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Hardy inequalities for large fermionic systems

Rupert L. Frank, Thomas Hoffmann-Ostenhof, Ari Laptev, and
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Abstract. Given 0 < s < % with s < 1, we are interested in the large N -behavior of the opti-

Xm |_2“', when

mal constant k5 in the Hardy inequality Zfl\’:l (A = kN Y e |1 Xn —

. . . . _2s » o
restricted to antisymmetric functions. We show that N ! @ Kk hasa positive, finite limit given
by a certain variational problem, thereby generalizing a result of Lieb and Yau related to the

Chandrasekhar theory of gravitational collapse.

Dedicated to Brian Davies, in admiration, on the occasion of his 80th birthday

1. Introduction and main result

A prototypical form of Hardy’s inequality states that

(d—2)2f |u(x)?
RA

dx,
4 xp

f Va2 dx =
Rd

when d > 3 and u € H'(R%), the homogeneous Sobolev space. This and other forms
of Hardy’s inequality are fundamental tools in many questions in PDE, harmonic
analysis, spectral theory and mathematical physics. We refer to the survey paper by
Davies [6] and the books of Maz’ya [34] and Opic and Kufner [35] for extensive
results, as well as background and further references.

In [18], the second and third authors and their coauthors studied what they called
many-particle Hardy inequalities. These are inequalities for functions defined on R4
with coordinates denoted by X = (X1,..., Xy) with X1,..., Xy € RZ. Here, N >
2 can be interpreted as the number of (quantum) particles in R? and the X, n =
1,..., N, as their positions. The Hardy weight takes the form ) ,_, . n |Xn —
X,n|™2. It is shown in [18] that S

) Cu@P
Z/ Vau(X)PdX = By’ Y /dN X —X.P dX (1)

1<n<m<N
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for all u € H'(R4N) with a certain explicit lower bound on the optimal constant
ﬂfiN) that is positive, provided d > 3 and N > 2. What is of interest is the behavior

of the optimal constant ﬂ‘(ZN) as N — oo for fixed d. This corresponds to the many-
particle limit, a classical topic in mathematical physics. The explicit lower bound for

ﬂ%{) obtained in [18] shows that liminfy _ o N_I,BI(\‘,i) > 0. It is also noted in [18]

that lim sup v _, oo N‘lﬂl(\‘,i)

< 0o. The methods of the present paper allow us to prove
that limy oo N 7! ,31(51) exists and to give an explicit expression for it in terms of a
variational problem for functions on R?; see Section 2.7 for more details.

Our main interest, however, lies in a variant of inequality (1), namely, its restric-
tion to antisymmetric functions. A function u on R4V is called antisymmetric if for

any permutation o of {1,..., N} and a.e. X € R4N one has
u(Xy,...,Xn) = (sgno)u(Xsqy, . ... Xo@v))-

Here, sgno € {+1,—1} denotes the sign of 0. The antisymmetry requirement appears
naturally in physics in the description of fermions. (Note that we restrict ourselves
here to scalar functions, corresponding to the spinless or spin-polarized situation,
although in our results for dimension d > 3 spin could be incorporated; however,
for d = 1,2, when |x|™2 is not locally integrable, the spin-polarization is crucial.)

(d)

We denote by «,;” the optimal constant in inequality (1) when restricted to anti-

symmetric functlons, that is,

N
(d) inf Zn=1 f]RdN |Vnu(X)|2 dX
Kn =

. 2 °
et ) Tnsnamen faon X, g, 4

As emphasized in [18], there are significant differences between the inequality on
all functions in H'! (RdN ) and its restriction to antisymmetric ones. One important
difference is that k&) > 0 for all d > 1 and N > 2, while %) = 0 for d = 1,2
and N > 2; see [I S Remarks 2.2 (i) and Theorem 2.8]. Remarkably, for d = 1 the
explicit value of the sharp constant K( ) is known, namely, « (1) 1 forall N > 2
[18, Theorem 2.5]. For d > 2, as far as we know, only the lower bound le) >d?/N

is known. This displays the same N ~! behavior as ﬁg\‘;’), but, as we will see in the
present paper, this is not optimal, at least when d > 3.

In fact, our main result states that limy oo N'1=@ K(d)

exists as a positive and
finite number when d > 3, and gives an explicit expression for it in terms of a varia-
tional problem for functions on R,

This is the special case of a more general result, which concerns the inequality

3 (d.5) u(X)?
Z/ (A2 u(X)PdX = " Y /de_xpst )

l1<n<m<N
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forallu € H* (RN, Here, s is a real number satisfying 0 < s < % and the operator
(—A,)? acts on the nth variable of X = (X,..., Xy) by multiplication by |&,*
in Fourier space. The homogeneous Sobolev space H*(R4Y) is the completion of
cx (R4N') with respect to the quadratic form on the left-hand side of (2). It is rela-
tively straightforward to see that
f N > 0. 3

o, VB ®
Indeed, for each pair (n, m) with n # m, we have by the ordinary fractional Hardy
inequality (see Lemma 9 below),

s WP
[ icaniunrax, = [ Sy, @

Integrating this inequality with respect to the remaining variables and summing over
n and m give (3). As an aside, we mention that the optimal constant in (4) is known;
see [16,19] and also [13,38].

Our interest is again in the sharp constant in (2) when restricted to antisymmetric
functions, that is, in

N s
(@) . inf Don=1 fRdN [(Ap)2u(X)|* dX
N . s X)|2 .
O;éugH RN 3 <N JRaN %d)(

antisymmetric

To state the limiting variational problem, we introduce for nonnegative, measur-

able functions p on R¢
i
S e g
R4 xR4 lx — x'|

Moreover, we denote

2s

S 1_7
Jaa 2% dx( oo o))
Tds = inf .

0<peL!* ¥ nLI(RY) Das[p]

The fact that 74 > 0 follows from the Hardy-Littlewood—Sobolev inequality [24,
Theorem 4.3], together with Holder’s inequality. Finally, let

TF (47T)S 2s
= r(1+4%4)7,
d, 2 2
s 1+

The superscript TF stands for “Thomas—Fermi” and it will become clear in the proof
that this constant is related to the Thomas—Fermi approximation for the kinetic energy.
The following is our main result.
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Theorem 1. Letd > 1and0 < s < % with s < 1. Then,

. —25 (d,s) TF
I =3 89 = :
N1_r>nooN Ky Td,s Cq g ®))
Remarks 2. (a) This result in the special case s = % d = 3 is due to Lieb and
Yau [31], following earlier work by Lieb and Thirring [30]. While our overall strategy
is similar to theirs, there are some significant differences, which we explain below.

