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Abstract: The rising frequency of natural disasters demands efficient and accurate structural damage
assessments to ensure public safety and expedite recovery. Human error, inconsistent standards, and
safety risks limit traditional visual inspections by engineers. Although UAVs and AI have advanced
post-disaster assessments, they still lack the expert knowledge and decision-making judgment of
human inspectors. This study explores how expertise shapes human–building interaction during
disaster inspections by using eye tracking technology to capture the gaze patterns of expert and
novice inspectors. A controlled, screen-based inspection method was employed to safely gather
data, which was then used to train a machine learning model for saliency map prediction. The
results highlight significant differences in visual attention between experts and novices, providing
valuable insights for future inspection strategies and training novice inspectors. By integrating
human expertise with automated systems, this research aims to improve the accuracy and reliability
of post-disaster structural assessments, fostering more effective human–machine collaboration in
disaster response efforts.

Keywords: eye tracking; fixation maps; damage assessment; disaster reconnaissance; saliency maps;
visual features

1. Introduction

Over the past 50 years, there has been an increase in the frequency of disaster scenarios,
which is a major cause of concern due to its detrimental effects on infrastructure, loss of
life, and social and economic instability [1]. While most natural disasters have a significant
immediate economic impact, in certain instances, they can also result in long-term economic
losses [2]. In the aftermath of natural disasters (e.g., earthquakes, tornadoes, landslides,
floods, tsunamis, etc.), immediate and accurate structural damage assessment is crucial
for public safety and recovery efforts [3]. Traditional practices in damage assessment
rely heavily on the expertise of engineers who perform visual inspections according to
stringent guidelines [4]. These conventional methods, however, are often hampered by the
inherent limitations of manual inspections, such as human error, inconsistent assessment
standards, and the significant safety risks posed to inspectors in unstable post-disaster
environments [5]. The urgency and complexity of assessing disaster-prone infrastructures
demand more efficient and reliable inspection methods to ensure the integrity of buildings
and other structures [6]. There has been a significant shift towards using interdisciplinary
approaches and techniques to address these challenges.

With advancements in robots and drone technology, unmanned aerial vehicles (UAVs)
have gained popularity and become more readily available solutions to assist in search
and rescue (SAR) missions [7,8] and enable aerial post-disaster damage assessment [9].
UAVs offer a safer and often more comprehensive vantage point for assessing damage,
capable of accessing dangerous or impossible areas for human inspectors to reach. These
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aerial platforms have been effectively utilized in various inspection contexts, including
building inspections [10], railway inspections [11,12], and evaluating structural components
through both imagery and LIDAR technologies [13,14]. In addition to these, researchers
have noticed a rise in artificial intelligence (AI), which is widely used in structural damage
detection and assessment [15,16]. It has propelled the development of sophisticated tools
that can analyze structural data with greater precision, reducing the reliance on human
inspectors while aiming to maintain high levels of accuracy [17,18]. Machine learning (ML)
has made significant progress in computer vision applications [19]. Structural monitoring
and damage identification using deep learning theory are important directions of industrial
intelligence development.

Despite the advancements in UAV and AI applications for disaster reconnaissance,
significant challenges remain, particularly concerning integrating human expertise with
automated systems. Current UAV-based methods include (1) direct visual inspections
by inspectors on-site, (2) UAVs conducting pre-programmed paths that capture images
without real-time adaptation, and (3) remotely controlled UAVs that rely heavily on the
quality and timeliness of video feedback. These methods cannot often make proactive,
informed decisions during inspections as they cannot fully replicate the nuanced judgment
of experienced human inspectors [20]. Although supervised strategies can provide reason-
ably accurate damage assessment results, they necessitate a proper and systematic model
training process, which requires large datasets that encompass both the undamaged struc-
ture and the structure with various damage conditions. This requirement is challenging to
fulfill and satisfy when dealing with built-environment structures [21]. To overcome this,
we use eye tracking technology to facilitate the information-sharing process for efficient
human–machine collaboration.

Previous studies [22,23] utilizing eye tracking technology across various fields provide
valuable insights into visual attention and decision-making processes. For instance, experi-
enced drivers demonstrate more efficient and flexible visual search patterns, responding to
hazards earlier than novices. This suggests the need for focused training in visual search
strategies and hazard anticipation [24,25]. Research indicates that experts, compared to
novices, show distinct eye movement patterns that are more efficient and focused, with
fewer fixations, shorter fixation durations, and more strategic saccades when examining
critical features in visual scenes [26]. In medical imaging [27], experts show more focused
visual search patterns, reducing diagnostic errors compared to novices [28]. Understanding
these eye movement patterns can help develop targeted training programs for medical pro-
fessionals [29]. A pilot study on cardiologists interpreting angiograms found that experts
made more efficient diagnostic decisions with shorter review times and fewer fixations [30].
This suggests the potential of eye tracking in enhancing medical training for dynamic image
interpretation.

Eye tracking is a technique in which eye movements are recorded while inspectors
look at a visual stimulus, such as a building image. By capturing building inspectors’
gaze data, we can investigate more specifically how expert and novice building inspectors
interact with buildings differently by focusing on attention patterns and gaze paths. Up to
now, the potential of eye tracking technology in the realm of the AEC industry is limited
to virtual reality (VR)-based methods for inspector’s training [31], and not much work
has been conducted for disaster inspections concerning human–building interaction [32].
Therefore, this work’s main research question is how expert and novice building inspectors differ
in their visual attention to structural and non-structural elements during post-disaster damage
assessments and their implications on human–robot interaction strategies.

The research question more specifically investigates and identifies how experts and
novices interact with buildings differently. It focuses on their visual attention and gaze
patterns during disaster assessments and addresses what types of insights can be taken
from them. By doing this, we can either help novices learn to be better inspectors or teach
robots (UAVs or UGVs) to perform inspections like humans do to promote collaboration
and facilitate inspection and post-disaster reconnaissance missions. This work includes
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a series of hypotheses that will be tested to validate and address the research question.
Further, these findings and claims will set the base moving forward to train either a robot
to perform structural inspections or human inspectors to acquire the necessary training
to perform damage assessments. The main contributions of this work are (1) entailment
of a screen-based method for visual inspection of a damaged site in an indoor-controlled
environment, (2) analysis of eye tracking metrics to understand the inspector’s visual
attention, (3) implementation of the statistical methods to interpret differences between
expert and novice building inspectors, (4) training a machine learning model to predict
saliency maps using gaze information, and (5) assessing the predictive performance of a
saliency model for disaster dataset.

The rest of the paper is organized as follows: Section 2 provides a literature review
and describes prior work related to this study. Section 3 presents the overall methodology
of the paper, which is further subdivided and discusses the experimental design setup,
experimental procedure, evaluation approach, statistical modeling methods, and saliency
mapping. Following this, Section 4 discusses the results and talks about qualitative and
quantitative methods followed by machine learning results. Lastly, Section 5 concludes the
paper, summarizing the research implications and future lines of research.

2. Related Work
2.1. Eye Tracking and Visual Attention

Eye tracking technology has become vital for understanding human visual attention
and cognitive processes. People often struggle to accurately report the cues they use
for making judgments because these assessments are frequently based on intuitive and
implicit cognitive processes [33]. Eye tracking provides an external measure of behavior,
offering insights into these underlying processes [34,35]. By measuring eye movements
and capturing gaze focus, researchers can determine where a person is looking at any given
time and the sequence of their gaze movements [36]. Eye tracking has been extensively
used to study problem-solving, decision-making, reaction times, reasoning, mental states,
and search strategies [37–39]. In human–computer interaction (HCI) research, software
usability is evaluated, and design decisions are made by measuring attributes like fixation
count and fixation time to assess visibility, meaningfulness, and placement of user interface
elements [40]. Fixations, or stable gazes, represent information acquisition and processing.

