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Abstract 29 

According to classic stomatal optimization theory, plant stomata are regulated to 30 

maximize carbon assimilation for a given water loss, and a key component of stomatal 31 

optimization models is marginal water-use efficiency (mWUE). While the mWUE is often 32 

assumed to be constant, variability of mWUE under changing hydrologic conditions has been 33 

reported. However, there has yet to be a consensus on the patterns of mWUE variabilities and 34 

their relations with atmospheric aridity. We investigate the dynamics of mWUE in response to 35 

vapor pressure deficit (VPD) and aridity index using carbon and water fluxes from 115 eddy 36 

covariance towers available from the global database FLUXNET. We demonstrate a non-linear 37 

mWUE-VPD relationship at a sub-daily scale in general; mWUE varies significantly at both low 38 

and high VPD levels. However, mWUE remains relatively consistent within the mid-range of 39 

VPD. Despite the highly non-linear relationship between mWUE and VPD, the relationship can 40 

be informed by the strong linear relationship between ecosystem-level inherent water-use 41 

efficiency (IWUE) and mWUE using the slope, m*. We further identify site-specific m* and its 42 

variability with changing site-level aridity across six vegetation types. We suggest accurately 43 

representing the relationship between IWUE and VPD using non-linear functions, such as 44 

Michaelis-Menten or quadratic functions, to ensure precise estimation of mWUE variability for 45 

individual sites.  46 
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 47 

Plain Language Summary 48 

Plants employ diverse strategies for water utilization during growth. Marginal water-use 49 

efficiency (mWUE) quantifies how effectively plants assimilate carbon relative to the water they 50 

lose through transpiration. A scientific debate exists regarding how mWUE responds to dry 51 

conditions. To investigate this, we analyze data from various vegetation types worldwide, 52 

observing changes in mWUE under dry conditions. Contrary to common assumptions, mWUE is 53 

not a constant; it varies significantly based on moisture levels. Additionally, we show that a 54 

simpler measure called inherent water-use efficiency (IWUE) can help explain this complicated 55 

relationship, which is useful for predicting plant growth under different moisture conditions. 56 

 57 
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1. Introduction 64 

Terrestrial plants mitigate global warming by sequestering atmospheric carbon dioxide 65 

(CO2) through photosynthesis (Beer et al., 2010). However, photosynthesis is inherently linked 66 

with plant water loss via transpiration, as CO2 and water vapor share the same stomatal pathway. 67 

Plants risk hydraulic damage during droughts if they maintain high stomatal conductance as soil 68 

water availability decreases and atmospheric demand increases, resulting in low leaf water 69 

potential and xylem cavitation. Therefore, plants must balance stomatal function to optimize 70 

carbon uptake while minimizing transpirational water loss and hydraulic stress (Cowan & 71 

Farquhar, 1977; Katul et al., 2010; Sperry et al., 2017; Wang et al., 2020). To predict plant 72 

ecophysiological responses to projected changes in atmospheric CO2 concentration, elevated 73 

atmospheric water demand, and more severe and frequent drought events, we need a mechanistic 74 

understanding of how different ecosystems regulate the trade-off between photosynthetic carbon 75 

assimilation and transpirational water loss. 76 

While carbon uptake is usually represented through mechanistic models of 77 

photosynthesis (e.g., the Michaelis-Menten equation (Michaelis & Menten, 1913; Marshall & 78 

Biscoe, 1980; Thornley, 1998);  the Farquhar model (Von Caemmerer, 2000; Farquhar et al., 79 

1980a)), water use (i.e., transpiration) is often described based on empirical relationships that 80 

prescribe how stomatal conductance responds to environmental drivers and carbon uptakes. For 81 

example, the Ball-Berry model (Ball et al., 1987) is one of the most widely used empirical 82 

stomatal conductance models (Anderegg et al., 2017; Buckley, 2017; Katul et al., 2010), and has 83 

been readily incorporated into many climate models (Bonan et al., 2014). It takes the form: 84 

𝑔𝑠 = 𝑔0 + 𝑔1

𝐴

𝑐𝑎
𝑅𝐻          (1) 85 
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where gs is stomatal conductance (mol m-2 s-1), A is carbon assimilation rate (𝜇mol m-2 s-1), ca is 86 

atmospheric CO2 concentration (ppm), RH is relative humidity at the leaf surface, and g0 and g1 87 

are empirically fitted parameters. To simulate the non-linear variation in gs with changing 88 

humidity, Leuning (1995) modified the Ball-Berry model by replacing relative humidity with a 89 

vapor pressure deficit (VPD) response function as follows: 90 

𝑔𝑠 = 𝑔0 + 𝑔1 ∙
𝐴

(𝑐𝑎 − 𝛤∗) (1 +
𝑉𝑃𝐷
𝑉𝑃𝐷0

)
          (2) 91 

where 𝛤∗ is CO2 compensation point for photosynthesis (ppm) and VPD0 is the empirically 92 

determined coefficient, representing the slope of the relationship between gs and VPD. These 93 

empirical models are relatively simple, easy to use, and work well for well-watered conditions 94 

(Bonan et al., 2014). However, they have an incomplete grounding in physiological theory, 95 

leading to uncertainty when they are extrapolated to predict plant function under unprecedented 96 

climate conditions (Franks et al., 2018; Knauer et al., 2015, 2018; Medlyn et al., 2012; Sabot et 97 

al., 2022). 98 

An alternative way to enable the theoretical interpretation of leaf-level stomatal 99 

conductance models is to adopt the principle of stomatal optimization theory (Anderegg et al., 100 

2018; Bonan et al., 2014; Katul et al., 2009; Katul et al., 2010; Medlyn et al., 2012; Novick et al., 101 

2016b; Sperry et al., 2017; Wolf et al., 2016). Stomatal optimization theory was originally based 102 

on a hypothesis that stomata are regulated to maximize carbon assimilation (A) for a given water 103 

loss (transpiration, E). A key parameter in this class of models is the so-called “marginal water-104 

use efficiency (mWUE),” here defined as the ratio of a change in E to a change in A (𝜕𝐸/𝜕𝐴) 105 

following Cowan and Farquhar (1977), though it is sometimes defined as the inverse form 106 

(𝜕𝐴/𝜕𝐸) (Katul et al., 2010; Manzoni et al., 2011). The optimality models often maintain the 107 

mWUE constant over arbitrary time steps (e.g., daily), assuming abundant water at the canopy 108 
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(Buckley, 2017; Cowan & Farquhar, 1977; Makela et al., 1996). However, this may not hold true 109 

at sub-daily timescales, where high atmospheric demand (i.e., VPD) during midday can decrease 110 

water potential at the canopy level even when soil moisture is abundant (Anderegg et al., 2017; 111 

Grossiord et al., 2020). 112 

Understanding how mWUE changes under hydrologic stress is necessary for the 113 

optimization models in a prognostic sense, yet no consensus on the magnitude or even direction 114 

of these changes exists. For instance, Manzoni et al. (2011) and Zhou et al. (2013, 2014) 115 

performed meta-analyses of leaf gas exchange measurements from previous studies that spanned 116 

wide ranges of species and moisture conditions. A major difference in their approaches was the 117 

proxy for plant water status; Manzoni et al. (2011) used mid-day leaf water potential, while Zhou 118 

et al. (2013, 2014) used pre-dawn leaf water potential as a proxy for soil moisture availability. 119 

