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Computational fluid dynamics (CFD) simulations are broadly used in many engineering and physics
fields. CFD requires the solution of the Navier-Stokes (N-S) equations under complex flow and boundary
conditions. However, applications of CFD simulations are computationally limited by the availability,
speed, and parallelism of high-performance computing. To address this, machine learning techniques
have been employed to create data-driven approximations for CFD to accelerate computational efficiency.
Unfortunately, these methods predominantly depend on large labeled CFD datasets, which are costly
to procure at the scale required for robust model development. In response, we introduce a weakly
supervised approach that, through a multichannel input capturing boundary and geometric conditions,
solves steady-state N-S equations. Our method achieves state-of-the-art results without relying on
labeled simulation data, instead using a custom data-driven and physics-informed loss function and
small-scale solutions to prime the model for solving the N-S equations. By training stacked models,
we enhance resolution and predictability, yielding high-quality numerical solutions to N-S equations
without hefty computational demands. Remarkably, our model, being highly adaptable, produces
solutions on a 512 x 512 domain in a swift 7 ms, outpacing traditional CFD solvers by a factor of 1,000.
This paves the way for real-time predictions on consumer hardware and Internet of Things devices,
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thereby boosting the scope, speed, and cost-efficiency of solving boundary-value fluid problems.

Introduction

Many fluid problems are governed by nonlinear partial differential
equations (PDEs) based on the Navier-Stokes (N-S) equations.
Numerical simulations of these fluid dynamics problems require
the resolution of N-S equations in a discretized spatial and tem-
poral form. Various methods like the finite difference method
(FDM), finite volume method (FVM) [1,2], Lattice-Boltzmann
method (LBM) [3-5], and finite element method (FEM) [6-8]
exist to solve the N-S equations. However, these methods can
become computationally demanding and memory intensive when
high-resolution meshes are needed. The challenge is further inten-
sified by the complexity of determining suitable computational
grids [9]. Although the preprocessing tasks can be somewhat
alleviated by commercial software, they still necessitate a solid
understanding of computational fluid dynamics (CFD) principles
such as the governing equations, selection of appropriate flow
solvers, upwind schemes, and turbulent models [10], and they
have a negligible impact on the computational cost. Moreover,
regardless of computational similarity, even subtle changes in the
boundary conditions or geometric domain necessitate completely
reworking the simulations.
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The necessity for rapid, automated solutions to the N-S equa-
tions has surged in various fields for use in video game engines,
ocean current or hurricane forecasts, prediction of oil spills or fire
smoke spreading, and porous media flow, among others. These
applications demand physics-informed dynamic control systems
and reinforcement learning. Unfortunately, the current commercial
software is inadequate for fully automated applications. Therefore,
automating and accelerating real-time fluid simulation can enable
new applications where speed, energy, and computational cost are
mission-critical [11-16]. The rising interest lies in the development
of precise, coherent, and reduced-order models capable of repre-
senting flow characteristics.

Machine learning (ML), particularly deep learning (DL), has
made important strides in computational mechanics, serv-
ing as an approximation for dynamic spatiotemporal systems
[17-21]. DL models are typically overparameterized models
that can serve as data-driven approximations between the
input and the target. By introducing “damaging mechanisms”
through regularization, a loss function can be optimized to
generalize within the distribution of the training data.

A purely data-driven approach utilizes the DL model as a
“black box” to map input to output. However, generating a
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comprehensive dataset to train robust DL models can be compu-
tationally costly and demands an in-depth understanding of the
statistical distribution of the training dataset [22], and it is hard
to achieve robustness when models are overparameterized and
training data are limited [23]. Recently, physics-informed neural
networks (PINNs) have been used to add physics constraints that
improve the generalizability of DL models. For instance, physical
laws including PDEs and initial and boundary conditions are
explicitly embedded into the DL model. PINNSs use physics as a
parsimonious regularizer that enhances the robustness and inter-
pretability of the DL model [22]. Trained PINNs can provide
alternative solutions to PDEs under various boundary and initial
conditions [24]. However, once the training procedure concludes,
a trained model can only yield solutions for a specific con-
figuration of inputs. It is therefore not applicable when the
geometry, boundary, or initial conditions change. Additionally,
trained models are not readily adjustable for system-level dis-
crepancies, such as friction changes [25]. Consequently, these
networks can only accelerate narrowly defined problems.
Several research groups have recently ventured into predicting
the results of different PDEs by building PINNs [19,20,24,26-30].
For example, a weakly supervised algorithm was capable of solv-
ing Laplace’s equations [28]. In this work, a fully convolutional
encoder—decoder network in a U-Net architecture [31] was used
to predict the solution. This study integrated physics-informed
loss with a generative model [32-34] that retained the intrinsic
relationships between neighboring nodal points by introducing
a convolution kernel based on Laplace’s equation. Without access
to any solved simulation data, the trained model could predict
the solution with different boundary conditions. Nevertheless,
the applicability of this method was limited to the heat equa-
tion with Dirichlet boundary conditions. N-S equations, in
contrast, are second-order nonlinear PDEs containing multiple
equations and variables with convective, pressure, and viscous
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terms, and are much more complicated than heat equations. The
heat equation is akin to only the viscous term in N-S equations;
hence, this method cannot be readily applied to general N-S
equations.

