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Computational fluid dynamics (CFD) simulations are broadly used in many engineering and physics 
fields. CFD requires the solution of the Navier–Stokes (N-S) equations under complex flow and boundary 
conditions. However, applications of CFD simulations are computationally limited by the availability, 
speed, and parallelism of high-performance computing. To address this, machine learning techniques 
have been employed to create data-driven approximations for CFD to accelerate computational efficiency. 
Unfortunately, these methods predominantly depend on large labeled CFD datasets, which are costly 
to procure at the scale required for robust model development. In response, we introduce a weakly 
supervised approach that, through a multichannel input capturing boundary and geometric conditions, 
solves steady-state N-S equations. Our method achieves state-of-the-art results without relying on 
labeled simulation data, instead using a custom data-driven and physics-informed loss function and 
small-scale solutions to prime the model for solving the N-S equations. By training stacked models, 
we enhance resolution and predictability, yielding high-quality numerical solutions to N-S equations 
without hefty computational demands. Remarkably, our model, being highly adaptable, produces 
solutions on a 512 × 512 domain in a swift 7 ms, outpacing traditional CFD solvers by a factor of 1,000. 
This paves the way for real-time predictions on consumer hardware and Internet of Things devices, 
thereby boosting the scope, speed, and cost-efficiency of solving boundary-value fluid problems.

Introduction

Many fluid problems are governed by nonlinear partial differential 
equations (PDEs) based on the Navier–Stokes (N-S) equations. 
Numerical simulations of these fluid dynamics problems require 
the resolution of N-S equations in a discretized spatial and tem-
poral form. Various methods like the finite difference method 
(FDM), finite volume method (FVM) [1,2], Lattice–Boltzmann 
method (LBM) [3–5], and finite element method (FEM) [6–8] 
exist to solve the N-S equations. However, these methods can 
become computationally demanding and memory intensive when 
high-resolution meshes are needed. The challenge is further inten-
sified by the complexity of determining suitable computational 
grids [9]. Although the preprocessing tasks can be somewhat 
alleviated by commercial software, they still necessitate a solid 
understanding of computational fluid dynamics (CFD) principles 
such as the governing equations, selection of appropriate flow 
solvers, upwind schemes, and turbulent models [10], and they 
have a negligible impact on the computational cost. Moreover, 
regardless of computational similarity, even subtle changes in the 
boundary conditions or geometric domain necessitate completely 
reworking the simulations.

The necessity for rapid, automated solutions to the N-S equa-
tions has surged in various fields for use in video game engines, 
ocean current or hurricane forecasts, prediction of oil spills or fire 
smoke spreading, and porous media flow, among others. These 
applications demand physics-informed dynamic control systems 
and reinforcement learning. Unfortunately, the current commercial 
software is inadequate for fully automated applications. Therefore, 
automating and accelerating real-time fluid simulation can enable 
new applications where speed, energy, and computational cost are 
mission-critical [11–16]. The rising interest lies in the development 
of precise, coherent, and reduced-order models capable of repre-
senting flow characteristics.

Machine learning (ML), particularly deep learning (DL), has 
made important strides in computational mechanics, serv-
ing as an approximation for dynamic spatiotemporal systems 
[17–21]. DL models are typically overparameterized models 
that can serve as data-driven approximations between the 
input and the target. By introducing “damaging mechanisms” 
through regularization, a loss function can be optimized to 
generalize within the distribution of the training data.

A purely data-driven approach utilizes the DL model as a 
“black box” to map input to output. However, generating a 
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comprehensive dataset to train robust DL models can be compu-
tationally costly and demands an in-depth understanding of the 
statistical distribution of the training dataset [22], and it is hard 
to achieve robustness when models are overparameterized and 
training data are limited [23]. Recently, physics-informed neural 
networks (PINNs) have been used to add physics constraints that 
improve the generalizability of DL models. For instance, physical 
laws including PDEs and initial and boundary conditions are 
explicitly embedded into the DL model. PINNs use physics as a 
parsimonious regularizer that enhances the robustness and inter-
pretability of the DL model [22]. Trained PINNs can provide 
alternative solutions to PDEs under various boundary and initial 
conditions [24]. However, once the training procedure concludes, 
a trained model can only yield solutions for a specific con-
figuration of inputs. It is therefore not applicable when the 
geometry, boundary, or initial conditions change. Additionally, 
trained models are not readily adjustable for system-level dis-
crepancies, such as friction changes [25]. Consequently, these 
networks can only accelerate narrowly defined problems.

