
Universal AMG Accelerated Embedded Boundary Method

Without Small Cell Stiffness

Zhichao Peng ∗ Daniel Appelö † Shuang Liu ‡

April 14, 2022

Abstract

We develop a universally applicable embedded boundary finite difference method, which
results in a symmetric positive definite linear system and does not suffer from small cell stiff-
ness. Our discretization is efficient for the wave, heat and Poisson’s equation with Dirichlet
boundary conditions. When the system needs to be inverted we can use the conjugate gra-
dient method, accelerated by algebraic multigrid techniques. A series of numerical tests for
the wave, heat and Poisson’s equation and applications to shape optimization problems ver-
ify the accuracy, stability, and efficiency of our method. Our fast computational techniques
can be extended to moving boundary problems (e.g. Stefan problem), to the Navier-Stokes
equations, and to the Grad-Shafranov equations for which problems are posed on domains
with complex geometry and fast simulations are very important.

Keywords:
algebraic multigrid, embedded boundary method, line-by-line interpolation, radial basis

function interpolation.

1 Introduction

Fast and accurate simulation of problems arising in engineering and the sciences is of great im-
portance. Often such problems are posed on domains with complex geometry and the numerical
methods used in the simulations must account for this. There are numerous methods that are
capable of handling geometry, among them are the finite element method [10] and other methods
using unstructured grids, overset grid methods [35, 33, 8] and embedded boundary methods.

In element based methods a volumetric grid must be generated and in both two and three
dimensions this can be a time consuming task, especially if the grids are to be of high quality. In
methods that use the overset grid (also known as composite grid, or overlapping grid) framework
the grids are overset and a Cartesian background grid is coupled through interpolation to local
boundary fitted narrow grids near the geometry. The locality of the boundary fitted grids
makes the grid generation easier and the quality of the grids are is typically very high. The
hole-cutting, the process where the interpolation operators between grids are constructed, can
be done efficiently [8] but there are relatively few software packages available.

In embedded boundary (EB) methods, which is the topic of this paper, the geometry is
represented by curves in two dimensions and surfaces in three dimensions. These curves or
surfaces are, as the name suggests, embedded in a uniform Cartesian grid that covers the
computational domain. In an embedded boundary method there is no need to generate a

∗Department of Mathematics, Michigan State University, East Lansing, MI 48824 U.S.A. Email:
pengzhic@msu.edu.

†Department of Computational Mathematics, Science and Engineering and Department of Mathematics,
Michigan State University, East Lansing, MI 48824 U.S.A. Email: appeloda@msu.edu.

‡Department of Mathematics, University of California, San Diego, CA 92093, U.S.A. Email: shl083@ucsd.edu.

1

ar
X

iv
:2

20
4.

06
08

3v
1

 [m
at

h.
N

A
]

12
 A

pr
 2

02
2

grid and the geometry is instead incorporated through modified stencils near the boundary that
explicitly incorporate boundary conditions.

The purpose of this work is to introduce an universal embedded boundary method that
can be used to efficiently solve the wave, heat or Poisson’s equation with Dirichlet boundary
conditions. This is achieved by designing a method that:

• is symmetric and positive definite, so that the conjugate gradient (CG) method can be
used,

• is diagonally dominant and with eigenvalues and eigenvectors that closely resemble those
of the periodic problem, so that the conjugate gradient method can be accelerated by
algebraic multigrid (AMG) techniques,

• and, does not suffer from small cell stiffness so that the wave equation can be marched in
time by an explicit method.

The basic ingredient to obtaining a symmetric embedded boundary discretization is to use an
approximation for the boundary condition that only modifies the diagonal element in the matrix
approximating the second derivative. The most straightforward approach is to approximate the
second derivative dimension-by-dimension and use linear extrapolation based on the boundary
condition and the numerical solution at the interior point to assign the value of the numerical
solution at an outside ghost-point. In one dimension this modifies the diagonal element from
−2 to −(1/θ + 1) where θ ∈ (0, 1] depends on how the boundary cuts the grid. This does not
change the symmetry of the matrix and it also does not change its definiteness. It does however
change the spectrum of the matrix, introducing an eigenvalue that scale as 1/θ. If used directly
for the wave equation this approach will thus suffer from small cell stiffness, forcing the stable
time-step to be excessively small. This can be mitigated by the local time-stepping proposed
by Kreiss, Petersson and Yström in [18] resulting in a provably stable and efficient embedded
boundary method. The same approach was also introduced by Gibou et al. [14] for Poisson’s
equation and the heat equation with implicit time-stepping. Then, as the time-stepping is
already implicit the small cell does not reduce the time-step, however the very large eigenvalues
that result from the small cells can result in matrices with large condition numbers and care
has to be taken when choosing an iterative solver.

