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Abstract

Microbial communities have vital roles in systems essential to human health and agriculture,

such as gut and soil microbiomes, and there is growing interest in engineering designer con-

sortia for applications in biotechnology (e.g., personalized probiotics, bioproduction of high-

value products, biosensing). The capacity to monitor and model metabolite exchange in

dynamic microbial consortia can provide foundational information important to understand

the community level behaviors that emerge, a requirement for building novel consortia.

Where experimental approaches for monitoring metabolic exchange are technologically

challenging, computational tools can enable greater access to the fate of both chemicals

and microbes within a consortium. In this study, we developed an in-silicomodel of a syn-

thetic microbial consortia of sucrose-secreting Synechococcus elongatus PCC 7942 and

Escherichia coliW. Our model was built on the NUFEB framework for Individual-based

Modeling (IbM) and optimized for biological accuracy using experimental data. We showed

that the relative level of sucrose secretion regulates not only the steady-state support for

heterotrophic biomass, but also the temporal dynamics of consortia growth. In order to

determine the importance of spatial organization within the consortium, we fit a regression

model to spatial data and used it to accurately predict colony fitness. We found that some of

the critical parameters for fitness prediction were inter-colony distance, initial biomass,

induction level, and distance from the center of the simulation volume. We anticipate that

the synergy between experimental and computational approaches will improve our ability to

design consortia with novel function.

Author summary

Microbial communities, play important, yet poorly understood roles in health and agri-

culture. As we develop a better understanding of how these communities interact
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together, as well as with their host organisms, there is growing interest in engineering

communities with specific functions, such as for treating disease, personalized probiotics,

or aiding plants with nutrient uptake. To better understand how these microbes interact

with each other, we want to monitor the exchange of metabolites and the locations of the

microbes, tasks which at present are technically challenging, if not impossible. Where

experimental approaches for monitoring metabolites are limited, computational tools can

enable greater access to the fate of both chemicals and microbes within a community. In

this study, we developed a computerized model of a synthetic microbial community of

two bacteria, one which performs photosynthesis and supplies sugar and another which

consumes the sugar for growth. We showed that the relative level of sugar secretion regu-

lates not only the steady-state support for the consumer partner’s growth, but also how

the community changes with time. To determine the importance of spatial organization

within the community, we fit a model and used it to predict colony growth. We anticipate

that the synergy between experimental and computational approaches will improve our

ability to design microbial communities with new functions.

Introduction

With recent advances in molecular tools and the ubiquity of genetic components, mixed spe-

cies cultures composed of engineered microbes are attracting increased interest. Engineered

communities could potentially advance a wide range of biotechnological applications from

human health to agriculture [1–4]. Synthetic microbial consortia consist of two or more tracta-

ble cell populations, which typically have well-developed genetic toolkits (e.g., synthetic pro-

moters, ribosome binding sites, reporter proteins, etc.). Modular genetic components can be

assembled into functional circuits and metabolic pathways which control cellular [5–8] as well

consortia function [9–12].

To date, the scope and complexity of consortia that have been constructed has been limited.

Most studies consist of pairs of auxotrophic mutants of the same species that cross-exchange

essential amino acids and/or utilize a common carbon source [7,11,13,14]. Additionally, syn-

thetic consortia are typically fragile, with some requiring physical separation to prevent the

extinction of partners [15], vulnerable to environmental perturbations, and susceptible to inva-

sive species. There is a desire to construct consortia which are robust and can be used in het-

erogeneous environments (e.g., bioreactors, outdoor sloughs) for real-world applications.

However, the impact of local micro-environments and nutrient concentration gradients repre-

sent an often-under-explored feature that strongly impacts performance within synthetic

communities.

In nature, microbes routinely produce and secrete chemical resources which benefit other

cells, often referred to as a “public good.” Despite the metabolic burden of producing public

goods, cooperating partners can mutually benefit from their respective exchanges; a division

of labor emerges based on specialization [16]. This cooperativity makes the population more

robust to a variety of environmental challenges [17–21]. In natural symbiotic interactions, spa-

tial organization plays an important role in promoting stable interactions by facilitating rapid

exchange of metabolites and promoting repeated interactions between species [22]. For exam-

ple, biofilms (extracellular matrix-encased accretions which adhere to surfaces) define spatial

organization in consortia, form chemical gradients as a result of limited diffusion and hetero-

geneous intercellular spacing, and create micro-environments that regulate the behavior of

individual cells [17,20]. Unfortunately, even in the best-studied natural consortia, it is
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technically challenging to evaluate, monitor, and control the flux of metabolite exchange.

Complementing experimental research with computational approaches targeting well-defined

species can provide valuable insights into the underlying phenomena.

Individual-based Models (IbM) are a bottom-up approach that can simulate how the het-

erogeneity of individuals and local interactions influence emergent behaviors within a popula-

tion. When applied to microbial consortia, individuals often refer to microbes, each with their

own set of attributes (e.g., growth rate, position, size). Modes of interaction may include coop-

eration, parasitism, commensalism, or competition resulting from complex processes such as

cell secretion, division, utilization, and metabolization of nutrients. Emergent behaviors that

we are interested in include species distribution, population dynamics, etc. Unlike with experi-

mental observation, the state within an IbM is fully defined, allowing for exploration of the

complex and nuanced relationships within synthetic consortia.

We have developed a cyanobacterial platform for constructing synthetic microbial consor-

tia which is modular, stable, and flexible. The core cyanobacterial species of this platform is

Synechococcus elongatus PCC 7942 engineered to express sucrose permease (cscB) and a heter-

ologous copy of sucrose phosphate synthase (sps). We have previously characterized strains of

S. elongatus bearing inducible copies of cscB and sps, (hereafter referred to as S. elongatus

CscB/SPS), and have shown that they can secrete large quantities of sucrose (up to ~80% of

total fixed carbon), a readily metabolized feedstock [23–26]. These cyanobacterial strains have

been characterized extensively by our lab and others [23,25–30], and have been shown to

directly support co-cultivated heterotrophic microbes in communities that are stable over long

time periods [30–34]. Unlike many other synthetic consortia, the strength of cooperation with

this platform can be controlled directly, allowing for experimentally tuning the extent of inter-

species interaction [23,25,26,31]. When engineering consortia with this platform, we wish to

understand the primary factors impacting partner fitness, and the complementary nature of

IbMs were well-suited to this task.

