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Abstract

According to classic stomatal optimization theory, plant stomata are regulated to
maximize carbon assimilation for a given water loss, and a key component of stomatal
optimization models is marginal water-use efficiency (mWUE). While the mWUE is often
assumed to be constant, variability of mWUE under changing hydrologic conditions has been
reported. However, there has yet to be a consensus on the patterns of mWUE variabilities and
their relations with atmospheric aridity. We investigate the dynamics of mWUE in response to
vapor pressure deficit (VPD) and aridity index using carbon and water fluxes from 115 eddy
covariance towers available from the global database FLUXNET. We demonstrate a non-linear
mWUE-VPD relationship at a sub-daily scale in general; mWUE varies significantly at both low
and high VPD levels. However, mWUE remains relatively consistent within the mid-range of
VPD. Despite the highly non-linear relationship between mWUE and VPD, the relationship can
be informed by the strong linear relationship between ecosystem-level inherent water-use
efficiency (IWUE) and mWUE using the slope, m*. We further identify site-specific m* and its
variability with changing site-level aridity across six vegetation types. We suggest accurately
representing the relationship between IWUE and VPD using non-linear functions, such as
Michaelis-Menten or quadratic functions, to ensure precise estimation of mWUE variability for

individual sites.
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Plain Language Summary

Plants employ diverse strategies for water utilization during growth. Marginal water-use
efficiency (mWUE) quantifies how effectively plants assimilate carbon relative to the water they
lose through transpiration. A scientific debate exists regarding how mWUE responds to dry
conditions. To investigate this, we analyze data from various vegetation types worldwide,
observing changes in mWUE under dry conditions. Contrary to common assumptions, mWUE is
not a constant; it varies significantly based on moisture levels. Additionally, we show that a
simpler measure called inherent water-use efficiency (IWUE) can help explain this complicated

relationship, which is useful for predicting plant growth under different moisture conditions.

Keywords

Climate change, drought, eddy covariance, FLUXNET, stomatal optimization theory, vapor

pressure deficit, water-use efficiency

Running title

Response of mWUE and IWUE to changing aridity
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1. Introduction

Terrestrial plants mitigate global warming by sequestering atmospheric carbon dioxide
(CO2) through photosynthesis (Beer et al., 2010). However, photosynthesis is inherently linked
with plant water loss via transpiration, as CO> and water vapor share the same stomatal pathway.
Plants risk hydraulic damage during droughts if they maintain high stomatal conductance as soil
water availability decreases and atmospheric demand increases, resulting in low leaf water
potential and xylem cavitation. Therefore, plants must balance stomatal function to optimize
carbon uptake while minimizing transpirational water loss and hydraulic stress (Cowan &
Farquhar, 1977; Katul et al., 2010; Sperry et al., 2017; Wang et al., 2020). To predict plant
ecophysiological responses to projected changes in atmospheric CO; concentration, elevated
atmospheric water demand, and more severe and frequent drought events, we need a mechanistic
understanding of how different ecosystems regulate the trade-off between photosynthetic carbon
assimilation and transpirational water loss.

While carbon uptake is usually represented through mechanistic models of
photosynthesis (e.g., the Michaelis-Menten equation (Michaelis & Menten, 1913; Marshall &
Biscoe, 1980; Thornley, 1998); the Farquhar model (Von Caemmerer, 2000; Farquhar et al.,
1980a)), water use (i.e., transpiration) is often described based on empirical relationships that
prescribe how stomatal conductance responds to environmental drivers and carbon uptakes. For
example, the Ball-Berry model (Ball et al., 1987) is one of the most widely used empirical
stomatal conductance models (Anderegg et al., 2017; Buckley, 2017; Katul et al., 2010), and has

been readily incorporated into many climate models (Bonan et al., 2014). It takes the form:

A
gs = 9go + glc—RH (D

a
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where gs is stomatal conductance (mol m? s™), 4 is carbon assimilation rate (umol m2 s™), ¢, is
atmospheric CO concentration (ppm), RH is relative humidity at the leaf surface, and go and g1
are empirically fitted parameters. To simulate the non-linear variation in gs with changing

humidity, Leuning (1995) modified the Ball-Berry model by replacing relative humidity with a

vapor pressure deficit (VPD) response function as follows:

A

Is =g0+g1' VPD (2)
(ca=T(1+ VPDO)

where I'* is CO, compensation point for photosynthesis (ppm) and VPDy is the empirically
determined coefficient, representing the slope of the relationship between gs and VPD. These
empirical models are relatively simple, easy to use, and work well for well-watered conditions
(Bonan et al., 2014). However, they have an incomplete grounding in physiological theory,
leading to uncertainty when they are extrapolated to predict plant function under unprecedented
climate conditions (Franks et al., 2018; Knauer et al., 2015, 2018; Medlyn et al., 2012; Sabot et
al., 2022).

An alternative way to enable the theoretical interpretation of leaf-level stomatal
conductance models is to adopt the principle of stomatal optimization theory (Anderegg et al.,
2018; Bonan et al., 2014; Katul et al., 2009; Katul et al., 2010; Medlyn et al., 2012; Novick et al.,
2016b; Sperry et al., 2017; Wolf et al., 2016). Stomatal optimization theory was originally based
on a hypothesis that stomata are regulated to maximize carbon assimilation (4) for a given water
loss (transpiration, E). A key parameter in this class of models is the so-called “marginal water-
use efficiency (mWUE),” here defined as the ratio of a change in £ to a change in 4 (0E /0A)
following Cowan and Farquhar (1977), though it is sometimes defined as the inverse form
(0A/OE) (Katul et al., 2010; Manzoni et al., 2011). The optimality models often maintain the

mWUE constant over arbitrary time steps (e.g., daily), assuming abundant water at the canopy
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(Buckley, 2017; Cowan & Farquhar, 1977; Makela et al., 1996). However, this may not hold true
at sub-daily timescales, where high atmospheric demand (i.e., VPD) during midday can decrease
water potential at the canopy level even when soil moisture is abundant (Anderegg et al., 2017;
Grossiord et al., 2020).