Due to limited cognitive resources, the human visual system must select relevant
information from a cluttered visual environment [41–43]. Attention enhances important
information while inhibiting irrelevant data, with visual attention often shifting through
physical eye movements [44,45]. Overt attention mechanisms involving direct eye fixation
can be effectively measured with eye trackers to define what viewers attend to on visual
media [46]. Eye tracking has also been used to model the salient features of images for
fixation location prediction [47]. The relationship between visual stimuli features and
attention patterns helps predict how people observe visual media [48].

2.2. Immersive Techniques for Training

Virtual reality (VR) has emerged as a valuable tool for disaster training [32,49,50],
offering immersive environments for various safety training applications. VR has been
tested for fire safety [51], tsunami and earthquake training [52,53], aviation training [54],
and counter-terrorism safety training [55]. Studies have shown that VR training tools can
better enhance knowledge acquisition and retention than traditional methods [56]. VR can
simulate realistic disaster scenarios, helping communities in high-risk areas prepare for
emergencies by increasing risk perception and promoting early evacuation decisions [57].
For instance, VR frameworks have been developed to create realistic 3D gaming envi-
ronments that increase public awareness of flood risks [58]. Other applications focus on
co-design methodologies to identify the contents of VR simulations for river flood emer-
gency training [56]. These preliminary studies demonstrate the feasibility of using VR for
disaster safety training. However, VR has not yet been widely applied to assess shelter
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choices during tsunami evacuations or to optimize building locations for vertical evacua-
tion. The potential of VR to enhance community preparedness and response to disasters
through improved self-reliance is promising and warrants further exploration.

2.3. AI and Computer Vision in Infrastructure

Artificial intelligence (AI) has significantly advanced structural damage detection and
assessment. Deep learning (DL), particularly convolutional neural networks (CNNs), has
made significant strides in computer vision applications, such as structural monitoring and
damage identification [59,60]. CNNs can discover abstract features and complex classifier
boundaries, enhancing model performance by learning from large datasets without exten-
sive manual feature engineering [61]. AI-driven methods have been applied in automated
bridge deck crack detection, providing crucial information for infrastructure maintenance
and timely repairs [62]. Automated systems using UAVs for infrastructure inspection have
shown the potential to reduce costs, increasing inspection speed, accuracy, and safety [63].
UAVs equipped with high-definition cameras can capture high-quality inspection data, and
hybrid solutions combining ground and aerial robots have been developed for challenging
inspection tasks [64]. These robotic systems can significantly enhance infrastructure inspec-
tions, although their development level still lags behind other areas, necessitating further
advancements [65]. Integrating AI and UAV technologies promises to enhance the efficiency
and accuracy of structural inspections, addressing the limitations of traditional methods.

2.4. Challenges in Developing Human-Centered AI/ML Decision Support

AI techniques offer scalable and affordable solutions for automated knowledge dis-
covery and reasoning. Machine learning (ML) algorithms improve through data, with
tasks categorized into regression, classification, and clustering under supervised, unsuper-
vised, and reinforcement-learning paradigms [66]. Expert systems provide an alternative
approach, offering increased explainability compared to ‘black box’ ML applications [67].
AI has been applied to various tasks in healthcare, such as blood glucose prediction and
lifestyle support [68,69]. Despite the potential of AI in various fields, integrating human
expertise with AI systems remains a challenge. Ensuring model interpretability and opti-
mizing performance requires a comprehensive understanding of the underlying cognitive
processes and effective collaboration between humans and machines [70]. Integrating eye
tracking, VR, AI, and UAV technologies holds great promise for enhancing post-disaster
structural inspections. Eye tracking provides valuable insights into human visual attention
and cognitive processes, informing AI models that replicate expert behavior. VR training
tools offer immersive environments for disaster preparedness, while AI and UAV technolo-
gies enable efficient and accurate damage assessments [32]. Despite the current challenges,
continued advancements in these fields will likely lead to more effective human–machine
collaboration, improving disaster response and recovery efforts [40].

3. Methodology

This study analyzes how expertise shapes human–building interaction during disaster
inspections and how this can provide insights for training a machine learning (ML) model
for efficient structural inspection and damage assessment, facilitating human–robot collab-
oration. It helps explore human attention patterns and reasonings to understand how an
inspector (expert or novice) perceives a disaster site and performs a damage assessment.
Once the eye tracking data are collected, metrics such as fixations, visits, and gaze paths
will be considered. To obtain meaningful information from the collected data, our goal in
this study was threefold as follows:

1. First, to understand the differences in visual attention between expert and novice
building inspectors, eye tracking features were explored in depth, and statistical
analysis was conducted.
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2. Second, to model visual attention patterns, a task-specific ML model was trained
leveraging inspectors’ gaze data to predict saliency maps and subsequently compare
and discern the distinct attention patterns of experts and novices.

3. Third, saliency metrics analysis was conducted to evaluate the ML model’s perfor-
mance in predicting visual attention.

To this end, we have conducted a screen-based case study to collect eye tracking
data of building inspectors on a disaster site for post-disaster damage assessment and
structural inspection. Furthermore, we have trained an ML model for predicting saliency
maps to highlight the damaged parts of a structure. These saliency maps serve multiple
purposes. Firstly, they allow for the visualization and quantification of areas of interest
within an inspection scene, making it possible to identify specific structural and non-
structural elements that attract more or less attention from each group. By comparing
saliency maps generated from experts’ gaze data to those from novices, we can pinpoint
the key features or elements that experts consistently focus on but novices may overlook.
This information is invaluable for training novice inspectors to develop a more expert-like
approach to damage assessment. Additionally, understanding visual attention patterns can
inform the design of collaborative inspection strategies, where robots can be programmed
to highlight or focus on areas that experts typically prioritize, thus guiding novices during
their assessments. By providing actionable insights, these saliency maps enhance training
and human–robot interaction strategies, directly addressing our research question and
bridging the gap between understanding the inspector’s visual attention and applying this
knowledge to practical scenarios in post-disaster damage assessments.

3.1. Experimental Design Setup
3.1.1. Participants

Twelve participants (8 male and 4 female) were recruited from the architectural en-
gineering (AE) department at the Pennsylvania State University (PSU) for the study. All
participants had normal or corrected-to-normal vision and had no reported color blindness.
Eleven participants ranged in age from 28 to 37 years old (M = 32 years, SD = 2.8), and
one participant was 70+ years old. Participants were divided into groups: Experts—those
with a deep understanding of structural assessment and damage detection with prior field
experience in structural assessment and disaster reconnaissance and recovery missions;
and novices—those with basic knowledge of structural assessment and damage detection
with no expertise or field experience in disaster reconnaissance missions.

The Federal Emergency Management Agency (FEMA) provides a preliminary dam-
age assessment guide, providing detailed information about the experience and training
required for inspectors involved in preliminary damage assessments (PDAs) [5]. The
document emphasizes the importance of experience in conducting PDAs, indicating that
the PDA team leads should be senior program specialists or specialists involved in PDAs
multiple times. The experience is critical for ensuring consistency, accuracy, and successful
outcomes in PDAs. Further, it highlights the importance of training for damage assessment
personnel to ensure they are familiar with damage assessment plans, standard operating
procedures (SOPs), and protocols. We speculated that by comparing these knowledgeable
novices and expert building inspectors, we could identify and clarify the relationships
between inspectors’ knowledge and visual assessment strategies. The number of partici-
pants and the dependent variables for the analysis were pre-defined based on the results
of a pilot experiment in a real built environment [10]. The study followed the ethical
guidelines of Human Subjects Research and was approved by the Institutional Review
Board (IRB) for the Human Research Protection Program (HRPP) of PSU (STUDY00016625).
The participants gave informed consent before the start of the experiment.