In this work, we focus on solving the N-S equations in
2-dimensional (2D) space. We developed a weakly supervised
method that considers complicated momentum and continuity
equations, the pressure field, and velocities in both dimensions.
Our method generates steady-state solutions to flow problems
governed by N-S equations in roughly 5 to 7 ms, without requiring
pre-computed CFD results. We accomplished this by initiating
warm-up through pre-run iterations or coarse solutions. Utilizing
convolutional U-Nets, we accurately approximated the solutions
of steady-state N-S equations under varying boundary conditions
and with internal obstacles by training stacked models. To improve
the performance, we imposed 2 types of constraints on the loss
function: physics-informed constraints, represented by the residue
of the equations, and data-driven constraints, represented by the
differences between the output and the known values on the
boundaries. We validated the models by comparing the results to
FDM solutions. Our approach provided solutions with a root
mean square error (RMSE) of 0.04 for velocity fields compared to
the ground truth from FDM simulations while reducing computa-
tion time by a factor of 1,000.

Materials and Methods

Model architecture

To approximate solutions to the N-S equation with boundary
conditions, we designed a neural network architecture in the
form of a convolutional U-Net (Fig. 1). The U-Net is a modified
autoencoder. Autoencoders are composed of an encoder, which
learns a compact representation of the data, and a decoder, which
reconstructs a target of similar dimensionality from this compact
representation (Fig. 1). U-Nets include message passing from the
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Fig.1. Schematic representation of the architecture of the model. The input data can be sized differently. In this figure, the example input domain has a size of (32 x 32 x 3)
for width, height, and number of channels (depth), respectively. The number of layers in both the encoder and decoder is equal to log,a, where a is the dimension of the
square matrix. In this figure, there are 5 layers. The width and height of the data decrease in the encoder and then increase until the original size is recovered in the decoder.
Data representations in the same row have the same width and height, as annotated at the left or right, and the same depth, except where specifically noted above or below.
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encoder to the decoder to assist in reconstructing high-resolution
representations. U-Nets have been used for image reconstruction
from the input with given constraints in different fields [35-37].
Fully convolutional networks have been used for DL-based CFD
simulations as predicting models [32,33,38] and by generative
adversarial networks (GANSs) [32,34]. The designed U-Net is
constructed from convolutional layers that take the input and
compress the information until reaching the bottleneck layer.
The output from the encoder is then passed to the decoder, which
reconstructs the input to its original size and maps the output to
the range [—1, 1]. The output from the final layer is scaled via a
linear mapping to match the expected magnitude for each channel,
forming the final output of the model.

The fully convolutional network contains an encoder and
decoder with convolutional blocks. Each convolutional block
includes convolutional layers with a kernel size of (4,4) and a
stride of 2, batch normalization, and a leaky rectified linear unit
(ReLU) activation layer defined by:

<
Leaky_Relu(x) = { 0.2x x;g . (1)
X x

The decoder with deconvolutional layers takes the output
of the preceding layer concatenated with the corresponding
encoding layers. A multichannel outcome from the decoder
followed by a hyperbolic tangent tanh activation layer is recon-
structed to reach the original size of the input.