In this study, we utilized experimental data from axenic phototrophic and heterotrophic

cultures to construct, optimize, and validate an IbM implemented using the NUFEB frame-

work (Fig 1) [35]. We used Escherichia coliW (hereafter E. coli) as the heterotrophic partner in

our synthetic consortia, which has been extensively characterized [36–38] and which has been

Fig 1. Study overview diagram. Experimental growth, sucrose secretion, and biomass apportionment data were used to construct an Individual-based NUFEB
model of an S. elongatus and E. coli consortium.

https://doi.org/10.1371/journal.pcbi.1011045.g001
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previously shown to be capable of forming a stable consortium with sucrose-secreting S. elon-

gatus [31,39]. Unlike some other industrially relevant strains, E. coliW can efficiently utilize

sucrose as its sole source of carbon, which is critical for the construction of synthetic consortia

with S. elongatus CscB/SPS. NUFEB simulations were used to understand how sucrose secre-

tion levels affect not only the relative population levels, but also the dynamics between partner

microbes. We reaffirm the importance of spatial organization and developed a model to pre-

dict partner fitness based on the analysis of colony-level metrics.

Materials & Methods

Microbial culturing conditions

S. elongatus CscB/SPS [25] cultures (50–100 mL) were grown in baffled flasks (Corning) with

BG-11 medium (Sigma) supplemented with 1 g L-1HEPES, pH 8.3, in a Multitron II shaking

incubator (Infors HT). Cultures were grown under continuous light with GroLux bulbs (Sylva-

nia) at 125 μmol photons m-2 s-1, 2% CO2, 32˚C. Cultures were back-diluted daily to an OD750

of 0.3 and acclimated to the medium/irradiance for at least 3 days prior to isopropyl-β-D-thio-
galactoside (IPTG) induction. Where appropriate, 1 mM IPTG was added to induce cscB and

sps gene expression.

E. coli cultures were grown in 250 mL baffled flasks using R2 medium [36,40] supplemented

with up to 20 g/L sucrose @ 32˚C, with shaking at 260 rpm.

Sucrose quantification

Secreted sucrose was quantified from supernatants using the Sucrose/D-Glucose Assay Kit

(K-SUCGL; Megazyme) and converted into cell basis via OD750 standard curve calibration.

Dry cell weight measurement

Dry cell mass was determined as previously described [26]. S. elongatus cultures (~47.5 mL)

were harvested after 24 hr post-induction by centrifugation at 4,000 rpm for 30 min. Pellets

were washed twice with distillated water and transferred onto cellulose acetate membranes

(0.45 μm,Whatman) and immediately dried in a hot air oven forÿ4 hr at 90˚C. The mass of

each membrane was measured with an analytical balance before and after adding the cells, and

these data were used to calculate the dry cell weight per volume.

Individual-based model

Individual-based representations of sucrose secreting S. elongatus CscB-SPS and E. coli was

developed and integrated into NUFEB (Newcastle University Frontiers in Engineering Biol-

ogy) [35]. In the IbM, the computational domain is defined as the volume where bacterial cells

reside and where the biological, physical, and chemical processes take place. Within this area,

nutrients are represented as a continuous field where their dynamics over time and space are

updated at each discrete Cartesian grid. Cells are modelled as spherical particles with each hav-

ing a set of state variables to describe its physical and biological attributes (position, size,

growth rate, etc.). These attributes vary between cells and can change over time because of

external or internal processes. The processes that influence cellular activities are classified into

three sub-models: biological, physical, and chemical. The biological sub-model handles metab-

olism, growth, and reproduction. An individual cell grows and its mass increases by consum-

ing nutrients in the grid where it is located. The equation governing the massmi of cell i is
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given by:

dmi

dt
¼ mimi; ð1Þ

where a Monod-based growth model is implemented to determine the specified growth rate μ.

Species-specific models were implemented based on both experimental data collected in this

work and prior studies. See Tables 1 and 2 for physical and growth parameters, respectively.

The cyanobacteria model depends solely on (the concentrations of) light, CO2, and IPTG:

mi ¼ mmax
½lightÿ

Klight þ ½lightÿ

 !

½CO
2
ÿ

KCO2
þ ½CO

2
ÿ

 !

0:141e
�½IPTGÿ
0:063 þ 0:9

ÿ ÿ

ð2Þ

ci ¼ mi �3:4897e
�½IPTGÿ
0:048 þ 3:4092

ÿ ÿ

ð3Þ

where μmax is the maximum growth rate coefficient (s-1), Klight /KCO2 are the half-velocity con-

stants for light and CO2, respectively, and the right-hand portion of Eq 2 is an empirical fit for

growth reduction with respect to IPTG induction of the sucrose secretion machinery (CscB/

SPS), andC is the metabolic flux due to sucrose secretion. Nutrient mass balance in the system

is defined by the following equations:

@S

@t
¼ r ÿ DrSð Þ þ R; ð4Þ

wherer is the gradient operator, D is the diffusion coefficient, S is the nutrient concentration

in the 3D computational domain, and R is the consumption term. The substrate-specific

Table 1. Bacterial physical parameters.