Similarly, Lin et al. (2015) compiled a global database of leaf gas exchange measurements 120 

spanning diverse plant functional types and estimated a slope parameter (g1) (Medlyn et al., 121 

2012), which is analogous to the slope parameter from empirical models (Eqs. 1 & 2) and 122 

proportional to √𝜕𝐸/𝜕𝐴  (Medlyn et al., 2012). They further evaluated the relationship between 123 

g1 and a moisture index, defined as the ratio of mean annual precipitation to the equilibrium 124 

evapotranspiration. Mäkelä et al. (1996) and Lu et al. (2016) took a theoretical approach to 125 

examine short- and long-term optimal stomatal behavior, respectively, in response to the soil 126 

moisture availability assuming that plants are adapted to the stochastic rainfall patterns of their 127 

environments. More recently, alternative stomatal optimization perspectives have been proposed, 128 

which presume stomata function to maximize carbon uptake while minimizing water costs, 129 

including those linked to hydraulic damage during droughts (Anderegg et al., 2018; Sperry et al., 130 

2017; Wolf et al., 2016). While promising, in contrast to the Medlyn et al. (2012) model, these 131 
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newer formulations have yet to be integrated into land surface model schemes (but see Kennedy 132 

et al., 2019, for a study implementing plant hydraulics in the Community Land Model). While 133 

theoretical expectation and many studies suggest decreasing mWUE as water stress drives 134 

reductions to gs, there is some evidence of increasing mWUE under water stress (Farquhar et al., 135 

1980b; Grieu et al., 1988; Zhou et al., 2013), although reasons for this needed to be clarified. 136 

It is also important to note that canopy water status and water potential are not 137 

determined solely by the availability of water supply but by the balance between water supply 138 

and demand, with VPD as a major force exerted on the canopy by the atmosphere (Manzoni et 139 

al., 2011, 2013; Novick et al., 2019). Thus, it is reasonable to expect that mWUE must be 140 

adjusted with changing atmospheric water demand unless other factors limit the plant response 141 

(e.g., compromised hydraulic conductivity under water stress, limited soil moisture availability 142 

to plants) (Brodribb et al., 2005; Medlyn et al., 2012). Different plants or ecosystems may adjust 143 

differently, resulting in divergent responses of mWUE to changing VPD. Understanding the 144 

relationship between mWUE and VPD is important given that VPD is expected to keep 145 

increasing in the future, which will exert further water stress on plants (Ficklin & Novick, 2017; 146 

Grossiord et al., 2020; Novick et al., 2016a; Zhang et al., 2019). Furthermore, while soil 147 

moisture is a stochastic variable due to its dependency on intermittent rainfall, VPD is smoother 148 

in time and easier to monitor through various meteorological or gas exchange measurement 149 

techniques. Although VPD and soil moisture limit plants’ carbon uptake and water use 150 

independently (Yi et al., 2019), VPD can be used as a proxy of water stress at a sub-daily scale 151 

where VPD plays a primary role in regulating stomatal regulation unless severe soil moisture 152 

deficiency, as suggested by the models with sub-daily timesteps (e.g., Ball-Berry model and its 153 

variations), and in turn influencing the balance between carbon uptake and water loss (i.e., water-154 
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use efficiency) at a sub-daily scale (Baldocchi et al., 2022; Grossiord et al., 2020; Novick et al., 155 

2016a). Therefore, examining the association between mWUE and VPD would add insight into 156 

the predictability of soil moisture alone. 157 

The objectives of this study are 1) to investigate the variation of mWUE at an hourly 158 

timescale in response to changing VPD and 2) to explore approaches for estimating mWUE 159 

explicitly from the modeled relationship between intrinsic water-use efficiency (iWUE, carbon 160 

assimilation per unit stomatal conductance, representing water-use efficiency at leaf level) and 161 

VPD. The Ball-Berry model (Eq. 1) reveals that the parameter g1, which is proportional to 162 

√𝜕𝐸/𝜕𝐴  (Medlyn et al., 2012), is related to A/gs (= iWUE at leaf level). The iWUE can be more 163 

straightforwardly estimated from field measurements across various spatiotemporal scales, 164 

including leaf gas exchange (daily to weekly at the leaf level), dendrochronology 165 

(seasonal/annual at the tree level), and eddy covariance (hourly at the stand level) (see more 166 

discussion on iWUE at different scales from Beer et al., 2009 and Yi et al., 2019). Notably, the 167 

inference of iWUE from tree-ring analyses provides an avenue for understanding historical 168 

variations in iWUE and, potentially, mWUE. While iWUE has a mathematically simpler form 169 

and thus facilitates modeling its response to water stress, the complex mathematical expression 170 

of mWUE poses challenges in generalizing its variability at a sub-daily timescale. By elucidating 171 

the correlation between iWUE and mWUE, we can gain insights into the response of mWUE to 172 

water stress. Additionally, through site comparisons, we further explore whether there is an 173 

emerging pattern in the correlation between iWUE and mWUE across different vegetation types 174 

and aridity levels. 175 

 176 

Table 1. A glossary of terms related to water-use efficiency. 177 
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Term or symbol Definition 

A Carbon assimilation rate 

ca Atmospheric CO2 concentration 

E Transpiration rate 

ET Evapotranspiration rate 

g0 Intercept parameter in Ball-Berry model (represents minimum leaf 

conductance) 

g1 Slope parameter in Ball-Berry model (represents marginal water-use 

efficiency, mWUE) 

gs Stomatal conductance 

GPP Gross primary productivity 

iWUE Intrinsic water-use efficiency; leaf-level water-use efficiency ( = A / gs) 

IWUE Inherent water-use efficiency; a proxy of intrinsic water-use efficiency 

at the ecosystem level (= GPP × VPD / ET / Pa, Beer et al., 2009) 

mWUE Marginal water-use efficiency, the ratio of a change in E to a change in 

A (= 𝜕𝐸/𝜕𝐴) 

Pa Atmospheric pressure 

VPD Vapor pressure deficit 

 178 

2. Materials and Methods 179 

2.1. FLUXNET data 180 

We obtained half-hourly measurements of carbon and energy fluxes, along with ancillary 181 

environmental data, from 115 flux towers across FLUXNET sites. These data were collected 182 

using the FLUXNET 2015 Tier 1 database (Table S1) (Pastorello et al., 2020). Eddy covariance 183 

records, which have the benefit of providing continuous meteorological and gas exchange data at 184 

the high temporal resolution, are very well suited for investigating the relationship between gas 185 

exchange dynamics, mWUE, and VPD at the ecosystem scale.  186 

We selected the study sites from six vegetation types (grassland, cropland, shrubland, 187 

savanna, broadleaf forest, and needleleaf forest, based on the IGBP land cover classification 188 
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system) based on the data availability for the variables required for the analysis. For reliable and 189 

clear mWUE analysis, we only included the sites that had at least three years of data and a strong 190 

iWUE-VPD correlation. Specifically, we selected the sites that had R2 > 0.8 with any of the three 191 

model fits – linear, quadratic, or Michaelis-Menten –, which was the case for more than 70% of 192 

the sites over three years of data (See section 2.4 for more information about the model fits). In 193 

addition, we only used the data where net ecosystem exchange (NEE), latent heat flux (LE), and 194 

sensible heat flux (H) were either original measurements (quality control flag = 0) or gap-filled 195 

data of good quality (quality control flag = 1) to ensure data quality and make the most of the 196 

data. We only used daytime data when net radiation was greater than 0 W m-2 without 197 

precipitation. We also limited our analysis to the growing season, where daily GPP was larger 198 

than 10% of the 95th percentiles of daily GPP for each site with > 5°C air temperature. We used 199 

the GPP partitioned based on the standard daytime method (variable name: 200 

GPP_DT_VUT_REF, Lasslop et al., 2010). Additional filtering criteria were applied for some 201 

key variables: atmospheric CO2 concentration between 350 ppm and 420 ppm, friction velocity 202 