Physics-informed data-driven loss function

Optimization based on purely data-driven loss functions resulted
in costs for preparing the numerical solutions as labeled data
[33,38]. To improve the model performance with minimal low-
cost computationally simulated data, we constructed a custom
loss function that combined the physics-informedloss L, which
represents the physics equations and constraints defined by the
residue of the computational operations, and the data-driven loss
L, which represents the direct comparisons with the boundary
conditions, to constrain the model. The physical model used in
this study is based on 2D incompressible fluid dynamics con-
strained by N-S equations. The governing equations can be
rewritten as:

ou ou ou 9p 1 (d*u  Ju
—U——v— - —|N—=+t—=) @
ot Ox dy 0x Rel\ox2 0y?
9 2 2
o v v % 1 (o o)
ot 0x dy 0x Re\ox? 0dy2

’p op ou\* | oudv v\’
—+—==—((F) +2==+(=) ).
0x? * 0y? (6x> * dy 0x * <0y> (4)

The physics-informed loss functions are based on the resi-
due of the PDEs, defined in the following equation in which N;
denotes the number of internal nodes:

N
Lph)’ = NLI ZII “R(xi’yi) “2 +)’NLNeumunn' (5)
i=
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The residues of the PDEs (Eq. 6) consist of 3 sublosses of
each equation in N-§ equations:

R= /11 |LX—momentum | + A’Z | LY—momentum | + /13 |LContinuity |
(6)

Each subloss has subterms that represent the viscous term,
convective term, and pressure term. For nonboundary nodes,

_1 _ (. n _.n
assuming 4 = 2<ul+1] ul! 1J)andp <pi+1,j pi_1J>,the
3 subterms of the loss should be written as:

Ly stomentum(W> b) = ZConVZd(K Uy (o)

hZR

1 ~ 1/\
+Z2<u ]ul]+v1ui,j)—ﬁP,
b

LY Momentum(w b) ZCOYWZd(K V)z]

h2 Re
(8)
~ lA
+ A z (u,]v,]+v,]v,]> hP’
ij
1
LContinuity(W’ b)= Z IZ Conv2d(K, P)l]
)
+Z<u,]ul]+2u Vijtvij l])
i

K denotes the physics-informed kernels similar to kernels
reported in [28], which are operated on a domain that contributes
to the loss of the Laplace operator corresponding to the viscous
terms. Conv2d denotes the 2D convolutional operations, and h
defines the discretization unit.

In our practice, K has 2 different scenarios. We extended the
idea described in [28] for Neumann boundaries. For example,
if a Neumann boundary is to be put on the left-hand side, K
changes accordingly:

0 1/4 0
1/4 -1 1/4 for internal nodes,
K= 0 1/4 0 10
0 1/4 0 (10)
-1/2 -1 1/2 for Neumann boundary.
(\ 0 174 0

Another term, Ly,,uam» Which represents the loss of any
Neumann boundaries, is added in Eq. 5 as a physics-driven
loss. Suppose that the physics domain has the Ny and N,
nodes in the X and Y directions, respectively, and has Ny
Neumann boundary nodes in total. For the boundaries that
have Neumann boundary conditions, the following equation
would apply for this loss:

1Y
LNeumann= N_N 2
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The total loss function also includes contributions from
Dirichlet boundary conditions. Although the boundaries are
not part of the output, they are considered in the loss function
using an additional term. The data-driven loss is calculated
from the mean squared error between the generated solution
and the known values on the boundaries. The boundary loss
represents the distances between the values generated by the
model and the actual Dirichlet boundary conditions, which
helps to reinforce the boundaries. Suppose S = (u,v,p) to be
physical variables that are subject to boundary conditions given

by S, where § denotes known values of the boundary at the
corresponding domains, and N, denotes the number of boundary
nodes. For the boundaries that contain Dirichlet boundary
conditions, the following equation would apply for this loss:

N,
tim g 3 ) S

(12)
. n 2
+ ”S(x’,yO,N) =S(x,yon) ” .
Finally, the total objective function is:
L= Lphy + AbLb' (13)

Data representation

To demonstrate the effectiveness of our method, we tested our
model on solving the N-S equation in a 2D space encompassing
3 physical variables, i.e., the velocity vector in the x and y direc-
tions and the pressure field, by treating the data as a multichannel
image. A single input data cube in this work is I = (S; G), where
the aforementioned S is the physical variables (1, v, p) in 2D space
and each represents a channel. G is the optional channel corre-
sponding to a binary geometry mask, where 1 denotes the regions
of solid boundaries considered as known boundary condi-
tions, while 0 stands for regular regions to be generated by the
model. In summary, the DL model takes input I, which is a
composite of 2D matrices with 4 channels, and generates solu-

tion O = (Uyppre Vapprow Papprox) COTTEspondingly.