Here we expand on the ideas in [14] and [18] but just as in our earlier work [1] we enforce
the Dirichlet boundary conditions by interpolating to interior boundary points rather
than extrapolate to exterior ghost-points. This subtle yet crucial difference improves previous
second-order accurate approaches by removing the small-cell stiffness problem. Moreover, plac-
ing boundary points inside the computational domain allows the solution to be “single-valued”
for slender geometries, leading to significant algorithmic simplifications. For geometry that is
convex it is still possible to use a line-by-line linear extrapolation to enforce boundary conditions
but when the geometry is concave this procedure can break down. For such cases we introduce
a combined polynomial and radial basis function interpolation that prevents breakdown. We
also propose a simple criterion that can be used to test if the system matrix is SPD.

Embedded boundary methods have been used to successfully solve a variety of problems
from elasticity [37] to incompressible [30] and compressible flows [28]. Here we do not aim to
provide a complete literature survey but rather to mention contributions relevant to the method
we introduce. As mentioned above [14] develops a symmetric second order method by imposing
the boundary condition through linear extrapolation. This method is analyzed and expanded to
quadratic boundary treatment in [16]. To obtain second order accuracy in both the solution and
its gradient, [27] proposes a non-symmetric discretization based on a quadratic extrapolation.
Adaptive mesh refinement (AMR) techniques for the method in [27] were considered in [5, 6].
Finite volume solvers with embedded boundaries using bilinear interpolation were considered
in [15, 32]. Higher order accurate methods for Poisson’s and the heat equation can be found
in [9, 13]. For wave equations the early works by Kreiss, Petersson and Yström [17, 18, 19]
provided analysis of second order accurate methods with external ghost-points and Dirichlet,
Neumann and interface conditions. Higher order accurate methods for the wave equation include
[1, 4, 20, 23, 24, 25, 26, 34, 36].

2

.
.......
........
.........
............

..............

................

..................

.
.............

............
..

............
.

.
..........
.....

..........
....

..........
..

.........
.
........................

Γ1

.
...........
...........

............

.............

...............

..................

.....................

.......................

..........................

.
....................

.................

..............
...........

...................................
.........
..

.........
.....

........

........

........

........

...

........

........

......

........

........

........

.

........

........

....

.........
.........

.........
.......

..........
....

...........
..

..............

Γ2

.
.....................

....................

...................

..................

..................

...................

....................

.....................

.
................
..............
............

.........
.

.........
....

........

.......

........

........

..

.

........

........

........

......

........

........

........

...

........

........

........

........

........

.....

........

........

..

........

.......

.........
...

......................................
..........

..............

.................

....................

Γ3

.
...............................

........
.......
........

..

...

..

...

..

.....................................

...................................

................................

..............................

............................

.........
....................

............................
..............................

..
..........
...
.

.........
.........
.........

.........

.........

.........

..

........

........

........

.......

........

........

........

........

.

........

........

........

........

...

........

........

........

........

.....

........

........

........

........

........

........

........

........

........

........

...

........

........

........

........

........

......

........

........

........

........

........

........

.

.
.........
...

..........
.
.........

Γ4

Figure 1: An illustration of an interior problem with the boundary consisting of four disconnected
curves.

The rest of the paper is organized as follows. In Section 2, we first present the overall algo-
rithm. Then, we show the details of how interior boundary points are located, the formulation
of the line-by-line and RBF-based interpolation as well as the SPD checking criteria. In Sec-
tion 3, the performance of the proposed method is demonstrated through a series of numerical
experiments. In Section 4, we summarize and conclude.

2 Universal embedded boundary discretization of the Lapla-
cian

Our goal is to design an embedded boundary finite difference method, which results in a sym-
metric positive definite (SPD) linear system and does not suffer from small cell stiffness. Our
discretization can thus be efficient for the wave, heat and Poisson’s equation. We now de-
scribe the different components of our method one at a time but note that the entire method is
summarized in Algorithm 2.

To demonstrate the discretization of the Laplacian operator, consider Poisson’s equation in
an irregular two-dimensional domain (x, y) ∈ Ω:

∇ · (β(x, y)∇u) = f(x, y), (x, y) ∈ Ω, (1)

closed by Dirichlet boundary conditions

u(x, y) = u
(l)
D (x, y), (x, y) ∈ Γl, l = 1, . . . , ntot. (2)

The boundary of the domain Ω is a collection of ntot smooth curves Γl. A possible set-up for
an interior problem is shown in Figure 1, where one curve encloses the other ntot − 1 curves.

Without loss of generality, we assume that all the boundary interfaces describing the geom-
etry Ω are contained inside the uniform Cartesian grid (see Figure 2)

(xi, yj) = (xL + (i− 1)h, yL + (j − 1)h), i = 1, . . . , Nx, j = 1, . . . , Ny,

discretizing the rectangular domain [xL, xR]× [yL, yR] where xL and yL are given and xNx
= xR

and yNy
= yR are determined so that they align with the grid.

3

To this end we will approximate the Laplacian operator by the central difference scheme:

∇ · (β(xi, yj)∇u(xi, yj)) ≈
βi+ 1

2 ,j
ui+1,j − (βi+ 1

2 ,j
+ βi− 1

2 ,j
)ui,j + βi− 1

2 ,j
ui−1,j

h2

+
βi,j+ 1

2
ui,j+1 − (βi,j+ 1

2
+ βi,j− 1

2
)ui,j + βi,j− 1

2
ui,j−1

h2
. (3)

As mentioned in the introduction, a novelty of our method is to enforce boundary conditions
through interpolation to interior boundary points. This avoids small cell stiffness. To identify
interior boundary points, we first set up a mask grid function mi,j defined to be one inside the
geometry and zero outside. That is:

mi,j =

{
1, (xi, yj) ∈ Ω,

0, otherwise.

