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Imaging and structure analysis of
ferroelectric domains, domain walls, and
vortices by scanning electron diffraction
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Direct electron detectors in scanning transmission electron microscopy give unprecedented
possibilities for structure analysis at the nanoscale. In electronic and quantum materials, this new
capability gives access to, for example, emergent chiral structures and symmetry-breaking distortions
that underpin functional properties. Quantifying nanoscale structural features with statistical
significance, however, is complicated by the subtleties of dynamic diffraction and coexisting contrast
mechanisms,whichoften results in a lowsignal-to-noise ratio and the superpositionofmultiple signals
that are challenging to deconvolute. Here we apply scanning electron diffraction to explore local polar
distortions in the uniaxial ferroelectric Er(Mn,Ti)O3. Using a custom-designed convolutional
autoencoder with bespoke regularization, we demonstrate that subtle variations in the scattering
signaturesof ferroelectric domains, domainwalls, and vortex textures can readily bedisentangledwith
statistical significance and separated from extrinsic contributions due to, e.g., variations in specimen
thickness or bending. The work demonstrates a pathway to quantitatively measure symmetry-
breaking distortions across large areas, mapping structural changes at interfaces and topological
structures with nanoscale spatial resolution.

High-energy electrons traveling through matter are highly sensitive to the
local structure1, collecting a multitude of information about lattice defects
and strain2, electric and magnetic properties3, as well as chemical compo-
sition and electronic structure4. This sensitivity is utilized in transmission
electronmicroscopy (TEM) to study structure-property relations, and there
are continuous efforts to increase resolution, enhance imaging speeds, and
enable new imaging modalities5. A real paradigm shift was triggered by the
advent of high dynamic-range direct electron detectors (DED), which no
longer rely on converting electrons into photons6–8. DEDs enable spatially
resolved diffraction imaging, providing additional opportunities for high-
resolution measurements known as four-dimensional scanning transmis-
sion electron microscopy (4D-STEM)8–10. A significant advantage of 4D-
STEM is the outstanding information density; an image of the dynamically
scattered electrons is acquired at every probe position. In turn, advanced

analysis tools are required todeconvolute the rich variety of phenomena that
contribute to the scattering of the electrons10–13. Remarkably, lownoise levels
on DEDs enable the quantification of weak scattering events (e.g., diffuse
scattering due to crystallographic defects14,15). The analysis of 4D-STEM
data, however, is often challengedbya lackof empiricalmodels that can fully
explain the multitude of dynamic scattering processes, as well as varying
signal-to-noise ratios. Recently, exponential increases in the deployment of
machine learning methods in microscopy have been applied to accelerate a
variety of scientific tasks, including real-time data reduction16,
segmentation17,18, and automated experiments19,20. Furthermore, they can be
used to disentangle features inmultimodal nanoscale spectroscopic imaging
with improved statistical significance21–24. Through careful design of
machine learning architectures and custom regularization strategies, it is
nowpossible to statistically disentangle and interpret structural properties of
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functional materials with nanoscale spatial resolution from multimodal
imaging25–27.

Here, we apply 4D-STEM to investigate domains, domain walls, and
vortex structures in a uniaxial ferroelectric oxide, utilizing the scattering of
electrons for simultaneous high-resolution imaging and local structure ana-
lysis.Using a convolutional autoencoder (CA)with customregularization,we
statistically disentangle features in the diffraction patterns that correlate with
the distinct structural distortions in the ferroelectric domains and domain
walls, as well as the domain wall charge state. Based on the specific scattering
properties, we can readily gain real-space images of ferroelectric domains,
domain walls, and their vortex-like meeting points with a resolution limited
by the spot size of the focused electron beam (here, 2 nm). Our approach
provides a powerfulmethod that combines nanoscale imaging and structural
deconvolution—opening a pathway towards improved structure-property
correlations, increased fidelity, and automated scientific experiments.

