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Abstract

While the effects of volcanism on Earth’s climate are well understood, the volcano-ice sheet system hosts a two-way feedback.
Volcanic activity promotes ice melting, which in turn affects the internal dynamics of the magma chamber below. At present,
accurate forecasts of sea-level rise hinge on the stability of the West Antarctic Ice Sheet, and thus require consideration of
subglacial volcano-deglaciation feedbacks. The West Antarctic Ice Sheet, grounded below sea-level, is particularly vulnerable
to collapse, yet its position atop an active volcanic rift is seldom considered. Ice unloading raises the geotherm and alters the
crustal stress field, impacting dike propagation. However, the consequences on internal magma chamber dynamics and thus
long-term eruption behavior remain elusive. Given potential for unloading-triggered volcanism in West Antarctica to accelerate
ice retreat, we adapt the thermomechanical magma chamber model of Scholz et al. (2023) for West Antarctic Rift basalts,
simulating a shrinking ice load through a prescribed decrease of lithostatic pressure. Examining different unloading scenarios, we
investigate the impacts on volatile partitioning within the magma and eruptive trajectory across a wide range of initial magma
chamber conditions. Pressurization of a magma chamber beyond a critical threshold results in eruption, delivering enthalpy
to the ice. Considering the removal of km-thick ice sheets, we demonstrate the rate of unloading is dominant in influencing
the cumulative mass erupted and consequently, heat released to the ice. These findings provide fundamental insights into the

complex volcano-ice interactions in West Antarctica and other subglacial volcanic settings.
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Key Points:

e During deglaciation, the evolution of a magma chamber beneath several kilometers of ice
is sensitive to the rate at which ice is removed.

e A critical rate of unloading can trigger additional eruption events.

¢ Ice unloading expedites the onset of volatile exsolution, with consequences for magma
chamber pressurization and eruption size.
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Abstract

While the effects of volcanism on Earth’s climate are well understood, the volcano-ice sheet
system hosts a two-way feedback. Volcanic activity promotes ice melting, which in turn affects
the internal dynamics of the magma chamber below. At present, accurate forecasts of sea-level
rise hinge on the stability of the West Antarctic Ice Sheet, and thus require consideration of
subglacial volcano-deglaciation feedbacks. The West Antarctic Ice Sheet, grounded below sea-
level, is particularly vulnerable to collapse, yet its position atop an active volcanic rift is seldom
considered. Ice unloading raises the geotherm and alters the crustal stress field, impacting dike
propagation. However, the consequences on internal magma chamber dynamics and thus long-
term eruption behavior remain elusive. Given potential for unloading-triggered volcanism in
West Antarctica to accelerate ice retreat, we adapt the thermomechanical magma chamber model
of Scholz et al. (2023) for West Antarctic Rift basalts, simulating a shrinking ice load through a
prescribed decrease of lithostatic pressure. Examining different unloading scenarios, we
investigate the impacts on volatile partitioning within the magma and eruptive trajectory across a
wide range of initial magma chamber conditions. Pressurization of a magma chamber beyond a
critical threshold results in eruption, delivering enthalpy to the ice. Considering the removal of
km-thick ice sheets, we demonstrate the rate of unloading is dominant in influencing the
cumulative mass erupted and consequently, heat released to the ice. These findings provide
fundamental insights into the complex volcano-ice interactions in West Antarctica and other
subglacial volcanic settings.

Plain Language Summary

In regions like West Antarctica, volcanic eruptions occur underneath ice sheets. When hot
magma comes in contact with ice, it can accelerate the melting of the ice cover. Beyond this, as
climate change causes ice sheets to shrink, the decreasing weight on a volcano may affect its
likelihood of erupting. The effects of ice loss above volcanoes on the underlying volcanic
activity are not yet well understood. We conducted computer simulations to explore how gradual
ice loss affects magma stored in the Earth’s crust. We find that volcanoes beneath shrinking ice
sheets are sensitive to the rate at which the ice sheet is shrinking. As the ice melts away, the
reduced weight on the volcano allows the magma to expand, applying pressure upon the
surrounding rock that may facilitate eruptions. Additionally, the reduced weight from the melting
ice above also allows dissolved water and carbon dioxide to form gas bubbles, which causes
pressure to build up in the magma chamber and may eventually trigger an eruption. Under these
conditions, we find that the removal of an ice sheet above a volcano results in more abundant and
larger eruptions, which may hasten the melting of overlying ice through complex feedback
mechanisms.

1 Introduction

The ongoing stability of the West Antarctic Ice Sheet plays a crucial role in predictions of
modern sea-level rise. One of Earth’s largest reservoirs of land ice, the West Antarctic Ice Sheet
is particularly vulnerable to collapse as its margins are grounded below sea-level (marine-based).
As sea-level rises, such a marine-based ice sheet becomes increasingly submerged, accelerating

the retreat of the grounding line (Gomez et al., 2020). Additionally, portions of the West
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Antarctic Ice Sheet above sea-level rest on bedrock that slopes downward, promoting ice loss to
the ocean (Fretwell et al., 2013; Van Wyk de Vries et al., 2018). Factors affecting the stability of
the West Antarctic Ice Sheet include atmospheric CO, emissions (e.g. Sutter et al., 2023), glacial
isostatic adjustment and grounding line dynamics (e.g. Gomez et al. 2015; Barletta et al., 2018),
ice shelf melting and calving due to interaction with a warming ocean (e.g. Stevens et al., 2020),
and bedrock geometry. While various studies investigate these parameters, one often overlooked
factor is the potential for feedback with volcanism.

The West Antarctic Ice Sheet sits atop a partially hidden, complex network of active rifts
known as the West Antarctic Rift System (WARS). The WARS comprises one of Earth’s largest
volcanic provinces, with more than 100 eruptive centers thought to be currently active, some
exposed and some subglacial (LeMasurier et al. 1990; Smellie & Edwards, 2016, Van Wyk de
Vries, 2018). While eruptions from kilometers-deep subglacial magmatic systems may not be
directly observed, digital elevation models utilizing ice-penetrating radar indicate intact
subglacial volcanic cones (Behrendt et al., 2002; Corr & Vaughan, 2008; Schroeder et al., 2014;
Van Wyk de Vries, 2018). Given that rifting in West Antarctica initiated around 66 Ma and
glaciation began around 34 Ma, the presence of intact subglacial cones today suggests ongoing
volcanic activity (Spiegel et al., 2016). Otherwise, basal friction with the ice sheet would have
thoroughly eroded these structures (Van Wyk de Vries, 2018). Additionally, high regional heat
fluxes and geomagnetic anomalies in West Antarctica suggest that the rift remains active to the
present (Blankenship et al., 1993; Shapiro & Ritzwoller, 2004; Schroeder et al., 2014; Geyer et
al., 2023).

