal of Geophysical Research: Biogeosciences*,
993 125(12), e2020JG005892. <https://doi.org/10.1029/2020JG005892>

994 Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P., & Novick, K. A.

995 (2019). Response of ecosystem intrinsic water use efficiency and gross primary

996 productivity to rising vapor pressure deficit. *Environmental Research Letters*, 14(7),

997 074023. <https://doi.org/10.1088/1748-9326/ab2603>

998 Zhou, S. X., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G., & Prentice, I. C. (2013). How

999 should we model plant responses to drought? An analysis of stomatal and non-stomatal

1000 responses to water stress. *Agricultural and Forest Meteorology*, 182–183, 204–214.

1001 <https://doi.org/10.1016/j.agrformet.2013.05.009>

1002 Zhou, S. X., Medlyn, B., Sabate, S., Sperlich, D., & Prentice, I. C. (2014). Short-term water

1003 stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis

1004 differ consistently among tree species from contrasting climates. *Tree Physiology*,

1005 34(10), 1035–1046. <https://doi.org/10.1093/treephys/tpu072>