Results and discussion
Domain wall imaging by scanning electron diffraction
4D-STEM experiments are conducted on a model ferroelectric
Er(Mn1-x,Tix)O3 (x = 0.002), denoted Er(Mn,Ti)O3 in the following. The
high-quality single crystals used in this study are grown by the pressurized
floating-zone method, following the same synthesis procedure as outlined
byYan et al.28. Er(Mn,Ti)O3 is a uniaxial ferroelectric andnaturally develops
180° domain walls, where the spontaneous electric polarization P
inverts29–32. The ferroelectric domain walls have a width comparable to the
size of the unit cell33, and their basic structural34, electric33,35, and magnetic
properties36 are well understood, which makes them an ideal model system
for exploring local electron scattering events. It is established that the
polarization reorientation across the domain walls coincides with a change
in the periodic tilt pattern of the MnO5 bipyramids and displacement of Er
ions that drive the electric order (i.e., improper ferroelectricity, see Fig. 1a)31.
The structural changes at domain walls alter the electron scattering pro-
cesses from the bulk. In turn, this difference is expected to alter scattering
intensities encoded in the local electron diffraction patterns obtained
in scanning electron diffraction (SED) measurements. There are, however,
no good analytical methods to disentangle structural and extrinsic
(e.g., thickness- and orientation-related) scattering mechanisms, particu-
larly in the presence of noise.

The general working principle of SEDmeasurements is illustrated in
Fig. 1b. A focused electron beam is raster-scanned over an electron
transparent lamella. The lamella is extracted from an [001]-oriented
Er(Mn,Ti)O3 single crystal (P || [001]), using a focused ion beam (FIB) as
detailed in Methods. A diffraction pattern is recorded at each probe
position of the scanned area, containing information about the local
structure. In addition, integrating and selectively filtering the intensities
of the collected individual diffraction patterns allows for calculating
virtual real-space images. Figure 1c shows such a virtual dark-field (VDF)
image. To calculate the VDF, we select and integrate the intensities of the
full diffraction patterns as described byMeng and Zuo34. The imaged area
contains two ferroelectric 180° domain walls (marked by black dotted
lines) that separate +P and −P domains. The polarization direction
within the domains was determined before extracting the lamella from
the region of interest based on correlated scanning electron microscopy
and piezoresponse force microscopy measurements (not shown). A VDF
image with a higher resolution is presented in Fig. 1d for one of the
domain walls, with visible contrast between the two domains. The data in
Fig. 1d is recorded outside the area seen in Fig. 1c to minimize beam
exposure (referred to as dataset 1, DS1, in the following).

Domain-dependent center-of-mass shift
We begin our discussion of the SED results with a center-of-mass
(COM) analysis applied to the complete stack of diffraction patterns in
the area presented in Fig. 1d. The results of the COM analysis are
summarized in Fig. 2a, b. In general, the momentum change of the
electron probe can be represented by the orientation of a vector in 2D
reciprocal space. When interacting with the sample, the direction of the
momentum changes, which is used in 4D-STEM COM imaging to
determine built-in electric35 or magnetic37 fields. To evaluate the COM
distribution over the dataset, we plot the COM position of each dif-
fraction pattern as a single spot in reciprocal space. The result gained
from the whole dataset is shown in Fig. 2a, where a substantial redis-
tribution of scattering intensities is observed along the crystallographic
[001]-axis. We find that the COM shift is sensitive to the local polar-
ization orientation in Er(Mn,Ti)O3, leading to a split in the dispersion
line for +P (red) and −P (blue) domains, as seen in Fig. 2b.
Figure 2b presents the spatial origin of the two contributions, which

Fig. 1 | Scanning electron diffraction on ferroelectric domains in Er(Mn,Ti)O3.
a Crystallographic structure at room temperature (non-centrosymmetric space
group P63cm). The Er atoms show a characteristic down-down-up displacement
pattern, which correlates with the direction of the spontaneous polarization as
illustrated below (down-down-up: −P, up-up-down: +P). b Schematic of our 4D-
STEM approach. The illustration shows how the electron beam (green) is scanned
across a selected region of a several micrometers sized Er(Mn,Ti)O3 lamella with a

domain wall as indicated by the black dashed line, collecting diffraction patterns at a
fixed position of the DED. cOverviewVDF image showing two ferroelectric domain
walls marked by black dashed lines. The bottom part (light gray) is an amorphous
carbon layer with Pt markers that were used to cut a lamella from the region of
interest. White arrows indicate the polarization direction of the different domains.
Scale bar, 250 nm. d High-resolution VDF image recorded at the right domain wall
shown in c. Scale bar, 100 nm.
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coincides with the ferroelectric domain structure resolved in the VDF
image in Fig. 1d.