For example, if the boundary of Ω is determined by the signed level-set function ψ(x, y)=0, then
the value of the mask mi,j follows by the sign of ψ(xi, yj). An example of a mask grid function
is shown in Figure 2.

We denote grid points inside Ω but adjacent to the boundary as boundary points and we
denote the remaining interior grid points as computational points. Precisely we define:

• A boundary point (xi, yj) satisfies:
(1) mi,j = 1,
(2) mi+1,j +mi−1,j +mi,j+1 +mi,j−1 < 4.

In other words, (xi, yj) is inside Ω, but at least one of its nearest neighbors is outside.
• A computational point (xi, yj) satisfies:

(1) mi,j = 1,
(2) mi+1,j +mi−1,j +mi,j+1 +mi,j−1 = 4.

In other words, (xi, yj) and all its nearest neighbors are all inside Ω.

.
.......
........
..........

.............

...............

.................

.
.............

..
............
.

.
..........
.....

..........
...

..........
.
.........................

Γ1

.
...........
...........

............

..............

................

...................

......................

.........................

.
..................

...............

............
.........
..........................

.........
.........
...

.........

......

........

........

.

........

........

....

........

........

.......

.

........

........

.

.........
.......

.........
.....

..........
...

...........

Γ2

.
.....................

...................

..................

.................

..................

...................

.....................

.
...............
.............
...........

.........
...

........

......

........

........

.

.

........

........

........

....

........

........

........

.

........

........

......

........

........

...

........

........

........
.....

..........
.

...........................
.........

............

................

...................

Γ3

.
...........................

......

.......

..

...

..

..

.....................................

..................................

................................

.............................

...........................

........
..................

...........................
...

..........
..
.

.........
.........
........

........

........

........

....

........

........

........

......

........

........

........

........

.

........

........

........

........

...

........

........

........

........

......

........

........

........

........

........

.

........

........

........

........

........

.....

........

........

........

........

........

........

.
.........
....

..........
.
.........

Γ4

(a)

r r r r r r r r rr r r rr r r r r rr r r r r r rr r r r r r rr r r r r r rr r r r r r rr r r r r r rr r r r r r r r

.
.......
........
..........

.............

...............

.................

.
.............

..
............
.

.
..........
.....

..........
...

..........
.
.........................

Γ1

.
...........
...........

............

..............

................

...................

......................

.........................

.
..................

...............

............
.........
..........................

.........
.........
...

.........

......

........

........

.

........

........

....

........

........

.......

.

........

........

.

.........
.......

.........
.....

..........
...

...........

Γ2

.
.....................

...................

..................

.................

..................

...................

.....................

.
...............
.............
...........

.........
...

........

......

........

........

.

.

........

........

........

....

........

........

........

.

........

........

......

........

........

...

........

........

........
.....

..........
.

...........................
.........

............

................

...................

Γ3

.
...........................

......

.......

..

...

..

..

.....................................

..................................

................................

.............................

...........................

........
..................

...........................
...

..........
..
.

.........
.........
........

........

........

........

....

........

........

........

......

........

........

........

........

.

........

........

........

........

...

........

........

........

........

......

........

........

........

........

........

.

........

........

........

........

........

.....

........

........

........

........

........

........

.
.........
....

..........
.
.........

Γ4

(b)

Figure 2: Embedded boundaries of an interior problem in a rectangular mesh. (a) Discretization
of the geometry without the mask shown. (b) Discretization of the geometry with the mask
shown, grid points with a filled circle have mij = 1, grid points without a filled circle have
mij = 0.

2.1 Imposing the boundary condition at boundary points

We now describe how we use interpolation together with the boundary conditions to assign values
to the solution at interior boundary points. We use two strategies, line-by-line interpolation and
radial basis interpolation. We first describe the line-by-line approach.

4

.

...............
...............

...............
....

..............
..............
..............
...

.............
.............
.............
...

.............
.............
.............

............
............
............

...........
...........
..........

...........
...........
.......

..........
..........
.......

..........
..........
.....

..........
..........
...

.........
.........
....

.........
.........
..

........

........

..

........

........

.........

........

.........
........

..........
.......

..........
.......

............
.......

...............
.......

..................
.......

.....................
.......

.........................
......

.............................
....

..................................
..

.......................................

e uuBP u1

Γ

ξBP ξ1

ξΓ
@

@
@I PPPPi

(xi, yj)

-
ξ

.

...............
...............

...............
....

..............
..............
..............
...

.............
.............
.............
...

.............
.............
.............

............
............
............

...........
...........
..........

...........
...........
.......

..........
..........
.......

..........
..........
.....

..........
..........
...

.........
.........
....

.........
.........
..

........

........

..

........

........

.........