(b) Our proof of the asymptotics (5) comes with remainder bounds. We show that
2 . o ) _sd=25) ,
N=3 I(I(g’s) is equal to its limit up to a relative error of (N 42 ); see equations

(6) and (13).

(c) We believe that Theorem | remains valid without the extra assumption s < 1.
This would probably require significant additional effort at various places and, since
our main interest is the case s = 1, we decided to impose this simplifying assumption.

(d) Theorem | extends to the case where spin is taken into account, except that the
limiting expression in (5) is multiplied by a power of the number of spin states. We
refer to [26] for an explanation of this terminology and to [31] for proofs where spin
is taken into account.

1(\;”) in the case d = 2s is an open prob-

(e) Finding the asymptotic behavior of «
lem. In Appendix B, we discuss a conjecture of what might be the right order and

prove the corresponding upper bound.

Let us give some background on Theorem 1 and explain some aspects of its proof.
The basic idea is that it is a combined semiclassical and mean-field limit. Such a limit
is behind what is called Thomas—Fermi approximation for Coulomb systems and has
first been made rigorous by Lieb and Simon in [26]. Parts of this proof were simplified
through the use of coherent states [23,37] and the Lieb—Thirring inequality [23,29],
and these tools will also play an important role for us. For a recent study of this
combined semiclassical and mean-field limit for quite general systems we refer to [8].

One difficulty that we face here, compared to the analysis of nonrelativistic Cou-
lomb systems [27] or the systems in [8], is that the kinetic energy and the potential
energy scale in the same way, so that there is no natural length scale. This problem
was overcome by Lieb and Yau [31], following earlier work of Lieb and Thirring [30],
in their rigorous derivation of Chandrasekhar theory of gravitational collapse of stars.
An important ingredient in the proofs of [30,31] and also in the more recent [8], is
the Lévy-Leblond method. This method will also play a crucial role in our proof. It
consists in dividing the N particles into two groups, treating one part as “electrons”
and the other part as “nuclei”. The electrons repel each other, and similarly the nuclei,
while electrons and nuclei attract each other. The construction involves a further, free
parameter that corresponds to the quotient between the charges of the electrons and
the nuclei. At the end one averages over all such partitions.



Hardy inequalities for large fermionic systems 809

There is one important structural property, however, that Lieb and Yau can take
advantage of and we cannot. They deal with the case s = % d = 3, where the
interaction potential |x|~! is, up to a constant, the fundamental solution of the Lapla-
cian and the corresponding (sub/super)harmonicity properties enter into the proof of
[31, Lemma 1]. The same phenomenon occurs, for instance, for s = 1, d = 4, or

| =25 is not

in general for s = %, d > 3, but in the general case the interaction |x
harmonic outside of the origin. Therefore, some effort goes into proving a bound for
systems interacting through Riesz potentials |x|~2* for general exponents 0 < 2s < d;
see Proposition 3. For this we rely on the Fefferman—de la Llave decomposition of
this interaction potential. This decomposition is also the main tool in the proof of
Proposition 11 and, as a curiosity, we mention that also the Cwikel-Lieb—Rozenblum
inequality, and therefore the Lieb—Thirring inequality, which is another important
ingredient in our proof, can be established using the Fefferman—de la Llave decom-
position [10]. For more on this decomposition, see also [15].

Neither the Lévy-Leblond method nor the Fefferman—de la Llave decomposition
seem to work for d < 2s and this case remains open (except for s = d = 1). In
Appendix B, we give a suggestion of what might be the relevant mechanism in the
borderline case d = 2s.

Finally, we mention that the results in this paper, with the exception of those in
Section 2, are contained in a preprint with the same title, dated October 30, 2006, that
was circulated among colleagues. The present paper corrects some minor mistakes
therein and adds a proof of the sharp asymptotic lower bound.

It is our pleasure to dedicate this paper to Brian Davies in admiration of his many
profound contributions to spectral theory and mathematical physics and, in particular,
to the topic of Hardy inequalities. Happy birthday, Brian!

2. Lower bound

Our goal in this section is to prove the lower bound in Theorem 1. That is, we will

show that
- 1-25 (d.s) TF
l}vni)lgofN TKN" =2 TdsCqy-

More precisely, we will prove the following quantitative version of it:

N 1_% - TF 1 N_ s(dd—22s) 6
KN = Td,sCq¢| 1 — const . (6)

As explained in the introduction, we mostly follow the method in [31], but an impor-
tant new ingredient, which replaces their [31, equation (2.21)], is the electrostatic
inequality in Proposition 3.
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2.1. An electrostatic inequality

For a (Borel) probability measure & on R?M | we denote by oy, the nonnegative mea-
sure on R obtained by summing the M marginals of p. That is, for any bounded
continuous function f on R4 , we have

M
S [ Omdn) = [ 501 dpao.
m=1

The definition of D), is extended to nonnegative measures on R? in a natural way,

namely, by
1 dv(y)dv(y’)
D3] ::-// D) doir)
2 JJraxga |y =

Next, for R = (Ry,...,Rg) € R4K and y € R, we set
) = i — Ry|.
R(y):= min |y — Ryl

Proposition 3. Letd >1and0 < A <d. Then, forany M, KeN, R=(Ry,...,Rg) €
R4K | Z > 0 and any probability measure . on RM

z? dpu(y)
Y ———D Z ,
/WZW R W00~ 2 g~ Palud = [~

where the implied constant depends only on d and A.

The following proof uses some ideas from that of [7, Corollary 1].