Convolutional autoencoder analysis of SED data
To analyze the domain-dependent scattering in more detail, we deploy a
custom CA. The autoencoder consists of different blocks, as illustrated in
Fig. 3a–c. The CA takes the input diffraction patterns and learns a low-
dimensional statistical representation of the image through a series of
convolutional and residual blocks. In each residual block, a max pooling

(MaxPool) layer reduces the dimensionality of the image. Once the
dimensionality of the image is sufficiently reduced, the two-dimensional
image is flattened into a feature vector. This penultimate bottleneck layer is
further compressed to a low-dimensional latent space, where statistical
characteristics of the structure are disentangled using a scheduled custom
regularizer. The learned latent representation is reshaped into a 2D image
and decoded in the decoder using a series of upsampling residual blocks
until the image is reconstructed to its original resolution. The model is
trainedon thediffractionpatterns fromsingle STEMimages, such that there
is a model for each experiment or imaging condition, using momentum-
based stochastic gradient descent (ADAM)38 tominimize themean squared
reconstruction error of the diffraction images and regularization constraints
added to the loss function.

Theoverarchingobjective in learning latent representations is to isolate
the salient statistical attributes embedded within the data. Traditional
β-Variational Autoencoders (VAEs)39–41 accomplish this by imposing
penalties on non-Gaussian features within the latent space—a very useful
characteristic for generative models. This foundational principle has been
adapted to allow for the soft disentanglement of geometric transformations,
such as rotation, translation, strain, and shear42,43. However, the assumption
of a Gaussian-distributed latent space introduces constraints, specifically
excluding non-negativity and sparsity—properties that bolster interpret-
ability. Additionally, this Gaussian assumption enforces an unphysical prior
when attempting to identify intrinsically non-Gaussian features, like
domain walls (Supplementary Fig. 1).

We impose various constraints on the embedding layer to encourage
interpretable disentanglement of ferroelectric domains in the latent space.
First, we add a rectified linear activation (ReLU) to ensure the activations are
non-negative. All neural networks have a loss function based on the mean

Fig. 2 | Domain-dependent scattering of electrons. a The center-of-mass (COM)
analysis of every diffraction pattern in DS1 shows a substantial shift with respect to
the geometric center in the upwards (downwards) direction along the crystal-
lographic [001]-axis for+P (−P) domains. Scale bar, 0.1 Å−1. bCOM analysis of the
diffraction patterns associated with +P (red) and −P (blue) domains. Scale
bar, 100 nm.

Fig. 3 | Structure of the custom CA. aMain structure, consisting of encoder (from
input to flatten layer), embedding, and decoder (fromdense layer to reconstruction).
The encoder reduces the dimension of each input image by going from 256 × 256
pixels to 8 × 8 pixels and via a dense layer down to the embedding. The embedding
controls the number of channels to generate individual domains and domainwalls in
real space. The decoder recreates the vector from the embedding to the input image
size. b Detailed structure of the ResNet MaxPool Block. The block consists of four

convolutional layers, two normalization layers, two ReLU activation layers, and one
2DMaxPool layer with shortcut. cDetailed structure of the ResNetUpSample Block.
The block contains one 2D upsample layer, four convolutional layers, two nor-
malization layers, and two ReLU activation layers with shortcut. d Averaged dif-
fraction pattern of a +P domain in dataset DS1, corresponding to the left domain
(orange) seen in the CA embedding in the inset. eAveraged diffraction pattern of the
−P domain (purple) in the CA embedding in the inset to d.
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squared reconstruction errorMSE y; ŷ
� � ¼ 1

D

PD
i¼1 yi � ŷi
� �2

, where y and
ŷ denote the D-dimensional output and input of the neural network
(D = 2562 = 65,536), respectively. To impose sparsity (a limited number of
activated channels), an additional activity regularization is introduced
L1 að Þ ¼Pd

i¼1 ai
�� ��, leading to a total loss function

L ¼ MSE y; ŷ
� �þ λactL1 að Þ; ð1Þ

here,d is the dimensionality of the embedding layer, ai are the activations in
the embedding layer, and λact is a hyperparameter. This has the effect of
trying to drive most activations to zero while only those essential to the
learning process are non-zero. As the degree of sparsity required is dataset-
dependent, regularization scheduling is used to tune λact to achieve an
interpretable degree of disentanglement.