Understanding how mWUE changes under hydrologic stress is necessary for the
optimization models in a prognostic sense, yet no consensus on the magnitude or even direction
of these changes exists. For instance, Manzoni et al. (2011) and Zhou et al. (2013, 2014)
performed meta-analyses of leaf gas exchange measurements from previous studies that spanned
wide ranges of species and moisture conditions. A major difference in their approaches was the
proxy for plant water status; Manzoni et al. (2011) used mid-day leaf water potential, while Zhou
et al. (2013, 2014) used pre-dawn leaf water potential as a proxy for soil moisture availability.
Similarly, Lin et al. (2015) compiled a global database of leaf gas exchange measurements
spanning diverse plant functional types and estimated a slope parameter (g1) (Medlyn et al.,

2012), which is analogous to the slope parameter from empirical models (Eqgs. 1 & 2) and

proportional to m (Medlyn et al., 2012). They further evaluated the relationship between
g1 and a moisture index, defined as the ratio of mean annual precipitation to the equilibrium
evapotranspiration. Mikel4 et al. (1996) and Lu et al. (2016) took a theoretical approach to
examine short- and long-term optimal stomatal behavior, respectively, in response to the soil
moisture availability assuming that plants are adapted to the stochastic rainfall patterns of their
environments. More recently, alternative stomatal optimization perspectives have been proposed,
which presume stomata function to maximize carbon uptake while minimizing water costs,
including those linked to hydraulic damage during droughts (Anderegg et al., 2018; Sperry et al.,

2017; Wolfet al., 2016). While promising, in contrast to the Medlyn et al. (2012) model, these
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newer formulations have yet to be integrated into land surface model schemes (but see Kennedy
et al., 2019, for a study implementing plant hydraulics in the Community Land Model). While
theoretical expectation and many studies suggest decreasing mWUE as water stress drives
reductions to gs, there is some evidence of increasing mWUE under water stress (Farquhar et al.,
1980b; Grieu et al., 1988; Zhou et al., 2013), although reasons for this needed to be clarified.

It is also important to note that canopy water status and water potential are not
determined solely by the availability of water supply but by the balance between water supply
and demand, with VPD as a major force exerted on the canopy by the atmosphere (Manzoni et
al., 2011, 2013; Novick et al., 2019). Thus, it is reasonable to expect that mWUE must be
adjusted with changing atmospheric water demand unless other factors limit the plant response
(e.g., compromised hydraulic conductivity under water stress, limited soil moisture availability
to plants) (Brodribb et al., 2005; Medlyn et al., 2012). Different plants or ecosystems may adjust
differently, resulting in divergent responses of mWUE to changing VPD. Understanding the
relationship between mWUE and VPD is important given that VPD is expected to keep
increasing in the future, which will exert further water stress on plants (Ficklin & Novick, 2017,
Grossiord et al., 2020; Novick et al., 2016a; Zhang et al., 2019). Furthermore, while soil
moisture is a stochastic variable due to its dependency on intermittent rainfall, VPD is smoother
in time and easier to monitor through various meteorological or gas exchange measurement
techniques. Although VPD and soil moisture limit plants’ carbon uptake and water use
independently (Yi et al., 2019), VPD can be used as a proxy of water stress at a sub-daily scale
where VPD plays a primary role in regulating stomatal regulation unless severe soil moisture
deficiency, as suggested by the models with sub-daily timesteps (e.g., Ball-Berry model and its

variations), and in turn influencing the balance between carbon uptake and water loss (i.e., water-
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use efficiency) at a sub-daily scale (Baldocchi et al., 2022; Grossiord et al., 2020; Novick et al.,
2016a). Therefore, examining the association between mWUE and VPD would add insight into
the predictability of soil moisture alone.

The objectives of this study are 1) to investigate the variation of mWUE at an hourly
timescale in response to changing VPD and 2) to explore approaches for estimating mWUE
explicitly from the modeled relationship between intrinsic water-use efficiency (iWUE, carbon
assimilation per unit stomatal conductance, representing water-use efficiency at leaf level) and

VPD. The Ball-Berry model (Eq. 1) reveals that the parameter g1, which is proportional to

m (Medlyn et al., 2012), is related to A/gs (= 1WUE at leaf level). The iWUE can be more
straightforwardly estimated from field measurements across various spatiotemporal scales,
including leaf gas exchange (daily to weekly at the leaf level), dendrochronology
(seasonal/annual at the tree level), and eddy covariance (hourly at the stand level) (see more
discussion on iWUE at different scales from Beer et al., 2009 and Yi et al., 2019). Notably, the
inference of iIWUE from tree-ring analyses provides an avenue for understanding historical
variations in iWUE and, potentially, mWUE. While iWUE has a mathematically simpler form
and thus facilitates modeling its response to water stress, the complex mathematical expression
of mWUE poses challenges in generalizing its variability at a sub-daily timescale. By elucidating
the correlation between iWUE and mWUE, we can gain insights into the response of mWUE to
water stress. Additionally, through site comparisons, we further explore whether there is an
emerging pattern in the correlation between iWUE and mWUE across different vegetation types

and aridity levels.

Table 1. A glossary of terms related to water-use efficiency.
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Term or symbol

Definition

A
Ca
E
ET

80
g1

8s
GPP
iIWUE
IWUE

mWUE

Pa
VPD

Carbon assimilation rate
Atmospheric CO; concentration
Transpiration rate
Evapotranspiration rate

Intercept parameter in Ball-Berry model (represents minimum leaf
conductance)

Slope parameter in Ball-Berry model (represents marginal water-use
efficiency, mWUE)

Stomatal conductance

Gross primary productivity
Intrinsic water-use efficiency; leaf-level water-use efficiency (=4 / gs)

Inherent water-use efficiency; a proxy of intrinsic water-use efficiency
at the ecosystem level (= GPP X VPD / ET / P,, Beer et al., 2009)
Marginal water-use efficiency, the ratio of a change in E to a change in
A (= 0E/0A)

Atmospheric pressure

Vapor pressure deficit

2. Materials and Methods

2.1. FLUXNET data

We obtained half-hourly measurements of carbon and energy fluxes, along with ancillary

environmental data, from 115 flux towers across FLUXNET sites. These data were collected

using the FLUXNET 2015 Tier 1 database (Table S1) (Pastorello et al., 2020). Eddy covariance

records, which have the benefit of providing continuous meteorological and gas exchange data at

the high temporal resolution, are very well suited for investigating the relationship between gas

exchange dynamics, mWUE, and VPD at the ecosystem scale.