Proof. According to the Fefferman—de la Llave formula [7], we have for all y, y’ € R4
l o0
P = const /0 rd“‘“ / dalp,@)(y) 1B, (") @)

with a constant depending only on d and A. This implies that

2

Z Z
-3 —= D
/]RdeZ’k |Ym — Ri|* ) Z IRk — R;|* APl

k<l
= t/ _a / d / zZy 1 (V)1 (Ri) du(Y)
= cons a
o rd+A+1 p aM - Br(a)\Im) LB, (a)\ Ik

— 7Y 1, (R 1B, @) (R1)
k<l

1
- §//Rd><Rd PM(Y)]lBr(a)(y)]lBr(a)(y/)P,u(y/))

«©  dr 1 1
= const /0 m /];Qd da(an,(a)KBr(a) — EZZKB,A(Q)(KBr(a) — 1) — En%r(a))’
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where we have introduced, for any ball B,

ng = pu(B) and Kp:= Z]lB(Rk)~
k

Note that K is a nonnegative integer. We claim that for any n > 0 and any K’ € N,
! 1 2 ! / 1 2 l
ZnK _EZ K'(K —1)—§n <Znl(K =1).
Indeed, this is true when K’ = 0, and when K’ > 1, we write the left-hand side as
1
—E(n —ZJK'(K' — 1))2 +nZ(K' - VK'(K' - 1))
and bound K’ — /K'(K' —1) < 1.

Thus, we have shown that

2

Z Zz
= —dp(¥) =Y ———— Dy
/RdM% IYm_RkM 28 Z |Rk_Rl|,l [pM]

o0
fconstZ/O m/ danB,(a)ﬂ(KBr(a) >1)

= constZ/l;d dpu(y) /0 m /Rd dalp,)(y) 1(Kp,(@a) = 1).
Next, we bound

18,)(V) L(KB, (@) = 1) < 1p,@)(y) L(r(y) < 2r).

Indeed, when the left-hand side does not vanish, we have |y — a| < r and there is a
k € {l,...,K} such that | Ry — a| < r. Consequently,

SrR(y) < |y — Ri| < 2r.
By performing first the @ and then the r integration, we obtain for each y € R¢,
o0
/0 —rd+x+1 / dalp,q)(y) 1(KB,@ = 1)
o
= /0 rd‘HH‘l / da ]lBr(a)(y) 1(r(y) < 2r)
* dr
= const /(; sy 1(6r(y) <2r)
. 1
= const ———.
Sr(»)*

This implies the claimed inequality. |
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2.2. Lieb-Thirring inequality

Associated to a normalized function ¢ € L2(RM) is a probability measure dju(Y) =
|¥(Y)|?>dY, and, therefore, we can consider the measure dp,, on R as in the previ-
ous subsection. In the present case, this measure turns out to be absolutely continuous
and we denote its density by py. Explicitly,

M
oy (y) = Z/ (o Yme1. 9. Ymgr.. - )P dYy-d Yy 1dYpyq -+ d Y.
= Jr3w-n

This density appears in the following famous Lieb—Thirring inequality.

Lemma 4. Let d > 1 and s > 0. Then, for any M € N and any antisymmetric and
L?-normalized € HS(R4M),

2s

M
> [ camivrayz [ o) ay,
=1 RAM R4

where the implied constant depends only on d and. s.

For s = 1, this inequality is due to Lieb and Thirring [29]. Their original proof
generalizes readily to the full regime s > 0; see also [26, Chapter 4], as well as [12,
Theorem 4.60 and Section 7.4] and [9]. For the currently best-known values of the
constants, see [11].

2.3. Coherent states

The following lemma is a rigorous version of the Thomas—Fermi approximation for
the kinetic energy. It is proved with the help of coherent states.

Lemma 5. Letrd > 1 and 0 < s < 1. Let g € HS(R%) be L?-normalized and, when

s > %, assume that |g| is even under § — —&. Then, for any antisymmetric, L>-

normalized y € H* (]RdM),

M

S 2s S
S [ NesmbuRar =l [ oy 1Py - w-a) S
me1 RAM R4

Here,
2(6) = (@)% / e % g(x) dx
R4

denotes the Fourier transform of g.

Bounds of the same type as in the lemma appear in [23, equations (5.14)—(5.22)]
in the special case s = 1 and d = 3; a general version is formulated in [31, Lemma
B.4]. Because of a subtlety in the application of that lemma, we sketch the proof.
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Proof. We will show that for any L2-normalized v € H* (R%), one has

S d d S
Il = [ wPenlR I et ®)
R4 xR4 (2m)

where
B0, y) = / gy — Dw(x)dx.
Rd

(Compared to [24, Section 12.7] and other presentations, we find it convenient to use
¥y — x instead of x — y in the definition of v.) Once (8) is shown, the inequality in the
lemma follows as in [31, Lemma B.3].

To prove (8), we observe that

/ 5 )P dy = )¢ f D©)18(n — O dE.
]Rd Rd

We multiply this identity by |7|?* and integrate with respect to .
In case s < 1, we use the subadditivity of  — ¢29 to bound on the right-hand side

1> < [§1% + I — £

and obtain the claimed inequality (8). (This is essentially the argument in [31, Lemma
B.31.)

In case % < s <1, we use the evenness of |g| to replace |n]|?* = | + (n — £)|**
with 2(1€ + (n — €)>°) + |§ — (n — €)|**. We then apply the elementary inequality

%(IS + P 1= = (€7 + 817" < €17 + [¢* ©)

and argue similarly as for s < % to obtain the claimed inequality (8). The second
inequality in (9) follows from the subadditivity of # > ¢°, and to prove the first
inequality, we write

SUE+ P 16 %) = (1 + 1) + (=) + 1P’
with
fo =2 £/(EP + 1) € 1.1

and note that
1,1]2t=> 0+ +(0—10)°

attains its maximum at ¢t = 0. [

We expect a similar bound as in Lemma 5 to hold for s > 1 as well, but the
structure of the remainder term will probably be more complicated.
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2.4. Summary so far
Let us combine the bounds from this section.