To demonstrate the efficiency of the CA, we analyze 4D-STEM data
from the region with two ferroelectric domains seen in Fig. 1d (DS1). The
model is trainedwith anovercomplete embedding layerof size 32.Following
training, the number of active channels is reduced to 9 (see Supplementary
Note 1 and Supplementary Fig. 2).Most of the embeddings disentangle bias
in the imaging mode associated with the scan geometry, varying specimen
thickness and orientation variations due to specimen bending; additionally,
features associated with the domain wall are disentangled, which we will
discuss later. One channel shows a sharp contrast between the 180°
domains, indicating a significant contrastmechanism (inset to Fig. 3d). This
map represents the activations of one neuron and, hence, is aweightingmap
for a specific characteristic in the diffraction pattern. To elucidate the nature
of the contrast mechanism, we traverse the neural network latent.We show
the generated diffraction patterns from the latent space encompassing the
+P and −P domains in Fig. 3d, e.

The CA analysis reveals variations between the two domain states in
the scanned area for the strongest reflections along the [001]-axis, that is, the
004 and 00�4 reflections (note that intensity distributions vary with sample
thickness). A substantial advantage of theCA-based approach compared to,
e.g., signal decomposition via unsupervised non-negative matrix factoriza-
tion, is that it does not create artificial components that resemble diffraction

patterns. Instead, the CA rates each diffraction pattern according to the
scattering features in the embedding channels. Thus, by selecting and
averaging diffraction patterns within a specific activation range within a
certain channel, one can readily use this approach as a virtual aperture in
reciprocal space using multiple areas of the pattern to correlate structural
features identified statistically to scattering properties.

To demonstrate that the diffraction patterns in Fig. 3d, e are indeed
specific to the local polarizationorientationandconnect themto the atomic-
scale structure of Er(Mn,Ti)O3, we simulate the diffraction patterns
expected for+P and−P domains using a Python multislice code44. As one
example, Fig. 4a displays the unit cell structure of a +P domain, which is
reflected by the up-up-down pattern formed by the Er atoms45. The cor-
responding simulated diffraction pattern is presented in Fig. 4b, considering
a sample thickness of 75 nm. Figure 4b shows an asymmetry in the 004 and
00�4 reflections, consistent with the diffraction data in Fig. 3d. For a more
systematic comparison of the experimental and simulated diffraction pat-
terns, we calculate the normalized cross-correlationΔ(+P,−P) between the
patterns of the two domains, as shown in Fig. 4c (simulated) and Fig. 4d
(experimental data DS1). In both cases, the variational maps show the
highest intensitieswherever the two comparedpatterns exhibit the strongest
variations. As expected, those arise primarily in the 004 (00�4) and, less
pronounced, in the 002 (00�2) reflections. This observation further corro-
borates the CA-based analysis of the SED data, linking the changes in the
diffraction pattern intensities to the atomic displacements and the resulting
polarization direction.

CA-based extraction of domain walls and vortices
Afterdemonstrating that our approach is sensitive to the polar distortions in
Er(Mn,Ti)O3, and that it can extract domains, we discuss local variations in
the diffraction pattern intensities that originate from finer structural
changes. Figure 5a displays the same embeddingmap as seen in the inset to
Fig. 3d, showing two ferroelectric domains with opposite polarization
orientation. A second embedding map is shown in Fig. 5b, indicating
scattering variations at the position of the domain wall (see also Supple-
mentary Note 1 and Supplementary Fig. 2). The latter reflects the broader
applicability of the CA beyond domain-related investigations. To explore
the possibility of investigating local structure variations also at domainwalls,
we conduct additional measurements on a sample with multiple walls that
meet in a characteristic six-foldmeeting point, leading to a structural vortex
pattern30,33,36 as presented in Fig. 5c–f (referred to as DS2). It is established
that such vortices promote the stabilization of different types of walls46,
which allows for testing the feasibility of our 4D-STEM approach for
structure analysis of ferroelectric domain walls with varying physical
properties.