The impacts of volcanic processes on the cryosphere and Earth’s climate system,
including decreased ice albedo (e.g. Bray 1979, Moller et al., 2019) and outgassing of sulfur
aerosols and CO; (e.g. Handler, 1989; Huybers and Langmuir, 2006; Aubry et al., 2022) have
been investigated over a range of timescales. While it is widely understood that nearby volcanic
activity can accelerate ice melting, less is known regarding how a shrinking ice load at the
surface influences magmatic systems at depth. Several solid Earth phenomena have been
proposed to be triggered by deglaciation and to play into complex glacio-volcanic feedback
loops: (1) changes in the crustal stress field, (2) a raised geotherm, and (3) a decrease in

lithostatic pressure.
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Firstly, when an ice load above a magma chamber retreats, time-dependent changes in
the crustal stress field occur that affect magma transport through the crust by changing the
likelihood of the chamber to rupture and initiate dikes. Flexure of the crust during isostatic
rebound creates tensile stresses in the upper crust, promoting dike formation (Mora and Tassara,
2019; Wilson and Russell, 2020). This principle applies regardless of the nature of the load being
removed; for example, Satow et al. (2021) suggested that a decrease in sea-level above the crust
is capable of triggering dikes from the Santorini magma chamber.

In addition, a shrinking ice load can raise the geotherm, thereby extending the length of
the melting column in the mantle and increasing melt flux through decompression melting
(Sigmundsson et al., 2010; Van Wyk de Vries, 2018). Jull and Mackenzie (1996) modeled
increased melt generation in response to the removal of an axisymmetric ice sheet above a mid-
ocean ridge, with application to Iceland. Building on this work, Maclennan et al. (2002)
examined this effect regarding volcanism in Iceland following the Last Glacial Maximum; they
found that immediately after deglaciation, Icelandic eruption rates were 30—50 times higher than
present-day levels and persisted for over 1000 years post-deglaciation, owing to increased melt
generation via decompression.

An intuitive consequence of unloading above a crustal magma chamber is the decrease in
lithostatic pressure (pressure due to the weight of the overlying material), which affects the
thermodynamic state and stability of different magmatic phases at depth. To the authors’
knowledge, the effect of such decreasing overburden pressure on internal magma chamber
dynamics has yet to be investigated. While past studies proposed a correlation between
deglaciation and volcanic activity (Huybers and Langmuir, 2009; Rawson et al., 2016), the
physical mechanisms linking dynamic ice loads and the evolution of underlying magmatic
systems remain unclear. Consequently, assessments of the stability of the West Antarctic Ice
Sheet and projections of its contribution to future sea-level rise lack potentially crucial
information. This highlights the need for physics-based modeling of subglacial magma chambers
subjected to retreating ice loads to quantify the risk of accelerated melting of the West Antarctic
Ice sheet due to ice unloading-triggered volcanism (a step beyond enforcing a boundary
condition of high background geothermal heat flux in the proximity of the ice sheet (e.g.,
Reading et al., 2022).) To address this gap, we simulate the evolution of West Antarctic magma

chambers subject to cooling (leading to crystallization and exsolution), viscoelastic stress
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relaxation, magma recharge, and ice unloading. Specifically, we test different rates of decreasing
lithostatic pressure due to a shrinking surface load. Chen et al. (2006) estimate the rate of

1 in West Antarctica

deglaciation-related surface unloading to be on the order of 1075 Pa s~
based on GRACE satellite data. We consider this a conservative estimate for the modern-day rate
of ice unloading in West Antarctica, given the continuous increase in atmospheric CO; levels
through to the present. We also test rates of ice removal two orders of magnitude higher to
anticipate accelerated ice loss in West Antarctica. For context, some ice streams of West
Antarctica have experienced rates of ice thinning on the order of 10™%° Pa s~ in the last decade
(Hogg et al., 2021). For simplicity, we assume a linear lithostatic pressure drop over time for the
removal of a finite surface load. We apply this forcing to a thermomechanical magma chamber
model (Degruyter and Huber 2014; Scholz et al., 2023) parametrized for West Antarctic basalt
magmas with mixed CO, and H,O contents to simulate and characterize the response of magma
chamber evolution and eruption behavior to ice unloading. This physical model of unloading can
be extended to investigate the response of magma chambers to the removal of any other uniform

surface load, such as sudden reductions in sea-level over submarine volcanoes and erosion of

overlying material during landslides or flank collapse.

2 Methods

To simulate WARS volcanoes, we employ a thermomechanical magma chamber model that
includes water and carbon dioxide as magmatic volatile species (Degruyter and Huber, 2014;
Scholz et al., 2023), tailored to West Antarctic Rift basalt compositions. Most exposed WARS
deposits are part of the Marie Byrd Land (MBL) Province of West Antarctica (LeMasurier,
2013). To develop melting curves and H,O-CO,; solubility parametrizations specific to WARS
basalts, we utilize whole rock compositions of basalts from MBL from the GEOROC database

(https://georoc.eu/.) to compute an average anhydrous magmatic composition (DIGIS Team,

2023). The major oxide contents of the average anhydrous WARS basalt composition used in
this study and several parameters for the magma chamber model are provided in Table 1. Sample
compositions and locations used to determine the average composition, as well as their

associated publications are provided in Table S1.
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Table 1. Anhydrous Composition and Model Parameters for WARS Basalt Anhydrous
oxide abundances in wt. %, the parameter space covered by the rhyolite-MELTS v.1.1.0
simulations, and the derived parameters for the WARS magma chamber model.
Major Oxide Abundances for Anhydrous Wars Basalt Composition
SIO; TIO; AL;O; FEOry MNO MGO CAO NA,O K;O P,0s TOTAL

wt.% 4688 329 1518 1236 0.19 6.77 1038 3.12 1.14 0.70  100.0

Parameters for WARS Magma Chamber Model

Symbol Definition Value Units
Cm specific heat capacity of melt 1142 Jkg tK1
Cy specific heat capacity of crystal 1160 Jkg tK™1