(u*) greater than 0.1 m s-1, and canopy conductance calculated by Penman-Monteith equation 203 

(Monteith, 1965) greater than 0.05 mol m-2 s-1. Lastly, we removed outliers of the environmental 204 

drivers and biological variables (i.e., air temperature, relative humidity, atmospheric CO2 205 

concentration, latent heat flux, wind speed, VPD, atmospheric pressure, friction velocity, net 206 

radiation, soil water content, canopy conductance, iWUE, and mWUE) by excluding data that 207 

were below the 5th or above the 95th percentiles of each variable. Note that the purpose of data 208 

filtering was to remove exceptionally low or high values of the variables, which we consider 209 

outliers. Our goal was to ensure that the results, especially the variability of mWUE, were not 210 
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unduly influenced by these outliers. We carefully examined the histograms for the variables for 211 

each site to minimize data reduction while retaining useful information. 212 

 213 

2.2. Two different approaches describing mWUE 214 

We used two different approaches for describing the mWUE: two optimization-theory-215 

driven mWUE, the solution of “𝜕𝐸/𝜕𝐴” suggested by Katul et al. (2010) and the “g1” parameter 216 

proposed by Medlyn et al. (2012). The difference between the optimization-theory-driven 217 

mWUE is based on their interpretation of stomatal optimization. Katul et al. (2010) assumed that 218 

stomata are optimizing for photosynthesis limited by Rubisco activity (i.e., carbon-limited), and 219 

plant stomatal optimality is subject to change (i.e., mWUE is not constant). On the other hand, 220 

Medlyn et al. (2012) assumed that stomata are optimized for photosynthesis limited by RuBP-221 

regeneration (i.e., light-limited). In either case, the optimization objective should result in 222 

constant mWUE values at short timescales – Katul et al. (2010) suggested approximately 10 223 

minutes, while Medlyn et al. (2012) suggested daily or longer – although it may change at longer 224 

timescales as hydrologic conditions evolve. 225 

Following Katul et al. (2010), the 𝜕𝐸/𝜕𝐴 emerges from an optimality condition 226 

determined with a linearized variant of the Farquhar et al. (1980) photosynthesis model, defined 227 

as: 228 

𝜕𝐸

𝜕𝐴
= 1.6 𝑉𝑃𝐷 𝑐𝑎 (

𝐴

𝑔𝑠
)

−2

=
1.6 𝑉𝑃𝐷 𝑐𝑎

𝑖𝑊𝑈𝐸2
        (3) 229 

where iWUE is defined as a ratio of A to gs at the leaf-scale (Beer et al., 2009). 230 

The other perspective on optimality proposed by Medlyn et al. (2012) takes an analogous 231 

form to an empirical model proposed by Leuning (1995) (Eq. 2): 232 

𝑔𝑠 ≈ 𝑔0 + 1.6 (1 +
𝑔1

√𝑉𝑃𝐷
)

𝐴

𝑐𝑎
          (4) 233 
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This approach suggests that the parameter g1 represents a slope between gs and 𝐴/𝑐𝑎√𝑉𝑃𝐷 and 234 

is proportional to √𝜕𝐸/𝜕𝐴 (Lin et al., 2015; Medlyn et al., 2012). Therefore, to facilitate 235 

comparison between the two approaches, we compare 𝜕𝐸/𝜕𝐴 with squared g1 (i.e., g1
2) in 236 

throughout the results. Eq. 4 was rearranged with an assumption that g0, which represents 237 

cuticular conductance to water vapor, is negligible (but see Manzoni et al. (2011) and Lanning et 238 

al. (2020) for discussion of the role of cuticle conductance under drier conditions): 239 

𝑔1 = (
𝑔𝑠 𝑐𝑎

1.6 𝐴
− 1) √𝑉𝑃𝐷 = (

𝑐𝑎

1.6 𝑖𝑊𝑈𝐸
− 1) √𝑉𝑃𝐷         (5) 240 

Consequently, two different mWUE parameters, 𝜕𝐸/𝜕𝐴 (mol H2O ∙ kPa ∙ mol-1 of dry air) and g1 241 

(mol H2O ∙ kPa0.5 ∙ mol-1 of dry air), were expressed as functions of iWUE, ca, and VPD. 242 

Assuming ca is relatively stable over a short period, we focus on how iWUE (as a biological 243 

factor) and VPD (as an indicator of water stress governing plant response at a short temporal 244 

scale, e.g., sub-daily) affect both mWUE parameters (more details discussed in section 2.5). We 245 

applied an approximation of iWUE at the ecosystem level, inherent WUE (IWUE), defined by 246 

Beer et al. (2009). IWUE (𝜇mol C mol-1 H2O) was particularly suitable for our study because 247 

IWUE can be calculated from the measurements of carbon and water fluxes by eddy covariance 248 

technique and ancillary meteorological data, i.e., GPP (𝜇mol m-2 s-1) from net ecosystem 249 

exchange representing canopy-level carbon assimilation, evapotranspiration rate (ET, mol m-2 s-
250 

1) from latent heat flux, VPD under the assumption of equal temperatures of leaves and 251 

atmosphere, and atmospheric pressure (Pa, kPa): 252 

𝐼𝑊𝑈𝐸 =  
𝐺𝑃𝑃 ∙ 𝑉𝑃𝐷

𝐸𝑇 ∙ 𝑃𝑎
          (6) 253 

 254 

Several important assumptions for the definition of IWUE include (1) small and invariant soil 255 

evaporation (E) compared to plant transpiration (T) over the course of the day (hence ∆ET ~ ∆T) 256 
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especially during days without rainfall (conditions we used for our analysis), (2) thermal 257 

equilibrium between leaf and air, which influences VPD, and (3) disregarding of aerodynamic 258 

resistance through the boundary layer that can change depending on the vegetation structure (See 259 

Beer et al. (2009) for more discussion about IWUE as a proxy of ecosystem-level intrinsic 260 

WUE). We confirmed the robustness of IWUE as a proxy of iWUE at the ecosystem level by 261 

comparing it with a few other definitions of iWUE (the comparison results are available in the 262 