As the statistics of the domain walls are different than within the
domains, a uniform sparsity metric cannot disentangle these features well.
Thus, to improve the performance of our model, we add two additional
regularization parameters to the loss function that encourage sparsity and
disentanglement. First, we add a contrastive similarity regularization of the
embedding,Lsim, to the loss function. This regularization termcomputes the
cosine similarity between each of the non-zero vectors ai and aj within a
batch of embedding vectors, where Nbatch is the batch size, and λsim is a
hyperparameter that sets the relative contribution to the loss function:

Lsim ¼ λsim
2Nbatch

XNbatch

i¼1

XNbatch

j¼1

ai � aj
jjaijj � jjajjj

" #

� 1

 !

:

Since the activations are non-negative, the cosine similarity is bounded
between [0,1], where 0 defines orthogonal vectors, and 1 defines parallel
vectors. We subtract 1, so that similar and sparse vectors have no con-
tribution to the loss function, whereas dissimilarity of non-sparse vectors
decreases the loss and, thus, is encouraged.

Secondly, we add an activation divergence regularization, Ldiv, to the
loss function, where ai;j, ai;k are components of the ith vector within a batch

Fig. 4 | Comparison of measured and simulated SED diffraction patterns.
a Illustration of the atomic structure in+P domains, showing the characteristic up-
up-down displacement pattern of Er atoms. The crystallographic [001] and [010]
axes are indicated by the inserted coordinate systems. b Simulated diffraction pattern
for the structure in a. The direct beam and the 004 and 00�4 reflections aremarked by
white circles. cNormalized cross-correlation between simulated and d experimental
(DS1) diffraction patterns of −P and +P domains, Δ(+P, −P), showing that the
highest variation occurs for the 004-reflection.
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of latent embeddings. Themagnitude of this contribution is regulated using
the hyperparameter λdiv:

Ldiv ¼
λdiv

2Nbatch

XNbatch

i¼1

Xd

j¼1

Xd

k¼1

ai;j � ai;k

���
���

 !

:

This term has the effect of enforcing that each embedding vector is
sparse, having a dominate component that is easy to interpret. We use the
hyperparameter λdiv to ensure that the magnitude of this contribution is
significantly less than the reconstruction error.Whenapplying these custom
regularization strategies, the resulting activations disentanglemore nuanced
features in the domain structure.

The model readily disentangles the +P and −P domain states, as
presented in Fig. 5c, revealing a six-fold meeting point of alternating ±P
domains. The difference pattern between the two domain states can be
determined using the CA as a generator. To do so, we calculate the mean
pattern of the upper 5% quantile of the +P (purple) and −P (orange)
domains in Fig. 5c, which leads us to Fig. 5d (corresponding color histo-
grams are shown in Supplementary Fig. 3). Consistent with Fig. 4, pro-
nounced intensity variations between+P and−P domains are observed for
the 004 (00�4) and 002 (00�2) reflections. In contrast to the data collected on
the first sample (Fig. 4), however, Fig. 5d reveals a stronger variation in the
002 (00�2) reflections, whichwe attribute to a difference in sample thickness.

Interestingly, the neural network produces different embedding maps
for the domain walls in Fig. 5c, indicating a difference in their scattering
behavior. Specifically, we disentangle statistical features that reveal the
existence of two sets of domain walls as shown in Fig. 5e, f, respectively
(additional embeddings are shown in Supplementary Fig. 3). Based on the

polarization direction in the adjacent domains, we can identify the two sets
of domain walls as positively charged head-to-head walls (Fig. 5e) and
negatively charged tail-to-tail walls (Fig. 5f). This separation regarding the
polarization configuration is remarkable as it reflects that our approach is
sensitive to both the crystallographic structure of the domainwalls and their
electronic charge state as defined by the domain wall bound charge33.