Corollary 6. Letd > 1,0 <s <2 withs <1, M e N, K>2 R=(Ry,...,Rk) €
R4 and Z > 0. Then, for any antisymmetric and L?-normalized € H* (RIM),

SN N
W = R o R — R

s(d—2s)

M
< (1 +constM a2 )(‘L’djs eyt iy Z/ [(—=Am) 2y 2 dY
’ =1 RAM

Py (¥)
7z
+ const /Rd SR(y)> dy

Proof. Lety € H*(RM) be antisymmetric and L2-normalized. We recall that accord-
ing to Proposition 3, we have

7 A Py (¥)
) —_—Y ) = —————— < Dy, +constZ/ d
(v L= w) 2 TRy = Dalev] v SR ()
(10)

The second term on the right-hand side appears in the claimed error bound. To bound
the first term, let ¢ € H*(R¢) be L2-normalized. Using the definition of 74,5, YOUNE’s
convolution inequality and Lemma 5, we find

1-2s
_ 2s d
Daslpy] < rdj/ (py * |gI*)1 T dy([ py * Iglzdy)
R4 RA
2
+ (Daslpy] — Dasloy * |21°])
_ _2s 2s
< tg M /Rd(pw * g dy

1 2 —2s 2 —2s 2
+ oy I} 2 167> = [ x1 72 g7 ags

M
< (a0 MF Y [ jeamiyPay 4 R
’ 1 RAM
with
_ _2s S
R = (tascyy) ' M>7a|(=A)2g|?

1 2 -2 2 -2 2
51wl 2 1172 = [ 7> 5 (2] g
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We now assume that g(x) =% G (¢~'x) for an L2-normalized function G € H* (R?)
and a parameter £ > 0 to be chosen. We have

R =714, JF) T M> T | (—0)3G|?

2s5(d—
+ ¢ ¥d —||/01/f||2+zs [ = 1G 1 72 |G P s

We note that the function |x|™2% — |G |? * |x|~2% * |G |? behaves like |x| 2% as |x| —
0. Moreover, assuming that |G| is even and that |x|?|G|? is integrable, it is easy to
see that |x|72% — |G|? * |x|72* % |G|?> = O(]x|7?*72) as |x| — oo. A tedious, but
elementary analysis shows that (25 + 2) djszs > d. (Indeed, this is equivalent to 252 —
s(d —2) +d > 0. This is always satisfied when d = 1,2. For d > 3, the left-hand side
is decreasing with respect to s for s < %, so its validity for our parameter values
follows from its validity at s = min{ 1 d _2} ) The conclusion of this discussion is that

|x|725 — |G|? * |x|7% * |G|? € L (Rd) We consider G as fixed and choose

(d—s)(d+2s) d2+§\
=M EE oy

in order to balance the two error terms and obtain

_ s(d—2s) _2s 1+25
1—=7
RIM a2 M4 ||pw||1+2§.

Using the Lieb—Thirring inequality (Proposition 4), we can further bound the right-
hand side and arrive at

s(d—2s)

M
REM™ 7 MTE Y /RdM (=Am)y[?aY.
m=1

This implies the claimed bound |

2.5. Domination of the nearest neighbor attraction
For X = (X1,...,Xny)andn €{l,..., N}, let

n(X) 1= min X = X.

Proposition 7. Letd > 1 and 0 < s < di with s < 1. Then, for any antisymmetric
u € HS(RN), we have

N N
5 u(X)|?
3 [ cantoopax =30 [ S ax

with an implicit constant that only depends on d and s.
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This bound appears as [32, Theorem 5] in the cases d = 3 and s € {%, 1}, but
the proof readily generalizes to the stated parameter regime and is omitted. We also
mention an alternative proof in [7, Corollary 2], which is based on a Fefferman—de la
Llave-type formula for the H*(R?)-seminorm and which generalizes to the regime
s < 1.

Probably, Proposition 7 remains valid for 1 < s < %, but this would require an
argument and for the sake of brevity we do not consider this case. The IMS localiza-
tion formula in [33, Lemma 14] might be useful.

2.6. Proof of the lower bound in Theorem 1

We turn to the proof of (6), for which we use the Levy-Leblond method [21], simi-
larly as in [30,31]. Given N > 3, we choose an integer M € {1,..., N —2} and a
real number Z > 0. We set K := N — M and consider partitions 7 = (71, 73) of
{1,..., N} into two disjoint sets 71 and 7, with M and K elements, respectively. We
have

3 1 3 M(N —1) N [N\
| X, — Xm|?  2ZMK —Z2K(K—-1)M\ M

(Y nr X )

T memny ke, k<lem;
an

Letu € H*(R?N) be antisymmetric. Our goal is to bound the Hardy quotient for
u. By density we may assume that u € H*(R4") and by homogeneity we may assume
that u is L2-normalized. We integrate the left-hand side of (11) against |u(X)|?. Cor-
respondingly, on the right-hand side, we obtain a sum over partitions and we bound
the integral for each fixed such partition P. We first carry out the integral over the

variables in 1. Denoting these variables by (Y71, ..., Yas) and the variables in 75 by
(R1,..., Rg) we infer from Corollary 6 that
Z Z? )
_— _ |u(X1,...,XN)|2dm(X)
/RdM (m;] k%;z | Xm — Xi|?S k;ﬂ | Xk — X1|?s

s(d—2s) 1_275

S(l—l-constM_ a2 )(rd,scgi Ml

<2 [ B X P dm ()

mem;

u(X1.....Xn)I?
tZ E d X).
- cons /RdM 82 (x) (Xm)?S (%)
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Here, d 1 (X)) denotes integration with respect to the variables X,, with m € 7; and,
for m € 1, we have

8,x)(Xm) = min | X, — Xg| > min | X, — Xg| = 6 (X).
ken, k#m

Inserting this into the above bound and carrying out the integration over the variables
in 7, we obtain

ZZ
(E X fm X m)'”m'z”

mMENn| ken, k<lem

_sd=2s)
§(l+constM a2 )(rdsc lMl_i Z/ |(— Am)2u(X)|2dX

METm|

u(Xy,....Xn)?
+ const Z Z /Rdzv 5 ()2 dX.