Supporting information; Figs. S1 & S2). Note that IWUE and mWUE were computed using half-263 

hourly FLUXNET data; hence, their variabilities discussed here represent plant physiological 264 

response at a sub-hourly scale. 265 

 266 

2.3. Sensitivity of mWUE parameters to moisture condition 267 

Variations of mWUE parameters in response to moisture conditions (i.e., atmospheric 268 

water demand and site-level aridity) were evaluated at the individual site level and across sites. 269 

For the individual sites, mWUE parameters were partitioned into discrete bins spanning a range 270 

of VPD. To avoid biases from unevenly distributed data points across the range of VPD (i.e., 271 

sample sizes at low and high VPD are smaller than those for the intermediate level of VPD), data 272 

binning was performed in a way that the sample sizes were evenly distributed into 30 bins across 273 

the range of VPD at each site. Then, mWUE-VPD relationships were produced based on the 274 

mean mWUE values generated for the different VPD bins. 275 

To compare across the sites, the relationships between site-specific mWUE and aridity 276 

index (AI) were evaluated (See Fig. S3 in the Supporting Information for AI at all the study 277 

sites). AI was defined as the ratio of annual precipitation (P) to annual potential 278 

evapotranspiration (PET) and averaged over the observation period for each site (UNEP, 1992): 279 
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𝐴𝐼 =  
𝑃

𝑃𝐸𝑇
          (7) 280 

The annual PET was determined by summing up the half-hourly PET values over the course of a 281 

year, employing the FAO Penman-Monteith method as outlined by Allen et al. (1998): 282 

𝑃𝐸𝑇 =
0.408𝛥(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇𝑎 + 273 𝑢(𝑒𝑠 − 𝑒𝑎)

𝛥 + 𝛾(1 + 0.34𝑢)
          (8) 283 

where 𝛥 is the slope of vapor pressure curve (kPa ℃−1), Rn is the net radiation (MJ m-2 hr-1), G is 284 

the soil heat flux density (MJ m-2 hr-1), 𝛾 is the psychrometric constant (kPa ℃−1), Ta is the air 285 

temperature (℃), u is the wind speed (m s-1), es is the saturation vapor pressure (kPa), and ea is 286 

the actual vapor pressure (kPa). The estimation of AI is sensitive to gaps in precipitation data. 287 

Therefore, we used long-term mean annual precipitation provided on the site information page at 288 

the FLUXNET website rather than calculating mean annual precipitation from the 289 

FLUXNET2015 dataset. For the sites where annual precipitation records were not provided, the 290 

high-frequency precipitation record in the FLUXNET2015 dataset was used. 291 

 292 

 293 

 294 

2.4. Assessing the relationship between mWUE and IWUE 295 

 As a first step to conceptually understand the relationship between mWUE and IWUE, 296 

the relationship between IWUE and VPD was modeled by three hypothetical functions – linear, 297 

quadratic, and the Michaelis-Menten functions – based on the observations across the sites. The 298 

quadratic model of IWUE-VPD (hereafter IWUEQ) depicts the case where IWUE increases with 299 

VPD until it reaches a maximum and then decreases afterward. In other words, when VPD is 300 

low, increasing IWUE with increasing VPD reflects a faster decrease of gs than A (due to the 301 

high intercellular CO2 concentration, ci) while decreasing IWUE with increasing VPD at high 302 
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VPD reflects a faster decrease of A than gs (low gs at high VPD reduces ci and eventually causes 303 

the steep decline of A). The linear model (hereafter IWUEL), on the other hand, represents a 304 

simplified IWUE-VPD relationship where IWUE would keep increasing with rising VPD 305 

assuming IWUE is only limited by gs but not by photosynthetic capacity. The Michaelis-Menten 306 

function (hereafter IWUEM) represents the saturating IWUE under high VPD but does not 307 

account for IWUE reduction. Thus, the linear and quadratic functions are considered plausible 308 

“end-members” describing the actual response of IWUE to VPD, while the Michaelis-Menten 309 

function is a more intermediate case. Mathematically, the IWUEL, IWUEM, and IWUEQ take the 310 

forms: 311 

𝐼𝑊𝑈𝐸𝐿 = 𝑚 𝑉𝑃𝐷 + 𝑛         (9) 312 

𝐼𝑊𝑈𝐸𝑀 =
𝐼𝑊𝑈𝐸𝑚𝑎𝑥 ∙ 𝑉𝑃𝐷

𝑘 + 𝑉𝑃𝐷
         (10) 313 

𝐼𝑊𝑈𝐸𝑄 = −𝑎 (𝑉𝑃𝐷 − 𝑏)2 + 𝑐         (11) 314 

where m is the slope of IWUEL, n is IWUEL at VPD = 0, IWUEmax is the maximum potential 315 

IWUE, k is the VPD at which IWUE proceeds at half IWUEmax, a represents the curvature of 316 

IWUEQ, b is the vertex, c is the maximum IWUEQ at the vertex. 317 

The expected dynamics of mWUE across the FLUXNET sites in response to changing 318 

VPD were simulated based on an empirically driven IWUE-VPD model to understand how the 319 

mWUE metrics would respond to changing VPD and IWUE. To generate possible patterns of 320 

mWUE-VPD, the range of coefficients in the IWUE models was determined empirically from 321 

the data across the sites. To facilitate interpretation, the patterns were simulated by changing the 322 

curvature of the quadratic equation (Eq. 11), assuming the intercept is equal to zero. For the 323 

simulation of mWUE, a constant ca was applied by calculating its average across the sites to 324 

focus on the interactions among VPD, IWUE, and mWUE (Eqs. 3 & 5). 325 
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Lastly, we investigated how IWUE (as a biological factor) and aridity index (as an 326 

environmental driver) influence the variability of mWUE. Based on the Eqs. 3 and 5, we 327 

hypothesized that a simple relationship between mWUE and the inverse of IWUE (IWUE-1) 328 

might emerge and would be affected by changing moisture conditions. Therefore, we identified a 329 

relationship between mWUE and IWUE-1 for each study site and examined whether the 330 

relationship can be generalized across the sites based on the site-specific aridity index. 331 

 332 

3. Results 333 

3.1. Empirical response of IWUE to changing VPD or AI 334 

To test the robustness of IWUE as a proxy of intrinsic water-use efficiency at the 335 

ecosystem level, we first compared the two different definitions of intrinsic water-use 336 

efficiencies at stand level, GPP divided by surface conductance (Gs) (i.e., iWUE = GPP/Gs) and 337 

inherent WUE (i.e., IWUE = GPP/ET×VPD/Pa). The two WUE definitions were linearly 338 

correlated across the study sites (Fig. 1), and most sites had coefficients of determination larger 339 

than 0.95 (Fig. 1b), suggesting the robustness of IWUE as a proxy of intrinsic water-use 340 

efficiency at the ecosystem level (see the Supporting Information for an additional comparison of 341 

multiple definitions of intrinsic water-use efficiency; Figs. S1 & S2). We also performed the 342 

entire analysis using these two WUE definitions and observed similar results, which led to the 343 

same conclusion. Therefore, we only show the results from using IWUE hereafter. 344 

 345 
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 346 

Figure 1. Comparison of two different definitions of water-use efficiencies at all sites (a) and at 347 

three sample sites (c, d, e): inherent water-use efficiency at the ecosystem level, IWUE (= 348 