Cco, specific heat capacity of CO, gas 1200 Jkg tK™1
CH,0 specific heat capacity of HO vapor 3880 Jkg tK™1
My, o molar mass of water 18.02 x 1073 kg mol™?
Mco,  molar mass of CO, 44.01 x 1073 kg mol™?
L, latent heat of exsolution 610 x 103 J kg™
L, latent heat of crystallization 470 x 103 J kg™
AP, critical overpressure 20 x 10° Pa
a, crustal thermal expansion coefficient 1075 K™
Ay melt thermal expansion coefficient 1075 K™
a, crystal thermal expansion coefficient 1075 K™
Bum bulk modulus of melt 1.2 x 101° Pa
B bulk modulus of crystal 101 Pa
B bulk modulus of crust 101 Pa
K thermal diffusivity of crust 107° m?s~1
Pm melt density 2420 kgm™3
Py crystal density 2900 kgm™3
Py density of crust 2500 kgm™3
Parameter Space for rhyolite-MELTS Simulations
Pressure (MPa) 100-400 (intervals of 50 MPa)
wt. % H,0 0.25-6 (intervals of 0.25 wt. %)
wt. % CO, 0-1.1 (intervals of 0.1 wt. %)



154
155
156
157
158
159
160
161
162
163
164
165

166

167
168
169
170
171
172
173
174
175

176

177

178

179

180

181
182

manuscript submitted to Geochemistry, Geophysics, Geosystems

We derive estimates for the range of initial H,O and CO, contents from volatile compositions
presented in Oppenheimer et al. (2011), Moussallam et al. (2014), and Lowenstern (2001).
Combining these with our anhydrous WARS basalt composition, we simulate thermodynamic
closed-system equilibrium crystallization using rhyolite-MELTS (Gualda et al., 2012). While
rthyolite-MELTS v.1.1.0 is optimized for silicic systems, it is the only version of MELTS that
accounts for both water and carbon dioxide at crustal pressures (Ghiorso and Gualda, 2015). The
melt and crystal densities, specific heats, melt compressibility, and latent heat of melting are the
average values of each parameter at the median temperature and pressure of each MELTS
simulation. After conducting multiple isobaric down-temperature crystallization runs at various
pressures, we fit the outputs of the MELTS simulations via quadratic regression to develop
mathematical expressions for (i) crystallinity and (ii) CO; and H,O solubilities as functions of

temperature, pressure, and bulk volatile contents.

2.1 Melting Curves

We use 2184 isobaric crystallization simulations on rhyolite-MELTS v.1.1.0 with the average
WARS basalt composition calculated from normalized anhydrous whole rock compositions over
a range of fixed pressures and different initial CO, and H,O conditions, as described in Table 1
(All MELTS calculations conducted at the oxygen fugacity of the NNO buffer.) From the raw
MELTS outputs, we calculate volume fractions for melt, crystals/solids, and magmatic volatile
phase (MVP). Employing the Matlab curve fitting application (cftool), we determine the most
suitable function to describe the crystal volume fraction in the magma with respect to
temperature.

Huber et al. (2009) postulated that the melt fraction (f) of magmas can be parametrized as a

power law function with an exponent (b) describing the effect of magma composition:

b
F(T) = (ﬁ) , 0<b<1 [Equation 1]

Tliq_Tsol

where Tj;, is the liquidus temperature and T, is the solidus temperature. Considering mafic
magmas, the power-law parametrization suggests an approximately linear melting curve with
temperature (b=1). Indeed, a linear fit for the melting curve (nominally the crystal volume
fraction &,) as a function of temperature is satisfactory for MELTS simulations across a wide

range of pressure, temperature, and volatile contents (Figure S1), with an accurate slope over the
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entire eruptible range (here taken to be €, < 0.5) and the liquidus temperature within 5% error of
the MELTS data (see Figure S1).

We require a parametrization of the crystal volume fraction as a function of pressure and
mass fractions of H;O and CO; in the magma, in addition to temperature. As such, we perform a
quadratic regression on the MELTS data to retrieve the following mathematical expressions for
&, of WARS basalts as a function of temperature, pressure, and the total mass fractions of water

and CO; in the magma chamber (M}, and M{Q, respectively):

&x(T, P, M5, M) = A+T + B [Equation 2]

where both A and B are functions of P, M{2(, and Mg . The definitions of A and B as a function

of P, M{{%, Mg, obtained from the quadratic regressions are provided in Tables S2 and S3.

2.2 Volatile Solubility

Following the procedure employed for ¢,, we reprocess the MELTS data for CO, and H,O
solubility in the magma. Isolating the simulations that reach volatile saturation while the magma
is still eruptible (&, < 0.5), we use linear regression to fit the mass fraction of dissolved CO, and
H,O in the melt as a function of temperature, pressure, and mole fraction of CO; in the gas
phase, X¢,. The resulting equation for dissolved H,O in the melt is given by:

M{SS = ¢y + ;T + ¢3Xco, + 4P + ¢5(T * Xco, )+ c6(T * P)+ ¢;(Xco, * P)
+egT? + C9(Xc02)2 + ¢1P? [Equation 3]

with coefficients c; listed in Table S4.

While the parametrization for H,O solubility obtained with this procedure is well-tuned to
the MELTS data, the same approach could not be used for the CO, solubility; we observe
unrealistic spikes in CO, solubility within MELTS simulations when the first calcium-bearing
phase, clinopyroxene, began to crystallize. These spikes likely reflect the increased activity of
Ca®". In rhyolite-MELTS v.1.1.0, CO, dissolved in the melt is assumed to be exclusively present
as carbonate species, leading to CO, activities co-varying with Ca activities. To refrain from
fitting spurious CO; solubility values during saturation of Ca-phases in MELTS, we instead

employ the Liu et al. (2005) CO; solubility model for rhyolitic magmas. This model provides a
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good fit to the MELTS CO, solubility data outside of the misleading spikes due to changes in
Ca’" activity. Liu et al. (2005) expresses the mass fraction of dissolved CO, (in ppm) by:

. (PxXco,)(5668 — 55.99P)(1 — Xco,) 05
MEoy = 2 (T + 273.15) =+ P Xeo, (0'4133 # [P+ (1= Xco,)] )

+2.041-107% [P+ (1= Xc0,)]

[Equation 4]

Given our target composition is basaltic, we test the Liu parametrization extensively with the
to check for consistency with the WARS basalt MELTS outputs (see Figures S2-S4). At the
pressure-temperature conditions of interest to this study, the parametrizations agree well with the

MELTS data (see Table 1 for valid range of conditions).
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7. Unloading due to ice sheet removal

4. Conductive
Heat Loss

5. Viscoelastic
Crust

3. Crystallization
2. Exsolution of
H,0-CO, Fluids

1. Magma Recharge

Figure 1. Thermomechanical magma chamber model with simulated ice unloading.