We selected the study sites from six vegetation types (grassland, cropland, shrubland,

savanna, broadleaf forest, and needleleaf forest, based on the IGBP land cover classification
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system) based on the data availability for the variables required for the analysis. For reliable and
clear mWUE analysis, we only included the sites that had at least three years of data and a strong
iWUE-VPD correlation. Specifically, we selected the sites that had R? > 0.8 with any of the three
model fits — linear, quadratic, or Michaelis-Menten —, which was the case for more than 70% of
the sites over three years of data (See section 2.4 for more information about the model fits). In
addition, we only used the data where net ecosystem exchange (NEE), latent heat flux (LE), and
sensible heat flux (H) were either original measurements (quality control flag = 0) or gap-filled
data of good quality (quality control flag = 1) to ensure data quality and make the most of the
data. We only used daytime data when net radiation was greater than 0 W m™% without
precipitation. We also limited our analysis to the growing season, where daily GPP was larger
than 10% of the 95" percentiles of daily GPP for each site with > 5°C air temperature. We used
the GPP partitioned based on the standard daytime method (variable name:

GPP_ DT VUT REF, Lasslop et al., 2010). Additional filtering criteria were applied for some
key variables: atmospheric CO2 concentration between 350 ppm and 420 ppm, friction velocity
(u") greater than 0.1 m s™!, and canopy conductance calculated by Penman-Monteith equation
(Monteith, 1965) greater than 0.05 mol m™ s’!. Lastly, we removed outliers of the environmental
drivers and biological variables (i.e., air temperature, relative humidity, atmospheric CO»
concentration, latent heat flux, wind speed, VPD, atmospheric pressure, friction velocity, net
radiation, soil water content, canopy conductance, iWUE, and mWUE) by excluding data that
were below the 5™ or above the 95" percentiles of each variable. Note that the purpose of data
filtering was to remove exceptionally low or high values of the variables, which we consider

outliers. Our goal was to ensure that the results, especially the variability of mWUE, were not

10
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unduly influenced by these outliers. We carefully examined the histograms for the variables for

each site to minimize data reduction while retaining useful information.

2.2. Two different approaches describing mWUE

We used two different approaches for describing the mWUE: two optimization-theory-
driven mWUE, the solution of “0E /dA” suggested by Katul et al. (2010) and the “g;” parameter
proposed by Medlyn et al. (2012). The difference between the optimization-theory-driven
mWUE is based on their interpretation of stomatal optimization. Katul et al. (2010) assumed that
stomata are optimizing for photosynthesis limited by Rubisco activity (i.e., carbon-limited), and
plant stomatal optimality is subject to change (i.e., mWUE is not constant). On the other hand,
Medlyn et al. (2012) assumed that stomata are optimized for photosynthesis limited by RuBP-
regeneration (i.e., light-limited). In either case, the optimization objective should result in
constant mWUE values at short timescales — Katul et al. (2010) suggested approximately 10
minutes, while Medlyn et al. (2012) suggested daily or longer — although it may change at longer
timescales as hydrologic conditions evolve.

Following Katul et al. (2010), the dE /0A emerges from an optimality condition
determined with a linearized variant of the Farquhar et al. (1980) photosynthesis model, defined

as:

A\ 1.6VPDc,

O
— = 16VPDc, (—
A~ HoVPDca (gs) iIWUE? ®

where iWUE 1is defined as a ratio of 4 to gs at the leaf-scale (Beer et al., 2009).
The other perspective on optimality proposed by Medlyn et al. (2012) takes an analogous

form to an empirical model proposed by Leuning (1995) (Eq. 2):

ge~g +16(1+ 91 )i 4)
s VVPD/ ¢q

11
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This approach suggests that the parameter g; represents a slope between gs and A/c,VVPD and

is proportional to \m (Lin et al., 2015; Medlyn et al., 2012). Therefore, to facilitate
comparison between the two approaches, we compare dE /dA with squared g1 (i.e., g1%) in
throughout the results. Eq. 4 was rearranged with an assumption that go, which represents
cuticular conductance to water vapor, is negligible (but see Manzoni et al. (2011) and Lanning et

al. (2020) for discussion of the role of cuticle conductance under drier conditions):

91 = (T52 = )VVPD = (rrmz— 1)VVPD  (5)

Consequently, two different mWUE parameters, 0E /dA (mol H>O - kPa - mol! of dry air) and g

(mol H2O - kPa%® - mol™! of dry air), were expressed as functions of iWUE, c,, and VPD.
Assuming c, is relatively stable over a short period, we focus on how iWUE (as a biological
factor) and VPD (as an indicator of water stress governing plant response at a short temporal
scale, e.g., sub-daily) affect both mWUE parameters (more details discussed in section 2.5). We
applied an approximation of iWUE at the ecosystem level, inherent WUE (IWUE), defined by
Beer et al. (2009). IWUE (umol C mol™! H,0O) was particularly suitable for our study because
IWUE can be calculated from the measurements of carbon and water fluxes by eddy covariance
technique and ancillary meteorological data, i.e., GPP (umol m? s™') from net ecosystem
exchange representing canopy-level carbon assimilation, evapotranspiration rate (ET, mol m2 s°
1) from latent heat flux, VPD under the assumption of equal temperatures of leaves and

atmosphere, and atmospheric pressure (Pa, kPa):

WUE GPP -VPD ¢
- ET-P, (6)

Several important assumptions for the definition of IWUE include (1) small and invariant soil

evaporation (E) compared to plant transpiration (7) over the course of the day (hence AET ~ AT)

12



257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

especially during days without rainfall (conditions we used for our analysis), (2) thermal
equilibrium between leaf and air, which influences VPD, and (3) disregarding of aecrodynamic
resistance through the boundary layer that can change depending on the vegetation structure (See
Beer et al. (2009) for more discussion about IWUE as a proxy of ecosystem-level intrinsic
WUE). We confirmed the robustness of IWUE as a proxy of iWUE at the ecosystem level by
comparing it with a few other definitions of iWUE (the comparison results are available in the
Supporting information; Figs. S1 & S2). Note that IWUE and mWUE were computed using half-
hourly FLUXNET data; hence, their variabilities discussed here represent plant physiological

response at a sub-hourly scale.

2.3. Sensitivity of mWUE parameters to moisture condition

Variations of mWUE parameters in response to moisture conditions (i.e., atmospheric
water demand and site-level aridity) were evaluated at the individual site level and across sites.
For the individual sites, mWUE parameters were partitioned into discrete bins spanning a range
of VPD. To avoid biases from unevenly distributed data points across the range of VPD (i.e.,
sample sizes at low and high VPD are smaller than those for the intermediate level of VPD), data
binning was performed in a way that the sample sizes were evenly distributed into 30 bins across
the range of VPD at each site. Then, mWUE-VPD relationships were produced based on the
mean mWUE values generated for the different VPD bins.