Training experiments

We trained a base model that has the capability to predict the
flow problem. Then, we trained a series of succeeding models
as an intermediate step and successfully acquired pre-trained
models. We treated such trained models as the starting point
for further training steps. Ideas for subsequent models include
increasing complexity via random choices of the inlet, larger
domain size, geometric configurations, etc. We validated the
model by comparing its predicted solutions to the numerical
solutions. Throughout this iterative training process, we
employed a “jump-start” strategy utilizing “warm-up data,”
detailed in the “Warm-up data preparation” section, to facili-
tate more effective and efficient model learning. The results
of the base and advanced models are described in the Results
and Discussion section.

During training for each model, we followed the procedures
outlined in Fig. 2. We assumed a predictable range of boundary
conditions of the model to decide the overall scale of the output
from the model with a split of 80% for training and 20% for
testing (Fig. 2A). Using the developed DL framework, we trained
the model (Fig. 2B) with the described total loss function (Eq. 13).
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CFD solver

In our study, we utilized the lid-driven cavity flow problem as
a benchmark scenario to validate our DL models. The numerical
solver employed is designed around the FDM, a discretization
technique that approximates derivatives in the N-S equations
using differences between grid points. The lid-driven cavity flow
was simulated on a uniform grid. For the solver formulations,
the 2D incompressible N-S equations were used, discretized via
central differences for spatial derivatives and a forward difference
for the time derivative. The boundary conditions set for the base
and advanced models can be seen in Fig. 3.

Transfer learning

During the training processes, we adopted the technique of
transfer learning progressively. Transfer learning enables our
models to commence training from an advanced stage, where
not all parameters start with initialized values. Specifically, cer-
tain parameters are fine-tuned based on the optimized values
inherited from predecessor models, rather than being trained
from their initial states that are sampled randomly. This approach
considerably enhances training efficiency and model perfor-
mance. Detailed insights into our various applications of transfer
learning are presented in the Results section.

Warm-up data preparation

Optimizing a single U-Net model to solve N-S equations was
challenging when it was initialized randomly. To overcome this
challenge, we used a stacked U-Net structure of increasing spa-
tial resolution. Similarly, so-called Stack-GANSs have been used
to generate realistic high-resolution images from text [39,40].

We initialized the direct input of our model to contain compu-
tational domains marked by boundary conditions and unsolved
nodes set to zeros. This “cold input” created a neutral starting
point that allows the model to learn from fundamental principles
dictated by the boundary conditions. During our experiments,
we discovered that a systematic warm-up phase was crucial.
Therefore, the initial stages of the models were exposed to a
certain level of “pre-computed” data as input, facilitating more
stable and effective weight updates. To do this, we employed a
step-by-step training strategy (Fig. 4), starting with generating
weakly supervised data with pre-run iterations or coarse analytical
solutions, “warm-up data,” as input. The warm-up data preparation
involved generating weakly supervised data through pre-run
iterations or coarse analytical solutions, considerably reducing
computational costs. Specifically, the preparation of each set of
training data required less than 2.5 s, thus serving as an efficient
method to jump-start the training process. When the models
demonstrated the ability to train effectively without warm-up
data, we reverted to using “cold input” to ensure that the model
gained the capability to process neutral inputs as initially
intended.

The warm-up phase comprised 2 primary types of data to sup-
port the training: pre-run solutions and coarse solutions. Both of
the datasets are 4D matrices in the size of N X C X D X D, where
Nis the number of examples in training, Cis the number of chan-
nels, and D is the target size of the inputs and outputs. For the
training of model A, C = 3, encompassing the velocity compo-
nents (U, V) and pressure (P). For the training of model B, an
additional channel was introduced to represent geometric mask
domains. To better illustrate the application of warm-up data in
our training process, Table 1 summarizes the input datasets and
their corresponding sizes for different models. This table facilitates
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Fig.2.Workflow of the proposed method. (A) For each training experiment, predictable boundary conditions (B.C.s) are first defined, and training and validation data are prepared
for training and validation purposes separately. The training data are prepared for the deep learning model with either plain initialization or warm-up initialization dependent
on the problems. (B) Training is performed with the given data and guided by the pre-defined loss functions, which consist of a hybrid of data-driven and physics-driven
loss. (C) Validation data are prepared to give the testing result the proper initial state. A predicted solution corresponding to the given input is generated by a trained model.
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Fig.3.Schematics of the example problems. (A) Cavity flow problem with moving lid with different lid velocities U,. The moving part of the cavity lid can be changed for model
A. (B) Inclined flow passing over obstacles at different inlet velocities (U, V). The obstacles can have different sizes and shapes. Pressure p = 0 is applied at the origin of the

square domain.

a clear understanding of the variations in input data across the
stages of model development, highlighting the transition from
warm-up data to cold input as the models progressed.