2.3 Magma Chamber Model

We apply our parametrization for WARS basalt crystallization and H,O and CO,
solubility to a thermomechanical magma chamber model adapted from Degruyter and Huber
(2014) and Scholz et al., 2023. The magma chamber is assumed a spherical body of eruptible
magma (less than 50% crystals by volume), surrounded by a viscoelastic shell at depth in the

crust, with the magma comprised of a mixture of melt, crystals, and dissolved or exsolved
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volatiles. Over shorter timescales, the host crust deforms elastically to counteract volume-related
pressure changes, while over longer timescales the surrounding crust accommodate overpressure
by way of viscous relaxation. Heat loss from the magma chamber occurs through conduction to
the surrounding crust, promoting crystallization of melt in the magma chamber and exsolution of
H,0O and CO, as a magmatic volatile phase (MVP). As magma is injected into the system at a
specified recharge rate, the chamber pressurizes and will rupture and trigger an eruption if a
critical overpressure AP, is achieved. The magmatic overpressure, AP, is defined as the
difference between the pressure in the chamber and the lithostatic pressure exerted on the
chamber. In times of repose between eruptions, there is no mass outflow. Once the critical

1 until

overpressure for an eruption is reached, the mass outflow rate is set to 10* kg - s~
pressure returns to lithostatic and mass outflow ceases. Without any unloading, the processes of
magmatic injection, cooling, and viscous relaxation compete to control the magma chamber
evolution. Degruyter and Huber (2014) define characteristic timescales for these processes;
comparing these timescales provides a means to assess the relative efficiency of each process
within a simulation of magma chamber evolution.

The timescale of magmatic injection is given by the ratio of the initial mass of the

chamber and magmatic recharge rate:

Tin = 5 [Equation 5]
The timescale of cooling is defined as follows:
v2/3
Teool = ‘;( [Equation 6]
where K is the thermal diffusivity of the crust in m? s~1,
And lastly, the viscous relaxation timescale, given by:
— nTO .
Trelax = 4p- [Equation 7]

Trelax Tepresents the time delay over which the crust surrounding a magma chamber can, via

viscous creep, dissipate a pressure increase equal to that of the critical overpressure required to
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erupt, AP,. If an overpressure greater than AP, is generated over an interval of time significantly
shorter than T,.;4,, the surrounding crust will respond elastically, unable to dissipate the
overpressure, leading to eruptions. As in Degruyter and Huber (2014), the effective viscosity of
the crust is a function of the crustal rheology and the temperature distribution around the
chamber, which evolves with time. We introduce an additional timescale, 7;., for the rate of
lithostatic pressure reduction due to deglaciation at the surface (ice unloading rate), which is
described in greater detail in the following section. The governing equations for conservation of
total mass, CO, and H,O mass, and enthalpy within the magma chamber model follow the
derivations from Scholz et al. (2023), with the WARS basalt parametrizations provided in Tables
S2-S4.

2.4 Pressure Unloading from Ice Removal at the Surface

To model ice unloading over a magmatic system, we decompose the primary variable
governing magma chamber pressure in the Scholz et al. (2023) model into the sum of the

lithostatic pressure (P;;;) and the magmatic overpressure (AP):
P = P + AP. [Equation 8]

Differentiating with respect to time we have:

dP _ dPy, , dAP

= a " [Equation 9]

Without any unloading, the lithostatic pressure remains constant over time, and thus the
change in absolute pressure in the chamber is equal to the rate of change of magmatic
overpressure. To investigate various scenarios of magma chamber evolution across a wide range
of initial conditions, we consider different linear rates of lithostatic pressure decrease acting upon
a wide range of potential WARS magma chambers (see Tables 4 and 5). To prevent unrealistic
lithostatic pressure drops (i.e., unloading after the ice is completely removed), we prescribe a
maximum lithostatic pressure drop (APj;mqx) Which is set to the pressure associated with
removing the entire ice sheet. We run additional simulations of unloading associated with the
removal of 1.5 km and 2 km thick ice sheets with the same fixed rates of lithostatic pressure

decrease for comparison (see Section 3.1).
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We define the deglaciation timescale (t;..) mentioned above as the duration for removing an

ice sheet of specified thickness from atop the magma chamber, given a specific rate of unloading

(

dPiit.
dt ):

A ,
Tice = |APlit,max( dilt) | . [Equation 10]

If the magma is still eruptible beyond 7., (&, < 0.5), the lithostatic pressure remains
constant at Pj;;(t = 0) — |APlit,max| for the remainder of the simulation. Regardless of whether
the chamber is erupting or in repose, we solve for the pressure, temperature, crystal volume
fraction, and other dynamic quantities while the chamber is subjected to magmatic recharge and
heat loss to the surrounding crust.

Although this model is simple, its capacity to simulate nonlinear behavior enables the
mapping of the magma chamber response to unloading-induced perturbations across an extensive
parameter space. We generate an ensemble of 3888 simulations from our parametrized magma
chamber evolution model, exploring various initial magma chamber volumes, depths within the
crust, magmatic recharge rates, initial HO and CO, contents, and rates of lithostatic pressure
unloading (Table 2). The ice unloading rates considered in this paper, 107> Pa-s~1,107* Pa -
s71, and 1073 Pa-s™1, correspond to the removal of a 1-km ice load over a period of

approximately 30,000 years, 3000 years, and 300 years, respectively.
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Table 2. Thermomechanical Magma Chamber Model Simulations

Model Inputs
Initial Volume (km?3) 0.5 km3 — 10 km3
in intervals of ~1 km3
Depth (km) 6 km — 10 km
in intervals of 2 km
Magma Recharge Rate (kg - s™1) 10kg- st —100kg-s™1
in intervals of ~5 kg - s 71
Initial wt. % H,0 1wt.% —2wt.%
in intervals of 0.5 wt. %
Initial wt. % CO; 0.05wt.% — 0.5 wt. %
in intervals of ~0.025 wt. %
Rate of Unloading (Pa - s™1) 0Pa-s~t
1075 Pa-s~?!
107* Pa-s71
1073 Pa-s71
Rate vs. Timescale of Unloading: 1-km Ice Sheet
Rate of Unloading (Pa - s™1) Time Required to Remove 1-km Ice Sheet (years)
107° Pa-s! 30,000
10~* Pa-s™! 3000
1073 Pa-s! 300
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3 Results