Species Parameter Value Unit Reference

S. elongatus Length μm [44]

Min 2.5

Max 5

Diameter 1 μm [44]

Volume-equivalent diameter μm

Min 1.37

Max 1.94

Density 370 g/L Calculated from [44]

E. coli Length μm [44]

Min 1.6

Max 4

Diameter 0.8 μm [44]

Volume-equivalent diameter μm

Min 0.88

Max 1.39

Density 230 g/L Calculated from [45]

https://doi.org/10.1371/journal.pcbi.1011045.t001
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consumption for cyanobacteria are as follows:

Rlight ¼ �
1

Y

ÿ ÿ

mi þ cð Þr ð5Þ

RCO2
¼ �

1

Y

ÿ ÿ

mi þ cð Þr ð6Þ

RO2
¼

0:727

Y

ÿ ÿ

mi þ cð Þr ð7Þ

Rsucrose ¼
0:65

Y

ÿ ÿ

cr ð8Þ

where ρ is the density of cells within the grid. For all simulations, the computational grid was

considered an optically-transparent, gas-permeable system (e.g., a flask or microfluidic device).

Light was a fixed concentration and was not a depletable resource (i.e. infinite source). This

assumption was based on the thickness of the simulation volumes being 10 μm, within which

we do not expect an appreciable attenuation in irradiance intensity [41,42]. In addition, due to

limitations in the underlying LAMMPS framework used by NUFEB, light had no directional-

ity, nor was a reduction in light intensity due to cell-cell shading possible [43]. The default con-

centrations and boundary conditions of all other nutrients can be found in Table 3.

The model for the heterotrophic E. coli, depends on sucrose and O2:

mi ¼ mmax
½sucroseÿ

Ksucrose þ ½sucroseÿ

ÿ ÿ

½O
2
ÿ

KO2
þ ½O

2
ÿ

 !

ð9Þ

Table 2. Growth parameters.

Species Parameter Symbol Value Unit Reference

S. elongatus

Maximal specific growth rate μmax 1.89 x 10−5 s-1 [44], this work

Biomass yield Y 0.55 g-dw/g-co2

Affinity constant for light Klight 3.5 x 10−4 kg m-3 Fit from [46]

Affinity constant for CO2 KCO2 1.38 x 10−4 kg m-3 Fit from [46], S1 Fig

E. coli

Maximal specific growth rate μmax 6.71 x 10−5 s-1 [36], this work

Biomass yield Y 0.43 g-dw/g-sucrose [36]

Affinity constant for O2 Ko2 1 x 10−3 kg m-3 This work

Affinity constant for sucrose Ksucrose 3.6 kg m-3 This work

Cellular maintenance m 9.5 x 10−7 s-1 This work

https://doi.org/10.1371/journal.pcbi.1011045.t002

Table 3. Default nutrient concentrations and boundary conditions.

Nutrient Concentration (kg/m3) Boundary Condition

Light 1 x 10−1 Dirichlet

CO2 3 x 10−2 Dirichlet

O2 9 x 10−3 Dirichlet

Sucrose 1 x 10−20 Neumann

https://doi.org/10.1371/journal.pcbi.1011045.t003
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Rsucrose ¼ �
1

Y

ÿ ÿ

mir ð10Þ

RO2
¼ �0:399ðmi þmÞr ð11Þ

RCO2
¼ 0:2ðmi þmÞr ð12Þ

where m is the cellular maintenance coefficient, Ksucrose and KO2 are the half-velocity constants

for sucrose and O2, respectively, which were determined from published data [36].

The simulation volume was 100 x 100 x 10 μm, unless otherwise specified, which was meant

towards experimental co-cultivation and microscopy in similarly-sized microfluidic chambers.

Additionally, this limited simulation volume served to minimize computational requirements.

Simulations were run for up to 100 hours or 1.5 x 107 fg total biomass, whichever was sooner,

to ensure the simulation volume did not become full.

Model parameter optimization

In order to modify the cyanobacterial growth and sucrose secretion functions to reflect the rel-

ative induction strength of CscB/SPS, the model was fit to experimental data. To reduce the

parameter-space, hyper-parameter optimization was performed using the Python package Sci-

kit-optimize [47] in two steps, first on growth data, followed by sucrose secretion. The stochas-

tic nature of initial cell biomass was accounted for by running a minimum of 3 simulations for

each optimization step.

Analysis of NUFEB simulations

As part of this work, the Python package nufeb-tools was developed to facilitate common

computational operations, such as seeding new simulation conditions, ingesting the various

NUFEB output files into Python, performing calculations, and generating visualizations [48].

The source code is available at https://github.com/Jsakkos/nufeb_tools.

Spatial metrics for colony fitness

A variety of metrics were calculated to determine the impact of spatial structuring on colony

fitness. Unless otherwise specified, all spatial metrics were calculated at the beginning of the

simulation (t = 0 hours). The nearest neighbor distance was calculated by taking the minimum

distance, d, between a colony and its neighbors. Colony-specific neighbor distances were cal-

culated as well, denoted by the species the distances were calculated with respect to (e.g., Near-

est neighbor s.e. indicates the distance to nearest S. elongatus was calculated and Nearest

neighbor e.c. indicates the distance to nearest E. coli was calculated):

Nearest neighbor distance ¼ min ðd
1
; d

2
; . . . dnÞ ð13Þ

The mean neighbor distance (i.e. inter-colony distance, ÿIC) was calculated as the sum of the

distance between all colonies over the number of colonies [49]:

ÿIC ¼

Pn

i¼1
d
1
; d

2
; . . . dn

n
ð14Þ
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The relative neighbor distance is defined as the distance to the nearest neighbor colony

over the mean inter-colony distance:

Relative neighbor distance ¼
min ðd

1
; d

2
; . . . dnÞ

ÿIC
ð15Þ

The inverse neighbor distance is defined as the inverse sum of the distances to all neighbor

colonies:

Inverse neighbor distance ¼
Xn

i¼1

1

di
ð16Þ

The log inverse squared neighbor distance is defined as the logarithm of the squared inverse

sum of the distances to all neighbor colonies

Log inverse squared neighbor distance ¼ log
Xn

i¼1

1

d2i
ð17Þ

The scaled inter-colony distance accounts for the species-specific rate of primary nutrient

diffusion (D) and the maximum growth rate (μmax) [49]:

z ¼
ÿIC
ooooooooo

D
m max

q ð18Þ

Voronoi tessellation areas were calculated with SciPy [50].