GPP/ET×VPD/Pa), and intrinsic water-use efficiency at the ecosystem level, iWUE (= GPP/Gs). 349 

Refer to Beer et al. (2009) for the comparison of different definitions of water-use efficiencies at 350 

leaf and ecosystem-level. Individual dots in panels a, c, d, and e indicate WUE partitioned into 351 

discrete bins spanning a range of VPD. Solid red lines indicate significant linear regressions (P < 352 

0.05), and dashed red lines indicate 95% confidence interval. Dashed gray lines represent 1:1 353 

lines. Panel b shows the histogram of coefficients of determination (R2) of the linear fits between 354 

IWUE and iWUE across the study sites.  355 

 356 

In most cases, the Michaelis-Menten model and the quadratic model explained empirical 357 

IWUE patterns across the range of VPD better than the linear model (Fig. 2 and Fig. S3 in the 358 
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Supporting Information). Specifically, the Michaelis-Menten model worked better for the sites 359 

where the increase of IWUE plateaued at high VPD, and the quadratic model worked better for 360 

the sites where IWUE started decreasing at very high VPD. On the other hand, the linear model 361 

often overestimated IWUE at low and high VPD, except the sites where IWUE-VPD was highly 362 

linear.  363 

 364 

 365 

Figure 2. Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten: 366 

green, quadratic: red) responses of inherent water-use efficiency (IWUE) to changing vapor 367 

pressure deficit (VPD). The examples include three sites best represented by the linear model 368 

(IT-BCi, cropland), the Michaelis-Mentes function (CA-NS2, needleleaf forest), and the 369 

quadratic model (US-Ton, savannah), respectively. Each error bar (light gray) represents the 370 

standard deviation of IWUE for each VPD bin (95% confidence). See Fig. S4 in the Supporting 371 

Information for the IWUE-VPD relationships of all the study sites (n = 115). 372 

 373 

When the site-specific IWUE-VPD slope values derived from the linear model (i.e., m in 374 

Eq. 9) were combined, we found increasing m with rising aridity index (P < 0.001, Fig. 3a). 375 

However, site-level aridity did not influence the intercept of IWUE-VPD relationship (P > 0.05, 376 
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not shown here). When the sites were divided by their vegetation types, m increased with a rising 377 

aridity index in all vegetation types. However, the trend was only significant in grasslands, 378 

croplands, and shrublands (P < 0.05, Fig. 3). 379 

 380 

 381 

Figure 3. Relationship between the site-level aridity index and the regression slope of IWUE-382 

VPD from individual sites (i.e., m in Eq. 9). Panel a shows the relationship when all sites were 383 

consolidated. The relationship is also illustrated separately for six different vegetation types in 384 

panels b to g. Each circle represents m from an individual site. Error bars represent standard 385 

errors of linear regressions. Solid lines indicate significant linear relationships (P < 0.05) and 386 

dashed lines indicate 95% confidence intervals. 387 

 388 

3.2. Response of mWUE to changing VPD 389 

Both of the mWUE indices, 𝜕𝐸/𝜕𝐴 and squared g1 (g1
2), showed a very similar response 390 

to changing VPD and suggested that the directional change of mWUE can be interpreted 391 

differently depending on the pattern of IWUE-VPD (Fig. 4). When the iWUE-VPD relationship 392 
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is strongly linear, mWUE decreased exponentially and became less variable as VPD increased 393 

(Brighter curves in Figs. 4b & 4c). However, as the iWUE-VPD relationship became more non-394 

linear, mWUE declined at lower VPD and then increased at higher VPD (i.e., concave-up), 395 

rendering the mWUE-VPD relationship non-monotonic (Darker curves in Figs. 4b & 4c). 396 

 397 

 398 

Figure 4. Hypothetical models of IWUE-VPD relationship (a), simulated 𝜕𝐸/𝜕𝐴-VPD (b) and 399 

g1
2-VPD (c) relationships based on typical cases, and their corresponding patterns illustrated 400 

using observations from all study sites (d, e, and f). The mWUE curves are the results of using 401 

the IWUE-VPD relationships of the corresponding colors. Note that IWUE-VPD relationships 402 

become more linear with lighter colors. 403 
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The simulated patterns of mWUE-VPD agreed well with the patterns from the empirical 405 

observation when the appropriate function for the IWUE-VPD relationship was applied. We 406 

show mWUE-VPD relationships from three study sites as examples (Fig. 5), of which IWUE-407 

VPD was represented best by linear, the Michaelis-Menten, and quadratic functions, respectively 408 

(see Fig. 2 for their corresponding IWUE-VPD relationships. Also, see Fig. S5 in the Supporting 409 

Information for the results of all study sites). As suggested by the simulation, the site with highly 410 

linear IWUE-VPD (IT-BCi) showed exponentially decreasing mWUE with rising VPD. In 411 

contrast, the other two sites with highly non-linear IWUE-VPD relationships had a concave-up 412 

pattern of mWUE-VPD. Notably, the mWUE-VPD relationship generated using a less optimal 413 

IWUE-VPD model can differ substantially from the empirical pattern. For example, application 414 

of linear IWUE-VPD function to the CA-NS2 and US-Ton, the sites represented best by the 415 

Michaelis-Menten and quadratic functions, respectively, generated concave-down mWUE-VPD 416 

pattern that is opposite to the actual pattern (Fig. 5). The disagreements between models and 417 

observations increased as VPD approached very high and very low extremes. 418 

 419 



22 
 

 420 

Figure 5. Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten: 421 

green, quadratic: red) relationships between 𝜕𝐸/𝜕𝐴 (analytical solution by Katul et al., 2010) 422 

and vapor pressure deficit (VPD), and between g1
2 (Medlyn et al., 2012) and VPD. The examples 423 

include three sites best represented by the linear IWUE-VPD model (IT-BCi, cropland), the 424 

Michaelis-Menten function (CA-NS2, needleleaf forest), and the quadratic model (US-Ton, 425 

savannah), respectively. See Fig. 2 for the IWUE-VPD relationships at the corresponding sites. 426 

Each error bar (light gray) represents the standard error of the mean IWUE for each VPD bin 427 

(95% confidence). See Fig. S5 in the Supporting Information for the 𝜕𝐸/𝜕𝐴 -VPD relationships 428 

at the 115 study sites. 429 

 430 

The variability of mWUE to changing VPD was substantial in most cases (Fig. 6). Out of 431 

the total of 115 study sites, the percent increase of 𝜕𝐸/𝜕𝐴 (i.e., growth in 𝜕𝐸/𝜕𝐴 from the 432 
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lowest to the largest value at a site) was larger than 50% in 43 sites, and larger than 100% in 22 433 

sites. Note that the reported percent increase was determined by excluding the upper and lower 434 

10% of values. This step was taken to prevent exaggeration caused by extremely high 𝜕𝐸/𝜕𝐴 at 435 

low VPD, which is commonly observed across the study sites (see Figure S5 in the Supporting 436 