........

.........
........

..........
.......

..........
.......

............
.......

...............
.......

..................
.......

.....................
.......

.........................
......

.............................
....

..................................
..

.......................................

e uuGP u1

ξGP ξ1

ξΓ
@

@
@I

Γ

PPPPi
(xi, yj)

-
ξ

Figure 3: Enforcing Dirichlet boundary conditions by a line by line approach using interior
boundary points (left) or exterior ghost points (right).

2.1.1 Line-by-line interpolation

We describe the line-by-line approach for a case such as the one depicted in the left image of
Figure 3.

Let (xi, yj) be a computational point and (xBP, yBP) = (xi−1, yj) be a boundary point
associated with the boundary Γ. If the point (xi−2, yj) is outside Ω, we introduce a local one-
dimensional coordinate system ξ along the grid line in x passing through (xBP, yBP). We denote
the intersection of the horizontal line y = yj and the boundary Γ by ξΓ, and the boundary
value at ξΓ by uΓ. The ξΓ satisfies the scalar equation ψ(ξΓ, yj) = 0 and can be found by a
root-finding algorithm such as the secant method.

Let uΓ be the value of the boundary condition at (ξΓ, yj). We introduce an interpolating
polynomial

IPu(ξ) = uΓgΓ(ξ) + u1g1(ξ), (4)

where gΓ and g1 are the Lagrange polynomials

gΓ(ξ) =
ξ − ξ1
ξΓ − ξ1

, g1(ξ) =
ξ − ξΓ
ξ1 − ξΓ

. (5)

Then, the value of the solution at the boundary point uBP can be approximated to second order
accuracy by evaluating the interpolant

uBP = IPu(ξBP) = uΓgΓ(ξBP) + u1g1(ξBP) = uΓ
ξBP − ξ1
ξΓ − ξ1

− u1
ξBP − ξΓ
ξΓ − ξ1

. (6)

The placement of the boundary point inside the boundary is the subtle yet important dis-
tinction from previous methods like those in [14, 17, 18, 19]. In previous work, the point is
placed outside (and is usually referred to as a ghost point), see the right image of Figure 3.
Then the linear interpolant will contain a factor

ξGP − ξ1
ξΓ − ξ1

which can be arbitrarily large when ξΓ is close to ξ1. This causes small-cell stiffness or numerical
overflow in the assembly process of the system of equations.

For Poissons equation the boundary interface can be moved to the interior points if ξGP−ξ1
ξΓ−ξ1 <

threshold ≈ O(h), [14], however, this will introduce an eigenvalue that scale as O(1
h). Such a

large eigenvalue will lead to a very restrictive time step for the wave equation.

5

In contrast, for the approach suggested above, ξΓ ≤ ξBP < ξ1 = ξBP + h, and thus

|gΓ(ξBP)| =
∣∣∣∣ξBP − ξ1
ξΓ − ξ1

∣∣∣∣ ≤ 1 and |g1(ξBP)| =
∣∣∣∣ξBP − ξΓ
ξΓ − ξ1

∣∣∣∣ ≤ 1.

Substituting the value of uBP into the central difference approximation for (βux)x

βi− 1
2 ,j
uBP − (βi− 1

2 ,j
+ βi+ 1

2 ,j
)uij + βi+ 1

2 ,j
ui+1,j

h2
,

we have

1

h2

(
(−1 + g1(ξBP))βi− 1

2 ,j
uij − βi+ 1

2 ,j
(uij − ui+1,j) + gΓ(ξBP)uΓβi− 1

2 ,j

)
.

Because only the diagonal element is modified and |g1(ξBP)| ≤ 1, the resulting linear system is
still symmetric and diagonally dominant with correct sign. As a result, the SPD structure of
the discrete Laplacian operator is preserved.

2.2 Radial Basis Function (RBF) interpolation

Unfortunately there are some cases when the line-by-line approach cannot be used. For example,
when the geometry is non-convex (there is an inward pointing smooth corner), as Figure 4, it
can happen that the intersection between the grid line and the boundary does not exist, or it
is far away. In Figure 4, the stencil (3) requires that the leftmost interior boundary point is
determined by the interpolant in the x-direction but the intersection with the boundary along
the grid-line may be very far away and would result in a very inaccurate approximation. Of
course, the value at the boundary point can be specified by interpolating along the y-direction.
However, as this would result in a non-diagonal modification of the system matrix and break its
symmetry, we instead propose an alternative approach.

.

..........
..........
..........
..........
....

..........
..........
..........
..........
.

..........
..........
..........
........

..........
..........
..........
....

..........
..........
..........
.

...........
...........
.......

............
............
...

.............
............

...............
........

..................
...

..
................

................

................

...................

.....................

........................

..........................

.............................

................................

e u
uu

uΓ1

uΓ2

uBP uij

Γ

xBP xij

-
ξ

Figure 4: An illustration of the points used to construct the RBF interpolant for evaluating
uBP.