Several research groups have recently ventured into predicting 
the results of different PDEs by building PINNs [19,20,24,26–30]. 
For example, a weakly supervised algorithm was capable of solv-
ing Laplace’s equations [28]. In this work, a fully convolutional 
encoder–decoder network in a U-Net architecture [31] was used 
to predict the solution. This study integrated physics-informed 
loss with a generative model [32–34] that retained the intrinsic 
relationships between neighboring nodal points by introducing 
a convolution kernel based on Laplace’s equation. Without access 
to any solved simulation data, the trained model could predict 
the solution with different boundary conditions. Nevertheless, 
the applicability of this method was limited to the heat equa-
tion with Dirichlet boundary conditions. N-S equations, in 
contrast, are second-order nonlinear PDEs containing multiple 
equations and variables with convective, pressure, and viscous 

terms, and are much more complicated than heat equations. The 
heat equation is akin to only the viscous term in N-S equations; 
hence, this method cannot be readily applied to general N-S 
equations.

In this work, we focus on solving the N-S equations in 
2-dimensional (2D) space. We developed a weakly supervised 
method that considers complicated momentum and continuity 
equations, the pressure field, and velocities in both dimensions. 
Our method generates steady-state solutions to flow problems 
governed by N-S equations in roughly 5 to 7 ms, without requiring 
pre-computed CFD results. We accomplished this by initiating 
warm-up through pre-run iterations or coarse solutions. Utilizing 
convolutional U-Nets, we accurately approximated the solutions 
of steady-state N-S equations under varying boundary conditions 
and with internal obstacles by training stacked models. To improve 
the performance, we imposed 2 types of constraints on the loss 
function: physics-informed constraints, represented by the residue 
of the equations, and data-driven constraints, represented by the 
differences between the output and the known values on the 
boundaries. We validated the models by comparing the results to 
FDM solutions. Our approach provided solutions with a root 
mean square error (RMSE) of 0.04 for velocity fields compared to 
the ground truth from FDM simulations while reducing computa-
tion time by a factor of 1,000.

Materials and Methods
Model architecture
To approximate solutions to the N-S equation with boundary 
conditions, we designed a neural network architecture in the 
form of a convolutional U-Net (Fig. 1). The U-Net is a modified 
autoencoder. Autoencoders are composed of an encoder, which 
learns a compact representation of the data, and a decoder, which 
reconstructs a target of similar dimensionality from this compact 
representation (Fig. 1). U-Nets include message passing from the 

64 256 128

128 64

Input

32x32x3

16x16

8x8

4x4

Output
 

32x32x3

Batch normalization
relu*

Copy and crop

conv 4X4 stride 2

up-conv 4X4

tanh

128

256

2x2

1x1

2x2
512 512

512 256

16x16

8x8

1024

1024 1024

4x4

* Leaky_relu for encoder, 
relu for decoder

Fig. 1. Schematic representation of the architecture of the model. The input data can be sized differently. In this figure, the example input domain has a size of (32 × 32 × 3) 
for width, height, and number of channels (depth), respectively. The number of layers in both the encoder and decoder is equal to log2a, where a is the dimension of the 
square matrix. In this figure, there are 5 layers. The width and height of the data decrease in the encoder and then increase until the original size is recovered in the decoder. 
Data representations in the same row have the same width and height, as annotated at the left or right, and the same depth, except where specifically noted above or below.
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encoder to the decoder to assist in reconstructing high-resolution 
representations. U-Nets have been used for image reconstruction 
from the input with given constraints in different fields [35–37]. 
Fully convolutional networks have been used for DL-based CFD 
simulations as predicting models [32,33,38] and by generative 
adversarial networks (GANs) [32,34]. The designed U-Net is 
constructed from convolutional layers that take the input and 
compress the information until reaching the bottleneck layer. 
The output from the encoder is then passed to the decoder, which 
reconstructs the input to its original size and maps the output to 
the range [−1, 1]. The output from the final layer is scaled via a 
linear mapping to match the expected magnitude for each channel, 
forming the final output of the model.

The fully convolutional network contains an encoder and 
decoder with convolutional blocks. Each convolutional block 
includes convolutional layers with a kernel size of (4, 4) and a 
stride of 2, batch normalization, and a leaky rectified linear unit 
(ReLU) activation layer defined by:

The decoder with deconvolutional layers takes the output 
of the preceding layer concatenated with the corresponding 
encoding layers. A multichannel outcome from the decoder 
followed by a hyperbolic tangent tanh activation layer is recon-
structed to reach the original size of the input.