Pre-run solutions

For the lid-driven cavity flow problem, we utilized pre-run
solutions to generate a warm-up dataset of 2,048 samples. These
samples were designed to cover a range of lid velocities, uniformly
distributed from 0 to 0.5, corresponding to Reynolds numbers
(Re) from 0 to 10, with viscosity held constant across scenarios.
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This dataset has a size of 2,048 X 3 X 32 X 32 to acclimate the
model to a variety of flow conditions, enabling it to learn funda-
mental flow dynamics before being exposed to more nuanced
variations.

Coarse solutions

For scenarios involving flow around obstacles, we used coarse
solutions to create another 2,048-sample dataset. These samples
were based on computational solutions for internal flow problems
without obstacles, calculated on a coarse 8 X 8 domain. Input
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capability for the upgraded models is labeled correspondingly. (A) Model AO takes input produced by pre-run iterations. (B) Model A is trained to take input with only the
boundary conditions. (C and D) BO and Bl are the models that use coarse solutions and warm data with a single obstacle. (E and F) B2 and B3 are the models that handle
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Table1. Warm-up data input for training different models

Model Input dataset Input data size
AO Pre-run solutions (2,048,3,32,32)
A Cold input (2,048, 3,32,32)
BO Coarse solutions (2,048, 3,32,32)
Bl Coarse solutions (2,048, 4,64,64)
B2 Coarse solutions (2,048, 4,64, 64)
B3 Cold input (2,048, 4,512, 512)

velocities, both horizontal and vertical, were uniformly sam-
pled from a range of 0 to 0.5 at the inlet of the domain. We then
interpolated these coarse solutions to the targeted resolutions
to match the intended input size for the models so that the
dataset had a size 0f 2,048 X 3 X 32 X 32 for training model BO
and larger domain sizes for models B1, B2, and B3. For the
series of model B experiments, which introduced obstacles, a
geometric mask was added as an extra input channel. This
mask, indicating the positions and dimensions of obstacles,
did not alter the computed results for the other 3 channels.
Instead, it only provided spatial context to the warm-up dataset,
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enabling the model to more accurately predict flows in environ-
ments with obstructions.

Training configuration

Our models were trained for 2,000 epochs on an NVIDIA 2080 Ti
GPU (graphics processing unit). The model was optimized using
the Adam optimizer with a learning rate of 2 X 10~ for models AQ
and B0 and a learning rate of 1 x 10~ for models A, B1, B2, and
B3. We conducted manual tuning of hyperparameters, including
the multiplier of each loss, Ay, 4,, 45, 45, 4,- Experiments related to
the multiplier of each contribution of loss were required so that a
converging loss could be reached. The multipliers should balance
the contribution of each term of loss so that each of the subterms
can reach the same magnitude.

Results and Discussion

Base model for solving lid-driven cavity flow
We initially trained a model to generate a solution to the lid-
driven cavity flow problem. Figure 3 shows the enclosure, a square
with a lid that moves from left to right, and the boundary
conditions. The computational grid is discretized by 32 X 32
cells.

Without a pre-trained model, the model was initialized from
a Kaiming initialization [41]. The model was trained under
weak supervision with low-cost computations as a warm-up
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(Fig. 4A). We first used the pre-run warm-up dataset. It did not
provide a true solution to the problem but instead simplified
optimization by acting as a pre-run iteration. The only cost
associated with generating the training data involved running
an FDM iterative solver for 20 iterations, where the Reynolds
number was defined as Re = U L/v, in which L is the cavity
length. The lid velocities range from 0 to 0.5, corresponding to
Re from 0 to 10. Re can be changed by changing the lid velocity.
After the first model was trained, the target output (U, V,P)
could be generated for different Re with given pre-run steps as
the input.