For geometries where the interior boundary point cannot be accurately determined by line-
by-line interpolation, we instead use the radial basis function (RBF) interpolation. To do this
we find two suitable distinct points on the boundary of Ω, and utilize these two points and the
interior computational point to interpolate at the interior boundary point with a polynomial
augmented RBF interpolant [38]. In this section, we first present the associated RBF-based
interpolation and then discuss how to choose the two distinct points on the boundary.

6

Without loss of generality, we consider the case presented in Figure 4. Let xij = (xi, yj)
be the computational point where we want the approximation to the Laplacian operator. Let
xBP = (xBP, yBP) be the boundary point needed in the stencil in the x-direction, and let xΓ1

and xΓ2
be the two points on the boundary that we have selected. At these points, the boundary

conditions are uΓ1 and uΓ2 respectively.
We use the following RBF and linear polynomial augmentation to interpolate at xBP:

IRBFu(x) = λijφ(||x− xij ||) + λΓ1
φ(||x− xΓ1

||) + λΓ2
φ(||x− xΓ2

||) + µ1 + µ2x+ µ3y, (7)

where x = (x, y), || · || is the standard l2 norm and φ(·) is a radial basis function. The linear
polynomial augumentation is required to obtain second order accuracy [2, 11]. The coefficients
λ = (λij , λΓ1

, λΓ2
)T and µ = (µ1, µ2, µ3)T are determined by solving the linear system

B

(
λ
µ

)
=

(
A ΠT

Π 0

)(
λ
µ

)
=

(
u
0

)
. (8)

Here, u = (uij , uΓ1
, uΓ2

),

A =

 φ(0) φ(||xij − xΓ1
||) φ(||xij − xΓ2

||)
φ(||xΓ1 − xij ||) φ(0) φ(||xΓ1 − xΓ2 ||)
φ(||xΓ2 − xij ||) φ(||xΓ2 − xΓ1 ||) φ(0)

 and Π =

 1 1 1
xij xΓ1 xΓ2

yij yΓ1 yΓ2

 .

The purpose of the last equation Πλ = 0 is to minimize the far-field growth [12]. The value at
the boundary point xBP is then

uBP = IRBFu(xBP) =
(
φTBP,p

T
BP

)
B−1

(
u
0

)
(9)

with φBP = (φ(||xBP − xij ||), φ(||xBP − xΓ1 ||), φ(||xBP − xΓ2 ||))
T

and pBP = (1, xBP, yBP)T .
The only interior computational point involved in (9) is xij , hence only the diagonal elements
of the discrete Laplacian operator are modified and the symmetry is preserved.

We now describe how the two points xΓi
(i = 1, 2) on the boundary are determined (this is

also described in Algorithm 1.) Our procedure is simple. If the points closest to xBP and xij on
the boundary are distinguishable, we choose these two points. Otherwise, we choose the point
closest to xBP as xΓ1 and pick xΓ2 such that the angle between −−−−−→xBPxΓ1 and −−−−−→xBPxΓ2 is π

4 .

Algorithm 1: Given the computational point xij , its neighboring boundary point xBP

and a pre-selected tolerance ε, find the interpolation points xΓ1
and xΓ2

.

Find the point xΓ1
and the x

(0)
Γ2

such that

xΓ1
= arg min

x∈Γl

||x− xBP|| and x
(0)
Γ2

= arg min
x∈Γl

||x− xij ||. (10)

If

||xΓ1
− x

(0)
Γ2
|| > εh, (11)

then xΓ2
= x

(0)
Γ2

.
Otherwise, rotate the line determined by xΓ1

and xBP counterclockwise by π
4 and find the

intersection of this line with Γ. Choose the intersection point as xΓ2
.

2.3 Choice of interpolation strategy

We note that the RBF interpolation can always be applied. However, there are two advantages
of the line-by-line interpolation over the RBF interpolation. First, it is more straightforward

7

and second, it is possible to prove that it will preserve diagonal dominance. In what follows,
if we apply the line-by-line interpolation wherever possible and only use the RBF interpolation
when the line-by-line approach breaks down, we say the embedded boundary method is mixed.
If the RBF interpolation is applied everywhere, we say the embedded boundary method is
RBF-based.

Numerically, we have observed that the condition (inequality (11)) that the two points on the
boundary used in the RBF interpolant always are determined to be distinct for ε = 0.025 if the
mixed EB method is used. However, the inequality (11) may not always hold if the RBF-based
EB method is used. An often occurring case when this situation may arise is when the closest
points to xBP and xij are the same point (see Figure 5). Then, in the mixed EB method, the
line-by-line interpolation is used. We emphasize that although we have not been able to prove
that the mixed EB method or the RBF-based method always lead to a SPD system we have
not encounter any numerical examples where the SPD property is lost. Below in Section 2.4,
we describe a simple algorithm to a-priori check whether the SPD structure is preserved. This
algorithm does not require the computation of eigenvalues.

Remark 1. To impose the boundary condition through RBF interpolation, we choose one inter-
polation point as the interior computational point and put the other two interpolation points on
the physical boundary. An alternative choice is to put all the three interpolation points on the
physical boundary. This alternative choice only modifies the right hand side, and hence always
results in a diagonally dominant SPD system. However, in numerical experiments we observe
that, without using the information of the interior computational point, this alternative RBF
interpolation strategy could sometimes lead to O(1) errors. Therefore we do not use and do not
recommend this alternative strategy.