3.1 A Critical Rate of Ice Unloading

Ice unloading begins to dramatically affect magma chamber behavior when the ice unloading
timescale approaches that of the other processes impacting magma chamber evolution (i.e.,
magmatic recharge, cooling, and viscous relaxation). At such conditions, the reduced confining
pressure associated with unloading allows the magma to expand volumetrically generating
overpressure. This source of overpressure associated with unloading acts in opposition to the
prescribed lithostatic pressure decrease. As described in Section 2.3, within the model, eruptions
occur when the difference between the magma chamber pressure and the lithostatic pressure at a
given time exceeds the critical overpressure, AP.. As lithostatic pressure decreases over time, the
absolute pressure threshold required to reach AP. is lowered. In some cases, this enables

additional eruptions to occur, solely due to unloading.
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Figure 2 demonstrates one such situation, where a volatile-undersaturated magma chamber is
pushed to erupt an additional time when forced with a sufficient unloading rate. With the
intermediate and high unloading rates (i.e., removing an ice sheet of 1 km thickness over
approximately 3000 and 300 years, respectively), the magma chamber reaches the critical

overpressure earlier, producing an additional eruption that evacuates an additional 5 X
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107 metric tons (5 X 10° kg). This additional erupted mass due to the ice unloading is an order
of magnitude greater than, for example, the lava flows erupted from the summit of Mt Etna on
July 31, 2021 (INGV, Rep. N 31/2021, ETNA). Such a rate-dependent increase in eruptions

during the duration over which unloading is active also occurs in simulations of magma
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Figure 2. Increase in Total Erupted Mass with Unloading Rate: Volatile-Undersaturated
Timeseries of pressure and cumulative erupted mass over 3000 years of magmatic evolution for an
8-km deep magma chamber initially with a volume of 5 km’®, 2 wt. % H,0, and 500 ppm CO,,
subjected to a constant magmatic recharge rate of 20 kg - s™1. The chamber remains volatile-
undersaturated during this time interval. Vertical drops in pressure correspond to eruption events.
The slowest unloading scenario (blue) plots closely over the zero-unloading case (gray). In the
first 1000 years, the slow unloading case is unable to reach the critical overpressure threshold,
however, the overpressure generated through unloading causes the magma chamber to pressurize
and erupt earlier than it would without unloading. In the first 1000 years of the intermediate-
(cyan) and fast- unloading scenarios (red), the combined overpressure from magmatic recharge
and unloading surpasses the critical overpressure and triggers an additional eruption.

chambers at saturation conditions, despite the ability for the exsolved volatiles to buffer
overpressure (see Fig. S5).

We compare the sensitivity of the magma chamber response to both the rate of ice unloading
and the total thickness of ice removed in Figure 3. While the integrated lithostatic pressure

change is small in comparison to crustal pressures, a sufficient rate of unloading for a constant
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amount of ice removed (e.g., 1 km of ice load shaved off) can modulate the eruptive behavior.
For both the lowest and intermediate unloading rates (blue and cyan, respectively) in Figure 3,
the pressure trends are indistinguishable regardless of whether the ice removed is 1 km, 1.5 km,

or 2 km thick. Only in the case of the highest unloading rate (red; Figure 3¢ and f) does the
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Figure 3. Unloading Rate vs. Magnitude (a)-(c) Pressure timeseries for an 8-km deep
magma chamber with initial conditions of 1.25 km® volume, 2 wt. % H,0, and 500 ppm
CO,, subjected to a constant magmatic recharge rate of 6 kg+ s~ and (a) slow, (b)
intermediate, and (c) fast unloading scenarios. For a given rate of unloading in each panel,
the pressure evolution is shown for three scenarios involving different magnitudes of
unloading (1 km, 1.5 km, and 2 km of ice removal). (d-f) Pressure timeseries for an 8-km
deep magma chamber with initial volume of 7 km® and volatile contents of 1 wt. % H,O
and 5000 ppm CO,, subjected to a constant magmatic recharge rate of 30 kg - s~1 and
the same unloading rates.

magnitude of ice removal cause subtle deviations.
For the smaller chamber in Figure 3 (panels a-c), the chamber cools efficiently (t.y,; =
1.4 X 10* years, Ty, = 1.6 X 10* years, Treax = 3.2 X 10%, years), rheologically locking the

magma via crystallization. Consequently, the total number of eruptions and erupted mass are
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identical regardless of the magnitude of ice removed. There are eruptions from the magma
chamber in Figure 3a-c, but these are triggered by second boiling, and hence occur even in the
absence of unloading. A bigger magma chamber at the same depth, subjected to a higher rate of
magmatic recharge (Figure 3d-f), cools more slowly, maintaining the magma at less than 50 %
crystals by volume for longer. The magma chamber from Figure 3d-f does not erupt without
unloading, however, forcing with the intermediate unloading rate (—1 X 10™* Pa - s™1) triggers
several eruption events (Figure 3e; Figure 4). In the case of the highest unloading rate (—1 X
1075 Pa - s™1; Figure 3f), a duration of unloading of 300 years is insufficient to counterbalance
the dissipation of overpressure via viscous relaxation of the surrounding crust, prior to complete
removal of the ice load. If we consider the fast-unloading scenario again in Figure 3f, but
increase the thickness of the ice removed, naturally, the magma ‘feels’ the effects of
decompression-induced volumetric expansion for longer. This, coupled with a slower cooling
rate (compared to the magma chamber in 3a-c) and reduced pressure required to trigger an
eruption enables a single eruption to occur. Figure 4 explores, in isolation, the 1 km ice removal
scenarios for the magma chamber in Figure 3d-f, demonstrating that even with the removal of
modest amounts of ice (equivalent to less than 5-10% of the lithostatic pressure exerted on a
magma chamber at several kilometers deep in the crust), if the rate of ice unloading for a given
ice load is sufficient, there are notable differences eruptive behavior. From these observations,
we conclude that the rate of unloading plays a greater role in controlling magma chamber
evolution than the magnitude of unloading, when considering the removal of km-thick ice loads.

Hence, we primarily focus on the effects of unloading rates in Section 4.
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Figure 4. Pressure Budget for Eruption Pressure timeseries for the same magma chamber in
Figure 3(d)-(f) subjected to (a) no ice unloading, and 1 km of ice removal at (b) low, (c)
intermediate, and (d) high unloading rates, respectively. In (a), (b), and (d) the magma pressure
falls just short of the critical overpressure required for eruptions. The highest unloading rate (d)
experiences complete removal of the ice load early on, ceasing of active unloading before the
critical overpressure is reached. In the intermediate unloading scenario (c), the magma chamber
erupts several times, as unloading is active long enough for the lithostatic pressure to drop such

that the overpressure reaches the requirement for eruptions.