Physics-informed data-driven loss function
Optimization based on purely data-driven loss functions resulted 
in costs for preparing the numerical solutions as labeled data 
[33,38]. To improve the model performance with minimal low-
cost computationally simulated data, we constructed a custom 
loss function that combined the physics-informed loss Lphy, which 
represents the physics equations and constraints defined by the 
residue of the computational operations, and the data-driven loss 
Lb, which represents the direct comparisons with the boundary 
conditions, to constrain the model. The physical model used in 
this study is based on 2D incompressible fluid dynamics con-
strained by N-S equations. The governing equations can be 
rewritten as:

The physics-informed loss functions are based on the resi-
due of the PDEs, defined in the following equation in which NI 
denotes the number of internal nodes:

The residues of the PDEs (Eq. 6) consist of 3 sublosses of 
each equation in N-S equations:

Each subloss has subterms that represent the viscous term, 
convective term, and pressure term. For nonboundary nodes, 
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3 subterms of the loss should be written as:

K denotes the physics-informed kernels similar to kernels 
reported in [28], which are operated on a domain that contributes 
to the loss of the Laplace operator corresponding to the viscous 
terms. Conv2d denotes the 2D convolutional operations, and h 
defines the discretization unit.

In our practice, K has 2 different scenarios. We extended the 
idea described in [28] for Neumann boundaries. For example, 
if a Neumann boundary is to be put on the left-hand side, K 
changes accordingly:

Another term, LNeumann, which represents the loss of any 
Neumann boundaries, is added in Eq. 5 as a physics-driven 
loss. Suppose that the physics domain has the NX and NY 
nodes in the X and Y directions, respectively, and has NN 
Neumann boundary nodes in total. For the boundaries that 
have Neumann boundary conditions, the following equation 
would apply for this loss:
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The total loss function also includes contributions from 
Dirichlet boundary conditions. Although the boundaries are 
not part of the output, they are considered in the loss function 
using an additional term. The data-driven loss is calculated 
from the mean squared error between the generated solution 
and the known values on the boundaries. The boundary loss 
represents the distances between the values generated by the 
model and the actual Dirichlet boundary conditions, which 
helps to reinforce the boundaries. Suppose S = (u, v, p) to be 
physical variables that are subject to boundary conditions given 
by Ŝ, where Ŝ denotes known values of the boundary at the 
corresponding domains, and Nb denotes the number of boundary 
nodes. For the boundaries that contain Dirichlet boundary 
conditions, the following equation would apply for this loss:

Finally, the total objective function is:

Data representation
To demonstrate the effectiveness of our method, we tested our 
model on solving the N-S equation in a 2D space encompassing 
3 physical variables, i.e., the velocity vector in the x and y direc-
tions and the pressure field, by treating the data as a multichannel 
image. A single input data cube in this work is I = (S; G), where 
the aforementioned S is the physical variables (u, v, p) in 2D space 
and each represents a channel. G is the optional channel corre-
sponding to a binary geometry mask, where 1 denotes the regions 
of solid boundaries considered as known boundary condi-
tions, while 0 stands for regular regions to be generated by the 
model. In summary, the DL model takes input I, which is a 
composite of 2D matrices with 4 channels, and generates solu-
tion O = (uapprox, vapprox, papprox) correspondingly.

Training experiments
We trained a base model that has the capability to predict the 
flow problem. Then, we trained a series of succeeding models 
as an intermediate step and successfully acquired pre-trained 
models. We treated such trained models as the starting point 
for further training steps. Ideas for subsequent models include 
increasing complexity via random choices of the inlet, larger 
domain size, geometric configurations, etc. We validated the 
model by comparing its predicted solutions to the numerical 
solutions. Throughout this iterative training process, we 
employed a “jump-start” strategy utilizing “warm-up data,” 
detailed in the “Warm-up data preparation” section, to facili-
tate more effective and efficient model learning. The results 
of the base and advanced models are described in the Results 
and Discussion section.

During training for each model, we followed the procedures 
outlined in Fig. 2. We assumed a predictable range of boundary 
conditions of the model to decide the overall scale of the output 
from the model with a split of 80% for training and 20% for 
testing (Fig. 2A). Using the developed DL framework, we trained 
the model (Fig. 2B) with the described total loss function (Eq. 13).

CFD solver
In our study, we utilized the lid-driven cavity flow problem as 
a benchmark scenario to validate our DL models. The numerical 
solver employed is designed around the FDM, a discretization 
technique that approximates derivatives in the N-S equations 
using differences between grid points. The lid-driven cavity flow 
was simulated on a uniform grid. For the solver formulations, 
the 2D incompressible N-S equations were used, discretized via 
central differences for spatial derivatives and a forward difference 
for the time derivative. The boundary conditions set for the base 
and advanced models can be seen in Fig. 3.