To compare across the sites, the relationships between site-specific mWUE and aridity
index (AI) were evaluated (See Fig. S3 in the Supporting Information for Al at all the study
sites). Al was defined as the ratio of annual precipitation (P) to annual potential

evapotranspiration (PET) and averaged over the observation period for each site (UNEP, 1992):

13
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A= ppr

(7)
The annual PET was determined by summing up the half-hourly PET values over the course of a

year, employing the FAO Penman-Monteith method as outlined by Allen et al. (1998):

900
0408A(Rn - G) + ymu(es - ea)

8
A+y(1+0.34u) ®)
where A is the slope of vapor pressure curve (kPa °C™1), Ry, is the net radiation (MJ m™ hr'!), G is

PET =

the soil heat flux density (MJ m hr'!), y is the psychrometric constant (kPa °C™1), T, is the air
temperature (°C), u is the wind speed (m s), e is the saturation vapor pressure (kPa), and e, is
the actual vapor pressure (kPa). The estimation of Al is sensitive to gaps in precipitation data.
Therefore, we used long-term mean annual precipitation provided on the site information page at
the FLUXNET website rather than calculating mean annual precipitation from the
FLUXNET2015 dataset. For the sites where annual precipitation records were not provided, the

high-frequency precipitation record in the FLUXNET2015 dataset was used.

2.4. Assessing the relationship between mWUE and IWUE

As a first step to conceptually understand the relationship between mWUE and IWUE,
the relationship between IWUE and VPD was modeled by three hypothetical functions — linear,
quadratic, and the Michaelis-Menten functions — based on the observations across the sites. The
quadratic model of IWUE-VPD (hereafter IWUEq) depicts the case where IWUE increases with
VPD until it reaches a maximum and then decreases afterward. In other words, when VPD is
low, increasing IWUE with increasing VPD reflects a faster decrease of gs than 4 (due to the
high intercellular CO> concentration, ¢;) while decreasing IWUE with increasing VPD at high

14
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VPD reflects a faster decrease of 4 than gs (low gs at high VPD reduces ¢; and eventually causes
the steep decline of 4). The linear model (hereafter IWUEL), on the other hand, represents a
simplified IWUE-VPD relationship where IWUE would keep increasing with rising VPD
assuming IWUE is only limited by gs but not by photosynthetic capacity. The Michaelis-Menten
function (hereafter IWUEwm) represents the saturating IWUE under high VPD but does not
account for IWNUE reduction. Thus, the linear and quadratic functions are considered plausible
“end-members” describing the actual response of IWUE to VPD, while the Michaelis-Menten
function is a more intermediate case. Mathematically, the IWUEL, IWUEw, and IWUEq take the
forms:

IWUE, =mVPD +n 9

IWUE, 4y - VPD
k +VPD

IWUEy, = (10)

IWUEy = —a (VPD — b)* + ¢ (11)

where m is the slope of IWUEL, n is IWUEL at VPD = 0, IWUEnax is the maximum potential
IWUE, £ 1s the VPD at which IWUE proceeds at half IWUEmax, a represents the curvature of
IWUEg, b is the vertex, c¢ is the maximum IWUEq at the vertex.

The expected dynamics of mWUE across the FLUXNET sites in response to changing
VPD were simulated based on an empirically driven IWUE-VPD model to understand how the
mWUE metrics would respond to changing VPD and IWUE. To generate possible patterns of
mWUE-VPD, the range of coefficients in the IWUE models was determined empirically from
the data across the sites. To facilitate interpretation, the patterns were simulated by changing the
curvature of the quadratic equation (Eq. 11), assuming the intercept is equal to zero. For the
simulation of mMWUE, a constant c. was applied by calculating its average across the sites to

focus on the interactions among VPD, IWUE, and mWUE (Egs. 3 & 5).
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Lastly, we investigated how IWUE (as a biological factor) and aridity index (as an
environmental driver) influence the variability of mWUE. Based on the Egs. 3 and 5, we
hypothesized that a simple relationship between mWUE and the inverse of IWUE (IWUE™)
might emerge and would be affected by changing moisture conditions. Therefore, we identified a
relationship between mWUE and IWUE"! for each study site and examined whether the

relationship can be generalized across the sites based on the site-specific aridity index.

3. Results

3.1. Empirical response of IWUE to changing VPD or Al

To test the robustness of IWUE as a proxy of intrinsic water-use efficiency at the
ecosystem level, we first compared the two different definitions of intrinsic water-use
efficiencies at stand level, GPP divided by surface conductance (Gs) (i.e., iWUE = GPP/G;) and
inherent WUE (i.e., IWUE = GPP/ETxVPD/P,). The two WUE definitions were linearly
correlated across the study sites (Fig. 1), and most sites had coefficients of determination larger
than 0.95 (Fig. 1b), suggesting the robustness of IWUE as a proxy of intrinsic water-use
efficiency at the ecosystem level (see the Supporting Information for an additional comparison of
multiple definitions of intrinsic water-use efficiency; Figs. S1 & S2). We also performed the
entire analysis using these two WUE definitions and observed similar results, which led to the

same conclusion. Therefore, we only show the results from using IWUE hereafter.
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Figure 1. Comparison of two different definitions of water-use efficiencies at all sites (a) and at
three sample sites (c, d, e): inherent water-use efficiency at the ecosystem level, IWUE (=
GPP/ETXVPD/P,), and intrinsic water-use efficiency at the ecosystem level, iWUE (= GPP/Gg).
Refer to Beer et al. (2009) for the comparison of different definitions of water-use efficiencies at
leaf and ecosystem-level. Individual dots in panels a, c, d, and e indicate WUE partitioned into
discrete bins spanning a range of VPD. Solid red lines indicate significant linear regressions (P <
0.05), and dashed red lines indicate 95% confidence interval. Dashed gray lines represent 1:1
lines. Panel b shows the histogram of coefficients of determination (R?) of the linear fits between

IWUE and iWUE across the study sites.