3.2 Ice Unloading Expedites Exsolution of Magmatic Volatile Phase

Besides the potential for additional eruptions triggered by unloading-induced overpressure,

unloading can also expedite or trigger the exsolution of volatiles from magmas on the cusp of
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volatile saturation. Partitioning of the CO, and H,O between melt and gas bubbles controls
magma compressibility and thus the frequency and size of eruptions (Huppert and Woods, 2002;
Degruyter et al., 2017; Townsend et al., 2019). All other factors being equal, we find that for
magma chambers that are initially volatile-undersaturated, the time to the first exsolution of
volatiles decreases by tens to hundreds of years as the rate of ice unloading increases (Figure 5;
Figure S6). In Figure 5, while the variations in the total number of eruptions across various
unloading rates are subtle, the cumulative mass erupted from the magma chamber is significantly
affected by the proportion of eruptions that occur after volatile exsolution, due to increased
magma compressibility. As illustrated by Figure 5b-c, the drop in lithostatic pressure also leads
to a larger background exsolved gas volume fraction. Even small increases in the exsolved gas
volume fraction enhance magma compressibility, augmenting the size of eruptions. The effects
of unloading on magmatic volatile phases (and hence the total mass erupted from the system)
across the wider parameter space of potential WARS magma chambers are discussed further in

Section 4.1.
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Figure 5. Expedited Onset of Volatile Exsolution Pressure and gas volume fraction
timeseries for a magma chamber with a volume of 10 km?®, 2 wt. % H,0, and 500 ppm CO,
initially, at depth of 8 km with a constant recharge rate of 12 kg - s~1. The magma chamber
undergoes two oscillations of volatile saturation, as the pressure buildup toward eruption forces
the volatiles to be redissolved in the melt. The pressure drop during an eruption releases the
volatiles from solution. As cooling proceeds, the magma chamber becomes for the remainder of
the eruptible lifetime of the chamber.
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4 Discussion

Sections 2.3 and 2.4 introduce representative timescales for the fundamental processes
(cooling magmatic injection, viscoelastic relaxation of stresses by the surrounding crust, and ice
unloading) competing to determine the evolution of a given magma chamber ( T¢po1, Tins Trelax:
and t;.., respectively). The ratio of these timescales offers a relative measure of the dominant
processes. For instance, if the timescale for magma recharge is significantly smaller than the
cooling and viscous relaxation timescales, magmatic recharge can significantly counteract
cooling and prolong the duration over which the magma is eruptible. In such a situation,
overpressure cannot be efficiently dissipated by viscous creep in the surrounding crust. It is
therefore useful to consider the ratios of T.y,1, Tretax, and Tice and the timescale of magmatic
injection, 7;,, to obtain the following dimensionless numbers, derived in Degruyter and Huber

(2014):

0, = M, g, = relax 0; = Tﬂ [Equations 11-13]

The timescale of ice unloading (Equation 10) is a function of the total magnitude of
lithostatic pressure removed atop the system and the rate at which the lithostatic pressure
decreases from ice unloading. Degruyter and Huber (2014) established a dimensionless eruption

regime diagram using 6; and 6,. We visualize our magma chamber parameter space as a 3D

extension of their scaling relationships, with 6; = Mand 0, = Mon the x- and y- axes

Tin Tin

respectively and 6; = Iﬂ plotted along the axis extending into and out of the plane of the page
inj

(Figure 6a). In the following subsections we use this dimensionless 3D space to discuss the
regimes of magma chambers most vulnerable to perturbations in cumulative erupted mass (and
thus enthalpy released to the ice sheet). Subsequently, we place these findings in the context of
post-Last Glacial Maximum trends in volcanism in the Andes and address future implications of

the ice-volcanism feedback loop.
4.1 Unloading Effects on Total Erupted Mass

Within the context of the dimensionless timescale ratios (Equations 11-13), our results

highlight the combinations of magma chamber conditions that are sensitive to unloading-induced
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perturbations in total erupted mass. Figures 6b-d plot the percent increase in the total mass
erupted with ice unloading, as compared to the equivalent magma chamber simulation without
unloading. Significant unloading-induced perturbations in the total erupted mass from a magma
chamber occur when both the cooling timescale and the viscous relaxation timescales are
comparable or greater than the magma recharge timescale (6;, 6,>1). Within this range of
magma chamber conditions, ice unloading raises the total erupted mass even at the most
conservative unloading rate (1 X 107> Pa - s~1). Deeper in the crust, the viscous relaxation of
accumulated stresses inside the magma chamber by the surrounding crust dominates magma
chamber evolution, reducing the ability for the magma chamber overpressure to exceed the
eruption threshold. At shallower depths (larger values of 6,), where magma chambers cool more
rapidly and are generally more short-lived, there is a clear trend of increasing cumulative mass
erupted with increased unloading rate. In addition, the unloading effects can outcompete that of
higher rates of magmatic injection, extending the region of sensitivity to increases in erupted
mass. Exceedingly rapid magmatic recharge will overprint the effects of unloading unless
unloading occurs at a critical rate (i.e. the unloading timescale is less than or on the order of the

magmatic injection timescale, 85 < 1.)
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Figure 6. Increase in Mass Erupted with Unloading (a) Modified regime diagram from
Degruyter and Huber (2014). (b)-(d) plot the percent change in the total erupted mass
between the zero-unloading case and all non-zero unloading scenarios for magma chambers
with 1 wt. % H,O and 5000 ppm CO; initially. Black circles represent magma chambers
that do not in either case.

As already described in Section 3.1, the unloading-related increase in erupted mass
illustrated by Figure 6 is in part driven by additional unloading-triggered eruption events. These
eruptions are driven by two underlying mechanisms; firstly, overpressure is generated through
the decompression-induced volumetric expansion of the magma. Secondly, unloading alters the
pressure budget required for the magma chamber to erupt, and as the overburden pressure
decreases, a lower absolute pressure in the magma chamber is required to exceed the
overpressure criteria for eruptions (Equation 8; Figure 4). These combined effects result in
eruptions that would not occur in the absence of unloading, leading to a greater cumulative mass
erupted over the lifetime of the magma chamber. As demonstrated in Figures 3 and S5, these
additional unloading-triggered eruptions are observed from magma chambers that are volatile-

undersaturated and oversaturated alike. For magma chambers initially below the threshold of
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volatile saturation, these eruptions tend to occur while the volatiles are completely dissolved in
the melt, since the magma is less compressible without exsolved gas bubbles (see Figure S9).