Transfer learning
During the training processes, we adopted the technique of 
transfer learning progressively. Transfer learning enables our 
models to commence training from an advanced stage, where 
not all parameters start with initialized values. Specifically, cer-
tain parameters are fine-tuned based on the optimized values 
inherited from predecessor models, rather than being trained 
from their initial states that are sampled randomly. This approach 
considerably enhances training efficiency and model perfor-
mance. Detailed insights into our various applications of transfer 
learning are presented in the Results section.

Warm-up data preparation
Optimizing a single U-Net model to solve N-S equations was 
challenging when it was initialized randomly. To overcome this 
challenge, we used a stacked U-Net structure of increasing spa-
tial resolution. Similarly, so-called Stack-GANs have been used 
to generate realistic high-resolution images from text [39,40].

We initialized the direct input of our model to contain compu-
tational domains marked by boundary conditions and unsolved 
nodes set to zeros. This “cold input” created a neutral starting 
point that allows the model to learn from fundamental principles 
dictated by the boundary conditions. During our experiments, 
we discovered that a systematic warm-up phase was crucial. 
Therefore, the initial stages of the models were exposed to a 
certain level of “pre-computed” data as input, facilitating more 
stable and effective weight updates. To do this, we employed a 
step-by-step training strategy (Fig. 4), starting with generating 
weakly supervised data with pre-run iterations or coarse analytical 
solutions, “warm-up data,” as input. The warm-up data preparation 
involved generating weakly supervised data through pre-run 
iterations or coarse analytical solutions, considerably reducing 
computational costs. Specifically, the preparation of each set of 
training data required less than 2.5 s, thus serving as an efficient 
method to jump-start the training process. When the models 
demonstrated the ability to train effectively without warm-up 
data, we reverted to using “cold input” to ensure that the model 
gained the capability to process neutral inputs as initially 
intended.

The warm-up phase comprised 2 primary types of data to sup-
port the training: pre-run solutions and coarse solutions. Both of 
the datasets are 4D matrices in the size of N × C × D × D, where 
N is the number of examples in training, C is the number of chan-
nels, and D is the target size of the inputs and outputs. For the 
training of model A, C = 3, encompassing the velocity compo-
nents (U, V) and pressure (P). For the training of model B, an 
additional channel was introduced to represent geometric mask 
domains. To better illustrate the application of warm-up data in 
our training process, Table 1 summarizes the input datasets and 
their corresponding sizes for different models. This table facilitates 
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a clear understanding of the variations in input data across the 
stages of model development, highlighting the transition from 
warm-up data to cold input as the models progressed.

Pre-run solutions
For the lid-driven cavity flow problem, we utilized pre-run 
solutions to generate a warm-up dataset of 2,048 samples. These 
samples were designed to cover a range of lid velocities, uniformly 
distributed from 0 to 0.5, corresponding to Reynolds numbers 
(Re) from 0 to 10, with viscosity held constant across scenarios. 

This dataset has a size of 2,048 × 3 × 32 × 32 to acclimate the 
model to a variety of flow conditions, enabling it to learn funda-
mental flow dynamics before being exposed to more nuanced 
variations.

Coarse solutions
For scenarios involving flow around obstacles, we used coarse 
solutions to create another 2,048-sample dataset. These samples 
were based on computational solutions for internal flow problems 
without obstacles, calculated on a coarse 8 × 8 domain. Input 
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Fig. 2. Workflow of the proposed method. (A) For each training experiment, predictable boundary conditions (B.C.s) are first defined, and training and validation data are prepared 
for training and validation purposes separately. The training data are prepared for the deep learning model with either plain initialization or warm-up initialization dependent 
on the problems. (B) Training is performed with the given data and guided by the pre-defined loss functions, which consist of a hybrid of data-driven and physics-driven 
loss. (C) Validation data are prepared to give the testing result the proper initial state. A predicted solution corresponding to the given input is generated by a trained model.