According to (11), summing this bound over & gives

X 2
[l
R4N |Xn_Xm|25

M(N —1) _s(d=2s)
< 1 +constM a2
2ZMK — Z?2K(K — 1)

N
_ _2s S
< Caccf M F Y [ Iantup ax
n=1

M(N —1) |M(X)|2
S TME — Z2K(K — 1) Z /RdN 5, (%)% ©

Using Proposition 7, the right-hand side can be bounded by

C(tascyly lNl_Z/ I(=Ap)2ul?dX

with

1—2s

M(N —1 _sd=25) N\ M d
= ( ) 14constM~ a2 +constZM™'T )= .
2ZMK — Z?K(K — 1) N

Our goal is to choose the parameters M and Z (depending on N) in such a way
that C — 1 as N — oo. We choose Z = M/ K and obtain

1-28

1+MY(K-1) _sd=25) L2\ (M) T4
= 1+constM 42 +constK "M d — .
1+ K1 N
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With the choice
K:=[N %+%],
we find
_ s(d—2s)
C <1+constN a2
This completes the proof of (6). ]

Remark 8. Under the additional assumption d > 4s, one can prove (6) (with a worse
remainder bound) without using Proposition 7. Indeed, inserting the bound from
Lemma 9 below into the bound in Corollary 6, we can drop the last term there at
the expense of replacing the factor in front of the first term by

s(d—2s)

- 2142
1 + const M a2  +constZKdad M d

d+2s
Choosing again Z = M/K, we can choose K ~ N 2@=s and arrive at (6) with the

. __d—4s_
remainder 1 — const N~ 2@—s) .

Lemma9. Let 0 < 5 < & Then, for allv € H*(R?), K € N and R € R3K,

& A>2v||§>1<—[ LICOTN

Rd OR(X)?S

with an implicit constant depending only on d and s.

The following proof has some similarities with [31, Lemma B.1].

Proof. We use the improved Sobolev embedding in Lorentz spaces [36] (see also
[20, Theorem 17.49]),

I(=A)2v|2 2

2d B
Ld=252(RY)

together with Holder’s inequality in Lorentz spaces [20, Exercise 15.22],

/ |U(X)|2 < ||8 2s” v 2 a
Rd SR(X)2S RN f50ma) L7235 (RY)

2 2
=821l ¢ I 2q

LI rd) 2Rd)

It remains to bound the weak L% norm of 5;25 . We have
{6r < A}| < Z {|- —Rk| < A}| = const KA¢

so that

&\5:]

2l e = sup ul{6z% > W@ <
w>0

571, 4 o e

This gives the claimed bound. |
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2.7. The case without antisymmetry

In this subsection, we explain how the proof of (13) can be modified to give a lower
bound on the optimal constant /31(\‘,1’5) in (2). We denote

—A)S 2
s = inf [(=A) \/5||2||/0||1‘
0% /pEH (RY) Das[p]

It is not difficult to show that wz s > 0 when 0 < s < % and that there is an optimizer

Px; see, e.g., [31, Theorem 4] in the case s = %, d = 3. Then, one can show that
(d,s)
By = N 160d,s forall N > 2 (12)

by taking u(X) = ]_[,]lv=1 v px(Xy). For s = 1, d > 3 this argument appears in [18,
Theorem 2.3]. We now state the lower bound corresponding to (12).

Proposition 10. Letd > 1 and 0 < s < % with s < 1. Then,
N,Bg‘,i’s) > wg,s(1 — constN_l+%).

Proof. We proceed from inequality (10), which did not use the antisymmetry of .
Using the definition of g ¢ and Lemma 9, we can bound the right-hand side of (10)
by

Py (¥)
R SR(¥)*

_ s 2s s
<0z I(=8)2 /pyl3 oyl + const ZK 7 |[(=A)> /oy |13

Dsg[py] + const Z

M
<(1 tZM 'K w7l M / —A) 3R dY.
< (1 + cons oz mZ=1 RdM|( m)2 V|

The second inequality here is the Hoffmann-Ostenhof inequality [17] for s = 1 and
its generalization to s < 1 by Conlon [5]. Following the Lévy-Leblond method, we
deduce from this bound that

f de < Ca)_lNi/ (=An) 2y > dX
RaN | Xn — Xon|?S = T Tds = Jran "

with

C M(N —1)
" 2ZMK — Z2K(K — 1)
We choose again Z = M/ K and obtain
1+ MTY(K-1)
14K

Choosing M = 1, we arrive at the claimed bound. [

1 + const ZM_IK%
(

=[x

_1+A K
(l—l—constK d)N.

C:
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3. Upper bound

Our goal in this section is to prove the upper bound in Theorem 1. That is, we will

show that
: 1-28 (d,s) TF
limsup N™" @ k™ < tq,5¢4 .
N—o0

More precisely, we will prove the following quantitative version of it:

_ s(d—=2s)
N < g e (1 const N ). (13)

For the proof, we follow rather closely the method in [30, Section 3], combined with
an exchange inequality, which appears in Proposition 11.

3.1. A bound on the indirect part of the Riesz energy

Here, we return to the setting of Section 2.1 and consider probability measures @ on

R4N and their marginals Pu-

Proposition 11. Letd > 1 and 0 < A < d. Then, for any N € N and for any non-
negative probability measure . on RN with Pu € L'+ (R9),

_dpX) . s
Z /Rdzv | X, — Xm |,1 — Dilpul 2 /Rd pu(x) "4 dx

1<n<m<N
with an implicit constant depending only on d and M.

This bound for A = 1 and d = 3 is due to [22] with an improved constant in [25].
For the general, case one can adapt the proof strategy from [28], which is based on the
Fefferman—de la Llave formula and does not use (sub/super)harmonicity properties of
the interaction potential. The details appear in [33, Lemma 16]. (The proof given there
for absolutely continuous measures extends to the general case.)

3.2. Relaxation to density matrices

We use the result from the previous subsection to make the next step towards (13),
namely, by proving an upper bound in terms of density matrices.

We recall that a nonnegative trace class operator y on L2(R?) has a well-defined
density p, € L! (R?). Indeed, if we decompose y = > ;i Ai|¥i)(¥i| with orthonormal
Vi, then p, = >"; A;|¥:|?. (In the case of a non-simple eigenvalue A; one can convince
oneself easily that this is independent of the choice of the eigenfunction ;.)

We claim that for any operator y on L2(R?) satisfying

0<y<1 and N:=TryeN, (14)
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we have
AN d,s) _ 142
Tr(=A)’y = kx| Das[py] — const py(x) T4 dx|. (15)
R4

Here, as usual, we write Tr(—A)®y instead of Tr(—A) 2 y(—A)3.. Of course, the bound
is only meaningful if the latter quantity is finite.