An additional source of the observed increase in cumulative erupted mass with unloading
rate (Figure 6) is the quantity of larger-sized eruptions, resulting from increased magma
compressibility, as decompression promotes the release of volatiles from the melt. In Section 3.2,
we show that with sufficient unloading rates, magma chambers initially below saturation
conditions begin to exsolve volatiles earlier, due to decompression. A regime diagram
demonstrating the extent of sensitivity of initially volatile-undersaturated magma chambers to an
expedited transition to volatile saturation is provided in Figure S10. Interestingly, the magma
chambers that are most sensitive to earlier volatile saturation with unloading are cases that fail to
erupt, due to insufficient magmatic recharge (compare Figures 6 and S10); these magma
chambers are just short of the requirements to erupt, but with slight perturbations in magmatic
recharge could be pushed beyond the threshold. Magma chambers subjected to unloading will
experience volatile saturation significantly earlier in their evolution, resulting in the potential for
more eruptions while the magma is volatile-saturated (and hence more large eruption events).
Nevertheless, there is still modest sensitivity to an earlier onset of volatile saturation with
sufficient rates of unloading for magma chambers that do erupt, resulting in a greater cumulative
mass erupted even without a change in the total number of eruptions (Figure 7). Regardless of
whether the chamber is initially volatile-saturated or becomes saturated later, with ice unloading
(even if only active for a short duration with respect to the eruptible lifetime of the magma
chamber), the volatile solubility is permanently reduced, resulting in increased magma
compressibility and larger eruptions. Such long-term effects, where even for short durations of
ice removal (~300 years), the removal of 1 km of ice results in an increased cumulative erupted
mass long after the ice load is completely gone, are the most consequential in terms of the
broader climate implications. Essentially, even if modern anthropogenic warming were curtailed
immediately, the unloading that WARS subglacial volcanoes already experienced will still affect
their behavior for hundreds to thousands of years to follow.

Given these unloading effects on the total mass erupted, we observe a stronger sensitivity
of magma chambers that are initially saturated (i.e., Figure 6b-d) subject to unloading compared
to that of magma chambers that are initially volatile-undersaturated (compare with Figure S7).

While the magma chamber is volatile-saturated and thus more compressible, a larger amount of
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mass must be evacuated in a single eruption to restore the magma chamber pressure to lithostatic
(consider the effect of these larger eruptions compounded over the entirety of the eruptible
lifetime of an initially volatile-saturated magma chamber, as compared to that for a magma

chamber that only becomes saturated later in its evolution.)

Fast Unloading
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Figure 7. Eruptions Before and After Volatile Exsolution Revisiting the magma chamber
evolution from Figure 5, where the onset of volatile exsolution is expedited by 150 years the
highest unloading rate for the removal of 1-km of ice (—1 X 10™* Pa - s™1). At this rate, the
ice load is completely removed by 300 years (indicated by yellow star). Eruptions that occur
while H,O and CO, are still dissolved in the melt are significantly smaller than those post
volatile exsolution because of the profound increase in magma compressibility with subtle
increases in the exsolved gas volume fraction. When the magma chamber is subjected to the
fast-unloading scenario, it erupts two additional times while the chamber is volatile-saturated
than the equivalent magma chamber without unloading.

4.2 Addition to Enthalpy Budget: Consequences for Deglaciation in West Antarctica

An increase in mass erupted from a subglacial magma chamber means more heat is

introduced to the ice sheet. The enthalpy of an eruption is calculated as the sum of the sensible
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heat from the erupted material, Qg.ngipie, and the latent heat of crystallization and volatile

exsolution, Qrgrent x and Qpgtent e TESpPECtively:

Herupt = Qsensivie T Qratentx T QLatent,es [Equation 14]
where
Qsensibte = PCTerVerupt [Equation 15]
Qratentx = PxExVeruptLxs [Equation 16]
and
Qratente = Pg€gVeruptLe- [Equation 17]

Ly and L, are provided in Table 1. Here, T, &, and g, are the temperature, volume fraction of
crystals, and gas volume fraction, respectively, inside the magma chamber at the midpoint of the
eruption. A regime diagram plotting the total deviation in total erupted enthalpy from magma
chambers given various rates of unloading is provided in Figure S8.

Unloading-triggered volcanism will transfer additional enthalpy directly to the ice sheet
base and/or surface, once the erupted material penetrates through the ice. We can consider a
theoretical average additional heat supply to the ice due to the volcanic response to unloading

over time as follows:

with unloading
erupt

eruptible lifetime of magma chamber

without unloading

H erupt

—-H

q= [Equation 19]
where the eruptible lifetime of the magma chamber is the duration of time over which the magma
remains below &, = 0.5. Figure 8 demonstrates this additional heat input to the ice sheet for
many magma chambers with initial volatile contents of 1 wt. % H>O and 5000 ppm CO,
(volatile-saturated throughout their entire evolution). While an additional heat released over time
due to unloading could result from a larger amount of erupted mass from the magma chamber in
the absence of significant deviations in the eruptible lifetime of the magma chamber, or the same
(or less) erupted mass in total over a condensed eruption timeline, we find that the deviation in
the eruptible lifetime of the magma chamber due to unloading is negligible for magma chambers

that are initially volatile-saturated (See Fig. S11). Hence, the sensitivity of magma chambers to
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this additional source of heat released over time in Figure 8 is primarily due to the increase in the
total mass erupted with unloading. The highest rates of additional heat released due to unloading
in Figure 8 are exhibited from magma chamber simulations subject to the intermediate unloading
rate (—1 X 10™* Pa - s™1, equivalent to removing 1 km of ice thickness over 3000 years). At
even higher unloading rates, the 1-km ice load is removed rapidly with respect to the eruptible
duration of the magma chamber simulation; once unloading ‘shuts off” the volumetric expansion-
driven overpressure is gone and only the unloading effects of greater magma compressibility and
reduced pressure threshold for eruptions can increase the cumulative mass erupted in the longer
term. For magma chambers subject to less extreme rates of unloading, all effects are in operation
for a larger fraction of the magma chamber longevity, allowing for the cumulative heat released
due to unloading-triggered eruptions and eruptions of larger sizes to compound over time. It is
important to note that while modern day ice loss rates in West Antarctica may be quite rapid, the
subglacial magma chambers of the WARS have been experiencing ice unloading over longer

timescales since the last ice age.
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Initial conditions: 1 wt. % H,0 /5000 ppm CO,

Average heat release rate due to unloading effects ( Terajoules/year)

Figure 8 Regime diagram for magma chamber simulations at depths 6, 8, and 10 km in the
crust, indicating the additional heat released in Terajoules per year due to unloading at
various rates. All magma chambers have initial volatile contents of 1 wt. % H,O and 5000
ppm CO;). The magma chamber circled in light blue is discussed further in the text.