A B

Fig. 3. Schematics of the example problems. (A) Cavity flow problem with moving lid with different lid velocities U0. The moving part of the cavity lid can be changed for model 
A. (B) Inclined flow passing over obstacles at different inlet velocities (U0, V0). The obstacles can have different sizes and shapes. Pressure p = 0 is applied at the origin of the 
square domain.
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velocities, both horizontal and vertical, were uniformly sam-
pled from a range of 0 to 0.5 at the inlet of the domain. We then 
interpolated these coarse solutions to the targeted resolutions 
to match the intended input size for the models so that the 
dataset had a size of 2,048 × 3 × 32 × 32 for training model B0 
and larger domain sizes for models B1, B2, and B3. For the 
series of model B experiments, which introduced obstacles, a 
geometric mask was added as an extra input channel. This 
mask, indicating the positions and dimensions of obstacles, 
did not alter the computed results for the other 3 channels. 
Instead, it only provided spatial context to the warm-up dataset, 

enabling the model to more accurately predict flows in environ-
ments with obstructions.

Training configuration
Our models were trained for 2,000 epochs on an NVIDIA 2080 Ti 
GPU (graphics processing unit). The model was optimized using 
the Adam optimizer with a learning rate of 2 × 10−5 for models A0 
and B0 and a learning rate of 1 × 10−5 for models A, B1, B2, and 
B3. We conducted manual tuning of hyperparameters, including 
the multiplier of each loss, λN, λ1, λ2, λ3, λb. Experiments related to 
the multiplier of each contribution of loss were required so that a 
converging loss could be reached. The multipliers should balance 
the contribution of each term of loss so that each of the subterms 
can reach the same magnitude.

Results and Discussion

Base model for solving lid-driven cavity flow
We initially trained a model to generate a solution to the lid-
driven cavity flow problem. Figure 3 shows the enclosure, a square 
with a lid that moves from left to right, and the boundary 
conditions. The computational grid is discretized by 32 × 32 
cells.

Without a pre-trained model, the model was initialized from 
a Kaiming initialization [41]. The model was trained under 
weak supervision with low-cost computations as a warm-up 
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Fig. 4. Demonstration of progressive training steps for the stacked models. In the beginning, the model starts from scratch and takes warm-up initializations as the input. 
To reach a model with a higher level of capability, the training is split and conducted progressively, with each step validating the corresponding result. The important new 
capability for the upgraded models is labeled correspondingly. (A) Model A0 takes input produced by pre-run iterations. (B) Model A is trained to take input with only the 
boundary conditions. (C and D) B0 and B1 are the models that use coarse solutions and warm data with a single obstacle. (E and F) B2 and B3 are the models that handle 
larger domains. Model B3 can be trained to take only boundary conditions and obstacle geometry as input information.

Table 1. Warm-up data input for training different models

Model Input dataset Input data size

A0 Pre-run solutions (2,048, 3, 32, 32)

A Cold input (2,048, 3, 32, 32)

B0 Coarse solutions (2,048, 3, 32, 32)

B1 Coarse solutions (2,048, 4, 64, 64)

B2 Coarse solutions (2,048, 4, 64, 64)

B3 Cold input (2,048, 4, 512, 512)

D
ow

nloaded from
 https://spj.science.org on A

ugust 13, 2024

https://doi.org/10.34133/icomputing.0093


Wang et al. 2024 | https://doi.org/10.34133/icomputing.0093 7

(Fig. 4A). We first used the pre-run warm-up dataset. It did not 
provide a true solution to the problem but instead simplified 
optimization by acting as a pre-run iteration. The only cost 
associated with generating the training data involved running 
an FDM iterative solver for 20 iterations, where the Reynolds 
number was defined as Re = U0L/ν, in which L is the cavity 
length. The lid velocities range from 0 to 0.5, corresponding to 
Re from 0 to 10. Re can be changed by changing the lid velocity. 
After the first model was trained, the target output (U, V, P) 
could be generated for different Re with given pre-run steps as 
the input.

With the trained model A0, we conducted a series of train-
ing stages to upgrade the model for more complexity (Fig. 4). 
The more advanced models have more capability to produce 
solutions for more complex scenarios. The first upgrade is 
model A, which is designed to take in only “cold inputs”—zeros 
as the initial values. Due to the pre-trained base model A0, 
there was no need to run a numerical solver to sample an input 
for model A. Since the model was already preconditioned, 
the input of the second model did not require warm-up. We 
increased the complexity of the model by including changes to 
the size and position of the upper boundary. A flowchart dem-
onstrating the training procedures is shown in Fig. 4A and B. 
The output from models A0 and A is shown in contour plots 
of the steady-state solution of the classic lid-driven cavity flow 
problem (Fig. 5A), and the lid-driven flow problem with mov-
able lid location and varying sizes (Fig. 5B). The accuracy and 
inference speed of models A and A0 are described in Table 2.