3.1.2. Apparatus

Eye movement data were recorded using Tobii Pro Nano, a screen-based eye tracking
equipment developed by Tobii Technology [71] (60 Hz sampling rate; 0.3 deg accuracy,
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0.1 deg precision; and gaze recovery time of 250 ms). It uses pupil corneal reflection and
binocular dark pupil acquisition technology to track participants’ eye movements. The
calibration was conducted using Tobii’s proprietary SDK [72], which allows for a 5-point
calibration of eye gaze data. The experimental setup is shown in Figure 1. During the
calibration, participants were allowed to sit in front of the screen-based eye tracker with no
head movement and were to focus on the calibration marker shown on the screen. Once the
calibration is completed, a validation prompt appears on the screen to confirm and use the
calibration for collecting gaze data. Pro Lab software was used for the data analysis, which
provides a visual and functional user interface for complex experiment design, viewing
individual recordings, and aggregating data for analysis and visualization.
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Figure 1. Experimental setup for data collection.

The instructional prompt given to the participant before the beginning of the experi-
ment is as follows:

Thank you for participating in the eye tracking study. This study aims to collect gaze data
from participants to assess visual damage.

• You are required to look at the images collected from a disaster site.
• Each image will be shown for 20 sec, and you cannot zoom in/out.
• Locate any type of damage or peculiarities that you see on the structure.
• You will not be evaluated based on your skills; this study will not impact you.
• You can tilt your head slightly, but you should not move your head.
• Once the experiment is started, I cannot answer any of your questions.
• At the end of the experiment, you will see the “Task is completed” window.

Your participation in the experiment is completely voluntary. If you have any questions, please
ask before the start of the experiment.

3.2. Experimental Procedure
3.2.1. Data Collection

The eye tracking data were collected from a post-disaster site in Mayfield, Kentucky,
a historic district following the Midwest tornadoes in December 2021. The prevalent
building typologies and most common structural typologies consisted of one-story, two-
story, multiple-story, and unique structures separated from other structural and cultural
heritage buildings [73]. These include the (1) Merit Clothing Mill, a two-storied structure
with flat brick plasters and symmetric windows; (2) Hall Hotel, a five-storied structure with
a brick-infilled concrete frame, termed the tallest structure in Mayfield; and (3) American
Legion, the first brick-infilled steel-frame structure in town.

Additionally, the data collected consisted of images captured from an expert’s mobile
phone camera. The photos were taken by an expert inspector and a member of StEER’s
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(structural extreme events reconnaissance) field assessment structural teams (FAST). They
have participated in multiple field inspections and have over five years of experience
visually inspecting built infrastructure, including buildings, bridges, and disaster sites.
However, to maintain the objectivity of our study, the expert inspector who collected data
was not included in the experiment. We anticipated including their data could introduce
bias and subjectivity into the results. Thus, we decided to exclude them from the study to
avoid any potential bias, ensure we did not double-check the expert’s work, and maintain
the integrity of the collected field images.

3.2.2. Data Processing

Similar to any data, eye tracking data encounters variability in viewing patterns due to
differences among participants, research fields, and visual contexts, making it challenging
to establish universally optimal parameter settings. This work seeks to understand the
relationship between parameter settings and the features derived from them. Prior to
feature extraction, we explored the velocity-threshold identification (I-VT) [74] filter for fix-
ation detection and attention to improve the fixation classification. The choice of algorithm
depends on the specific eye movement that is of interest. Since this case study is focused on
a screen-based experiment with no head-and-body movement, we used the fixation filter
to classify individual gaze points. Since the study of the I-VT filter is not part of this study,
we used the default settings suggested by Tobii [72] for efficient feature classification.

The collected gaze data will serve as the ground truth fixation map for metric analysis
and training a ML model. Before model training and metric analysis, the collected gaze
dataset was prepared for data denormalization, image analysis, and rectification to remove
incorrect or missing data. Following this, the model was fine-tuned to predict saliency maps
using gaze information. An important step was generating discrete and continuous fixation
maps for saliency metrics. Some metrics compute similarity scores based on continuous
fixation maps, and others are based on discrete fixation locations. Figure 2 shows an
example of a distribution-based fixation map. The results are compared between fine-tuned
saliency maps and ground truth fixations based on the gaze data.
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3.3. Eye Tracking Metrics and Analysis

Eye movements include where a person is looking, how long they are fixated, and
their gaze pattern; these all define how their attention switches between different visual
scenes. The eye metrics that will be considered in this study are fixations and visits [22,28];
fixations are when eyes are stable and stationary, looking at a particular region of interest
in the scene, and visits inform us about the back-and-forth fixations that occur when a
person looks from one area of interest (AOI) to another, particularly structural elements.
Once the data is collected, feature extraction is performed to capture and analyze these
metrics. This work will consider the fixation duration, fixation count, visit duration, and
visit count. These eye tracking metrics will form the basis for understanding gaze patterns
for structural inspection and damage detection. In addition, metrics such as pupil dilation
are also important in informing the inspector’s focus and cognitive load under which they
are completing a task.

For qualitative analysis, heat maps and gaze plots provide fast and accurate data
visualizations that are important in understanding aspects of visual behavior. An example
of a “Heat Map” is shown in Figure 4 for detail. The heat map describes the overall
distribution of the inspector’s vision over a particular stimulus. The areas with red color
indicate the high intensity of an inspector’s fixations compared to low-intensity areas
indicated by light green. Heat maps can effectively document visual attention in a scene
and consider all the fixations of an inspector; this can be used to understand decision-
making processes. In addition, we classified the stimuli (building images) into structure and
non-structure categories to understand the differences between experts and novices. The
structure category represents the structural regions with potential damage related to cracks,
connection joints, façade, roofs, and windows. The non-structural category represents the
surroundings or debris of the structure containing structural rubble, such as broken bricks,
steel frames and beams, and general debris. Section 4.1.2 explains the image-labeling
process and area of interest (AOI) tag classification in detail.

3.4. Statistical Modeling Methods

In addition to the visualization of the eye tracking metrics, statistical analysis was
performed to determine if there was a significant difference in the data. The dataset was
categorized into two categories: (1) level of experience, i.e., experts and novices, and (2)
damage category, i.e., structures and non-structures. We tried to test three hypotheses to
obtain further insights into how expertise shapes building inspectors’ assessment strategies
and their key differences. First, we tested whether there is a significant difference between
experts detecting damage for fixation and visit metrics compared to novices (Hypothesis
1), as reported by [28]. Second, regarding the localization of damage to the structure
or surroundings, is there a difference in structural and non-structural damage location
(Hypothesis 2)? Third, regarding visual attention behavior, we identified that damage
typology could critically influence experts’ and novices’ fixation times. Therefore, we
were keenly interested in understanding whether damage localization and typology differ
significantly among inspectors (Hypothesis 3).