Colony fitness prediction

Simulations for predicting colony fitness were seeded randomly with 1–100 cells of each type

within a 100 x 100 x 10 μm chamber and run for up to 100 hours or 1.5 x 107 fg total biomass,

whichever was sooner. The data from 1,000 simulations was split into training (70%), valida-

tion (15%), and testing (15%) sets with the following number of samples: Train 69,204; Valida-

tion 14,829; Test 14,830. To perform the fitting, a sequential neural network was constructed

with input normalization, 3 hidden layers consisting of 512 neurons each, with ReLU (Recti-

fied Linear Unit) activation, layer dropout of 0.5, L2 regularization of 1e-4, and batch normali-

zation using TensorFlow [51]. Subsequent analysis of the prediction model’s feature

importance was performed using SHAP (SHapley Additive exPlanations) [52,53].

Results & Discussion

IbM and parameter fitting for S. elongatus

We sought to implement an IbM of the cyanobacterial co-cultivation platform to enable us to

predict the impact of localized exchanges on species performance. For this purpose, we utilized

NUFEB, an IbM framework capable of simulating physical, chemical, and biological processes

[35]. NUFEB was developed to study emergent interactions by simulating cells in microbial

consortia as individuals, each with the ability to sense and interact with their local environ-

ment, uptake and secrete nutrients as the result of metabolic processes, grow and divide, and

even form biofilms. The light-driven platform we chose to model with NUFEB consists of a

model cyanobacterium, S. elongatus CscB/SPS (see above), which performs oxygenic photo-

synthesis, fixes CO2, and secretes sucrose [23], paired with a heterotrophic partner, E. coli,

which can utilize sucrose as its sole source of carbon [36] and has previously shown to form a

stable consortium [31]. We integrated custom models for each of these species into NUFEB
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based on Monod kinetics, which relate the relative growth rate of microbes to the concentra-

tion of limiting nutrients [54].

To ensure that the IbM was biologically accurate, it was first necessary to determine key fea-

tures related to the growth and metabolism of S. elongatus. The sucrose production and secre-

tion pathway is inducible by the addition of IPTG, which drives the expression of SPS and

CscB [25,26]. We therefore collected experimental data of sucrose secretion and cellular

growth over time as a function of the IPTG concentration to evaluate the tunability of this plat-

form (Fig 2A and 2B). The growth rates of differentially induced S. elongatus cultures varied

minimally (Fig 2A, left), but we observed a slight growth decrease when the sucrose-secretion

pathway was highly expressed (Fig 2A, right), consistent with prior results and indicative of

the increasing metabolic burden of sucrose production. Sucrose accumulated upon induction,

with up to 0.4 mM sucrose in the media after 24 hours (Fig 2B, left). We observed a logistic

relationship between the induction level and extracellular sucrose after 24 hours and a 27-fold

difference in the induction ratio (Fig 2B, right). Additionally, certain parameters were fit or

derived from the literature (S1 Fig and Tables 1 and 2).

It has been previously demonstrated that engagement of this sucrose secretion pathway

leads to a higher overall CO2 fixation and improvement in total biomass accumulation

[23,25,26,28]. By correlation with dry weight cell biomass, the impact of engagement of sucrose

export on organismal fitness was determined. We observed an enrichment in the proportion

of biomass directed to sucrose with increased IPTG induction (Fig 2C, left), which was in

agreement with the simulated data (Fig 2C, right). An improvement in the total biomass accu-

mulated after 24 hours of 17% was observed when comparing the maximum induction level (1

mM IPTG) to the uninduced control (0 mM IPTG), (Fig 2D). This phenomenon is likely due

in part to increased overall photosynthetic flux and CO2 fixation rates in S. elongatus when

these pathways are engaged [25,26], is assisted by documented increases in Rubisco abundance

following sucrose export [55] and potentially, that the specific ATP/NADPH requirements

may alter the balance of metabolite pools important for bioproduction [56,57].

IbM and Parameter fitting for E. coli

We likewise conducted a series of growth experiments for the heterotrophic partner species of

our co-cultures, E. coli. We first wished to evaluate the capacity of E. coli to utilize sucrose in

R2 medium. In agreement with previous studies [36,38], E. coli readily used sucrose for

growth, with the relative growth rate dependent on the concentration of sucrose (Fig 3A). The

cultures reached a maximum OD600 of ~11. The sucrose concentration in the medium

decreased proportionally to the culture densities, with an average level of ~1 mM after station-

ary phase was reached over time (Fig 3B). This data was used to fit the maximal growth rate

(μmax), allowing for an approximation of growth rate as a function of local concentrations of

soluble sugars. While the fit to the growth data was very good (Fig 3A, R2 = 0.98), there was

some disagreement between the simulated and experimental sucrose measurements (Fig 3B R2

= 0.84), which was likely a result of additional sources of carbon in the medium (e.g., yeast

extract). Future optimization of the medium to maintain adequate sources of nitrogen and

trace elements while minimizing sources of carbon is required to improve the model accuracy.

S. elongatus sucrose secretion controls the ratio and dynamics of E. coli
populations in co-culture

With the capacity to simulate growth dynamics of each species independently, S. elongatus and

E. coli co-cultures can be modelled using a random initial positioning of individuals to extract

unbiased simulation features and outcomes. Since the photosynthates produced by S. elongatus
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Fig 2. NUFEBmodel validation with axenic S. elongatus. A) Growth of S. elongatus over 24 hours under different
levels of sucrose secretion induction (left). A small growth defect was observed after 24 hours of growth (right),
indicative of the metabolic burden imposed by sucrose secretion. B) Sucrose secretion over time with varying
induction (left). Extracellular sucrose after 24 hours of growth (right). C) Relative proportions of experimental (left)
and simulated (right) cellular (blue) and sucrose (red) biomass. D) Total experimental (left) and simulated (right)
cellular (blue) and sucrose (red) biomass. A/B) Dots indicate experimental data points (n>3), lines are the mean
simulated result (n = 5), and the shaded regions are the standard deviation (n = 5). C/D) Shaded regions indicate the
standard deviation (n = 5) and error bars indicate standard deviation (n = 3).