Advanced model for solving flow over obstacles
After demonstrating the efficacy of our approach with lid-
driven cavity flow, we further expanded this concept to tackle 
more complex problems involving inclined flow passing over 
obstacles at various inlet velocities. We trained a base model, 
again, in a weakly supervised manner, leveraging simulated 
data. The base model lays a foundation for a more generaliz-
able model, capable of processing inputs without reliance on 
simulations. To demonstrate the method and test its extensibility, 
we designed more advanced models that contain the larger 

domain with Neumann boundary conditions and internal 
obstacles. Additionally, we included a physics-informed con-
tribution to the loss of Neumann boundary conditions at the 
domain boundaries. In this example, we trained a model to 
generate solutions for laminar internal flow problems with 
internal obstacles. A schematic of the example is shown in 
Fig. 3B. We consider the boundary conditions imposed at the 
velocity inlet and pressure outlet. The fluid flow is inclined 
to enter the computational domain with inlet velocity defined 
by 0 ≤ U0, V0 ≤ 0.5 so that the maximum magnitude of the 
velocity is V ≤

√
2∕2. The obstacles allowed in this domain 

do not have a characteristic length larger than the size of the 
domain, so the Reynolds number is small enough to be con-
sidered as laminar flow.

Following the progressive training procedures, a new base 
model (Fig. 4C), model B0, was developed. As in the cavity flow 
problem, this model was trained with the precondition of warm-
up data, which uses the coarse computational results with a 
domain size of 8 × 8 interpolated to the domain 32 × 32 as the 
input of the model. This base model was trained to solve the 
internal flow problem. At this stage, the model input remains 
3-channel. The steady-state solutions of the domain with dif-
ferent values of horizontal and vertical velocities can be gener-
ated by the base model.

To facilitate approximation with internal obstacles, we intro-
duced a geometric mask, which defined the obstacles, as an addi-
tional input channel. The convolutional filter of the target model 
incorporates an extra channel. Weights for filters associated with 
the 3 channels representing the boundary are transfer-learned 
from the base model, while the boundary channel is optimized 
from scratch (Fig. 6A). We applied transfer learning in this manner 
to maintain the warm-up data training, even though the structure 
of the model changed due to the additional channel (Fig. 4D). In 
model B1, the shape and size of the internal obstacle are fixed, 
but the location of this object can vary.

To enhance predictability, model B1 was transferred to 
another intermediate model, model B2, by increasing the 
computational domain size. The depth of the fully convolu-
tional neural network changes when the input size differs. For 

A B

Fig. 5. Contour plots showing inputs (top), FDM solutions (middle), and model-generated solutions (bottom) for lid-driven cavity flow. (A) Solutions generated by model A0 
tested on lid-driven flow. The lid velocity is U0 = 0.5, corresponding to Re = 10. (B) Solutions generated by model A tested on modified lid-driven cavity flow. The input of the 
model is costless. The lid is partially moved (half-opened), and the lid velocity is U0 = 0.5, corresponding to Re = 10.
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this instance, transfer learning from model B1 was performed 
for the layers near the beginning and end of model B2, while 
the inner layers necessitate training from scratch to accom-
modate a domain size twice as large (Fig. 6B).

Finally, we applied transfer learning, as previously outlined, 
to accommodate circular and square obstacles. Without any 
modifications to their architecture, the target models were 
trained and could be tested without the need for warm-up data, 
thereby eliminating the cost of preparing input. We upgraded 
the model by adding one additional layer in both encoder and 
decoder in this model to produce model B3, which can accept 
inputs with an extended domain size of 512 × 512.

From the beginning of model B0 to our final target, the only 
data costs incurred were from the coarse CFD simulation results 
of pure internal flow solutions, sampled from an obstacle-free 
8 × 8 domain. The results from model B2 are shown in Fig. 7, 

with both the contour plots (Fig. 7A) and velocity profile plots 
at selected lines (Fig. 7B). Models B2 and B3 could take input 
of the inclined inlet velocity (U0, V0) within the preset range 
[0, 0.5]. Model B2 was capable of generating solutions when 
given any location for the fixed-size square internal obstacle. 
Model B3, an enhanced model, could handle multiple obstacles 
with different shapes and sizes on a 512 × 512 domain. The 
outputs of model B3 with circular and square obstacle inputs 
are shown in Fig. 8 (A to H) and Fig. 9 (A to H), respectively. 
The accuracies of both models were calculated as the RMSE 
and are listed in Table 2.