Given Proposition 11, the proof of this assertion is relatively standard (see, e.g.,
[30, Section 3]), but we include some details for the sake of completeness. First, there
is a nonnegative operator I' on the antisymmetric subspace of L2(R?V) satisfying

Try ' =vy,

where Try_; denotes the partial trace with respect to N — 1 variables. This is due
to [4]; see also [26, Theorem 3.2]. It follows that

N
TTT=N"!'Try =1 and ZTr(—A,,)SF = Tr(—A)*y.

n=1

I'= ZPHML')(%

with orthonormal antisymmetric functions u; € L2(R?N) and nonnegative numbers

Expanding

pi, we obtain

Z[Ji =1
i
N
Sn X [ A buPax =Ty
i n=1 /RIN

(d,s)

Therefore, the definition of « ,""", applied to u;, yields the inequality

Tr(—A)'y = k™" Zp Z / Py
' N | Xn — Xm|2S
We now apply Proposition 11 to the measure

dp(X) = 3" pilus (O dX,

which, by the above properties, is indeed a probability measure. Moreover, using the
partial trace relation between I" and y, we find p;, = p,. Thus, the claimed inequality
(15) follows from Proposition 11.
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3.3. Construction of y using coherent states

Let 0 < p e L' N L' (RY) with fpq pdx = N and let g € H(RY) be L2-
normalized. We consider the operator

dydn
@2n)?

e 25—
y(x,x@:/fd =0 P < o0 F) g0 =)
R4 xR

_2s
with ¢ = 2n)*w ;¢ » where wg is the volume of the unit ball in R€.

It is easy to see that this operator satisfies (14). Indeed, the bound y > 0 follows
immediately by estimating 1(|§|** < cp(x)%) > 0 and the bound y < 1 follows by
estimating 1(|§|** < c,o(x)%) < 1 and using Plancherel and the normalization of g.
To prove Try = N, we integrate the kernel on the diagonal, using the choice of ¢ and,
again, the normalization of g. In this connection, we also note that the density of y is

pr0) = [ plollgty =0 dy = p+ gl o).
Assuming that |g| is even, we claim that
TH(—A)y < cds/ (0 18P dx + N|(-8) g2,

This is shown in the special case d = 3, s = % in [30, Section 3] (see also [24,

Theorem 12.10]). The proof generalizes to the general case, the underlying estimates
being the same as in the proof of Lemma 5.
If we insert these facts into (15), we obtain

it [0 ) x4 N el
2s
= 9 (Daslp ) const [ (o< 1gP)' ¥ a).
By the normalization of g and Minkowski’s inequality, we have
2\1+2 1428
(ox|gl") Tddx < p T dx.
R4 R4

Moreover, as in the proof of (6), Young’s convolution inequality shows that

Daslp * |g1?] = Daslp] — ||p||1+zs 12172 — 1gl? % |x[ 7 * |g|2||%‘

To summarize, we have

25 s d,
[0+ N0 gl = ) (Danlel - R)
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with

1 _ _ 2s
Rz S0l 6172 = Lgl? 13172 g agas +const [ o1 .
d 4s R4

Similarly, in the proof of the lower bound, we now assume that g(x) = % Gt~ x)
for an L2-normalized function G € H*(R¢) and a parameter £ > 0 to be chosen. We
consider G as fixed and obtain, as before,

2s(d—2s) 2
R 5 CE oI, + ol

1 2s
d
2s *

1_.|_7

Thus,
-
c?sf p't@ dx + const{">N
S Joa

d, 2s(d—2s) 1+2J
> i S)(Dzs[p] — const (Z CE=ra ||p||f+% + ||p||1+%)). (16)

3.4. The semiclassical problem

The following result states that the variational problem defining 7 ; has an optimizer.
This result is not strictly necessary for our proof of the upper bound in Theorem 1,
but it is readily available and makes the proof more transparent.

Lemma 12. Letd > 1and0 < s < %. Then, there is a0 < py € L*% N L'(R9),
0« 7 0, such that

[ra 0 (x) 1+ dx( Jga p+(x) dx)l_%
DZS[IO*]

= Td,s-

In the special case s = % d = 3, this appears in [25, Appendix A]. The proof in
the general case is exactly the same.

For the sake of completeness, we mention that the uniqueness (up to transla-
tions, dilations, and multiplication by a constant) of p, has been studied in [25] (see
also [31]), as well as in the recent papers [2, 3].

3.5. Proof of the upper bound in Theorem 1

Let p« be the optimizer from Lemma 12. After a dilation and a multiplication by a
constant, we may assume that

1+ _
/ pxdx =1 =/ osx ¢ dx, Das[ps] = ‘L'd,}v.
R4 R4
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We then apply the construction outlined in this section with the choice p = Npy.
Inequality (16) turns into

cUTl’Fs(lJrconstZ‘zsN‘%)_ (d.s) —1N1 (1_Const(£W+N—l+2Y)>‘

Choosing
t= N5

’

we obtain, for all sufficiently large N, the claimed bound (13).

Appendix A. An order of magnitude bound

Our goal in this appendix is to prove the lower bound

. _2s (4,
]\1/n>f2N1 S AN (17)

for0 <s < dg with s < 1. This is weaker than the asymptotics in Theorem 1, but it

does capture the right order of magnitude as N — oo, and we feel that the argument
is robust and may be useful in other contexts as well.

The main step in the proof of (17) is the following bound, which is similar to the
sought-after Hardy inequality, but with an additional positive term on the left-hand
side.

Proposition 13. Letd > 1,0 <s < % and t > 0. Then, there is a constant C(t) > 0
such that for any N > 2 and any antisymmetric function u € H*(RN),

al : 7|ul?
Lot )

= CONT 2 /RdN IX X |2 ax:

1<n<m=<N

Proof of (17) given Proposition 13. Denoting by ¢ the implicit constant in Proposi-
tion 7, we infer from that proposition and from Proposition 13 that for any 0 < 6 < 1

Z( A>z>(1—9)2(( An)® + )

z(l—Q)C(m)N_H? Z | X — Xom| 2.