https://doi.org/10.1371/journal.pcbi.1011045.g002
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represent the only available carbon source in the co-cultivation platform [23,36], the rate of E.

coli growth should be constrained by the total photosynthetic activity. We simulated a series of

co-cultivations under different induction regimes for sucrose export, while also varying the

starting position and seeding ratio of S. elongatus:E. coli. As expected, the rate of sucrose export

was strongly correlated with the rate of E. coli biomass accumulation (Fig 4A), while it was

negatively correlated with S. elongatus cell biomass (Figs 2A, 2B and 4B). With a greater flux of

sucrose, we expected increased accumulation of heterotrophic biomass, and the sucrose secre-

tion level (IPTG) was positively correlated with the steady-state ratio of E. coli:S. elongatus bio-

mass (Fig 4C and 4D). Despite considerable variations in the initial numbers of S. elongatus or

E. coli cells, simulations routinely converged on a predictable ratio of E. coli:S. elongatus bio-

mass within<3 days of simulated time (Fig 4D).

In addition to the changes in the simulations at steady state, we observed emergent behavior

that was dependent on the level of sucrose secretion (Fig 4E–4G). Higher sucrose secretion led

to transient accumulations of sucrose (Fig 4E), more rapid population stabilization (i.e., aver-

age time required for population ratios to approach steady state; Fig 4F), with the average time

required for the population to approach the steady state being inversely related to sucrose

secretion rates, and an increase in the maximum sucrose concentration (Fig 4G). This behav-

ior is indicative of the delay between when a public good becomes available and when partner

microbes generate enough biomass to balance the flux of the public good.

To investigate the effect of the relative growth rates on the ability of S. elongatus to support het-

erotrophic biomass, we ran a series of simulations with varied μmax for E. coli (5ÿ 10
�2 <

mmaxec

mmaxse

<

5ÿ 10
1). We observed a logistic relationship between the relative growth rates of the E. coli to S.

elongatus (Fig 4H). Below a threshold, where the maximum growth rates were approximately

equal, the population ratio dropped off precipitously. In this regime, E. coli cells did not grow rap-

idly enough to utilize the shared sucrose, and there was far less E. coli to S. elongatus biomass. In

contrast, above the same threshold, the population ratio plateaued, indicating minimal additional

Fig 3. NUFEBmodel validation with axenic E. coli of both A) Growth (optical density at 600 nm) and B) Sucrose
concentration over time. Error bars indicate standard deviation, n = 4. Shaded regions indicate standard deviation in
simulated curves, n = 3.

https://doi.org/10.1371/journal.pcbi.1011045.g003
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Fig 4. Effect of sucrose secretion on simulated population-level dynamics. Biomass over time with varying sucrose secretion for A) E. coli and B) S.
elongatus. C) Steady state population ratio as a function of sucrose secretion. D) Population stability dynamics with varying sucrose secretion levels (IPTG,
mM). Each curve represents a distinct starting ratio of E. coli to S. elongatus cells. Shaded regions indicate the dominant species (tan: E. coli, green: S. elongatus).
E) Mean sucrose concentration over time. F) The effect of sucrose secretion on the time to reach steady state. Red shaded region indicates IPTG levels under
which the simulated cultures did not reach steady state within 100 simulated hours. G) Peak sucrose concentration vs sucrose secretion level (IPTG, mM). H)
The effect of relative growth rates (μec/ μse) on the steady state population ratio (1 mM IPTG). The dashed line indicates the relative growth rate used in all
other simulations. In all panels except D, simulations were seeded with 50 cells of each type within a 100 x 100 x 10 μm chamber and run for up to 100 hours or
1.5 x 107 fg total biomass, whichever was sooner.

https://doi.org/10.1371/journal.pcbi.1011045.g004
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fitness benefits for heterotrophic partners to have division times that greatly outpace S. elongatus.

This result suggests that when engineering newmicrobial communities, matching species such

that the heterotrophs grow at least as quickly, and up to 10x faster, than their phototrophic partner

will ensure maximal support for heterotrophic biomass.

Effect of spatial proximity on colony-level fitness

Spatial structuring is thought to play a central role in promoting the stability of natural consor-

tia, with diffusive and physical barriers strengthening local interactions. We sought to deter-

mine the impact of the initial spatial arrangement of the E. coli and S. elongatus consortium in

silico. Towards this end, we ran 1,000 simulations (each up to 100 hours of growth), with ran-

domly seeded initial cell numbers, size, locations, and IPTG concentrations. The spatial met-

rics (see Methods) were calculated for each colony and fed into a neural network-based

regression algorithm (Fig 5A). Using the trained regression model, we can predict the aggre-

gate colony fitness (total biomass at the end of the simulation) of both species in our simula-

tions with R-squared values higher than 0.94, while species-specific predictions were slightly

less accurate at 0.86 for S. elongatus and 0.80 for E. coli (Fig 5B). Cell species (Type) was the 2nd

most important regression feature based on our SHAP analysis, which may explain the reduc-

tion in fitting accuracy for prediction species individually (S2 Fig), particularly given that it

correlated with other features of importance (S3 Fig).