Discussion
We presented a highly extensible and low-cost method for 
solving the steady-state N-S equations under various boundary 
conditions and with internal obstacles. Model A0 was success-
fully trained to generate solutions to the steady-state N-S equa-
tions for the lid-driven cavity flow problem with the help of 
warm-up data, described in the Materials and Methods sec-
tion, as the initialization and training dataset. Subsequently, 
we trained model A to solve the cavity flow problem, which 
takes cold input. Utilizing the simple model embedded with 
the N-S equations as a foundation, we trained a series of models 
(B0 to B3) to address different flow problems with increasing 
complexity, accounting for flow passing over obstacles and 
for larger domain sizes, ultimately providing a comprehensive 
solution to the steady-state N-S equation. By transfer-learning 
a model trained on simple problems, an improved model was 
trained to resolve the unseen complicated scenarios that require 
dealing with different boundary conditions, domain sizes, and 
geometric masks. Unlike typical supervised learning, in which 
sufficient inputs and corresponding target outputs should be 
prepared as labeled data, the presented models in all training 
experiments do not need to fit any labeled dataset that repre-
sents the whole expected physics. Therefore, these models do 
not rely on large CFD datasets with existing solutions. Instead, 
the models take advantage of low-cost pre-inputs obtained from 
an FDM solver running in minutes on a desktop computer.

Generating solutions at different stages requires a combi-
nation of physics-informed and boundary losses to constrain 
the model. At the beginning of each training experiment, the 
solutions generated by a model are noisy and inaccurate. The 

Table 2. Summary of the results from example models

Model

A0 A B2 B3

Inlet velocities U = 0.5 U = 0.5 (U, V) = (0.05, 0.5) (U, V) = (0.2, 0.5)

Internal obstacles No obstacles No obstacles 1 square obstacle Multiple obstacles

Warm input time (s) 0.057 0.17

Model inference time (s) 0.0034 0.0034 0.0047 0.0064

RMSE velocity U 0.0381 0.0196 0.0186 0.0836

RMSE velocity V 0.0362 0.0438 0.0313 0.0766

RMSE pressure P 0.1418 0.2437 0.0619 0.2908

Transfer learning from small domain

Train from scratch

A

B

Model A Model B0 Model B1

Geometric 
mask

Fig. 6. Demonstration of transfer learning in training when the model has a structure 
change. (A) Model B0 is developed from model A, the weights of the model are 
transferred for training model B0, and a geometric mask is added when training 
model B1, with the base model transfer learning from B0. (B) During the step to 
improve the model from taking the input size of 32 × 32 to 64 × 64, transfer learning 
is applied in such a way that the inner layers are learned from scratch, while the layers 
at the start and the end are transferred from the previous model.
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total loss of the training experiments constrains the relation-
ships of internal nodes by setting up the physics-informed 
loss. During the training, it is observed that if the loss solely 
contains the physics-informed loss, it will lose the constraint 
from the boundary leading to a result where the solutions 
generated are predominantly close to zero. The data-driven 
loss applied on the boundary with known boundary condi-
tions provides the necessary constraint between the internal 
area and the boundary. By monitoring the contribution of each 
subloss, the hyperparameter for each contribution to the loss 
balances these constraints. The history of these 2 sublosses 
indicates a smooth convergence of boundary loss, while the 

physics-informed loss, as the substantial term, converges first 
rapidly and then much slower (Fig. 10).

Our method combines the strengths of traditional CFD 
methods and supervised learning algorithms. Without the need 
to convert the inputs as 1D discrete nodal points reported in 
PINNs, our models maintain an analogous data representation 
similar to that of conventional CFD approaches. Our model 
employs a 2D matrix structure to represent the computational 
domain, as in conventional CFD approaches. This format allows 
for a direct and intuitive input of the unknown variables, which 
are seamlessly integrated with specified boundary conditions and 
geometric constraints. By adopting this matrix representation, 

A

B

Fig. 7. Solutions generated by model B2 tested on an inclined velocity inlet and a single square obstacle with (U0, V0) =  (0.05, 0.5). (A) Contour plots. (B) Velocity profiles 
corresponding to the cross-section of the center line where the obstacle is located (left), Y = 40 (center), and the outlet (right).
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we facilitate an efficient embedding of essential simulation 
elements, including boundary conditions and any geometric 
features or obstacles, into the input data of the model. From 
training to testing, the nodal points of the input retain their 
structure as an image, instead of being converted to isolated 
discrete inputs. This representation allows the direct specification 
of geometric configurations and the assignment of boundary 
conditions. Moreover, the method is similar to a typical ML 
algorithm, in which the training and testing of a model are 
independent. During the training process, the model learns 
the physics, which is not restricted to a single computational 

configuration. Once the model is trained, it can approximate 
the solutions for multiple configurations of boundary conditions 
and geometries. The model considerably benefits from the 
high-speed calculation capabilities inherent in DL-based CFD 
simulation where the DL model can be trained offline, enabling 
nearly instantaneous predictions of unseen cases compared 
to conventional methods, as highlighted in [42]. The inference 
mode of the model only demands the computation of a forward 
pass with a fixed set of parameters. Given the highly paralleliz-
able nature of the forward pass, the trained model generates 
solutions without the need for high-performance computational 