With the trained model A0, we conducted a series of train-
ing stages to upgrade the model for more complexity (Fig. 4).
The more advanced models have more capability to produce
solutions for more complex scenarios. The first upgrade is
model A, which is designed to take in only “cold inputs”—zeros
as the initial values. Due to the pre-trained base model A0,
there was no need to run a numerical solver to sample an input
for model A. Since the model was already preconditioned,
the input of the second model did not require warm-up. We
increased the complexity of the model by including changes to
the size and position of the upper boundary. A flowchart dem-
onstrating the training procedures is shown in Fig. 4A and B.
The output from models A0 and A is shown in contour plots
of the steady-state solution of the classic lid-driven cavity flow
problem (Fig. 5A), and the lid-driven flow problem with mov-
able lid location and varying sizes (Fig. 5B). The accuracy and
inference speed of models A and A0 are described in Table 2.

Advanced model for solving flow over obstacles

After demonstrating the efficacy of our approach with lid-
driven cavity flow, we further expanded this concept to tackle
more complex problems involving inclined flow passing over
obstacles at various inlet velocities. We trained a base model,
again, in a weakly supervised manner, leveraging simulated
data. The base model lays a foundation for a more generaliz-
able model, capable of processing inputs without reliance on
simulations. To demonstrate the method and test its extensibility,
we designed more advanced models that contain the larger
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domain with Neumann boundary conditions and internal
obstacles. Additionally, we included a physics-informed con-
tribution to the loss of Neumann boundary conditions at the
domain boundaries. In this example, we trained a model to
generate solutions for laminar internal flow problems with
internal obstacles. A schematic of the example is shown in
Fig. 3B. We consider the boundary conditions imposed at the
velocity inlet and pressure outlet. The fluid flow is inclined
to enter the computational domain with inlet velocity defined

by 0 < U,, V,<0.5 so that the maximum magnitude of the

velocity is V < \/5 /2. The obstacles allowed in this domain
do not have a characteristic length larger than the size of the
domain, so the Reynolds number is small enough to be con-
sidered as laminar flow.

Following the progressive training procedures, a new base
model (Fig. 4C), model B0, was developed. As in the cavity flow
problem, this model was trained with the precondition of warm-
up data, which uses the coarse computational results with a
domain size of 8 X 8 interpolated to the domain 32 X 32 as the
input of the model. This base model was trained to solve the
internal flow problem. At this stage, the model input remains
3-channel. The steady-state solutions of the domain with dif-
ferent values of horizontal and vertical velocities can be gener-
ated by the base model.

To facilitate approximation with internal obstacles, we intro-
duced a geometric mask, which defined the obstacles, as an addi-
tional input channel. The convolutional filter of the target model
incorporates an extra channel. Weights for filters associated with
the 3 channels representing the boundary are transfer-learned
from the base model, while the boundary channel is optimized
from scratch (Fig. 6A). We applied transfer learning in this manner
to maintain the warm-up data training, even though the structure
of the model changed due to the additional channel (Fig. 4D). In
model B1, the shape and size of the internal obstacle are fixed,
but the location of this object can vary.

To enhance predictability, model Bl was transferred to
another intermediate model, model B2, by increasing the
computational domain size. The depth of the fully convolu-
tional neural network changes when the input size differs. For
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Fig. 5. Contour plots showing inputs (top), FDM solutions (middle), and model-generated solutions (bottom) for lid-driven cavity flow. (A) Solutions generated by model AO
tested on lid-driven flow. The lid velocity is U,= 0.5, corresponding to Re =10. (B) Solutions generated by model A tested on modified lid-driven cavity flow. The input of the
model is costless. The lid is partially moved (half-opened), and the lid velocity is U,= 0.5, corresponding to Re =10.
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Table 2. Summary of the results from example models

Model
AO A B2 B3
Inlet velocities U=05 U=05 (U,V)=(0.05,0.5) (U,V)=(0.2,0.5)
Internal obstacles No obstacles No obstacles 1square obstacle Multiple obstacles
Warm input time (s) 0.057 0.17
Model inference time (s) 0.0034 0.0034 0.0047 0.0064
RMSE velocity U 0.0381 0.0196 0.0186 0.0836
RMSE velocity V 0.0362 0.0438 0.0313 0.0766
RMSE pressure P 0.1418 0.2437 0.0619 0.2908
A with both the contour plots (Fig. 7A) and velocity profile plots
at selected lines (Fig. 7B). Models B2 and B3 could take input
" - ' - * of the inclined inlet velocity (Uj, V) with.in the preset range
[0,0.5]. Model B2 was capable of generating solutions when
given any location for the fixed-size square internal obstacle.
Geometric  Model B3, an enhanced model, could handle multiple obstacles
Model A Model BO Model 1~ Mask