Before data analysis, the normality condition must be checked using the Shapiro–Wilk
test or Wilcoxon test, and the homogeneity of variance must be checked through Levene’s
test, respectively. The Shapiro–Wilk test is a more formal test to check the normalcy
condition. Levene’s test assesses the homogeneity of variances for a variable; these tests
of normality and homogeneity give quantitative insight into the nature of the data. In
statistics, a parametric test such as paired t-test or ANOVA is used for comparing paired
samples when they meet the condition of normality, and a non-parametric test such as
the Wilcoxon signed-rank test or Spearman’s rank correlation coefficient test is used for
comparing paired samples when the differences are non-uniformly distributed. For our
case study, all three metrics, fixation count, visit count, and visit duration, satisfy the
normality condition for both expert and novice groups, except for fixation duration for the
novice group. Therefore, it can be assumed that all but one group’s dataset is not normally
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distributed. In our statistical modeling, we used a 2-sample t-test as the parametric method
and a Wilcoxon signed-rank test as a non-parametric method.

The statistical analyses inform significant differences in visual attention and decision-
making processes between expert and novice building inspectors, directly addressing our
main research question. These findings highlight areas where inspection strategies diverge
based on experience and identify specific elements within visual scenes that are critical for
effective damage assessment. By analyzing these statistically significant differences, we
are informed about the critical aspects of visual attention that need to be emphasized in
training and technology development. With this foundation, we aim to utilize machine
learning to bridge the gap between human cognitive capabilities and automated systems.

3.5. Machine Learning Approach

Subsequent machine learning applications aim to take advantage of these statistical
insights by developing models that can predict and replicate the saliency maps of visual
attention observed in building inspectors. This step is crucial as it allows us to (1) create
tools that can potentially train novice inspectors to adopt more expert-like visual strategies
and improve their efficiency and (2) implement them in a robot to assist in human–machine
collaboration and automated inspection in disaster scenarios. Furthermore, by comparing
the machine-generated saliency maps with the ground truth data collected from expert and
novice inspectors, we can validate the effectiveness of our ML approach. This supports the
findings from our statistical analysis and contributes to refining our understanding of how
visual attention can be optimized in the context of structural inspections post-disaster. The
integration of these findings with AI-driven tools can, therefore, facilitate more informed
and strategic human–machine collaboration, directly enhancing the inspection process and
safety measures following natural disasters.

3.5.1. Datasets

For the success of any ML model, a prerequisite is having a good dataset for training
purposes. Despite the abundance of many large-scale eye tracking datasets [75], the absence
of building inspection datasets with an effort to eye tracking data remains a significant
hurdle. Therefore, this study utilizes the disaster dataset developed by Kaushal et al. [73],
and the dataset was filtered to remove redundant and noisy images from the tornado site.
The total number of images gathered from the disaster site was 70; however, we performed
screening to remove images with noise and obstructions in visual scenes. Each image
consisted of accumulated gaze measurements for all twelve participants and contained
fixation points (x,y) for each inspector used for training. The input images had different
resolutions, such as (1) 3024 × 4032, (2) 2268 × 4032, and (3) 3840 × 2160.

3.5.2. Model Architecture

Our model architecture was adapted from Kroner et al.’s [76] work, which utilizes a
popular VGG16 [77] architecture as an image encoder–decoder by reusing the pre-trained
convolution layers to extract complex features along its hierarchy. On the encoding side,
convolution layers were dilated at a rate of 2, increasing the receptive field to compensate
for a higher resolution. It is important for us since our images have 2K and 4K image
resolutions. This approach effectively solves saliency prediction problems [78,79]. We chose
a decoder architecture to restore the original image resolution for better approximation and
saliency prediction.

3.5.3. Implementation Details and Training

The present study utilized a desktop with an Intel i9-9900K CPU @ 3.60 GHz, 64 GB RAM,
and NVIDIA GeForce RTX 2080 GPU for training and testing the models. For training,
the final data prepared to collect eye tracking data contained 33 images of different visual
scenes at the disaster site. The gaze information of 12 inspectors was collected, and their
fixations were accumulated together. We split the model training into 25 images for training
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and 8 images for validation with mixed visual scenes of the disaster site. These images were
shuffled randomly for uniform distribution, containing simpler building images and a mix
of partially destroyed buildings. For testing, we have considered 7 images from the bigger
dataset, i.e., originally containing 73 images, to test the model’s predictive performance.
These images were part of the single-story nursing home building taken from different
angles, showing different pieces of information and structural details.

The deep learning network was trained using the stochastic gradient descent optimizer
with a learning rate of 1 × 10−6 and a batch size of 1. The batch size was set to 1 due to
the smaller dataset, and all images were resized to 1080 × 720 pixels during training to
facilitate efficient processing. The encoding layer was based on the VGG16 architecture
pre-trained on the ImageNet dataset. To train the model, we used stimulus images and
their corresponding fixations data saved as binary maps as input, and the model’s output
was a 2D saliency map. We trained our model for 50 epochs and used the best-performed
checkpoint for inference. The results of our training are shown in Figure 3, which indicates
the model was learning until epoch 10, and the error loss was decreasing. Following
this, the model suffers from overfitting, and we chose checkpoint 4 for inference and
documenting the results.
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3.6. Saliency Metrics Analysis

In this research, we have computed the metrics score to test which saliency metrics
are more reasonable and whether disaster data will impact the metrics score. This will
help us define and create a baseline for the dataset used in this work. To illustrate the
distinct behaviors of saliency evaluation metrics, we compare the ground truth fixation
map results with the predicted saliency map. The goal is to use the model for saliency
prediction, compute similarity scores for various metrics, and generate a saliency map
using eye gaze data. These metrics generate scores to evaluate the accuracy of saliency
predictions based on their closeness to the ground truth. We reviewed the five predominant
saliency evaluation metrics outlined in Table 1.

Table 1. Metrics used for evaluating saliency maps.

Metrics Location-Based Distribution-Based

Similarity
Area under ROC curve

[80–82]
Similarity

[83]
Normalized scanpath saliency

[80,82,84–86]
Pearson’s correlation coefficient

[80,81,84]

Dissimilarity — Kullback–Leibler divergence
[83,85]
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The MIT saliency benchmark interprets these metrics and evaluates different method-
ologies, treating saliency maps simply as intensity maps without specific format restrictions.
If a metric requires probability distributions, we normalize the saliency maps accordingly
without further changes. These metrics also differ in how they utilize ground truth: some
assess saliency based on the exact fixation points (location-based), whereas others consider
the overall distribution (distribution-based). Equation (1) illustrates how these metrics
relate saliency maps to their ground truth values, aiming to maximize the similarity scores
and minimize the dissimilarity scores:

S = ƒ(Sal, GT) (1)

where S denotes the similarity score, and ƒ represents the scoring function that assesses the
saliency map (Sal) against the ground truth (GT). This paper examines these five metrics
independently of their input specifics, using an eye tracking dataset for analysis. We
differentiate the metrics based on whether they use discrete fixation points or continuous
fixation maps as ground truth, categorizing them accordingly. We discuss the strengths and
weaknesses of each metric and provide visual examples of their computational methods.

4. Results
4.1. Eye Tracking Measures
4.1.1. Qualitative Analysis

Different techniques, such as heat maps and scan paths, provide fast and accurate
data visualization for understanding inspector gaze patterns and visual attention. Figure 4
shows heat maps for multiple buildings, consisting of the aggregated data for all the
inspectors. The buildings include (1) two-story row building structures (see Figure 4a), (2) a
two-story corner building (see Figure 4b), and (3) a multi-story clothing mill structure (see
Figure 4c). The distribution of the inspector’s fixation shows they were more interested in
the façade of the structure. For all three structures, the heat maps indicate a higher intensity
on the outer envelope of the structure, followed by the debris surrounding the structure. In
Figure 4a, the inspectors were more interested in the façade of the structure, and they had
higher fixations on the completely damaged wall, followed by a human inspector who was
walking in the visual scene. Figure 4b indicates that the inspectors had higher fixations at
the central region at the poster. Following this, we noticed a higher gaze distribution at the
top of the structure, where the roof is more damaged and detached from the wall. Similarly,
for Figure 4c, the inspectors paid more visual attention to the top of the structure where the
wall was broken, and they distributed their overall attention to the façade envelope.