To illustrate the risks associated with failing to account for the additional supplied from
unloading-triggered volcanism in projections of WAIS stability, we consider the magma
chamber circled in blue in Figure 8, which releases an additional 10 Terajoules per year at the
intermediate unloading rate (10™* Pa - s™1). We calculate the amount of ice that can be melted
by an additional 10 Terajoules (1 X 1012 J) per year to the ice sheet; the heat required to melt a

mass, m, of ice is given by:
Q=m-AH¢ [Equation 20]

Taking the heat of fusion of water, AHg, to be 334 J/g, the heat from unloading-triggered
volcanism is capable of melting ~ 3 X 10° kg of ice per year, or equivalently ~3 x 106 m’ of ice
per year. This estimate stands for a single subglacial volcano at a depth of 8 km, with an initial

volume of 1.5 km’, subjected to the intermediate rate of unloading (equivalent to the removal of
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1 km-thickness of ice over 3000 years). Considering the over 100 potentially active subglacial
volcanoes of West Antarctica (Van Wyk de Vries 2018; Geyer et al., 2023), the aggregate may
significantly affect the mass balance of the ice sheet. If the erupted material does not penetrate
through the ice cover, melted ice can lubricate the base of the ice sheet, facilitating sliding and
ice loss to the ocean. Given the vulnerability of the West Antarctic Ice Sheet, this potentially

unaccounted heat source warrants consideration in projections of ice loss from West Antarctica.
4.3 Supporting Evidence from the Geologic Record

While the need to understand consequences of glacio-volcanic feedbacks primarily
concerns volcanism beneath the West Antarctic Ice Sheet today, it is difficult to probe recent
subglacial volcanic activity (Iverson et al., 2017). Perhaps the most complete coupled records of
volcanism and deglaciation are from the Southern Volcanic Zone of the Andes in South
America, where the Patagonian ice sheet grew to its greatest thickness of 1600 m or more on the
shoulders of several composites between about 35 and 18 ka, and retreated very rapidly between
18 and 15 ka (Singer et al., 2008; Watt et al., 2013; Rawson et al., 2016; Mixon et al., 2021,

Moreno Yaeger et al., 2022, and in review).
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Figure 9. Records of cumulative volume erupted over time from three composite arc front
volcanoes in the Andean Southern Volcanic Zone. *Ar/*’Ar ages from effusive lava flows and *C
ages for tephra deposits have been used together with field relations to estimate eruptive volumes
and growth rates (data from Singer et al., 2008; Mixon et al., 2021; Moreno Yaeger et al., 2023 and
in review). Comparison with the global marine proxy record for global ice volume (Lisiecki and
Raymo, 2005) indicates that following both Termination II (TII) and the local Last Glacial
Maximum (LGM), cone growth rates increase significantly.
538 Figure 9 illustrates the increase in both cumulative volume erupted and the number of

539 eruptions observed in the records from Calbuco, Mocho-Choshuenco and Puyehue-Cordon

540  Caulle volcanoes in the Andean arc following the local Last Glacial Maximum at 18 ka. These
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reconstructions that span the rapid, <3 kyr, transition from glacial to post-glacial conditions
suggest that there is a link between the rapid unloading of ice from the landscape and upticks in
the frequency and volume of eruptions. As we have shown, magma chambers release more mass
and heat with sufficiently high rates of ice unloading. Given that erupted volume is proportional
to mass erupted, the records from these Andean volcanoes may be an illustration of the
unloading-triggered feedbacks outlined in this study. Since the Andean records reflect arc
magmas, which typically have higher initial volatile contents than rift magmas, they were likely
volatile-saturated during the deglaciation. Our results suggest that volatile-saturated magma
chambers are more sensitive to unloading-induced perturbations in erupted mass than magma
chambers with a delayed onset of volatile exsolution, and hence the response of Andean
volcanoes could be magnified in comparison to volcanoes in rift settings like West Antarctica.
The feedbacks of unloading on magma chamber evolution could have accelerated deglaciation in
the Andes from the heat released via eruptions and a decrease in ice albedo from subaerial
volcanic deposits, potentially amplifying the volcanic response, in turn. Future efforts that couple
subglacial volcanic activity with the pace of deglaciation can better account for the instability of

the closed feedback loop and hence the risk of runaway ice retreat.

5 Conclusions

We model the evolution of a subglacial magma chamber under various ice unloading
rates to understand physical mechanisms linking deglaciation and volcanism, with special
consideration of the West Antarctic Rift System. To develop physical intuition for these
processes, we consider ice unloading for a wide range of potential magma chambers. We find
that a critical rate of unloading increases the total erupted mass from WARS-type subglacial
magma chambers, when simulating the removal of realistic ice loads (e.g., thickness on the km-
scale). When the rate of ice unloading can compete with the rates of other processes affecting the
internal dynamics of the magma chamber (i.e., magmatic recharge, cooling, and viscous
relaxation of the surrounding crust), magma chambers produce additional eruptions due to the
volumetric expansion of compressible magma inside the chamber, as well as a lowered critical
pressure threshold required to trigger eruptions. Additionally, as the rate of unloading increases
over magma chambers on the cusp of volatile saturation, the onset of the first exsolution of gas

bubbles is expedited significantly. Even after volatile saturation is reached, continued unloading
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increases the volume fraction of bubbles and hence the compressibility of the magma. The
consequence of this increased magma compressibility is that a larger amount of mass must be
withdrawn during an eruption to relax the overpressure (Huppert and Woods, 2002; Townsend et
al., 2019). Even long after ice unloading ceases, the compressibility of the magma remains
permanently elevated due to the reduction in lithostatic pressure, resulting in larger eruptions in
the long-term trajectory of the magma chamber. The additional heat associated with such
unloading-triggered eruptions is currently unaccounted for in models of the West Antarctic Ice
Sheet, despite its potential to perturb the surface mass balance and/or basal sliding rate of such a
vulnerable ice sheet. Understanding the role of subglacial volcanism within the closed feedback

loop of ice unloading will help reassess West Antarctic Ice Sheet stability.
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