In most cases, the Michaelis-Menten model and the quadratic model explained empirical

IWUE patterns across the range of VPD better than the linear model (Fig. 2 and Fig. S3 in the
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Supporting Information). Specifically, the Michaelis-Menten model worked better for the sites
where the increase of IWUE plateaued at high VPD, and the quadratic model worked better for
the sites where IWUE started decreasing at very high VPD. On the other hand, the linear model

often overestimated IWUE at low and high VPD, except the sites where IWUE-VPD was highly

linear.
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Figure 2. Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten:
green, quadratic: red) responses of inherent water-use efficiency (IWUE) to changing vapor
pressure deficit (VPD). The examples include three sites best represented by the linear model
(IT-BCi, cropland), the Michaelis-Mentes function (CA-NS2, needleleaf forest), and the
quadratic model (US-Ton, savannah), respectively. Each error bar (light gray) represents the
standard deviation of IWUE for each VPD bin (95% confidence). See Fig. S4 in the Supporting

Information for the IWUE-VPD relationships of all the study sites (n = 115).

When the site-specific IWUE-VPD slope values derived from the linear model (i.e., m in
Eq. 9) were combined, we found increasing m with rising aridity index (P <0.001, Fig. 3a).

However, site-level aridity did not influence the intercept of IWUE-VPD relationship (P > 0.05,
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not shown here). When the sites were divided by their vegetation types, m increased with a rising
aridity index in all vegetation types. However, the trend was only significant in grasslands,

croplands, and shrublands (P < 0.05, Fig. 3).
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Figure 3. Relationship between the site-level aridity index and the regression slope of IWUE-
VPD from individual sites (i.e., m in Eq. 9). Panel a shows the relationship when all sites were
consolidated. The relationship is also illustrated separately for six different vegetation types in
panels b to g. Each circle represents m from an individual site. Error bars represent standard
errors of linear regressions. Solid lines indicate significant linear relationships (P < 0.05) and

dashed lines indicate 95% confidence intervals.

3.2. Response of mWUE to changing VPD
Both of the mWUE indices, 0E /A and squared g1 (g1%), showed a very similar response
to changing VPD and suggested that the directional change of mWUE can be interpreted

differently depending on the pattern of IWUE-VPD (Fig. 4). When the iWUE-VPD relationship
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is strongly linear, mWUE decreased exponentially and became less variable as VPD increased
(Brighter curves in Figs. 4b & 4c). However, as the iWUE-VPD relationship became more non-
linear, mWUE declined at lower VPD and then increased at higher VPD (i.e., concave-up),

rendering the mWUE-VPD relationship non-monotonic (Darker curves in Figs. 4b & 4c).
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Figure 4. Hypothetical models of IWUE-VPD relationship (a), simulated d0E /dA-VPD (b) and
212-VPD (c) relationships based on typical cases, and their corresponding patterns illustrated

using observations from all study sites (d, e, and f). The mWUE curves are the results of using
the IWUE-VPD relationships of the corresponding colors. Note that IWUE-VPD relationships

become more linear with lighter colors.
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The simulated patterns of mWUE-VPD agreed well with the patterns from the empirical
observation when the appropriate function for the IWUE-VPD relationship was applied. We
show mWUE-VPD relationships from three study sites as examples (Fig. 5), of which IWUE-
VPD was represented best by linear, the Michaelis-Menten, and quadratic functions, respectively
(see Fig. 2 for their corresponding IWUE-VPD relationships. Also, see Fig. S5 in the Supporting
Information for the results of all study sites). As suggested by the simulation, the site with highly
linear IWUE-VPD (IT-BCi) showed exponentially decreasing mWUE with rising VPD. In
contrast, the other two sites with highly non-linear IWUE-VPD relationships had a concave-up
pattern of mWUE-VPD. Notably, the mWUE-VPD relationship generated using a less optimal
IWUE-VPD model can differ substantially from the empirical pattern. For example, application
of linear IWUE-VPD function to the CA-NS2 and US-Ton, the sites represented best by the
Michaelis-Menten and quadratic functions, respectively, generated concave-down mWUE-VPD
pattern that is opposite to the actual pattern (Fig. 5). The disagreements between models and

observations increased as VPD approached very high and very low extremes.

21



420

421

422

423

424

425

426

427

428

429

430

431

432

0E/dA (mol H,O - kPa - mol")

g,2 (mol? H,O - kPa - mol2)

IT-BCi (CRO)

0.8 mm Michaelis-Menten
0.6

041 ‘e

.,{e': .
0.2 N
0
0 1 2 3
VPD (kPa)
IT-BCi (CRO)

100

80

60

40+ o

..
Fo
20 "‘!.-,Q
ot
"i\'\.
0
0 1 2 3
VPD (kPa)

dE/dA (mol H,O - kPa - mol')

g,2 (mol2 H,O - kPa - mol-2)

0.8

0.6

0.4

0.2

100

80

60

40

20

CA-NS2 (NF)

VPD (kPa)
CA-NS2 (NF)

VPD (kPa)

0E/dA (mol H,O - kPa - mol")

7,2 (mol2 H,O - kPa - mol2)

0.8

0.6

0.4

0.2

100

80

60

40

20

US-Ton (SAV)

VPD (kPa)
US-Ton (SAV)

VPD (kPa)

Figure 5. Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten:

green, quadratic: red) relationships between dE /0A (analytical solution by Katul et al., 2010)

and vapor pressure deficit (VPD), and between gi* (Medlyn et al., 2012) and VPD. The examples

include three sites best represented by the linear IWUE-VPD model (IT-BCi, cropland), the

Michaelis-Menten function (CA-NS2, needleleaf forest), and the quadratic model (US-Ton,

savannah), respectively. See Fig. 2 for the IWUE-VPD relationships at the corresponding sites.

Each error bar (light gray) represents the standard error of the mean IWUE for each VPD bin

(95% confidence). See Fig. S5 in the Supporting Information for the dE /dA -VPD relationships

at the 115 study sites.

The variability of mWUE to changing VPD was substantial in most cases (Fig. 6). Out of

the total of 115 study sites, the percent increase of dE /dA (i.e., growth in dE /0A from the
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lowest to the largest value at a site) was larger than 50% in 43 sites, and larger than 100% in 22
sites. Note that the reported percent increase was determined by excluding the upper and lower
10% of values. This step was taken to prevent exaggeration caused by extremely high 0E /0A at

low VPD, which is commonly observed across the study sites (see Figure S5 in the Supporting

Information for the variability of 0E /0A with VPD at all the study sites). As a result, the

reported percent increase represents a conservative estimate overall.
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Figure 6. Sorted percent increase of dE /0A (from the lowest dE /0A). Embedded plots in GRA
and SH are zoomed in for those sites where percent increases are lower than 100%. Note that the
percent increases were calculated after removing values of the highest 10% and lowest 10% to
avoid exaggeration due to very high dE /3A at low VPD at some sites. Therefore, the reported

percent increase values are conservative estimates for most sites.