We also compared multi-story tall structures such as the American Legion and two-
story row buildings among expert and novice inspections. Figure 5 shows the distribution
of visual attention for experts and novice inspectors. The results show that the experts had
fewer fixations on the building façade than the novices. Similarly, the experts looked at
the steel-frame structures and the broken walls. At the same time, the novices had more
fixations only on the building façade and walls, with their fixations distributed all over the
structure. Figure 6 shows a scene of row buildings in the downtown area with a person
looking at the structure in the surroundings. It is indicated that expert inspectors fixate on
the façade of the masonry structure and the timber portion in the wall compared to novice
inspectors, who gaze at the rubble of the structure or a person walking on the road. Novice
inspectors’ attention is distributed more and entirely compared to experts who fixate on
the structural elements of the buildings.

To make deductions beyond those drawn from the heat maps, the inspectors were
asked to rate their fatigue level on a scale of 0 to 10 and provide feedback/comments, if
any, after completing the eye tracking experiment. Inspectors with higher fatigue levels
provided feedback that reflects difficulty in maintaining concentration, such as comments
on the task’s intensity and the desire for a transition window to avoid a fixated gaze. This
could indicate that the task’s more demanding or less intuitive aspects contribute to higher
fatigue levels. On the other hand, lower fatigue levels are associated with more constructive
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feedback about the task rather than the task’s effect on the participant. It could suggest that
the participants with lower fatigue levels can better cope with the task’s demands or find it
less cognitively taxing.
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In summary, experts offer more targeted feedback that could enhance the inspection
process, whereas novices often express a need for more guidance and support during the
task. Higher fatigue levels appear to be associated with feedback reflecting the cognitive or
visual strain of the task. This information could be invaluable for refining the inspection
process and training programs, particularly by addressing the specific challenges and
needs identified by different experience levels and in relation to the fatigue reported
by participants. It also underscores the importance of clear task instructions and the
potential value of rest periods or a more intuitive interface, especially for tasks perceived
as cognitively demanding.

4.1.2. Quantitative Analysis

Unlike qualitative analysis, eye tracking data analyzes experts’ and novice inspectors’
behavior quantitatively using the metrics mentioned in Section 4.1. The stimulus images
were marked with areas of interest (AOI) and classified into structure and non-structure
categories. These labels were marked to compare the performance of inspectors based on
their knowledge and experience. The structural category represents damage annotated
based on different damage regions such as connection points, cracks, façade, roofs, and
windows. The non-structural category represents non-damaged regions that are part of the
building rubble (bricks, steel, and general debris) or the structure’s surroundings. Figure 7
provides an illustration of the AOI tags that were marked for the analysis. The AOIs
are marked according to the structural and non-structural tags and further labeled into
individual damaged categories.
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As mentioned in the previous section, metrics considered for analysis include the
fixation duration, fixation count, visit duration, and visit count. Figures 8 and 9 provide
illustrations for the fixations and visit metrics. Figure 8 provides the fixation metrics
dissected into the fixation count and fixation duration, offering a contrast between both
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frequency and temporal aspects of visual attention. The horizontal solid line represents
the median, often referred to as the second quartile, that divides the data into two equal
parts. From the number of fixations (left plot, fixation count), a higher concentration of
data points around the median line for façade, windows, and connection joints elements
suggests that these areas command more frequent visual attention than others. It indicates
that inspectors may be instinctively drawn to focus on these elements while the relative
spread of data points for crack, steel, and bricks is more distributed, implying a more varied
attention pattern among participants. In terms of fixation duration (right plots), the clusters
illustrated for façade and general debris show longer fixation times. This implies that when
participants look at these areas, they do so for extended periods, potentially reflecting the
complexity or significance of these elements in the context of the task at hand. The long
tail of data points extending for the façade and bricks suggests that certain fixations on
this feature are particularly lengthy, perhaps due to its intricacy or relevance in the visual
evaluation.
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Similarly, Figure 9 represents the visitation data broken down into visit count and
duration, and the horizontal solid line represents the median, often referred to as the
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second quartile, which divides the data into two equal parts. For the ‘structural’ element
category, the visit count shows a relatively even distribution across connection joints,
facades, roofs, and windows, and there is a slightly higher count for the crack and wincade
elements. This evenness suggests that the inspector’s gaze was not exclusively fixated on a
single feature but distributed among various aspects of the structure. It is interesting to
note that although the crack and wincade elements display slightly higher visitation, the
façade element exhibits prolonged engagement with facade fixations, notably having an
extended range of durations. This suggests that these elements may be visually complex
or have significant importance in the assessment context, necessitating more extended
examination periods. Additionally, in the rubble category, the visit count and duration are
more concentrated on general debris, indicating the inspector’s tendency to direct their
gaze more generically on the surrounding damaged structures.

These plots offer a detailed breakdown of visual attention allocation across various
structural and material elements for visual inspection in disaster reconnaissance and re-
covery missions. Such data are pivotal in elucidating the cognitive priorities and visual
strategies employed by inspectors when presented with complex scenes (disaster sites) re-
quiring detailed, fast, and accurate visual analysis. Elements likely to be more task-relevant,
such as facades in structures and general debris in rubble, tend to attract more fixations
and longer examination times. This may be due to inspectors prioritizing these areas as
they may hold more information necessary for decision-making within the task context.
Assuming that the inspectors’ level of expertise could vary, one could hypothesize that
experts might show fewer but longer fixations on complex elements, denoting efficient
information gathering. In comparison, novices might demonstrate shorter fixations, indi-
cating a search for relevant cues. This, however, would need validation with additional
data on the inspector’s level of expertise.

4.2. Statistical Modeling

This work investigates inspectors’ visual attention patterns and performs statistical
analyses of their gaze data. As discussed in the previous section, to address the main re-
search question of this study, several hypotheses were proposed and anticipated to address
the goal of this paper. These hypotheses were built upon the main research question, “how
expert and novice building inspectors differ in their visual attention to structural and non-structural
elements during post-disaster damage assessments, and what are their implications on human-robot
interaction strategies”. By statistically validating these differences, we set the stage for
applying machine learning models to synthesize these complex patterns into practical
training and operational enhancement tools. The results from these analyses help highlight
the specific areas where machine learning can assist, particularly in standardizing the
damage detection strategies across varying levels of inspector experience and optimizing
the interaction between human inspectors and robot teams.

We have divided our dataset into two variables: (1) level and (2) category, where level
indicates the experience of inspectors, which is expert and novice, while category indicates
the type of damage, which is structure and non-structure. To perform statistical modeling
based on the level of experience and structural components, we first checked the condition
of normalcy to help choose between parametric and non-parametric tests. When comparing
the level of the inspectors, we will use a 2-sample t-test; however, when comparing the
category of damage, we will use a paired analysis as the variables are dependent on the
inspector. The results are summarized below as follows:

Hypothesis 1. This hypothesis evaluates whether there is a significant difference in damage
detection between experts and novices based on fixation and visit metrics. The conditions for the
hypothesis are as follows:

H0:µdifference = 0

HA:µnovices > µexperts
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We find that there is insufficient evidence to claim a difference in damage detection
between experts and novices based on the fixation count (t10, t = 0.13, p = 0.8965), visit
duration (t10, t = −0.60, p = 0.5598), and visit count (t10, t = 0.04, p = 0.9721). Since
the fixation duration for novices did not meet the condition for normality, a Wilcoxon rank-
sum test will be conducted. This test determines if two independent samples come from
the same distribution. The Wilcoxon test provides a p-value just like the t-tests performed
earlier. If the p-value is less than the significance level of 0.05, we reject the null hypothesis
that the independent samples have the same distribution.