Initial biomass correlated with total colony biomass at the end of the simulation (fitness), albeit

with a large variance (Fig 6A). S. elongatus and E. coli initial biomass value ranges were mutually

exclusive, due to the differing sizes and densities of the respective species. IPTG had opposing sig-

moidal relationships with S. elongatus and E. coli fitness (Fig 6B), as were expected based on the

model design and experimental data. Increased sucrose secretion creates a small growth defect as

a result of the metabolic burden (Fig 2A and 2B). In contrast, E. coli can utilize far more sucrose

than S. elongatus cells were able to produce, and thus the shape of the E. coli fitness curve (Fig 6B,

right) mimics the form of sucrose secretion with respect to IPTG (Fig 2B, right). ÿIC se, the average

inter-colony distance to S. elongatus colonies, was positively correlated with S. elongatus fitness,

indicating that to some extent, phototrophic competition was detected (Fig 6C, left). We expected

S. elongatus to be relatively indifferent to proximity of either species due to the lack of negative

regulation in its computational model. Additionally, we observed a linear correlation between ÿIC se
and E. coli fitness, which was indicative of increased fitness for E. coli colonies in closer proximity

to S. elongatus neighbors (Fig 6C, right). We expect that at larger length scales, this effect would be

increasingly prominent, as the diffusion gradients of sucrose, the limiting nutrient for E. coli

growth, become steeper. ÿICec, the average inter-colony distance to E. coli colonies, was not corre-

lated with S. elongatus fitness, but was strongly correlated with E. coli fitness, due to the greater

distance between colonies indicating less concentration of heterotrophic competitors (Fig 6D).

Additional analysis of the feature and permutation importance from the regression model are

shown in S2 Fig. Notably, Voronoi tessellation area, a geometric representation of the growth

potential for a given colony, was an exceptionally poor predictor of fitness. Perhaps this was a

result of having multiple species competing for space, yet participating in resource sharing, which

would not be accounted for in a purely geometric evaluation of the microbial landscape. Finally,

an illustrative example of the fitness differences between E. coli colonies is shown in S4 Fig.

NUFEBmodel limitations and future directions

While the NUFEB framework itself is quite detailed, the underlying metabolic models used in

this work were based on Monod kinetics, which only accounted for growth-limiting nutrients

(i.e. light, CO2, O2, and sucrose). In addition, our simulations assumed saturated levels of
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dissolved CO2, which is likely to overestimate the potential cyanobacterial growth within a

dense culture. Some disagreement between our experimental results and simulation data also

comes from the difference in light availability. In flask experiments, self-shading causes a

decrease in realized cell growth rates (Fig 2A), but due to the thin optical cross-section of the

environments we examined herein, light shading by neighboring cells was neglected (see Mate-

rials and Methods) [41,42].

More complex metabolic models could be readily included within the NUFEB framework,

including the possibility of incorporating entire genome-scale metabolic models within each

individual [58]. Indeed, recent work from other laboratories utilizing this co-cultivation plat-

form suggest that many other metabolites that are secreted from S. elongatus or co-cultivated

heterotrophs could contribute to emergent interactions that positively influence species fitness

[39]. Some potential emergent interactions that have been hypothesized include metabolite

sharing, reactive oxygen species mitigation, and increased local concentration of O2/CO2 from

photosynthesis/respiration [31,34]. Incorporating more detailed metabolic networks could

further refine the predictive capacity of the simulations, but would be maximally useful if they

are grounded in rigorous experimental datasets.

Fig 5. Colony-level fitness prediction based on spatial metrics.A) Diagram illustrating the prediction pipeline. Individual cell coordinates and sizes were
extracted from the simulations, which were used to compute a variety of spatial metrics (see Methods section). A neural network regression model was
subsequently fit to the aggregated spatial metrics, enabling fitness prediction. B) Actual vs. predicted biomass of S. elongatus (left), E. coli (center), and overall fit
(right) in a simulated co-culture, with 1,000 datapoints shown. The data was split into training, validation, and testing groups as follows: Train 69,204;
Validation 14,829; Test 14,830. Each dot indicates a sample colony. Dashed red line indicates a slope of 1. R2 values indicate the coefficient of determination of
the test set.

https://doi.org/10.1371/journal.pcbi.1011045.g005
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Fig 6. Two-dimensional histograms of the four significant parameters for determining colony fitness of S. elongatus (middle) and E. coli (right)
colonies. The total biomass of each colony at the end of each simulation was used as a proxy for fitness. A) Initial biomass. B) IPTG concentration
(sucrose secretion level). C) Mean inter-colony distance to S. elongatus. D) Mean inter-colony distance to E. coli.

https://doi.org/10.1371/journal.pcbi.1011045.g006
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In order for experimental co-cultures to be grown that have comparable growth kinetics to

the simulations, a bi-species optimized medium is required. Our growth models were fit to

experimental data on species-specific media optimized for axenic growth (i.e., BG-11 and R/

2). Previous studies have used modified BG-11, typically supplemented with additional sources

of nitrogen [31,34]. While this does enable E. coli to grow, the density of their growth is more

than an order of magnitude less than possible on rich media [36,38].

Finally, while spatial structuring plays an important role in partner fitness, using spherical

representations of cells reduces our ability to observe and quantify more subtle effects, since

cell morphology affects the resulting colony morphology [59]. A future NUFEB release will

enable rod-shaped cells and allow more accurate spatial investigation.

Conclusions

In this study, we developed an in silicomodel of a synthetic microbial consortium based on

experimental data of sucrose-secreting cyanobacteria and E. coli. We showed that the level of

sucrose secretion regulates the temporal dynamics of consortia growth, including the maxi-

mum sucrose concentration and time to steady state, and the amount of steady-state support

for heterotrophic biomass. Based on spatial structuring, we fit a regression model to predict

colony fitness. The critical parameters for fitness prediction were inter-colony distance, initial

biomass, IPTG concentration, and distance from the center of the simulation volume. We

expect that further integration of experimental data combined with computational approaches

will improve our ability to design consortia with novel function.

Supporting information

S1 Fig. Fitting KCO2 to experimental data [46], where m ¼ ½CO2 ÿ

KCO2
þ½CO2 ÿ

. The best fit was KCO2 =

8.1 × 10−3 g/L.

(EPS)

S2 Fig. Regression feature analysis with SHAP (SHapley Additive exPlanations) values. A)

Feature importance. B) Permutation importance. This metric is a calculation in the drop in

model accuracy after the data for the feature in question is randomly shuffled, and is comple-

mentary to feature importance. See materials and methods for definitions of each metric. s.e.–

S. elongatus, e.c.–E. coli.

(EPS)

S3 Fig. Pearson correlation matrix of the metrics used for fitness prediction. The size and

color correspond with the relative correlation magnitude. See materials and methods for defi-

nitions of each metric. S.e.–S. elongatus, e.c.–E. coli.