Information for the variability of 𝜕𝐸/𝜕𝐴 with VPD at all the study sites). As a result, the 437 

reported percent increase represents a conservative estimate overall. 438 

 439 

 440 
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Figure 6. Sorted percent increase of 𝜕𝐸/𝜕𝐴 (from the lowest 𝜕𝐸/𝜕𝐴). Embedded plots in GRA 441 

and SH are zoomed in for those sites where percent increases are lower than 100%. Note that the 442 

percent increases were calculated after removing values of the highest 10% and lowest 10% to 443 

avoid exaggeration due to very high 𝜕𝐸/𝜕𝐴 at low VPD at some sites. Therefore, the reported 444 

percent increase values are conservative estimates for most sites. 445 

 446 

3.3. Correlation between mWUE and IWUE 447 

Although the trend of mWUE-VPD seems hard to generalize, the simulated mWUE had a 448 

clear linear relationship with IWUE-1 for the majority of IWUE's range regardless of the linearity 449 

of the IWUE-VPD relationship except when IWUE is very high (i.e., under high VPD, Fig. 7). 450 

While it is limited to a small portion of the entire range, there was a sharp directional change in 451 

the variation of mWUE near a point where IWUE-1 was smallest, and strong linearities between 452 

mWUE and IWUE-1 were found before and after the transitional point. Substantial hysteresis 453 

became more evident as the IWUE-VPD pattern became more curved (darker curves in Fig. 4). 454 

 455 

 456 
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Figure 7. Simulated relationship between mWUE and IWUE-1 (based on the hypothetical 457 

IWUE-VPD model in Fig. 4). The colors of the curves correspond to those used in Fig. 4: 458 

IWUE-VPD relationships become more linear with lighter colors. Dashed arrows in panel a 459 

represent the directional change of VPD from low to high VPD.  460 

 461 

As predicted by the simulated mWUE-IWUE-1 relationships (Fig. 7), the empirical 462 

mWUE-IWUE-1 relationship was strongly linear (P < 0.001 at all sites, Fig. 8). A sign of 463 

hysteresis was noticeable for the site that showed decreasing iWUE under very high VPD (US-464 

Ton, see Fig. 2 for its IWUE-VPD relationship). In contrast, hysteresis was less evident at the 465 

other sites. When the relationship was drawn by grouping data by different levels of IWUE 466 

(black dots in Fig. 8), hysteresis was not observed, and the mWUE-IWUE-1 relationship was 467 

strongly linear. 468 

 469 

 470 
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Figure 8. Examples of empirical relationship between mWUE and IWUE-1. The examples 471 

include three sites best represented by the linear IWUE-VPD model (IT-BCi, cropland), the 472 

Michaelis-Mentes function (CA-NS2, needleleaf forest), and the quadratic model (US-Ton, 473 

savannah), respectively. See Fig. 2 for the IWUE-VPD relationships at the corresponding sites. 474 

Colorful dots represent hourly data points shaded based on the level of VPD (see color bars for 475 

the scale of VPD). Black dots represent data binned by IWUE-1: Data binning was performed to 476 

distribute sample sizes evenly across bins (~30 samples per bin). Error bars represent standard 477 

deviations. The red and black solid lines indicate linear fits for hourly and binned data, 478 

respectively. Dashed red lines represent confidence intervals for the slopes of linear regressions. 479 

Note that red and black linear regressions and their confidence intervals overlap. See Fig. S6 in 480 

the Supporting Information for the 𝜕𝐸/𝜕𝐴 - IWUE-1 relationships at the 115 study sites. 481 

 482 

We investigated whether the relationship between mWUE and IWUE-1 could be 483 

generalized across the sites based on the site-specific AI. Specifically, the linear IWUE-1 – 484 

mWUE slopes (hereafter m*) from all study sites were merged, and their variability in response 485 

to changing AI was evaluated. We found a significant linear relationship between m* and AI 486 

when both are scaled by log10 (P < 0.001, Fig. 9). The m* was larger at the drier sites (i.e., sites 487 

of lower AI) than at the wetter sites (i.e., sites of larger AI). However, we did not find a 488 

significant relationship between the IWUE-1 – mWUE intercept and AI (P > 0.05, not shown 489 

here). 490 

 491 
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 492 

Figure 9. Relationships between IWUE-1-mWUE slope and aridity index (= P/PET) derived 493 

from all the study sites (n = 115). Each circle represents the slope obtained from an individual 494 

site. Both the x and y axes are scaled by log10. Solid red lines indicate linear regressions and 495 

dashed lines indicate confidence intervals (95% confidence interval). 496 

 497 

We further tested whether we could find the similar relationship when the sites were grouped by 498 

the vegetation type. We found decreasing m* with rising AI in grasslands, croplands, and 499 

shrublands (P < 0.01, Fig. 10). On the other hand, m* was relatively constant across the range of 500 

AI in savannas, deciduous broadleaf forests, and evergreen needleleaf forests (P > 0.05, Fig. 10). 501 

 502 

 503 
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 504 

Figure 10. Relationships between log-transformed IWUE-1-mWUE slope and aridity index in 505 

different vegetation types (GRA: grassland, CRO: cropland, SH: shrubland, SAV: savanna, BF: 506 

broadleaf forest, NF: needleleaf forest). Each circle represents the log-transformed slope 507 

obtained from an individual site. Solid lines indicate significant linear relationships (P < 0.05) 508 

and dashed lines indicate 95% confidence intervals. 509 

 510 

4. Discussion 511 

Stomatal optimization theory, which originated with the work of Cowan and Farquhar 512 

(1977), has experienced a recent surge in popularity as the vegetation modeling community 513 

continually seeks ways to inject more theoretical rigor into Earth system models (Anderegg et 514 

al., 2018; Bassiouni & Vico, 2021; Bonan et al., 2014; Feng et al., 2022; Katul et al., 2010; Katul 515 

et al., 2009; Lin et al., 2018; Lin et al., 2015; Lu et al., 2020; Lu et al., 2016; Medlyn et al., 2012, 516 

2017; Novick et al., 2016b; Sabot et al., 2022; Sperry et al., 2017; Wolf et al., 2016). The 517 

marginal water-use efficiency (mWUE) is a key parameter in this type of model, but we still 518 

need a clear understanding of how mWUE is regulated biologically and environmentally. Lin et 519 

al. (2018) previously suggested suboptimal mWUE in response to VPD at a sub-daily scale by 520 
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estimating site-specific, best-fitted exponent for VPD based on the variation model of optimality 521 

theory (Medlyn model), which inspired our study. In comparison, our study is unique in 522 

analyzing the dynamics of mWUE observed at the hourly timescale in response to changing VPD 523 

owing to the long-term continuous carbon and water flux data from the network of eddy 524 

covariance towers.  525 

Another motivation for our study was the conflicting arguments over the dynamics of 526 

mWUE in response to water stress. While mWUE is in general considered to be nearly constant 527 

during a day under stable soil moisture conditions (Berninger & Hari, 1993; Fites & Teskey, 528 

1988; Hall & Schulze, 1980; Hari et al., 2000), several studies showed that mWUE changed with 529 

different levels of water stress. For example, theoretical considerations suggest a monotonic 530 

decrease of mWUE with higher water stress when the stochasticity of rainfall depths is neglected 531 