.

..........
..........
.........

..........
..........
........

.........
.........
.........

.........
.........
........

........
........
........

........

........

.......

........

........

.......

........
........
........

.........
.........
........

.........
.........
.........

..........
..........
........

..........
..........

.........

.

..........
..........
.........

..........
..........
........

.........
.........
.........

.........
.........
........

........
........
........

........

........

.......

........

........

.......

........
........
........

.........
.........
........

.........
.........
.........

..........
..........
........

..........
..........

.........

e uu xBP

Γ

xij

xΓ1

=

xΓ2

-
ξ

Figure 5: An example where the condition (11) is violated. To handle this case the rotation
step in the RBF-based algorithm is employed.

8

Algorithm 2: Given a computational domain Ω, a Cartesian mesh, source f(x, y), and
boundary conditions, compute the numerical solution to (1).

Step 1: Locate the interior computational points and the interior boundary points. Obtain
the total number of computational points NC.
Step 2: Assemble the discrete Laplacian operator L ∈ RNC×NC and the right hand side
b ∈ RNC : apply the difference approximation (3) at the computational points
xC
k = (xi(k) , yj(k)), 1 ≤ k ≤ NC. If (xi(k)±1, yj(k)±1) is a boundary point, temporarily neglect

its contribution.
Step 3: Impose the boundary condition to correct L and b:
If (xi(k)−1, yj(k)) is a boundary point:

If i(k) − 2 ≤ 0 or (xi(k)−2, yj(k)) is outside Ω, then apply the line-by-line interpolation
to impose boundary condition and correct Lkk and bk.

Otherwise, apply the RBF interpolation to impose the boundary condition and correct
Lkk and bk.
Endif
If (xi(k)+1, yj(k)) or (xi(k) , yj(k)±1) is a boundary point, impose the boundary condition
similarly.
If the RBF interpolation was used, use the algorithm in Section 2.4 to check whether the
SPD structure is preserved.
Step 4: Solve the linear equation Lu = b with the conjugate gradient (CG) method and an
AMG preconditioner.

2.4 An algorithm to check the SPD structure for constant β

It is well known that the conjugate gradient method (CG) with the classical algebraic multigrid
preconditioner (AMG) [31] is efficient for SPD matrices. The proposed embedded boundary
method always results in a symmetric linear system. For many cases, the resulting linear system
is also diagonally dominant, which is a sufficient condition for symmetric positive definiteness.
However, for certain geometric configurations the matrix may not be diagonally dominant. For
these (rarely occurring) cases we present a simple algorithm to a-priori check whether the matrix
is positive definite.

To derive conditions guaranteeing that the discrete matrix corresponding to our discretization
of the Laplacian is SPD, we need a result for the one dimensional three-point central difference
discretization for uxx with the same type of boundary modification as in the embedded boundary
methods described above.

Consider a discretization along a grid-line in the x-direction with n grid points. Assume
that the boundary conditions on each side have been imposed by modifying the first and last
diagonal element in the matrix (and the right hand side vector). Then the resulting matrix can
be written

D(n)(a, b) =



(
a
)
, n = 1,(

a −1

−1 b

)
, n = 2,

a −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1

0 0 0 . . . −1 b


∈ Rn×n, n ≥ 3.

(12)

9

s s s s c c s s s c s s
c c c c c
c s s s c1 2 3

c s c s c4 5

c c c c c

Figure 6: Left: computational points and non-computational points along a grid line. Here the
ordering of the unknowns would be increasing from left to right. Right: lexicographic ordering
of the computational points results in a block diagonal discretization matrix (here with block
sizes 3,1,1. Solid points: computational points. Empty points: non-computational points.

The following Lemma (whose proof is given in Appendix A) gives conditions on a and b
which guarantee that D(n)(a, b) is SPD.

Lemma 2.1. The matrix D(n)(a, b) is symmetric positive definite, if one of the following con-
ditions is satisfied:

1.

n = 1, and a > 0. (13)

2.

n = 2, a > 0, and ab > 1. (14)

3.

n ≥ 3, a >
n− 2

n− 1
, b >

n− 2

n− 1
and a >

(n− 2)b− (n− 3)

(n− 1)b− (n− 2)
. (15)

As a result of Lemma 2.1, the following corollary gives us two conditions that are more
straightforward to check.

Corollary 1. The matrix D(n)(a, b) is symmetric positive definite if a > 1 and b > 1.

In general there may be holes in the computational domain and the discretization along
a grid line is then divided into S segments (see the example in the left picture in Figure 6).
Suppose that the k-th segment contains nk computational points ordered from left to right, then
the matrices corresponding to the discretization on each grid line segment can be arranged in
the following block diagonal form

Dline =


D(n1)(a1, b1)

D(n2)(a2, b2)
. . .

D(nS)(aS , bS)

 . (16)

The matrix Dline thus contains the discretization of the second derivative along a single, say,
horizontal grid line. As a direct result of Lemma 2.1 and the block structure of (16), we have
the following Theorem.