(EPS)

S4 Fig. Comparing the relative fitness of winners and losers (E. coliW). Colonies with

higher initial biomass outcompete their neighbors. A) 2D representation of all colonies after

72 hours of simulated growth (1 mM IPTG). Cyanobacterial colonies are shown in teal and E.

coli are shown in tan/brown. B) Growth of loser (i) and winner (ii) E. coli colonies over time,

illustrating colony size and morphology. C) Biomass over time of the mother cells from the

loser (i) and winner (ii) colonies (top) and total colony biomass over time. Dashed grey lines

indicate a division event. D) Time between divisions for all mother cells, ranked from least to

most fit.

(EPS)
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33. Löwe H, Hobmeier K, Moos M, Kremling A, Pflüger-Grau K. Photoautotrophic production of polyhydrox-
yalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida
cscAB. Biotechnology for Biofuels. 2017; 10: 1–11. https://doi.org/10.1186/s13068-017-0875-0 PMID:
28814973

34. Weiss TL, Ducat DC. Designing stable, synthetic, light-driven cyanobacteria-heterotroph consortia for
bioproduction. Metabolic Engineering. 2017; 236–245.

35. Li B, Taniguchi D, Gedara JP, Gogulancea V, Gonzalez-Cabaleiro R, Chen J, et al. NuFeb: A massively
parallel simulator for individual-based modelling of microbial communities. PLoS Computational Biol-
ogy. 2019; 15: 1–23. https://doi.org/10.1371/journal.pcbi.1007125 PMID: 31830032

36. Arifin Y, Archer C, Lim SA, Quek LE, Sugiarto H, Marcellin E, et al. Escherichia coli W shows fast, highly
oxidative sucrose metabolism and low acetate formation. Applied Microbiology and Biotechnology.
2014; 98: 9033–9044. https://doi.org/10.1007/s00253-014-5956-4 PMID: 25125039

37. Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, et al. The genome sequence of E. coli W
(ATCC 9637): Comparative genome analysis and an improved genome-scale reconstruction of E. coli.
BMCGenomics. 2011;12. https://doi.org/10.1186/1471-2164-12-9 PMID: 21208457

38. Sabri S, Nielsen LK, Vickers CE. Molecular control of sucrose utilization in Escherichia coli W, an effi-
cient sucrose-utilizing strain. Applied and Environmental Microbiology. 2013; 79: 478–487. https://doi.
org/10.1128/AEM.02544-12 PMID: 23124236

39. Zuñiga C, Li T, Guarnieri MT, Jenkins JP, Li CT, Bingol K, et al. Synthetic microbial communities of het-
erotrophs and phototrophs facilitate sustainable growth. Nature Communications. 2020;11. https://doi.
org/10.1038/s41467-020-17612-8 PMID: 32732991

40. Wong HH, Lee SY. Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recom-
binant Escherichia coli. Applied Microbiology and Biotechnology. 1998; 50: 30–33. https://doi.org/10.
1007/s002530051252 PMID: 9720197

41. Ramsing NB, Ferris MJ, Ward DM. Highly ordered vertical structure of Synechococcus populations
within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Applied and Environmen-
tal Microbiology. 2000; 66: 1038–1049. https://doi.org/10.1128/AEM.66.3.1038-1049.2000 PMID:
10698769

42. Jørgensen BB, Des Marais DJ. Optical properties of benthic photosynthetic communities: Fiber-optic
studies of cyanobacterial mats. Limnology and Oceanography. 1988; 33: 99–113. https://doi.org/10.
4319/lo.1988.33.1.0099 PMID: 11539749

43. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, BrownWM, Crozier PS, et al. LAMMPS—a
flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum
scales. Computer Physics Communications. 2022; 271: 108171. https://doi.org/10.1016/j.cpc.2021.
108171

44. Broddrick JT, Welkie DG, Jallet D, Golden SS, Peers G, Palsson BO. Predicting the metabolic capabili-
ties of Synechococcus elongatus PCC 7942 adapted to different light regimes. Metabolic Engineering.
2019; 52: 42–56. https://doi.org/10.1016/j.ymben.2018.11.001 PMID: 30439494

45. Burg TP, Godin M, Knudsen SM, ShenW, Carlson G, Foster JS, et al. Weighing of biomolecules, single
cells and single nanoparticles in fluid. Nature. 2007; 446: 1066–1069. https://doi.org/10.1038/
nature05741 PMID: 17460669

PLOS COMPUTATIONAL BIOLOGY Spatial dynamics in cyanobacteria/heterotroph co-culture models