Transfer learning from small domain
Traln from scratch
Illlllllll

Fig.6.Demonstration of transfer learning in training when the model has a structure
change. (A) Model BO is developed from model A, the weights of the model are
transferred for training model BO, and a geometric mask is added when training
model B1, with the base model transfer learning from BO. (B) During the step to
improve the model from taking the input size of 32x 32 to 64 x 64, transfer learning
isapplied in such a way that the inner layers are learned from scratch, while the layers
at the start and the end are transferred from the previous model.

this instance, transfer learning from model B1 was performed
for the layers near the beginning and end of model B2, while
the inner layers necessitate training from scratch to accom-
modate a domain size twice as large (Fig. 6B).

Finally, we applied transfer learning, as previously outlined,
to accommodate circular and square obstacles. Without any
modifications to their architecture, the target models were
trained and could be tested without the need for warm-up data,
thereby eliminating the cost of preparing input. We upgraded
the model by adding one additional layer in both encoder and
decoder in this model to produce model B3, which can accept
inputs with an extended domain size of 512 X 512.

From the beginning of model BO to our final target, the only
data costs incurred were from the coarse CFD simulation results
of pure internal flow solutions, sampled from an obstacle-free
8 x 8 domain. The results from model B2 are shown in Fig. 7,
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with different shapes and sizes on a 512 X 512 domain. The
outputs of model B3 with circular and square obstacle inputs
are shown in Fig. 8 (A to H) and Fig. 9 (A to H), respectively.
The accuracies of both models were calculated as the RMSE
and are listed in Table 2.

Discussion
We presented a highly extensible and low-cost method for
solving the steady-state N-S equations under various boundary
conditions and with internal obstacles. Model A0 was success-
fully trained to generate solutions to the steady-state N-S equa-
tions for the lid-driven cavity flow problem with the help of
warm-up data, described in the Materials and Methods sec-
tion, as the initialization and training dataset. Subsequently,
we trained model A to solve the cavity flow problem, which
takes cold input. Utilizing the simple model embedded with
the N-S equations as a foundation, we trained a series of models
(BO to B3) to address different flow problems with increasing
complexity, accounting for flow passing over obstacles and
for larger domain sizes, ultimately providing a comprehensive
solution to the steady-state N-S equation. By transfer-learning
a model trained on simple problems, an improved model was
trained to resolve the unseen complicated scenarios that require
dealing with different boundary conditions, domain sizes, and
geometric masks. Unlike typical supervised learning, in which
sufficient inputs and corresponding target outputs should be
prepared as labeled data, the presented models in all training
experiments do not need to fit any labeled dataset that repre-
sents the whole expected physics. Therefore, these models do
not rely on large CFD datasets with existing solutions. Instead,
the models take advantage of low-cost pre-inputs obtained from
an FDM solver running in minutes on a desktop computer.
Generating solutions at different stages requires a combi-
nation of physics-informed and boundary losses to constrain
the model. At the beginning of each training experiment, the
solutions generated by a model are noisy and inaccurate. The
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Fig. 7. Solutions generated by model B2 tested on an inclined velocity inlet and a single square obstacle with (U, V;,) = (0.05,0.5). (A) Contour plots. (B) Velocity profiles
corresponding to the cross-section of the center line where the obstacle is located (left), Y =40 (center), and the outlet (right).

total loss of the training experiments constrains the relation-
ships of internal nodes by setting up the physics-informed
loss. During the training, it is observed that if the loss solely
contains the physics-informed loss, it will lose the constraint
from the boundary leading to a result where the solutions
generated are predominantly close to zero. The data-driven
loss applied on the boundary with known boundary condi-
tions provides the necessary constraint between the internal
area and the boundary. By monitoring the contribution of each
subloss, the hyperparameter for each contribution to the loss
balances these constraints. The history of these 2 sublosses
indicates a smooth convergence of boundary loss, while the
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physics-informed loss, as the substantial term, converges first
rapidly and then much slower (Fig. 10).