Theorem 1. The matrix Dline, defined in (16), is symmetric positive definite, if for each of the
blocks, D(nk)(ak, bk), the numbers ak, bk, nk satisfy one of the conditions in Lemma 2.1.

In higher dimensions there will be many grid lines and many segments but, assuming lexi-
cographic ordering (see the right picture in Figure 6), the discretization matrix for the second
derivative in x will still be block diagonal with each block being a tridiagonal matrix on the
form (12). Let this “two dimensional” block diagonal matrix with tridiagonal blocks be called

10

Dxx. Similarly let the matrix Dyy be a block diagonal matrix with tridiagonal blocks corre-
sponding to the discretization of the second derivative in y along all grid lines but now with an
ordering of the degrees of freedom that is fast in the y-index. Finally let P be the permutation
matrix that converts between the fast-in-x (lexicographic) and fast-in-y ordering. Then, using
the lexicographic ordering the approximation of the Laplacian is −L = Dxx + PTDyyP and we
have the following theorem.

Theorem 2. Consider a two dimensional embedded boundary discretization on a grid with Nc
computational points and resulting in block diagonal matrices Dxx ∈ RNc×Nc and Dyy ∈ RNc×Nc

in the fast-in-x and fast-in-y orderings, respectively. Assume that all of the one dimensional one
segment discretization matrices (in both the x and y direction) satisfy the conditions in Lemma
2.1, then the matrix −L = Dxx + PTDyyP is symmetric positive definite.

Proof. The matrix is manifestly symmetric. Let v ∈ RNC be an arbitrary non-zero vector. With
Dxx and Dyy being symmetric positive definite, vTDxxv > 0 and vTPTDyyPv > 0 and so

−vTLv = vTDxxv + vTPTDyyPv > 0 + 0 = 0. (17)

At the implementation level, when we check the conditions in Lemma 2.1, the width of
each 1D segments can be found based on the mask matrix, and the values of ak and bk can be
computed based on the boundary corrections along the horizontal (or vertical) direction.

3 Numerical results

We now demonstrate performance of our method through series of numerical examples including
Poisson’s equation, the Helmholtz equation, the heat equation and the wave equation. Through-
out the l2 error and l∞ error are computed by

El2 =

√∑
i,j

h2 (uij − uexact(xi, yj))
2
, El∞ = max

i,j
|uij − uexact(xi, yj)| . (18)

Throughout this section, DOF stands for the degrees of freedom. In the RBF interpolation, we
choose the polyharmonic spline φ(r) = r3 as the radial basis function. For the Poisson and the
heat equation with implicit time stepper, the linear solver is chosen as the conjugate gradient
(CG) method with a classic algebraic multigrid (AMG) preconditioner [31]. Both the V -cycle
and W -cycle are considered in the AMG method. The iterative solver is considered to have
converged when the relative residual smaller than 10−12. In all of our numerical experiments,
we observe that the resulting discrete Laplacian operator is always SPD.

Our code is implemented in Julia, and we use the AMG preconditioner and CG solver from
the open source packages AlgebraicMultigrid.jl and IterativeSolvers.jl.

3.1 Poisson’s equation in a non-convex geometry

We consider a glass-shaped and non-convex geometry determined by the level-set function

ψ(x, y) = 0.5− e−20((x−0.25)2+(y−0.5)2) − e−20((x−0.75)2+(y−0.5)2). (19)

The Dirichlet boundary condition and the source function are chosen such that ψ(x, y) is an
exact solution with β(x, y) = −8. An (N + 1)× (N + 1) uniform mesh partitioning [0, 1]× [0, 1]
is used. With this non-convex geometry, the RBF interpolation will be activated in the mixed
EB method.

The numerical solution and error for N = 1280 are presented in Figure 7. In Figure 8 the
errors for N = 50 to N = 500 are also displayed. For both of the mixed and the RBF-based

11

Figure 7: Poisson’s equation in two dimensions, ∇ · (β∇u) = f , with Dirichlet boundary con-
ditions on a glass-shaped domain. Left: Numerical solution with N = 1280. Right: The error
between the numerical and the exact solution.

Figure 8: Convergence check for the AMG preconditioned embedded boundary method on
the glass-shapes domain. Left: Numerical errors correspond to different grid size h. Middle:
Numerical errors of the gradient for different h. Right: The total number of iterations for
convergence for different N2.

method, the l2 and l∞ error converges as O(h2). The error of the gradient ∇u converges as
O(h1.7) in l2 and O(h) in l∞. The total number of iterations for convergence for the W -cycle
are independent of the size of the problem and are always 7 or 8. The number of iterations for
the V -cycle scale as O(DOF 0.19).

We also compute the eigenvalues with the smallest and largest magnitude, λSmall and λLarge,
for 50 ≤ N ≤ 500, and plot them in Figure 9. As can be seen they are all negative and as
expected λSmall scales approximately as O(h−2) while λLarge converges to −8 as the mesh is
refined.