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1011045 May 3, 2023 19 / 20

https://doi.org/10.1016/j.ymben.2013.05.001
http://www.ncbi.nlm.nih.gov/pubmed/23721859
https://doi.org/10.1016/j.algal.2018.05.013
https://doi.org/10.1007/s11802-016-3007-8
https://doi.org/10.1007/s11802-016-3007-8
https://doi.org/10.1038/s41598-019-57319-5
https://doi.org/10.1038/s41598-019-57319-5
http://www.ncbi.nlm.nih.gov/pubmed/31942010
https://doi.org/10.1186/s13036-017-0048-5
https://doi.org/10.1186/s13036-017-0048-5
http://www.ncbi.nlm.nih.gov/pubmed/28127397
https://doi.org/10.1186/s13068-017-0736-x
http://www.ncbi.nlm.nih.gov/pubmed/28344645
https://doi.org/10.1186/s13068-017-0875-0
http://www.ncbi.nlm.nih.gov/pubmed/28814973
https://doi.org/10.1371/journal.pcbi.1007125
http://www.ncbi.nlm.nih.gov/pubmed/31830032
https://doi.org/10.1007/s00253-014-5956-4
http://www.ncbi.nlm.nih.gov/pubmed/25125039
https://doi.org/10.1186/1471-2164-12-9
http://www.ncbi.nlm.nih.gov/pubmed/21208457
https://doi.org/10.1128/AEM.02544-12
https://doi.org/10.1128/AEM.02544-12
http://www.ncbi.nlm.nih.gov/pubmed/23124236
https://doi.org/10.1038/s41467-020-17612-8
https://doi.org/10.1038/s41467-020-17612-8
http://www.ncbi.nlm.nih.gov/pubmed/32732991
https://doi.org/10.1007/s002530051252
https://doi.org/10.1007/s002530051252
http://www.ncbi.nlm.nih.gov/pubmed/9720197
https://doi.org/10.1128/AEM.66.3.1038-1049.2000
http://www.ncbi.nlm.nih.gov/pubmed/10698769
https://doi.org/10.4319/lo.1988.33.1.0099
https://doi.org/10.4319/lo.1988.33.1.0099
http://www.ncbi.nlm.nih.gov/pubmed/11539749
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.ymben.2018.11.001
http://www.ncbi.nlm.nih.gov/pubmed/30439494
https://doi.org/10.1038/nature05741
https://doi.org/10.1038/nature05741
http://www.ncbi.nlm.nih.gov/pubmed/17460669
https://doi.org/10.1371/journal.pcbi.1011045


46. Jahn M, Vialas V, Karlsen J, Maddalo G, Edfors F, Forsström B, et al. Growth of Cyanobacteria Is Con-
strained by the Abundance of Light and Carbon Assimilation Proteins. Cell Reports. 2018; 25: 478–486.
e8. https://doi.org/10.1016/j.celrep.2018.09.040 PMID: 30304686

47. Head T, Kumar M, Nahrstaedt H, Louppe G, Shcherbatyi I. scikit-optimize/scikit-optimize. Zenodo;
2021. https://doi.org/10.5281/zenodo.5565057

48. Sakkos J. Jsakkos/nufeb_tools: Make DOI. Zenodo; 2022. https://doi.org/10.5281/zenodo.5889349

49. Chacón JM, Shaw AK, HarcombeWR. Increasing growth rate slows adaptation when genotypes com-
pete for diffusing resources. PLoS computational biology. 2020; 16: e1007585. https://doi.org/10.1371/
journal.pcbi.1007585 PMID: 31910213

50. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: funda-
mental algorithms for scientific computing in Python. Nat Methods. 2020; 17: 261–272. https://doi.org/
10.1038/s41592-019-0686-2 PMID: 32015543

51. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems.: 19.

52. Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning
predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018; 2: 749–760.
https://doi.org/10.1038/s41551-018-0304-0 PMID: 31001455

53. Lundberg SM, Erion GG, Lee S-I. Consistent Individualized Feature Attribution for Tree Ensembles.
arXiv; 2019. Available: http://arxiv.org/abs/1802.03888

54. Monod J. THEGROWTHOF BACTERIAL CULTURES. Annual Reviews in Microbiology. 1949; 3:
371–394.

55. Singh AK, Santos-Merino M, Sakkos JK,Walker BJ, Ducat DC. Rubisco regulation in response to
altered carbon status in the cyanobacterium Synechococcus elongatus PCC 7942. Plant Physiology.
2022; 189: 874–888. https://doi.org/10.1093/plphys/kiac065 PMID: 35201348

56. Zhou J, Zhang F, Meng H, Zhang Y, Li Y. Introducing extra NADPH consumption ability significantly
increases the photosynthetic efficiency and biomass production of cyanobacteria. Metabolic Engineer-
ing. 2016; 38: 217–227. https://doi.org/10.1016/j.ymben.2016.08.002 PMID: 27497972

57. Wang X, Liu W, Xin C, Zheng Y, Cheng Y, Sun S, et al. Enhanced limonene production in cyanobacteria
reveals photosynthesis limitations. PNAS. 2016; 113: 14225–14230. https://doi.org/10.1073/pnas.
1613340113 PMID: 27911807

58. Bauer E, Zimmermann J, Baldini F, Thiele I, Kaleta C. BacArena: Individual-based metabolic modeling
of heterogeneous microbes in complex communities. PLoS Computational Biology. 2017; 13: 1–22.
https://doi.org/10.1371/journal.pcbi.1005544 PMID: 28531184

59. Smith WPJ, Davit Y, Osborne JM, KimWD, Foster KR, Pitt-Francis JM. Cell morphology drives spatial
patterning in microbial communities. Proceedings of the National Academy of Sciences of the United
States of America. 2017; 114: E280–E286. https://doi.org/10.1073/pnas.1613007114 PMID: 28039436

PLOS COMPUTATIONAL BIOLOGY Spatial dynamics in cyanobacteria/heterotroph co-culture models

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1011045 May 3, 2023 20 / 20

https://doi.org/10.1016/j.celrep.2018.09.040
http://www.ncbi.nlm.nih.gov/pubmed/30304686
https://doi.org/10.5281/zenodo.5565057
https://doi.org/10.5281/zenodo.5889349
https://doi.org/10.1371/journal.pcbi.1007585
https://doi.org/10.1371/journal.pcbi.1007585
http://www.ncbi.nlm.nih.gov/pubmed/31910213
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.1038/s41551-018-0304-0
http://www.ncbi.nlm.nih.gov/pubmed/31001455
http://arxiv.org/abs/1802.03888
https://doi.org/10.1093/plphys/kiac065
http://www.ncbi.nlm.nih.gov/pubmed/35201348
https://doi.org/10.1016/j.ymben.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27497972
https://doi.org/10.1073/pnas.1613340113
https://doi.org/10.1073/pnas.1613340113
http://www.ncbi.nlm.nih.gov/pubmed/27911807
https://doi.org/10.1371/journal.pcbi.1005544
http://www.ncbi.nlm.nih.gov/pubmed/28531184
https://doi.org/10.1073/pnas.1613007114
http://www.ncbi.nlm.nih.gov/pubmed/28039436
https://doi.org/10.1371/journal.pcbi.1011045