1<n<m<N

Hence, Nl_%xl(\f’s) > supg.g<1 (1 —0) C( %) > 0, as claimed. [
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We emphasize that, while Proposition 13 does not require s < 1, our proof of (17)
does, since we apply Proposition 7.

It remains to prove Proposition 13, and to do so, we proceed again with the help
of the Lévy-Leblond method [21]. We split the N variables X = (X1,..., Xy) into a
group of “electronic” variables Y = (Y1, ..., Yar) and a group of “nuclear” variables
R = (Ry,...,Rg) with M + K = N.Forafixed R € RK with Ry # R; fork #1
we define the function on Rd,

1
Vr(y) = Z 25 2s5°
oy = Re> Sr(y)*

and the constant

Ma

Ugr =
: 2 |Rk—R1|2S

2s
1<k<I<K k=1 k(R)

Here, as before,
Sr(y) =min{|ly — Rg| : 1 <k < K}

and
Sk (R) :min{|Rk—Rl| 1 <k<K,I ;ék}

We will estimate the sum of the negative eigenvalues of the (one-particle) operator
(=A)* — AVg in L2(R?) in terms of Ug.

Lemma 14. Letd > 1 and 0 < s < 4. Then, for all K > 2, R € R and 1 > 0,
Tr(—A)S — AVR)— < A1T55 K51 Uy (18)
with an implicit constant that only depends on d and s.

Proof. By the Lieb-Thirring inequality (see, e.g., [12, Theorem 4.60]), we have
TH(-8)' = 2Ve)- S AE [ Va0t E ay.
R4

To estimate the latter integral, we write

K
VR(Y) =D ey — Rel ™,
k=1

where 1 — yj is the characteristic function of the Voronoi cell I'y :={y : |y — Ri| =
min; |y — R;|}. Note that Holder’s inequality implies that

K
VR()EOHE) < K5 )
k=1
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Hence,

d+ d+2s

d d=2s _ 2s _
/Rd VR()' 25 dy < K75 Z/Rd KDy —Rel™ = |y —Ri|” = dy
k,l

d—2s _d+2s _d42s
< K'F (22/ v = Rl fy - R ay
k<1 'R?

+ Z/Rd xeW)ly — Re| 7472 dy)-
k

The first integral is easily found to equal a constant times |Ry — R;|™2%. To estimate
the second integral, we note that

{y: |y — Rkl <8(R)/2} C I'.

Extending the domain of integration, we find that
f Oy —Re| ™42 dy < [ ly— R | 74725 dy =const 8 (R) %",
R4 {y=Rk|>8r (R)/2}

This proves the assertion. |
Now, everything is in place for the proof of the following proposition.

Proof of Proposition 13. In view of (3), it suffices to prove the bound for sufficiently
large N. In fact, we will prove the bound for N > N(t) for some N(t) to be deter-
mined later.

For given N > 3, t > 0, and x > 0, we choose an integer M € {1,..., N — 2}
and parameters A, @ > 0. Setting K := N — M, we write

N N N —1
D (A +18,%) =k Y 'X”_X’”|_2S:M(M) > hp. (19)

n=1 1<n<m<N

Here, the sum runs over all partitions = = (71, 7w2) of {1,..., N} into two disjoint
sets 71, 7o of sizes M and K, respectively, and for any such partition the operator £
is defined by

hei= Y ((—Am)s —A Y X = Xa T2 4 M;fs)

mem kemy

ta Y [Xe—- X7 a5

k<lemnsy kems

In order that (19) be an identity, we require that

AM 4+ oK =1tM (20)
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and
2AMK —aK(K — 1) =xkM(N —1). 21
It suffices to prove that for k < C(t)N ~1+% one has hy > 0 for all partitions
7 as above. We denote the variables in 7y by Y = (Y1, ..., Y)r) and those in 7, by
R = (Ry,..., Rk). Then, one has the estimates

$m(x) = 8r(Y;), m € m,

and
Ok (x) = 8k (R), k € ma.

These two estimates lead to the lower bound

M
hx = ) ((=Ay,)* = AVR(Y))) + aUkg. (22)

m=1

The right-hand side is an operator in L2(R?N), but there is no kinetic energy associ-
ated with the R variables. Hence, if we define for fixed R € R4K an operator AR in
the antisymmetric subspace of L2(R4M) by the expression on the right-hand side of
(22), then one has the estimate

hry > inf infspechR.
ReR4K

Further, since AR acts on antisymmetric functions, one has
inf spec hR > —Tr(—A — AVR)— + aURg,

and hence, by Lemma 14,

inf infspech® >0
ReR4K

provided that y .
a—CristiKz~1 >0, (23)

It remains to choose the parameters M, o, A such that (20), (21), and (23) are
satisfied. With the choice «/A = M/ K, equation (21) becomes A = 7, (20) becomes

K+1
. — (K + )’ 24)
2(N —1)
and (23) becomes
d d d
M > C2 25 125 K25, (25)

We choose K = [et” !N 2cTS], where ¢ > 0 will be determined below (depending
only on d and s). As we mentioned at the beginning of the proof, we may assume
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that N1~ % >2et ! =N (r)l_%, which guarantees that K < % and consequently
M > % This implies that (25) is satisfied, provided & > 0 is chosen small enough
depending on d and s. Then, k given by (24) is easily seen to satisfy k < C(t) N —1+3

for all N > N(t). This completes the proof of Proposition 13. ]

Appendix B. The borderline case s = 1,d = 2

In this appendix for the sake of definiteness, we focus on the case s = 1. Our main
result assumes d > 3 and its proof breaks down in several places in dimensions
d = 1,2. Meanwhile, for d = 1 we know from [18] that Kj(\}) = % for all N. In
particular, this constant is independent of N. In the remaining case d = 2, we only
know that /(1(3) > 4N ™! for all N, but this does probably not capture the correct large
N -behavior. The following result gives an upper bound.

Proposition 15. Letd = 2 and s = 1. Then,

lim sup(In N )KI(\?) <4. (26)
N—o0
It is a tantalizing question whether the right-hand side of (26) is, in fact, the limit
of (In N )/c](\?). We would like to express our gratitude to Robert Seiringer for first
suggesting (26) and for several discussions related to it.