Based on the Wilcoxon test, we found that there is no significant difference in damage
detection between experts and novices based on fixation and visit metrics (Statistic = 19.5,
Z = −1.0208, p = 0.3073).

Hypothesis 2. This hypothesis evaluates if there is a difference between fixation metrics for
structural and non-structural damage categories. The conditions for the hypothesis are as follows:

H0:µdifference = 0

HA:µdifference ̸= 0

Since each participant has fixation metrics for structural and non-structural damages,
these data are paired and not independent. However, each pairing is independent of
every other pairing. The only other condition to check would be whether the differences
between structural and non-structural fixation durations and fixation counts are normally
distributed. A Wilcoxon signed-rank test will be performed for the paired fixation duration
data and a paired t-test for the fixation counts. There appears to be strong evidence of a
difference between structural and non-structural categories based on the fixation duration
(S = −39, p = 0.0005) and fixation counts (t11, t = −8.27, p < 0.0001).

Hypothesis 3. This hypothesis evaluates whether experts and novices have differences based on
damage typologies and whether they spend longer fixations on structural elements (connection
points, façade, and roof joints) than non-experts. The conditions for the hypothesis are as follows:

H0:µdifference = 0

HA1:µnovices < µexperts

HA2:µstructural > µnon-structural

We find that the fixation counts of novices are the only group of data that is not
normally distributed (W = 0.8117, p = 0.0381). Therefore, a one-tailed, 2-sample t-test
will be conducted for fixation duration, and a Wilcoxon rank-sum test will be conducted
for the fixation count.

The results indicate that experts do not have longer fixation durations on structural
elements compared to novice participants (t10, t = −1.21, p = 0.1266). However, there
appears to be strong evidence to suggest experts have higher fixation counts on structural
elements compared to novices (Statistic = 37, Z = 1.7833, p = 0.0373).

Similarly, we noticed that these data are not independent, as the participants who are
experts have measurements for structural elements and non-structural elements. Therefore,
the interest is in the paired differences. Based on the Shapiro–Wilk test, both the differences
between fixation durations (W = 0.9609, p = 0.7846) and differences in fixation counts
(W = 0.9293, p = 0.5903) are normally distributed. Therefore, it is appropriate to perform
a one-tailed, paired t-test for the differences in fixation duration and fixation count between
structural elements and non-structural elements for the experts.

Strong evidence supports the claim that experts spend longer fixation durations
on structural elements compared to non-structural elements (t3, t = 15.60, p = 0.0006).
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There is also strong evidence to support the claim that experts have higher fixation counts
on structural elements than non-structural elements (t3, t = 10.91, p = 0.0016).

Discussion

Hypothesis 1. Significant differences between experts and novices in detecting damages.

Experts and novices often exhibit significant differences in visual search strategies due
to developing domain-specific skills through experience. According to cognitive psychol-
ogy, experts develop more efficient and effective visual search strategies, allowing them to
quickly identify relevant information and ignore irrelevant details. This phenomenon is
well-documented in medical imaging and airport security screening, where experts perform
better than novices. For instance, studies in medical imaging have shown that radiologists,
due to their extensive experience, can detect anomalies in medical images more rapidly and
accurately than novices [87]. Similarly, in airport security screening, expert screeners can
identify prohibited items in luggage more efficiently than those with less experience [88].
These differences arise from the experts’ ability to develop sophisticated mental schemas
and visual patterns that guide their attention to the most pertinent areas of an image.

In the context of damage detection, experts are likely to exhibit shorter fixation dura-
tions and fewer fixations on irrelevant areas compared to novices. Their visits to different
regions of an image are more strategic, focusing primarily on critical structural elements.
This results in a more efficient scanning pattern, enabling them to identify damage more
effectively.

Hypothesis 2. Differences in Structural and Non-Structural Damage Localization.

The ability to distinguish between task-relevant and task-irrelevant information is
critical to visual inspection tasks. Experienced inspectors are better equipped to prioritize
their attention toward structural elements crucial for damage assessment. This is supported
by theories of visual attention and cognitive load, which suggest that experts can manage
their cognitive resources more effectively than novices. Research in visual attention indi-
cates that experts can focus their attention on task-relevant information while ignoring
distractions [89]. Cognitive load theory further explains that experts have a higher working
memory capacity for domain-specific tasks, allowing them to process relevant information
more efficiently without becoming overwhelmed by irrelevant details [90].

Hypothesis 3. Influence of Damage Typology on Visual Attention Behavior.

The influence of damage typology on visual attention behavior is closely related to the-
ories of perceptual learning and expertise development. Perceptual learning theory posits
that through repeated exposure and practice, individuals develop more refined mental
representations of specific visual stimuli [91]. This process enables experts to recognize and
categorize different types of damage more accurately and efficiently. Studies in medicine
have demonstrated that experts in fields such as dermatology or pathology develop a
heightened sensitivity to subtle visual cues associated with specific conditions [92]. These
refined mental representations allow experts to allocate their attention more strategically,
focusing on areas that are more likely to contain critical information based on the typology
of the damage observed.

The significant differences in visual attention behavior between experts and novices,
influenced by damage typology, underscore the critical role of perceptual learning in ex-
pertise development. Experts develop detailed mental representations of various damage
types, enabling them to allocate their attention more effectively and accurately assess dam-
age. This ability highlights the importance of targeted training and extensive experience
in honing the skills necessary for reliable visual inspections. In summary, the observed
differences across the three hypotheses—experts’ efficient visual search strategies, refined
attention control, and detailed mental representations—demonstrate that expertise is culti-
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vated through experience and practice, emphasizing the need for specialized training to
achieve superior damage detection and assessment performance.

4.3. Saliency Maps Generation

Following our statistical exploration of eye tracking metrics, we utilized machine learn-
ing techniques to generate saliency maps. These maps are crucial, as they visually represent
the predicted areas of interest based on the inspector’s aggregated gaze data collected. By
creating these maps, we aim to visually synthesize and highlight the key differences in gaze
patterns between expert and novice inspectors, as revealed by our statistical analysis. This
visualization validates our statistical findings and practically demonstrates how AI can
simulate and enhance human visual inspection capabilities. Saliency maps are instrumental
in training novice inspectors by visually guiding them towards the most salient features of
a scene, as commonly focused on by expert inspectors. This is directly aligned with our
research question, as it provides a way to bridge the experience gap between different levels
of inspectors. Moreover, these maps can be integrated into robotic systems, enhancing
their utility in assisting human inspectors by directing their attention to critical areas, thus
facilitating a more efficient and accurate inspection.

In this study, we utilized the encoder–decoder model by Kroner et al. [76] and trained
it on our eye tracking dataset containing disaster site images to characterize and predict
the model’s output. We then qualitatively compared the results on an independent test
dataset to distinguish how well our trained model generalizes to unseen images. We
are interested in estimating saliency predictions based on the inspector’s gaze data to
identify which saliency features are important from the inspectors’ viewpoint. By compar-
ing the performance of the non-trained conventional saliency predictor with our trained
saliency predictor, we find that the inspector’s eye movements hold significant information
and details.