In summary, our work demonstrates a powerful pathway for imaging
and characterizing ferroelectric materials at the nanoscale. By applying
a custom-designed CA to SED data gained on the model system
Er(Mn,Ti)O3, we have shown that different scattering signatures can be
separated within the same experiment. The latter includes ferroelectric
domains, domain walls, and emergent vortex structures, as well as extrinsic
features (e.g., bending and thickness variations), giving access to both the
local structure and electrostatics. Analogous to the training specifically
performed for the Er(Mn,Ti)O3 datasets, the model can be trained and
specifically tailored to other systems. The core elements of the model—
including its architecture, regularization techniques, and hyperparameters
tuning methods—are broadly applicable to high-dimensional imaging
modalities, not only in ferroelectrics. Thus, the findings can readily be
expanded toother systems to localize, identify, and correlateweak scattering
signatures to structural variations based on SED. By building a CA with
custom regularization to promote disentanglement, subtle spectroscopic
signatures of structural distortions can be statistically unraveled with
nanoscale spatial precision. This approach is promising to automate and
accelerate the unbiased discovery of defects, secondary phases, boundaries,
and other structural distortions that underpin functional materials. Fur-
thermore, it opens the possibility to expand the design of experiments to
larger imaging sizes, higher frame rates, and more broadly into automated
experimentation and, eventually, controls.

Fig. 5 | Domains and domain walls extracted via the CA. a Embedding map
showing ferroelectric ±P domains (DS1). Scale bar, 75 nm. Polarization directions
are given by white arrows (same as inset to Fig. 2c). b Embedding map revealing the
domain wall that separates the domains in a. c Embedding map from a second

sample (DS2). Scale bar, 90 nm. dDifference in diffraction patterns between+P and
−P domains in (c). e, fTwo embeddingmaps of the CA, separating head-to-head (e)
and tail-to-tail (f) domain walls that belong to the vortex in c.
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Methods
Specimen preparation
The lamellas used in this work are extracted from an Er(Mn,Ti)O3 single
crystal using a FIB. For this purpose, the crystal is first oriented by Laue
diffraction and cut perpendicular to the polar axis (P || [001]), to achieve a
sample with out-of-plane polarization (thickness ~1mm). To confirm that
the crystal exhibits the characteristic domain structure of the hexagonal
manganites, it is chemo-mechanically polished with silica slurry, which
gives a root-mean-square roughness of about 1 nm and allows for domain
imaging by, e.g., piezoresponse force microscopy and scanning electron
microscopy (SEM) (not shown, for an example, see Evans et al.47). From the
pre-characterized sample, a smaller piece is cut with a lateral dimension of
about 2 × 2mm2 for the FIB preparation48. This sample is thenmounted on
an SEMspecimen holderwith carbon tape and loaded into a Thermo Fisher
ScientificG4UXDualBeamFIB.This systemcombines a SEMandagallium
(Ga) ion beam column. The region of interest (ROI) is located by SEM
imaging and platinum markers, and a carbon protection layer is deposited
by the electron beam.This step is critical as it ensures that theROI ismarked
and shielded from any potential ion beam irradiation damage. Subse-
quently, another carbon protection layer is deposited by the ion beam.
Following the deposition steps, a Ga ion beam is used to mill trenches on
each side of the ROI, after which the lamella is extracted and transferred to a
copper TEM grid. The lamella is then progressively thinned down towards
thepre-marked target positionwith the ionbeam,with the current gradually
decreasing from 9 nA to 90 pA. This thinning process ends with a lamella
where the ROI is located in the upper middle of the lamella, with the ROI
thinner than the surrounding areas to ensure optimalflatness. Theprocess is
stopped as the ROI becomes electron transparent49. For the final polishing
step, a low-energy electron beam (2 kV, 0.11 nA) is used to remove the
damage layer50 and improve the surface quality.