3.3. Correlation between mWUE and IWUE

Although the trend of mWUE-VPD seems hard to generalize, the simulated mWUE had a
clear linear relationship with IWUE™! for the majority of IWUE's range regardless of the linearity
of the IWUE-VPD relationship except when IWUE is very high (i.e., under high VPD, Fig. 7).
While it is limited to a small portion of the entire range, there was a sharp directional change in
the variation of mWUE near a point where INUE"! was smallest, and strong linearities between
mWUE and IWUE"! were found before and after the transitional point. Substantial hysteresis

became more evident as the IWUE-VPD pattern became more curved (darker curves in Fig. 4).

(a) (b)

SE/8A

IWUE™ IWUE™
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Figure 7. Simulated relationship between mWUE and IWUE"! (based on the hypothetical
IWUE-VPD model in Fig. 4). The colors of the curves correspond to those used in Fig. 4:
IWUE-VPD relationships become more linear with lighter colors. Dashed arrows in panel a

represent the directional change of VPD from low to high VPD.

As predicted by the simulated mWUE-IWUE™! relationships (Fig. 7), the empirical
mWUE-IWUE™! relationship was strongly linear (P < 0.001 at all sites, Fig. 8). A sign of
hysteresis was noticeable for the site that showed decreasing iWUE under very high VPD (US-
Ton, see Fig. 2 for its IWUE-VPD relationship). In contrast, hysteresis was less evident at the
other sites. When the relationship was drawn by grouping data by different levels of IWUE

(black dots in Fig. 8), hysteresis was not observed, and the mWUE-IWUE"! relationship was

strongly linear.
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Figure 8. Examples of empirical relationship between mWUE and IWUE"!. The examples
include three sites best represented by the linear IWUE-VPD model (IT-BCi, cropland), the
Michaelis-Mentes function (CA-NS2, needleleaf forest), and the quadratic model (US-Ton,
savannah), respectively. See Fig. 2 for the IWUE-VPD relationships at the corresponding sites.
Colorful dots represent hourly data points shaded based on the level of VPD (see color bars for
the scale of VPD). Black dots represent data binned by IWUE™!: Data binning was performed to
distribute sample sizes evenly across bins (~30 samples per bin). Error bars represent standard
deviations. The red and black solid lines indicate linear fits for hourly and binned data,
respectively. Dashed red lines represent confidence intervals for the slopes of linear regressions.
Note that red and black linear regressions and their confidence intervals overlap. See Fig. S6 in

the Supporting Information for the dE/dA - IWUE™! relationships at the 115 study sites.

We investigated whether the relationship between mWUE and IWUE™! could be
generalized across the sites based on the site-specific Al Specifically, the linear IWUE™! —
mWUE slopes (hereafter m *) from all study sites were merged, and their variability in response
to changing Al was evaluated. We found a significant linear relationship between m* and Al
when both are scaled by logio (P <0.001, Fig. 9). The m* was larger at the drier sites (i.e., sites
of lower Al) than at the wetter sites (i.e., sites of larger Al). However, we did not find a
significant relationship between the IWUE™! — mWUE intercept and AI (P > 0.05, not shown

here).
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Figure 9. Relationships between IWUE'-mWUE slope and aridity index (= P/PET) derived
from all the study sites (n = 115). Each circle represents the slope obtained from an individual
site. Both the x and y axes are scaled by logio. Solid red lines indicate linear regressions and

dashed lines indicate confidence intervals (95% confidence interval).

We further tested whether we could find the similar relationship when the sites were grouped by
the vegetation type. We found decreasing m * with rising Al in grasslands, croplands, and
shrublands (P <0.01, Fig. 10). On the other hand, m* was relatively constant across the range of

Al in savannas, deciduous broadleaf forests, and evergreen needleleaf forests (P > 0.05, Fig. 10).
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Figure 10. Relationships between log-transformed IWUE-mWUE slope and aridity index in
different vegetation types (GRA: grassland, CRO: cropland, SH: shrubland, SAV: savanna, BF:
broadleaf forest, NF: needleleaf forest). Each circle represents the log-transformed slope
obtained from an individual site. Solid lines indicate significant linear relationships (P < 0.05)

and dashed lines indicate 95% confidence intervals.

4. Discussion

Stomatal optimization theory, which originated with the work of Cowan and Farquhar
(1977), has experienced a recent surge in popularity as the vegetation modeling community
continually seeks ways to inject more theoretical rigor into Earth system models (Anderegg et
al., 2018; Bassiouni & Vico, 2021; Bonan et al., 2014; Feng et al., 2022; Katul et al., 2010; Katul
et al., 2009; Lin et al., 2018; Lin et al., 2015; Lu et al., 2020; Lu et al., 2016; Medlyn et al., 2012,
2017; Novick et al., 2016b; Sabot et al., 2022; Sperry et al., 2017; Wolf et al., 2016). The
marginal water-use efficiency (mWUE) is a key parameter in this type of model, but we still
need a clear understanding of how mWUE is regulated biologically and environmentally. Lin et

al. (2018) previously suggested suboptimal mWUE in response to VPD at a sub-daily scale by
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521  estimating site-specific, best-fitted exponent for VPD based on the variation model of optimality
522  theory (Medlyn model), which inspired our study. In comparison, our study is unique in

523  analyzing the dynamics of mWUE observed at the hourly timescale in response to changing VPD
524  owing to the long-term continuous carbon and water flux data from the network of eddy

525  covariance towers.

526 Another motivation for our study was the conflicting arguments over the dynamics of
527  mWUE in response to water stress. While mWUE is in general considered to be nearly constant
528  during a day under stable soil moisture conditions (Berninger & Hari, 1993; Fites & Teskey,

529  1988; Hall & Schulze, 1980; Hari et al., 2000), several studies showed that mWUE changed with
530  different levels of water stress. For example, theoretical considerations suggest a monotonic

531  decrease of mWUE with higher water stress when the stochasticity of rainfall depths is neglected
532 (Cowan, 1982; Makela et al., 1996), while some empirical estimates showed that mWUE

533  increases under severe water stress (Farquhar et al., 1980b; Grieu et al., 1988). On the other

534  hand, Manzoni et al. (2011) performed a meta-analysis of 50 species to estimate mWUE from
535  gas exchange observations along gradients of soil moisture and showed that mWUE decreases
536  under mild water stress but increases under severe water stress (note that they defined A =

537  0dA/OE, which is inverse of the definition used by Cowan & Farquhar (1977) and this study).