Figure 10 indicates the visual illustrations of saliency prediction on test images col-
lected from a disaster site. The test images were taken from the nursing home building
affected by the tornado, and the images under consideration were completely unseen by
our model. The goal of our saliency predictor is to highlight the damage areas that were
relevant or considered important by the building inspectors instead of localizing the salient
features of an image that might not be considered crucial in assessing the structure’s condi-
tion. Figure 10a indicates the model output, and the salient features are the windows and
façade of the structure, with surrounding areas and building rubble slightly highlighted.
On the contrary, the non-trained model predicted the central window’s region and the
wooden plywood as the most salient region in the image without impacting structural
stability or integrity. Following this, we notice in Figure 10b that the predicted model
highlights the windows region, the steel plate hanging on a tree branch, and the tree in the
top right corner that fell off the structure, damaging the roof and façade. We notice that the
non-trained model cannot identify the tree’s impact on the structure, while windows are
considered the most important area of interest.

We tested various images with different vantage points to see how the model would
respond to the change in view or angle. Figure 10c indicates the building corner side, and
the model’s performance indicates higher saliency near the tree due to the presence of a
person, followed by the building façade with lower saliency. However, the non-trained
model shows higher saliency in the window and surrounding regions, with debris on the
ground. Lastly, Figure 10d provides a full view of the fallen tree and the damage it caused
to the structure. The trained model utilizing the inspector’s gaze information predicts
saliency at the windows, trees, and façade damage caused. In contrast, the untrained model
only highlights the window regions and rubble of the structure.

Interestingly, the trained model shows saliency prediction with varied intensity levels
on the structure with different regions such as broken windows, façade damage due to
a fallen-off tree and steel plates, etc. We notice that in practical scenarios, these are the
damages that capture the inspector’s attention, and they are interested in knowing how
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these different elements tie together and the connection between them. However, the
non-trained model only predicts the more obvious regions, such as windows and building
rubble in the surroundings. It can be argued that conventional saliency predictors rely on
simple pixel distributions in an image and changes in its intensity due to lighting or sharp
color enhancement compared to understanding the scene’s context. This could explain why
Windows has higher saliency for non-trained models since they have higher changes in
pixel distribution or edge detection techniques [93,94].
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4.4. Saliency Metrics Evaluation

Evaluating the performance of these saliency maps is the next step in assessing how
well the saliency predictions match the actual fixation data (ground truth). By doing
so, we gain insights into the effectiveness and accuracy of our machine learning models.
These evaluations suggest areas for further research and development, particularly in
improving the AI models to better capture the nuances of human visual attention in
disaster assessment scenarios. Different methods have been used in the literature to assess
the predictive performance of saliency maps. As mentioned in Table 1, we used five
commonly used metrics to evaluate the performance of trained saliency maps. The results
are summarized in Appendix A of the paper, which contains detailed findings for all the
images and a comparison among different metrics.
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The AUC–Borji metric assesses the predictive accuracy of a saliency map by deter-
mining how effectively it captures ground truth fixations across various threshold levels.
The saliency map functions as a binary classifier for fixations at multiple thresholds to
compute the AUC, generating a ROC curve. Each thresholding operation on the saliency
map creates a level set, with the true-positive rate defined by the proportion of fixations
within the level set and the false-positive rate defined by the proportion of non-fixated
image pixels within the level set. The AUC score is then derived from the area under this
ROC curve. Judd et al. [84] introduced an AUC variant, known as AUC–Borji, which is vi-
sualized alongside the ROC curve to evaluate the saliency map’s classification performance.
For example, the highest score for the dataset is 0.58, which is a marginally acceptable score.
Conversely, models predicting only the center achieve lower scores, around 0.5, due to
their inability to differentiate true positives from false positives.

NSS (normalized scanpath saliency) evaluates the similarity between a saliency map
and a fixation map (human ground truth) based on fixation locations. A higher NSS score
indicates greater similarity, akin to the AUC metric. NSS normalizes the saliency map by
the standard deviation of its values. NSS achieves 0.69, the highest score among all images,
showing great results and a higher compute score. SIM is widely used in the saliency
community to compare saliency maps by computing the sum of pixel minimums between
the predicted saliency map and the ground truth human fixations. A similarity score of 1
indicates perfect similarity between the predicted map and the ground truth. The CC metric,
on the other hand, measures the linear correlation between saliency and fixation maps, with
scores ranging from −1 to +1. While CC treats false positives and negatives symmetrically,
SIM emphasizes false negatives more than false positives. Consequently, the saliency maps
often exhibit low SIM and CC scores, indicating a negative correlation with the ground
truth fixation map. Unlike SIM and CC, the KLdiv metric assesses dissimilarity between
the saliency map and ground truth data and is particularly sensitive to false negatives.

5. Discussion and Limitations

The differences between expert and novice building inspectors are significant, particu-
larly in their approaches to identifying and assessing structural issues. Expert inspectors
spend considerable time analyzing the building, focusing on major structural principles
and looking for patterns that indicate potential problems. They organize information
based on key concepts and frequently reevaluate their findings to ensure accuracy. Experts
typically move from known issues to unknowns, building on their extensive knowledge
base to explore new areas of concern. However, they may struggle with inflexibility and
resistance to new methods or technologies due to their established expertise. On the other
hand, Novice inspectors often begin their assessments by taking immediate action, focusing
on tactical issues and quick solutions. They tend to highlight specific details without
understanding the broader context, relying heavily on their initial impressions and findings.
Novices move from unknowns to givens, gradually building their understanding through
hands-on experience and adaptation to new procedures. Their flexibility and willingness to
adapt can be advantageous, especially in dynamic or unfamiliar inspection environments.

Both groups are susceptible to overconfidence, which can lead to oversight and errors.
Experts might become overly reliant on their experience and established methods, while
novices might overestimate their understanding or the effectiveness of their quick solutions.
Recognizing these tendencies is crucial for both groups to mitigate potential pitfalls. By
acknowledging these differences, building inspection teams can leverage experts’ thor-
ough analysis and deep knowledge alongside novices’ adaptability and fresh perspectives.
This balanced approach can enhance the overall effectiveness and accuracy of building
inspections, ensuring that structural issues are identified and addressed comprehensively.
Encouraging continuous learning and the integration of new methods and technologies
can further improve inspection outcomes, fostering a culture of excellence and innovation
in building inspection.
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Despite the findings, this study has several limitations that must be addressed. Al-
though safe and useful for data collection, the controlled, screen-based inspection method
does not fully capture the complexities and dynamics of real-world disaster sites. This
method fails to replicate the multi-sensory and chaotic environment of actual disaster sce-
narios, where factors such as noise, physical obstructions, and environmental hazards play
critical roles. This limitation is crucial, especially considering the significant differences in
planning and problem-solving approaches between expert and novice inspectors in real
scenarios. The controlled environment may also influence the inspectors’ behavior and
decision-making processes, potentially skewing the results. Incorporating field conditions
will allow researchers to observe inspectors’ behaviors and decision-making processes in
realistic settings, providing a more accurate representation of their capabilities and limita-
tions. To mitigate these variables, we carefully designed the experimental setup by selecting
a diverse set of disaster images representing various structural damage types. Inspectors
were given standardized instructions to minimize variability in task understanding, and
the eye tracking equipment was calibrated to ensure consistent data quality. Additionally,
we accounted for individual differences in visual attention and cognitive load through
detailed statistical analysis. Metrics such as fixation duration, fixation count, visit duration,
and visit count were used to compare expert and novice inspectors. These measures were
analyzed using parametric and non-parametric statistical tests to discern patterns indicative
of experience level and independent of the controlled environment. For example, the use
of the Shapiro–Wilk and Levene’s tests helped ensure the normality and homogeneity of
our data, respectively.