Diffraction data acquisition and STEM imaging
The diffraction experiments were conducted on a Jeol 2100 F TEM at
200 kV and the scans were controlled via the Nanomegas P1000 scan
engine. For acquiring the diffraction patterns, we used a Merlin 1S DED
fromQuantumDetectors operatedwith a lower thresholdof 40 kVandwith
no limit on the upper threshold. The electron beam is focused on a probe
with a diameter of 2 nm and a convergence angle of 9 mrad. The total scan
grid consistedof 256 × 256probepositions (with a step size of 1.4 nm)with a
probe dwell time of 50ms at each beam position. STEM imaging was per-
formed using the nanobeam diffraction mode and a 10 µm aperture. The
probe current was measured to be 4.6 pA.

Convolutional autoencoder (CA)
Data from 4D-STEM was analyzed using a CA built in Pytorch51. Prior
to training, the log of the raw 4D-STEM data was used to obtain less
non-linear images. The number of learnable parameters is 4,700,770.
The CA consists of three parts: an encoder, an embedding layer, and a
decoder. The encoder consists of three ResNet Blocks with different
feature sizes, a convolutional layer with one filter, and a flattened layer.
Each ResNet Block consists of a Residual Convolutional Block and an
Identity Block. Each Residual Convolutional Block has three sequence
convolutional layers with 128 filters, connected with a normalization
layer and a Rectified Linear Unit (ReLU) activation layer. There is a skip
connection between the input and output of the block, which can
maintain the information of the input image after image processing.
Each Identity Block has a convolutional layer with 128 filters, connected
with a normalization layer and a ReLU activation layer. There is a 2D
Max Pooling layer after each Resnet Block for image size dimensionality
reduction. The image sizes to each ResNet Block in the encoder are
(256 × 256), (64 × 64), (16 × 16). The embedding consists of a linear
layer and a ReLU activation layer. The decoder consists of a linear layer,
a convolutional layer with 128 filters, three ResNet Blocks, and a con-
volutional layer with 1 filter. There is an upsampling layer before each
ResNet Block to recreate the input image. A loss function based on the

mean square reconstruction error (MSE) between the input and gen-
erated image is used. The image sizes to each ResNet Block in the
decoder are (8 × 8), (16 × 16), (64 × 64). The loss function has additional
L1 activity regularization of the embedding. When generating domain
walls in Fig. 5e, f, we also include contrastive similarity regularization
and activate divergence regularization to make the output embedding
sparse and unique.

The models were trained on a server with 4x A100 GPUs. To generate
the domain in Fig. 5a and the domain wall in Fig. 5b, we set the coefficient
λact ¼ 1 × 10�5 and trained the model using optimization ADAM52

(learning rate of 3 × 10−5) for 377 epochs. To generate the vortex-like
domain pattern (Fig. 5c), we set the coefficient λact ¼ 1 × 10�5 and trained
the model for 225 epochs using optimization ADAM (learning rate of 3
× 10�5), then raised λact to 5× 10

�4 and trained the model for another 60
epochs using learning rate cycling (increasing from 3× 10�5 to 5× 10�5 in
15 epochs, thendecreasing from5× 10�5 to 3× 10�5 in the next 15 epochs).
To generate the corresponding domain walls in Fig. 5e, f, besides L1 reg-
ularization with coefficient λact ¼ 5× 10�3 in the loss function, we also
included contrastive similarity regularization with coefficient λsim ¼
5× 10�5 and activity divergence regularization with coefficient λdiv ¼
2× 10�4 to make the output embedding sparse and unique.We trained the
model for 18 epochs using optimization ADAM (learning rate of 3× 10�5).
Following training, the output from the embedding layerwas extracted.This
represents a compact representation of the important features in the sample
domain. To visualize the change in the diffraction pattern that is encoded by
a single channel, the difference between the mean pattern of all diffraction
pattern with 5% highest and lowest activation at the channel of interest was
calculated. This was used to create the projections in Figs. 3d, e, 4d, 5d and
the third row of Supplementary Fig. 3. Full details are available in the
reproducible source code38.

Data availability
Data and reproducible code are made openly available under the BSD-2
License. 4D-STEM raw data is published on Zenodo53.

Code availability
The source code is built as part of the M3-Learning54. Some of the core
modules can be installed using the command ‘pip install m3_learning’. The
full release is available on Zenodo55. To improve accessibility, a Jupyter
Notebook is available.
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