538

539  4.1. Relationship between IWUE and VPD

540 Based on the two equations of stomatal optimization theory (Egs. 3 & 5), we first

541  characterized the variability of mWUE based on the relationship between IWUE and VPD,

542  representing biological and environmental factors, respectively. We show that the variability of

543  IWUE must be modeled accurately to emulate the variability of mWUE in response to water
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stress correctly. For example, as demonstrated in Fig. 5 (CA-NS2 & US-Ton), oversimplifying
the IWUE-VPD relationship by modeling it with a linear function can incorrectly interpret
mWUE variability.

The non-linear IWUE-VPD relationship is presumably driven by different rates of carbon
assimilation and water loss in response to changing VPD at an hourly scale, reflecting the
balance between stomatal and non-stomatal limitations to photosynthesis at the leaf level
(Farquhar, 1978; Jones, 2014). Under low to moderate VPD conditions, photosynthesis is less
sensitive to changing intercellular CO2 concentration because stomatal conductance is high
enough to maintain the high intercellular CO2 when VPD is low to moderate. Therefore, the
quantity of reduced water loss by stomatal closure (ET at an ecosystem level) outweighs the
quantity of reduced carbon assimilation (GPP at an ecosystem level) when VPD rises (i.e.,
|AGPP| < |AET]), resulting in the increasing phase of IWUE. As VPD keeps increasing,
photosynthesis can be limited when the reduction of stomatal conductance under high VPD
conditions substantially reduces intercellular CO> concentration (i.e., |AGPP| = |AET]),
resulting in the steady phase of IWUE. As VPD becomes excessively high, photosynthesis will
be further suppressed by high temperature (Yamori et al., 2014) and low leaf water potential
(Lawlor & Tezara, 2009) that are associated with dry conditions (i.e., |AA| > |Ag|), leading to
the decreasing phase of IWUE.

Therefore, assuming a linear IWUE-VPD relationship may not only fail to emulate
observations but also oversimplify the physiological responses to water stress. Our analysis
recommends employing the Michaelis-Menten function for most sites while utilizing a quadratic
function for sites exhibiting extreme cases where IWUE declines under high VPD conditions.

The Michaelis-Menten function can be beneficial to characterize the IWUE-VPD relationship
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since the maximum potential IWUE and the rate of IWUE increase can be identified during
parameterization (Eq. 10). While the quadratic function can emulate IWUE-VPD relationships
very well or performs even better than the Michaelis-Menten function in some cases where
IWUE decreases at high VPD, it is parameterized empirically and as a result, lacks mechanistic
information. Nevertheless, the quadratic function is preferable to the linear function.

It is also important to consider the definition of water-use efficiency for accuracy. We
used inherent water-use efficiency (IWUE) as a proxy of intrinsic water-use efficiency (iIWUE)
at the ecosystem level as suggested by Beer et al. (2009), which can be estimated by GPP and ET
inferred from the flux tower observations. This approximation is particularly useful over a more
common ecosystem-level iIWUE = GPP/Gs because IWUE requires fewer variables and is easier
to extrapolate to a larger scale. However, it is important to note that ET/VPD in the equation of
IWUE (Eq. 6) is a proxy of canopy conductance, assuming the canopy is well coupled to the
atmosphere, boundary layer resistance is small, and thermal equilibrium between leaf and air is
achieved (Beer et al., 2009). In other words, IWUE under non-equilibrium between canopies and
atmosphere can be overestimated due to the higher VPD than the vapor pressure gradient near
the canopy surface (i.e., the difference between intercellular vapor pressure (e;) and atmospheric
vapor pressure (ea), ei — ea). Difference between leaf and air temperature can also influence the e;
— ea; 1f leaf temperature is higher than air temperature (as it often is, e.g., Novick & Barnes,
2023; Yi et al., 2020), e; will increase while e, remains constant, resulting in larger ej — e than
measured VPD and consequently underestimate IWUE. Therefore, it is important to address this
potential bias to quantify iWUE accurately. According to our results, there was a strong
correlation between the two ecosystem-level iIWUE proxies at the site level (Fig. 1), implying

that the choice of ecosystem-level iWUE definition is unlikely to influence our interpretation of
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the iIWUE and mWUE variabilities substantially. Furthermore, our comparison of multiple
definitions of iWUE using a mechanistic model, CANVEG (see the Supporting Information for
more details), suggested that IWUE is a good proxy of leaf-level iWUE and meets the general
assumptions to address scaling issues. Thus, we conclude that eddy covariance observation of
carbon and water fluxes is suitable to model the variability of intrinsic water-use efficiency in
response to changing VPD.

It is worth mentioning that there was a stronger linear relationship between the slope of
IWUE-VPD and aridity index (Fig. 4) in the ecosystems characterized by lower vegetation types
(e.g., grasslands, croplands, and shrubland). In contrast, ecosystems with higher vegetation (e.g.,
savannahs, broadleaf forests, and needleleaf forests) exhibited a weaker relationship. This
observation implies a potential link between water-use efficiency and the vertical structure of

vegetation, although the exact underlying mechanism remains uncertain.

4.2. Modeling the variability of mWUE

We compared two solutions of mWUE by Katul et al. (2010) (0E /0A) and Medlyn et al.
(2012) (g1) developed based on different assumptions on stomatal optimality (carbon-limited vs.
light-limited) for more robust conclusion. Despite the difference in the assumption, both
solutions yielded very similar results throughout our analysis, confirming that the optimality
assumption had little impact on evaluating the variability of mWUE in response to changing
moisture conditions.