(Cowan, 1982; Makela et al., 1996), while some empirical estimates showed that mWUE 532 

increases under severe water stress (Farquhar et al., 1980b; Grieu et al., 1988). On the other 533 

hand, Manzoni et al. (2011) performed a meta-analysis of 50 species to estimate mWUE from 534 

gas exchange observations along gradients of soil moisture and showed that mWUE decreases 535 

under mild water stress but increases under severe water stress (note that they defined 𝜆 =536 

𝜕𝐴/𝜕𝐸, which is inverse of the definition used by Cowan & Farquhar (1977) and this study). 537 

 538 

4.1. Relationship between IWUE and VPD 539 

Based on the two equations of stomatal optimization theory (Eqs. 3 & 5), we first 540 

characterized the variability of mWUE based on the relationship between IWUE and VPD, 541 

representing biological and environmental factors, respectively. We show that the variability of 542 

IWUE must be modeled accurately to emulate the variability of mWUE in response to water 543 
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stress correctly. For example, as demonstrated in Fig. 5 (CA-NS2 & US-Ton), oversimplifying 544 

the IWUE-VPD relationship by modeling it with a linear function can incorrectly interpret 545 

mWUE variability.   546 

The non-linear IWUE-VPD relationship is presumably driven by different rates of carbon 547 

assimilation and water loss in response to changing VPD at an hourly scale, reflecting the 548 

balance between stomatal and non-stomatal limitations to photosynthesis at the leaf level 549 

(Farquhar, 1978; Jones, 2014). Under low to moderate VPD conditions, photosynthesis is less 550 

sensitive to changing intercellular CO2 concentration because stomatal conductance is high 551 

enough to maintain the high intercellular CO2 when VPD is low to moderate. Therefore, the 552 

quantity of reduced water loss by stomatal closure (ET at an ecosystem level) outweighs the 553 

quantity of reduced carbon assimilation (GPP at an ecosystem level) when VPD rises (i.e., 554 

|∆𝐺𝑃𝑃| < |∆𝐸𝑇|), resulting in the increasing phase of IWUE. As VPD keeps increasing, 555 

photosynthesis can be limited when the reduction of stomatal conductance under high VPD 556 

conditions substantially reduces intercellular CO2 concentration (i.e., |∆𝐺𝑃𝑃| ≈ |∆𝐸𝑇|), 557 

resulting in the steady phase of IWUE. As VPD becomes excessively high, photosynthesis will 558 

be further suppressed by high temperature (Yamori et al., 2014) and low leaf water potential 559 

(Lawlor & Tezara, 2009) that are associated with dry conditions (i.e., |∆𝐴| > |∆𝑔𝑠|), leading to 560 

the decreasing phase of IWUE.  561 

Therefore, assuming a linear IWUE-VPD relationship may not only fail to emulate 562 

observations but also oversimplify the physiological responses to water stress. Our analysis 563 

recommends employing the Michaelis-Menten function for most sites while utilizing a quadratic 564 

function for sites exhibiting extreme cases where IWUE declines under high VPD conditions. 565 

The Michaelis-Menten function can be beneficial to characterize the IWUE-VPD relationship 566 
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since the maximum potential IWUE and the rate of IWUE increase can be identified during 567 

parameterization (Eq. 10). While the quadratic function can emulate IWUE-VPD relationships 568 

very well or performs even better than the Michaelis-Menten function in some cases where 569 

IWUE decreases at high VPD, it is parameterized empirically and as a result, lacks mechanistic 570 

information. Nevertheless, the quadratic function is preferable to the linear function. 571 

It is also important to consider the definition of water-use efficiency for accuracy. We 572 

used inherent water-use efficiency (IWUE) as a proxy of intrinsic water-use efficiency (iWUE) 573 

at the ecosystem level as suggested by Beer et al. (2009), which can be estimated by GPP and ET 574 

inferred from the flux tower observations. This approximation is particularly useful over a more 575 

common ecosystem-level iWUE = GPP/Gs because IWUE requires fewer variables and is easier 576 

to extrapolate to a larger scale. However, it is important to note that ET/VPD in the equation of 577 

IWUE (Eq. 6) is a proxy of canopy conductance, assuming the canopy is well coupled to the 578 

atmosphere, boundary layer resistance is small, and thermal equilibrium between leaf and air is 579 

achieved (Beer et al., 2009). In other words, IWUE under non-equilibrium between canopies and 580 

atmosphere can be overestimated due to the higher VPD than the vapor pressure gradient near 581 

the canopy surface (i.e., the difference between intercellular vapor pressure (ei) and atmospheric 582 

vapor pressure (ea), ei – ea). Difference between leaf and air temperature can also influence the ei 583 

– ea; if leaf temperature is higher than air temperature (as it often is, e.g., Novick & Barnes, 584 

2023; Yi et al., 2020), ei will increase while ea remains constant, resulting in larger ei – ea than 585 

measured VPD and consequently underestimate IWUE. Therefore, it is important to address this 586 

potential bias to quantify iWUE accurately. According to our results, there was a strong 587 

correlation between the two ecosystem-level iWUE proxies at the site level (Fig. 1), implying 588 

that the choice of ecosystem-level iWUE definition is unlikely to influence our interpretation of 589 
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the iWUE and mWUE variabilities substantially. Furthermore, our comparison of multiple 590 

definitions of iWUE using a mechanistic model, CANVEG (see the Supporting Information for 591 

more details), suggested that IWUE is a good proxy of leaf-level iWUE and meets the general 592 

assumptions to address scaling issues. Thus, we conclude that eddy covariance observation of 593 

carbon and water fluxes is suitable to model the variability of intrinsic water-use efficiency in 594 

response to changing VPD. 595 

It is worth mentioning that there was a stronger linear relationship between the slope of 596 

IWUE-VPD and aridity index (Fig. 4) in the ecosystems characterized by lower vegetation types 597 

(e.g., grasslands, croplands, and shrubland). In contrast, ecosystems with higher vegetation (e.g., 598 

savannahs, broadleaf forests, and needleleaf forests) exhibited a weaker relationship. This 599 

observation implies a potential link between water-use efficiency and the vertical structure of 600 

vegetation, although the exact underlying mechanism remains uncertain. 601 

 602 

4.2. Modeling the variability of mWUE 603 

We compared two solutions of mWUE by Katul et al. (2010) (𝜕𝐸/𝜕𝐴) and Medlyn et al. 604 

(2012) (g1) developed based on different assumptions on stomatal optimality (carbon-limited vs. 605 

light-limited) for more robust conclusion. Despite the difference in the assumption, both 606 

solutions yielded very similar results throughout our analysis, confirming that the optimality 607 

assumption had little impact on evaluating the variability of mWUE in response to changing 608 

moisture conditions. 609 

We characterized the trend of mWUE by using VPD as an environmental driver (Figs. 4 610 

& 5), where its variability in response to VPD was unique and not necessarily unidirectional, 611 

thus making it hard to generalize with commonly available functions. Specifically, the variability 612 
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of mWUE was simpler and decreased exponentially with rising VPD when the IWUE-VPD 613 

relationship was more linear, making it easy to model the mWUE-VPD relationship (Figs. 4 & 614 