We also addressed the potential impact of environmental variables by ensuring a con-
sistent testing environment. All participants performed the tasks under the same lighting
conditions and used the same equipment setup to eliminate external factors that could
influence visual attention. The visual stimuli were presented in a randomized order to
each participant to prevent order effects. The controlled environment may also influence
the inspectors’ behavior and decision-making processes, potentially skewing the results.
Incorporating field conditions will allow researchers to observe inspectors’ behaviors and
decision-making processes in realistic settings, providing a more accurate representation of
their capabilities and limitations. While our controlled setup provided a robust framework
for this proof-of-concept study, we acknowledge its limitations in replicating the complexi-
ties of real-world disaster scenarios. Future research will incorporate more dynamic and
varied environments to simulate real-world conditions better. By expanding our research
to include real-world assessments, we aim to validate our current findings and enhance
the applicability of our model in actual disaster scenarios. This approach will help ensure
that the technology and methodologies we develop are effective and reliable in practical,
on-the-ground applications.

Additionally, the relatively small sample size might affect the generalizability of the
findings. A limited sample size restricts the diversity of the data, potentially leading
to biased conclusions that do not accurately reflect the broader population of building
inspectors. This limitation is particularly pertinent when examining the varied approaches
of experts and novices, as a more extensive and diverse sample could reveal a wider range
of strategies and behaviors. The findings may, therefore, lack robustness and applicability
across different geographic regions, building types, and inspection conditions.

6. Conclusions

In conclusion, this research successfully demonstrated the application of eye tracking
technology to enhance the understanding and methodologies of structural inspections
following disasters. By analyzing the gaze patterns of building inspectors at a disaster
site in Mayfield, Kentucky, we captured and quantified the cognitive processes involved
during visual assessments. Our findings highlight significant differences in visual attention
strategies between experienced and novice inspectors, indicating that expertise plays a
crucial role in the efficiency and focus of visual inspections. Specifically, experts displayed
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more targeted and sustained fixations, suggesting a strategic approach to identifying critical
issues quickly. At the same time, novices exhibited a broader and more exploratory gaze
pattern, indicating less efficiency in pinpointing salient features. The potential application
of this work can be used in training novice inspectors to teach how efficient structural
assessment and damage detection can be done. Another potential avenue from an industry
perspective is to design a course or exam that differentiates and finds whether a participant
is an expert or novice, which is also important in many ways.

The integration of eye tracking data into traditional inspection methods holds substan-
tial promise for refining and advancing the inspection process. By distinguishing between
the visual engagement patterns of novices and experts, we can tailor training programs
to better equip novice inspectors with the skills necessary for effective visual assessments.
Moreover, the development of saliency maps based on expert gaze data offers a promising
avenue for automating and enhancing the accuracy of damage assessments, particularly in
post-disaster scenarios where rapid and reliable evaluations are crucial.

In future research, this work can be extended to involve larger and more diverse sam-
ples, incorporating real-life field conditions to validate and extend the findings. Engaging
a broader set of expert building inspectors with diverse backgrounds can enhance the
generalizability and reliability of the results. Exploring the potential of combining human
expertise with automated systems is also crucial. By leveraging machine learning models
trained on expert gaze data, we can develop automated systems capable of generating
accurate saliency maps. This human–machine collaboration could significantly enhance the
efficiency and effectiveness of post-disaster assessments. Automated systems can process
large volumes of data quickly, identifying critical areas of damage that might be missed
by human inspectors alone. This collaboration could facilitate rapid and reliable damage
assessments, enabling faster response times and more informed decision-making during
disaster recovery efforts.

Advancements in this field will contribute to more resilient infrastructure management
practices. By integrating cutting-edge technology with expert knowledge, we can develop
innovative solutions that improve public safety and disaster preparedness. Future research
should focus on refining these automated systems, ensuring they can adapt to various
disaster scenarios and seamlessly integrate with human inspectors’ workflows. This
approach will ultimately enhance the overall process of disaster response, ensuring timely
and safe recovery efforts. Through continued exploration and innovation, we can build a
more resilient and responsive infrastructure capable of withstanding the challenges posed
by natural disasters.
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Appendix A

Table A1. Evaluation report of saliency metrics.

Image AUC_Borjii CC Kldiv NSS Similarity
‘001.jpg’ 0.5107 0.2985 0.9812 0.3780 0.4246
‘002.jpg’ 0.5083 0.6298 0.6118 0.3629 0.5886
‘003.jpg’ 0.5060 0.6963 0.6139 0.3319 0.6031
‘004.jpg’ 0.5111 0.6817 0.6302 0.4798 0.5826
‘005.jpg’ 0.5558 0.4323 0.9548 0.4666 0.4394
‘006.jpg’ 0.5117 0.4161 0.8816 0.3530 0.4748
‘007.jpg’ 0.5007 0.0194 1.1577 0.0961 0.4214
‘008.jpg’ 0.5022 0.0637 1.3890 0.1144 0.3859
‘009.jpg’ 0.5067 0.1239 0.7674 0.1349 0.5055
‘010.jpg’ 0.4978 −0.0172 0.8773 0.0487 0.4656
‘011.jpg’ 0.4976 −0.0749 1.1147 −0.0285 0.4133
‘012.jpg’ 0.5354 0.3722 0.8758 0.2810 0.4811
‘013.jpg’ 0.5420 0.4435 1.1080 0.6698 0.3795
‘014.jpg’ 0.5131 0.3354 1.0725 0.4300 0.3919
‘015.jpg’ 0.5572 0.3021 1.1867 0.5148 0.3664
‘016.jpg’ 0.5735 0.5193 0.8774 0.6189 0.4504
‘017.jpg’ 0.5034 0.7012 0.4577 0.4238 0.6564
‘018.jpg’ 0.5115 0.6130 0.4120 0.3658 0.6464
‘019.jpg’ 0.5388 0.7089 0.6023 0.6567 0.5988
‘020.jpg’ 0.5124 0.2791 0.7376 0.1814 0.5274
‘021.jpg’ 0.5065 0.1437 1.0380 0.2047 0.4418
‘022.jpg’ 0.5157 0.3005 1.1495 0.3141 0.3846
‘023.jpg’ 0.5040 0.3058 0.9354 0.1943 0.4497
‘024.jpg’ 0.5148 0.6162 0.5539 0.4713 0.5972
‘025.jpg’ 0.5116 0.7192 0.5380 0.6929 0.6460
‘026.jpg’ 0.5018 0.5980 0.7224 0.6270 0.5730
‘027.jpg’ 0.5178 0.5857 0.5507 0.5179 0.6009
‘028.jpg’ 0.5023 0.5821 0.5949 0.4383 0.5858
‘029.jpg’ 0.5445 0.3543 1.0044 0.4851 0.4652
‘030.jpg’ 0.5048 0.4651 1.0066 0.5149 0.4196
‘031.jpg’ 0.5888 0.4427 0.8703 0.5211 0.4601
‘032.jpg’ 0.5456 0.3815 1.0430 0.4713 0.3982
‘033.jpg’ 0.5313 0.2376 1.2683 0.5465 0.3608
Average 0.5208 0.4023 0.8662 0.3903 0.4905

Note: Bold letters indicate the best results and highest score for that saliency metric.
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