We characterized the trend of mWUE by using VPD as an environmental driver (Figs. 4
& 5), where its variability in response to VPD was unique and not necessarily unidirectional,

thus making it hard to generalize with commonly available functions. Specifically, the variability
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of mWUE was simpler and decreased exponentially with rising VPD when the IWUE-VPD
relationship was more linear, making it easy to model the mWUE-VPD relationship (Figs. 4 &
5). However, the variability of mWUE was not unidirectional when the IWUE-VPD relationship
was non-linear, as observed in most cases (Fig. S5 in the Supporting Information); high
variability in mWUE is usually observed at low- and high-ends of VPD. On the other hand, when
mWUE was calculated under conditions of moderate VPD level only, the variability of mWUE
can be overlooked and considered constant. This complex pattern signifies the importance of a
comprehensive view of IWUE and mWUE across the full potential range of VPD. Observation
under conditions of a partial range of environmental factors is common in many types of field
measurements that have coarser time resolution (hourly vs. daily to weekly, e.g., eddy covariance
vs. leaf gas exchange measurements) unless they are performed frequently over a long period to
cover non-typical conditions. We were able to estimate precise variability of mWUE matching
with the hypothetical models owing to the large amount of data (FLUXNET2015) collected
every half-hour over the long period throughout the network of flux towers (total 1,036 site years
with many sites offering data collected over more than a decade), highlighting the value of long-
term, continuous measurements. Overall, our result of the mWUE-VPD relationship supports the
results of Manzoni et al. (2011) among the various conflicting results over the response of
mWUE in response to water stress, which found decreasing mWUE under mild water stress and
increasing mWUE under severe water stress from a meta-analysis of gas exchange observations.
As a solution to model unique patterns of mMWUE, we attempt to address its variability
with information that can be obtained easily from various types of field measurements (e.g., eddy
covariance, gas exchange, and tree-ring cores) and modeled empirically — IWUE. The

relationship between mWUE and IWUE was inferred from the two equations of the optimization
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theory (Egs. 3 & 5). We found a strong linear correlation between IWUE™! and mWUE from both
empirical data (Fig. 8) and modeling exercise (Fig. 7). In other words, the variability of mWUE
in response to changing VPD can be characterized by 1) the function of IWUE-VPD relationship
and 2) the slope between IWUE™! and mWUE. The relationship between IWUE-VPD is
relatively simple and can be identified with various field measurements. This raises the question
of whether a simple way exists to identify the slope between IWUE™! and mWUE. By
synthesizing the IWUE'-mWUE slopes across the sites, we found that the IWUE-mWUE slope
is highly correlated with the site-specific aridity index that can be characterized for different
vegetation types (Fig. 9). The correlation is conceivable from the equations of mWUE (Eqgs. 3 &

5). If, for instance, Eq. 3 is rearranged,

O /0 A

indicating that the slope between mWUE and the inverse of IWUE is proportional to VPD,
which is commensurate with aridity index at a site-level. The correlation between the IWUE-
mWUE slope and the aridity index at a site level implies that the aridity index is a good surrogate
for the site-specific IWUE'-mWUE slope.

We further illustrated how the correlations between the IWUE'-mWUE slope (m*) and
aridity index (Al) vary across vegetation types (Fig. 10). Among the vegetation types, GRA,
CRO, and SH had strong correlations between m* and Al, which suggested using different m*
depending on the site-level dryness. On the other hand, the low variability of m* observed in
SAV, BF, and NF suggests that constant m* can generate a reasonably accurate mWUE-VPD
relationship regardless of the site-level dryness. Although the reasons for this difference are not
entirely clear, this empirical relationship will help more accurately model the variability of

mWUE in response to changing VPD across the sites and biomes. Growth in data availability
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across the flux tower network will ensure the coverage of the full potential range of
environmental factors. More data availability can be achieved by consistently collecting good-
quality data from existing study sites and establishing new sites in underrepresented areas.
Furthermore, it will also help the development of m* in detail, for instance, based on the plant
water-use strategies, with the aid of conjoined field measurements such as water potential (¥) of

soil and plant.

4.3. Implications for future research

It is important to note that plant response to water stress is not only determined by the
water demand (i.e., atmospheric dryness or VPD) but also by the availability of water sources
(i.e., soil moisture). While volumetric soil moisture content (8) is often considered as a metric of
soil water available to plants, soil water potential (¥s) is the driving force of water flows that
becomes available to plants by moving along gradients of water potential through the plant (stem
and leaf) and eventually to the air. Moreover, ¥ is not only determined by the 6 but also by soil
physical properties, and thus can differ even under conditions of the same 6 (Campbell, 1974;
van Genuchten, 1980). Unlike ¥, 6 is widely measured and usually available with flux data, and
carbon and water fluxes are often explained as a function of 6 (Green et al., 2019; Novick et al.,
2016a). However, 6 may not characterize soil moisture availability to plants properly, and its
relationship with carbon and water fluxes is usually nonlinear and threshold-driven (Feldman et
al., 2019; Novick et al., 2022; Stocker et al., 2018), making the modeling of the relationship
between IWUE and soil moisture availability challenging. Therefore, enhanced accessibility to
¥ data by improving the ease and reliability of w5 observations, for example, by building a

centralized and standardized network of ¥ (Novick et al., 2022) will be a necessary step to better

35



682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

characterize the impact of soil moisture availability on plant responses such as IWUE and
mWUE.

In this study, we tested the two stomatal optimization models (Katul et al., 2010; Medlyn
et al., 2012) that are elaborations of the original Cowan & Farquhar model (1977) with little
modifications because our goal was to characterize variability of mWUE in response to dryness
(VPD and aridity index) using IWUE that can be calculated from the extensive, long-term
continuous data from the network of eddy covariance. Meanwhile, more recent optimization
models are incorporating additional physiological penalties than the water loss, for instance,
damage to the vascular system induced by water stress (Anderegg et al., 2018; Sperry et al.,
2017; Wolf et al., 2016), which will enhance prediction of long-term plant responses to climate
change. While monitoring the integrity of the vascular system, which can be informed by the
dynamics of hydraulic conductivity, has not been widely conducted, recent advances in
psychrometric approaches allowing continuous measurements of plant ¥ (e.g., PSY1 by ICT
International) and ¥ (e.g., TEROS 21 by Meter Group) are now enabling the monitoring the
dynamics of hydraulic conductivity. Moreover, the relationship between plant and soil ¥ can be
used to identify plant water-use strategies (e.g., isohydry framework; Martinez-Vilalta et al.,
2014), which will help develop m* based on plant water-use strategies. The measurements of
carbon and water fluxes using the eddy covariance technique with the aid of the centralized and
standardized deployment of ¥ sensors (Novick et al., 2022) will have a great potential to test

models and theories of stomatal optimization and advance our knowledge of it.
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