Proof. Our construction depends on two main parameters, L and p. Given a sequence
of N’s tending to infinity, these parameters will be chosen such that N = #N for a
certain set N satisfying

2 2
{peTZ2:|p|2<,u}CNC{peTZZ:IpIZEM}.

This implies that

1 2
— uL* ~ N — oo.
4

The antisymmetric function u on R?¥ that we will use as a trial function to bound KI(\?)
from above will be a Slater determinant of functions that are essentially plane waves
restricted to Qy, := (—L/2, L/2)?> with momenta in . There are several ways to
construct such functions and here we use a method that we learned from [14].

Let 0 < ¢ € CH(Qy) with er {dx =1, where £ > 0 is a parameter satisfying
{ <« L. (We keep track of it only for dimensional consistency.) For p € ZT” 72, let

op(x) ;= L1 \J1g, % Le'P* forall x € R%.
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A computation [14] (see also [12, Lemma 7.21]), based on the Fourier transform of the
characteristic function of an interval, shows that the ¢, are orthonormal in L?(R?).
We define u as their Slater determinant,

u(X) = (N2 det(@p, (X)) pn prre ki

where p1, ..., pn is an enumeration of N. We have [14] (see also [12, Lemma 7.21])
Z/ |Voul?dX = Z[ IV, |? dx = —p 2L2(1+0(1)  (27)
DPEN

in the asymptotic regime that we are considering.
Our task is to bound from below

Z / |u(X)|2 dX — l// Pu(X) pu (x") — |y (x, x")? dx dx
R2N |X X |2 2 R2xR2 |X—X/|2 ’

1<n<m<N

(28)
where
pu(¥) =Y lop()> = L2 N1g, *¢.
PEN
rulx) = 3 ep0ep ) = L7 1o, %20 1, # £0x) 30 €77,
PEN pEN

Note that the integrand on the right-hand side of (28) is nonnegative. Consequently,
we obtain a lower bound by restricting it to

Q:={(x.x") € Qp—¢ x Q¢ : J/tlx —x'| > C}

for a certain constant C, independent of L and p, and to be chosen below. Note that
for x € Qp_¢, we have

L xC(x) =1
Therefore, the p-part of the integral on the right-hand side of (28), restricted to €2, is
bounded from below by
o ] Lk =x|>C)
Qr—ex0Qr—¢ e —x'|?

= L™*N(L — 02 I(Cp2(L — )Y,

1 >e
I(e) = (Iy - yl/ )dydy.
ly =y
01x01 y

where
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An elementary computation shows that
I(e) = Zn(ln é)(l + o(1)).
Using £ < L and N ~ (4m)~'uL?, we deduce that
[/ p“lix)_”;‘/P dx dx' = 2t L"2N2(In(/gL))(1 + o(1))

_ WAL*(In N)(1 + o(1)).
16w

Comparing this with (27) we arrive at the constant 4 on the right-hand side of (26).
Thus, it remains to prove that the y-part of the right-hand side of (28), restricted

to €2, is negligible for some (and, in fact, any) choice of C. Before giving a complete

proof, let us explain the heuristics. The nonrigorous step is that we approximate

. / . ’ dp
L—Z ip-(x—x") ~ / ip-(x—x') .
> e e TE

peN [pI?<n

(Since L2 > 1, this is justified for fixed x — x’, but we will use it uniformly for
VI|x = x| = C > 0 with |x — x’| < L.) It is known that

[ e < om Yl =¥ (Rl D,
Ipl2<p (2 )

where J; is a Bessel function [1, Chapter 9]. Using the decay bound on Bessel func-
tions, |J1(t)| < t~'/2,[1, equation (9.2.1)], we obtain

. ’ dp 1 3
ip-(x—x") T -5
‘/|p|2<ue —(271')2 Spdx—x'"2.

From this, we arrive at the expectation that for x, x’ € Qy _y, at least on average, one
has
1 _3
[yu (e, x| < ¥ |x — x'[72. (29)

Accepting this bound, we obtain by straightforward estimates
YV

IX—XI2

Recalling that our lower bound on the p-term in (28) is of size u?L? In(j1L?), we see
that the y-term is indeed negligible.

We now present a rigorous proof that the y-term is negligible. We will not be able
to prove the bound in (29), but we will be able to prove that

1 _ .
e, x) S 2 |x —x'|71 if (x.x") € Qr—¢ x Qr—. (30)
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Accepting this bound and combining it with the trivial bound
lyu(x, x/)|2 < pu(¥)pu(x),

we obtain

/ |Vu(x’x/)|2 dxdx/
Q

|x — x’|2

dr dr
B )2
cuz<irj<iL Il 1r<rl<L I7|

which is the same as if the heuristic bound (29) was true.
It remains to prove (30). We bound

E e'?r Emin{ E E e'p2r2

DEN pi<p p2i(p1,p2)eN

2

PI<i

§ elP1T1

p1:(p1,P2)EN

}

and use the elementary inequality, valid for any interval / C Randz € R\ LZ,

E el‘L’Z

relﬁzf”Z

L
< . T .
~ dist(z, LZ)

The latter follows by summing a geometric series. Since the sum over p]z < W contains

1
< u2 L elements, we deduce that

¥ e

DPEN

Lo L L
< u2 L min .

dist(rp, LZ)" dist(ry, LZ)

If |r| < %, then

|~

dist(r;, LZ) = |rj|

for j = 1, 2. Moreover,
1
max r]-2 > —|r|*
J 2
Therefore, the right-hand side is < 122 L2|r|~!. This, applied to r = x — x/, yields
(30) and concludes the proof of the proposition. |

Remarks 16. (a) In physics, the vanishing of p, (x) py (x") — |y (x, x)|? near x = x’
is called the exchange hole. The intuition is that it is this exchange hole that leads
to the Hardy inequality for (spin-polarized) fermions in two dimensions. This hole,
which is of size ,u_% in the above example, mitigates the logarithmic divergence of

the integral |x — x’|~2 and leads to the logarithmic behavior of the constant /cj(\?).
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(2)

(b) It is essential for the validity of x 5* > 0 that the fermionic particles are spinless

(or spin-polarized). If # has two or more spin states, there is no reason that

Z Z//Rzzv 1 Xn — X 2u(X,0)?dX

n<m O

is finite. (Here, ) . denotes the sum over spin-states.)
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