Our method combines the strengths of traditional CFD
methods and supervised learning algorithms. Without the need
to convert the inputs as 1D discrete nodal points reported in
PINNS, our models maintain an analogous data representation
similar to that of conventional CFD approaches. Our model
employs a 2D matrix structure to represent the computational
domain, as in conventional CFD approaches. This format allows
for a direct and intuitive input of the unknown variables, which
are seamlessly integrated with specified boundary conditions and
geometric constraints. By adopting this matrix representation,
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Fig. 8. Solutions generated by model B3 tested on an inclined velocity inlet and circular obstacles in different geometric configurations, with (Uy, V) =(0.2,0.5). (A, C, E, and
G) Contour plots of the inputs and FDM and model-generated solutions. (B, D, F, and H) Velocity profiles corresponding to the cross-section of the center line Y =256 (left),

Y=384 (center), and the outlet Y=>512 (right).

we facilitate an efficient embedding of essential simulation
elements, including boundary conditions and any geometric
features or obstacles, into the input data of the model. From
training to testing, the nodal points of the input retain their
structure as an image, instead of being converted to isolated
discrete inputs. This representation allows the direct specification
of geometric configurations and the assignment of boundary
conditions. Moreover, the method is similar to a typical ML
algorithm, in which the training and testing of a model are
independent. During the training process, the model learns
the physics, which is not restricted to a single computational
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configuration. Once the model is trained, it can approximate
the solutions for multiple configurations of boundary conditions
and geometries. The model considerably benefits from the
high-speed calculation capabilities inherent in DL-based CFD
simulation where the DL model can be trained offline, enabling
nearly instantaneous predictions of unseen cases compared
to conventional methods, as highlighted in [42]. The inference
mode of the model only demands the computation of a forward
pass with a fixed set of parameters. Given the highly paralleliz-
able nature of the forward pass, the trained model generates
solutions without the need for high-performance computational
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resources. After training, the model can be deployed on light-
weight computational resources. To demonstrate the speed,
we benchmark the models on a consumer desktop system with
an Intel Core i5 8400 processor (6 cores and 6 threads). We
achieve inference latencies within 7 ms per input. This per-
formance is in sharp contrast to the 10 s required by a cor-
responding FDM solver to produce a computational result
on our training platform, which is equipped with NVIDIA
2080Ti and therefore possesses considerably greater compu-
tational resources. Comparable advancements in computa-
tional speed have also been documented, as evidenced by [43]
reporting a speed increase of 45 times and [44] achieving an
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acceleration of 4,000 times, further emphasizing the consider-
able impact of DL-based models on CFD simulations. A visu-
alization of the solutions instantly generated by the model
can be found in the repository [45]. This accessibility enables
individuals with minimal DL knowledge to generate CFD
simulation results in real time, without the need for an exten-
sive mathematical background or a CFD solver.

One of the challenges when developing and maintaining a
traditional CFD solver is the necessity of running the same
algorithm on different platforms with similar performance [46].
The portability of our model enables training on cloud-based
GPU resources and instant solution generation on any local
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and portable devices equipped with only basic computing func-
tionality, thus circumventing this issue.

While our demonstration is limited to solving the 2D steady-
state and laminar flow equations with homogeneous fluid
properties, this concept can be extended and adapted to other
problems. For example, the model can be expanded to accom-
modate different geometric configurations, a wider range of predict-
ability, different physics-informed loss, and ML-based methods
for other forms of flow equations such as Stokes flow [38].

Conclusion

A generative DL model implemented based on a convolutional
U-Net has been developed to generate the numerical solutions
for N-S equations. The trained model is capable of generating
steady-state solutions for various boundary conditions and
geometries in real time on consumer computing resources.
The training was facilitated by warm-up initialization and does
not need computational or experimental solutions as labeled
training data. The training was performed in stages, adding
constraints of increasing complexity, and through the inclusion
of a physics-informed and data-driven loss function. Similar
to traditional CFD methods, we structure the computational
domain as 2D matrices, which efficiently integrate unknown
variables with boundary conditions and geometric constraints
into the input. The methods were validated by solving example
problems including cavity flow and flow that passes obstacles.
The solutions generated by a series of stacked models showed
that the trained models can produce steady-state solutions to
given boundary conditions for both Dirichlet and Neumann
boundaries and optional internal obstacles with limited cost
for training data, with good predictability, extensibility, and
interpretability. This base model could be extended to solve
problems with larger domains or new complexities through
the addition of additional channels and subsequent optimization.
Given the proper definition of the loss function, the method could
also be applied to solve other PDE equations and geometric
configurations. We expect that the model can be generalized
to speed up general boundary-value CFD problems and, in
the future, be extended to solve other fluid-structure interac-
tion problems with minimal requirement of data.
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