A

B

C

D

E

F

G

H

Fig. 8. Solutions generated by model B3 tested on an inclined velocity inlet and circular obstacles in different geometric configurations, with (U0, V0) = (0.2, 0.5). (A, C, E, and 
G) Contour plots of the inputs and FDM and model-generated solutions. (B, D, F, and H) Velocity profiles corresponding to the cross-section of the center line Y = 256 (left), 
Y = 384 (center), and the outlet Y = 512 (right).
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resources. After training, the model can be deployed on light-
weight computational resources. To demonstrate the speed, 
we benchmark the models on a consumer desktop system with 
an Intel Core i5 8400 processor (6 cores and 6 threads). We 
achieve inference latencies within 7 ms per input. This per-
formance is in sharp contrast to the 10 s required by a cor-
responding FDM solver to produce a computational result 
on our training platform, which is equipped with NVIDIA 
2080Ti and therefore possesses considerably greater compu-
tational resources. Comparable advancements in computa-
tional speed have also been documented, as evidenced by [43] 
reporting a speed increase of 45 times and [44] achieving an 

acceleration of 4,000 times, further emphasizing the consider-
able impact of DL-based models on CFD simulations. A visu-
alization of the solutions instantly generated by the model 
can be found in the repository [45]. This accessibility enables 
individuals with minimal DL knowledge to generate CFD 
simulation results in real time, without the need for an exten-
sive mathematical background or a CFD solver.

One of the challenges when developing and maintaining a 
traditional CFD solver is the necessity of running the same 
algorithm on different platforms with similar performance [46]. 
The portability of our model enables training on cloud-based 
GPU resources and instant solution generation on any local 

A

B

C

D

E

F

G

H

Fig. 9. Solutions generated by model B3 tested on an inclined velocity inlet and square obstacles in different geometric configurations, with (U0, V0) = (0.2, 0.5). (A, C, E, and 
G) Contour plots of the inputs and FDM and model-generated solutions. (B, D, F, and H) Velocity profiles corresponding to the cross-section of the center line Y = 256 (left), 
Y = 384 (center), and the outlet Y = 512 (right).
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and portable devices equipped with only basic computing func-
tionality, thus circumventing this issue.

While our demonstration is limited to solving the 2D steady-
state and laminar flow equations with homogeneous fluid 
properties, this concept can be extended and adapted to other 
problems. For example, the model can be expanded to accom-
modate different geometric configurations, a wider range of predict-
ability, different physics-informed loss, and ML-based methods 
for other forms of flow equations such as Stokes flow [38].

Conclusion

A generative DL model implemented based on a convolutional 
U-Net has been developed to generate the numerical solutions 
for N-S equations. The trained model is capable of generating 
steady-state solutions for various boundary conditions and 
geometries in real time on consumer computing resources. 
The training was facilitated by warm-up initialization and does 
not need computational or experimental solutions as labeled 
training data. The training was performed in stages, adding 
constraints of increasing complexity, and through the inclusion 
of a physics-informed and data-driven loss function. Similar 
to traditional CFD methods, we structure the computational 
domain as 2D matrices, which efficiently integrate unknown 
variables with boundary conditions and geometric constraints 
into the input. The methods were validated by solving example 
problems including cavity flow and flow that passes obstacles. 
The solutions generated by a series of stacked models showed 
that the trained models can produce steady-state solutions to 
given boundary conditions for both Dirichlet and Neumann 
boundaries and optional internal obstacles with limited cost 
for training data, with good predictability, extensibility, and 
interpretability. This base model could be extended to solve 
problems with larger domains or new complexities through 
the addition of additional channels and subsequent optimization. 
Given the proper definition of the loss function, the method could 
also be applied to solve other PDE equations and geometric 
configurations. We expect that the model can be generalized 
to speed up general boundary-value CFD problems and, in 
the future, be extended to solve other fluid–structure interac-
tion problems with minimal requirement of data.
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