5). However, the variability of mWUE was not unidirectional when the IWUE-VPD relationship 615 

was non-linear, as observed in most cases (Fig. S5 in the Supporting Information); high 616 

variability in mWUE is usually observed at low- and high-ends of VPD. On the other hand, when 617 

mWUE was calculated under conditions of moderate VPD level only, the variability of mWUE 618 

can be overlooked and considered constant. This complex pattern signifies the importance of a 619 

comprehensive view of IWUE and mWUE across the full potential range of VPD. Observation 620 

under conditions of a partial range of environmental factors is common in many types of field 621 

measurements that have coarser time resolution (hourly vs. daily to weekly, e.g., eddy covariance 622 

vs. leaf gas exchange measurements) unless they are performed frequently over a long period to 623 

cover non-typical conditions. We were able to estimate precise variability of mWUE matching 624 

with the hypothetical models owing to the large amount of data (FLUXNET2015) collected 625 

every half-hour over the long period throughout the network of flux towers (total 1,036 site years 626 

with many sites offering data collected over more than a decade), highlighting the value of long-627 

term, continuous measurements. Overall, our result of the mWUE-VPD relationship supports the 628 

results of Manzoni et al. (2011) among the various conflicting results over the response of 629 

mWUE in response to water stress, which found decreasing mWUE under mild water stress and 630 

increasing mWUE under severe water stress from a meta-analysis of gas exchange observations.  631 

As a solution to model unique patterns of mWUE, we attempt to address its variability 632 

with information that can be obtained easily from various types of field measurements (e.g., eddy 633 

covariance, gas exchange, and tree-ring cores) and modeled empirically – IWUE. The 634 

relationship between mWUE and IWUE was inferred from the two equations of the optimization 635 
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theory (Eqs. 3 & 5). We found a strong linear correlation between IWUE-1 and mWUE from both 636 

empirical data (Fig. 8) and modeling exercise (Fig. 7). In other words, the variability of mWUE 637 

in response to changing VPD can be characterized by 1) the function of IWUE-VPD relationship 638 

and 2) the slope between IWUE-1 and mWUE. The relationship between IWUE-VPD is 639 

relatively simple and can be identified with various field measurements. This raises the question 640 

of whether a simple way exists to identify the slope between IWUE-1 and mWUE. By 641 

synthesizing the IWUE-1-mWUE slopes across the sites, we found that the IWUE-mWUE slope 642 

is highly correlated with the site-specific aridity index that can be characterized for different 643 

vegetation types (Fig. 9). The correlation is conceivable from the equations of mWUE (Eqs. 3 & 644 

5). If, for instance, Eq. 3 is rearranged, 645 

𝜕𝐸/𝜕𝐴

𝐼𝑊𝑈𝐸−2
∝ 𝑉𝑃𝐷        (12) 646 

indicating that the slope between mWUE and the inverse of IWUE is proportional to VPD, 647 

which is commensurate with aridity index at a site-level. The correlation between the IWUE-1-648 

mWUE slope and the aridity index at a site level implies that the aridity index is a good surrogate 649 

for the site-specific IWUE-1-mWUE slope.  650 

 We further illustrated how the correlations between the IWUE-1-mWUE slope (m*) and 651 

aridity index (AI) vary across vegetation types (Fig. 10). Among the vegetation types, GRA, 652 

CRO, and SH had strong correlations between m* and AI, which suggested using different m* 653 

depending on the site-level dryness. On the other hand, the low variability of m* observed in 654 

SAV, BF, and NF suggests that constant m* can generate a reasonably accurate mWUE-VPD 655 

relationship regardless of the site-level dryness. Although the reasons for this difference are not 656 

entirely clear, this empirical relationship will help more accurately model the variability of 657 

mWUE in response to changing VPD across the sites and biomes. Growth in data availability 658 
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across the flux tower network will ensure the coverage of the full potential range of 659 

environmental factors. More data availability can be achieved by consistently collecting good-660 

quality data from existing study sites and establishing new sites in underrepresented areas. 661 

Furthermore, it will also help the development of m* in detail, for instance, based on the plant 662 

water-use strategies, with the aid of conjoined field measurements such as water potential (𝛹) of 663 

soil and plant. 664 

 665 

4.3. Implications for future research 666 

It is important to note that plant response to water stress is not only determined by the 667 

water demand (i.e., atmospheric dryness or VPD) but also by the availability of water sources 668 

(i.e., soil moisture). While volumetric soil moisture content (𝜃) is often considered as a metric of 669 

soil water available to plants, soil water potential (𝛹𝑆) is the driving force of water flows that 670 

becomes available to plants by moving along gradients of water potential through the plant (stem 671 

and leaf) and eventually to the air. Moreover, 𝛹𝑆 is not only determined by the 𝜃 but also by soil 672 

physical properties, and thus can differ even under conditions of the same 𝜃 (Campbell, 1974; 673 

van Genuchten, 1980). Unlike 𝛹𝑆, 𝜃 is widely measured and usually available with flux data, and 674 

carbon and water fluxes are often explained as a function of 𝜃 (Green et al., 2019; Novick et al., 675 

2016a). However, 𝜃 may not characterize soil moisture availability to plants properly, and its 676 

relationship with carbon and water fluxes is usually nonlinear and threshold-driven (Feldman et 677 

al., 2019; Novick et al., 2022; Stocker et al., 2018), making the modeling of the relationship 678 

between IWUE and soil moisture availability challenging. Therefore, enhanced accessibility to 679 

𝛹𝑆 data by improving the ease and reliability of 𝛹𝑆 observations, for example, by building a 680 

centralized and standardized network of 𝛹 (Novick et al., 2022) will be a necessary step to better 681 
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characterize the impact of soil moisture availability on plant responses such as IWUE and 682 

mWUE. 683 

In this study, we tested the two stomatal optimization models (Katul et al., 2010; Medlyn 684 

et al., 2012) that are elaborations of the original Cowan & Farquhar model (1977) with little 685 

modifications because our goal was to characterize variability of mWUE in response to dryness 686 

(VPD and aridity index) using IWUE that can be calculated from the extensive, long-term 687 

continuous data from the network of eddy covariance. Meanwhile, more recent optimization 688 

models are incorporating additional physiological penalties than the water loss, for instance, 689 

damage to the vascular system induced by water stress (Anderegg et al., 2018; Sperry et al., 690 

2017; Wolf et al., 2016), which will enhance prediction of long-term plant responses to climate 691 

change. While monitoring the integrity of the vascular system, which can be informed by the 692 

dynamics of hydraulic conductivity, has not been widely conducted, recent advances in 693 

psychrometric approaches allowing continuous measurements of plant 𝛹 (e.g., PSY1 by ICT 694 

International) and 𝛹𝑆 (e.g., TEROS 21 by Meter Group) are now enabling the monitoring the 695 

dynamics of hydraulic conductivity. Moreover, the relationship between plant and soil 𝛹 can be 696 

used to identify plant water-use strategies (e.g., isohydry framework; Martinez-Vilalta et al., 697 

2014), which will help develop m* based on plant water-use strategies. The measurements of 698 

carbon and water fluxes using the eddy covariance technique with the aid of the centralized and 699 

standardized deployment of 𝛹 sensors (Novick et al., 2022) will have a great potential to test 700 

models and theories of stomatal optimization and advance our knowledge of it.  701 
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