3.2 Poisson’s equation on a tilted square

We take the following example from [27]. The computational domain is [−3, 3]× [−3, 3], and Ω
is a tilted square determined by the level set function

ψ(x, y) = max
(

max
(
| (x̂−px)−(ŷ−py) | −1, | (x̂−px)+(ŷ−py) | −1, | (ŷ−py)−(x̂−px) | −1

))
,

where x̂(x, y) = x cos(θπ)−y sin(θπ) and ŷ(x, y) = x sin(θπ)+y cos(θπ). We take px = 0.691 and
py = 0.357 so that the center of the tilted square (px, py) does not fall exactly on a grid point. We
take θ = 0.313 so that the tilted square is not symmetric in the x or y direction. The boundary
of the tilted square Ω has a kink. The exact solution for this example is u(x, y) = e−x

2−y2

and
β(x, y) = 1.0. A (N + 1)× (N + 1) uniform mesh is used.

12

Figure 9: Glass shaped geometry: the maximum and minimum eigenvalues of the discrete
Laplace operator as a function of h. Left: the embedded boundary method using mixed inter-
polation. Right: the embedded boundary method using RBF-based interpolation.

Figure 10: Poisson’s equation in two dimensions, ∇ · (β∇u) = f , with Dirichlet boundary
conditions on a tilted-square domain. Left: Numerical solution with N = 1280. Right: The
contours of the error between the numerical and the exact solution.

Figure 11: Convergence check for the AMG preconditioned embedded boundary method on a
tilted-square domain. Left: Numerical errors as a function of h. Middle: Numerical errors of the
gradient as a function of h. Right: The total number of iterations for convergence for different
N2.

The numerical solution and error for N = 1280 are presented in Figure 10. Sweeping from
N = 50 to N = 500, numerical results are presented in Figure 11. For both the mixed and the

13

RBF-based method, we observe second order accuracy for the solution in both l∞ and l2. The
error in the gradient ∇u scales as O(h1.13) in l∞ and O(h1.68) in l2. As in the example above,
the total number of iteration for convergence stays fixed at 7 when the W -cycle is used and
scales as O(DOF 0.17) when the V -cycle is used.

This geometry can result in stencils that are no longer diagonally dominant. Out of the 451
considered values of N , 25 of them result in a linear system that is not diagonal dominant. For
all the system sizes the criteria to check the SPD property from Section 2.4 guarantees that the
matrix is SPD.

3.3 Geometry determined by parametric curves

In our previous examples, Ω is determined by a level set function. Here we consider a case when
it is determined by a parametric curve:

Γ = {(x, y) = (x(θ), y(θ)) , θ ∈ [θL, θR]}. (20)

We define the level set function ψ(x, y) as the signed distance function ψSD(x, y). Let the closet
point on the boundary interface Γ to x = (x, y) be xn = (xn, yn). The amplitude of ψSD(x, y)
is ||x − xn||. The sign of ψSD(x, y) is determined by the cross-product of the normal vector
n = −−→xxn and the tangent vector τ of Γ passing xn, and ψSD(x, y) is negative for x = (x, y)
inside Ω.

To find the closet point to x = (x, y) on the boundary Γ, a good initial guess is needed.
We uniformly partition [θL, θR] with Nguess points, and use the point corresponding to θguess =
arg min1≤k≤Nguess{||(x, y)− (x(θk), y(θk))||} as the initial guess.

When the line-by-line interpolation is applied, we need to approximate the horizontal or
vertical distance from the interior boundary points to the boundary interface Γ. One can
compute this distance exactly, but here we re-use the infrastructure for the levelset description
of the geometry and instead use a second order approximation of the desired distance. Take the
case in Figure 12 as an example, xi,j is a computational point, xi−1,j is a boundary point and
xi−2,j is outside Ω. xΓ lies on the boundary interface Γ. Following [7], ||xi−1,j − xΓ|| can be
approximated as:

||xi−1,j − xΓ|| =
ψSD(xi−1, yj)

ψSD(xi−1, yj)− ψSD(xi−2, yj)
h+O(h2). (21)

3.3.1 Poisson’s equation on a bone-shaped geometry

We take the example from [14, 21] and solve Poisson’s equation on a bone-shaped irregular
domain in the computational domain [−1.5, 1.5]× [0, 3]. The exact solution is u = ex(x2 sin(y)+
y2) and β = 2 + sin(xy). The boundary Γ is parameterized by(

x(θ), y(θ)
)

=
(

0.6 cos(θ)− 0.3 cos(3θ), 1.5 + 0.7 sin(θ)− 0.07 sin(3θ) + 0.2 sin(7θ)
)

with θ ∈ [0, 2π]. An (N + 1)× (N + 1) uniform mesh partitioning [−2, 2]× [−1, 3] is used.
The numerical solution for N = 1280 and its difference from the exact solution are presented

in Figure 13. Sweeping from N = 50 to N = 500, numerical results are presented in Figure 14.
For both the mixed and the RBF-based EB methods, we observe O(h1.84) error in l∞ and
O(h1.80) error in l2 for u. The l∞ error of the gradient ∇u scale as O(h0.85) and the l2 error
scale as O(h1.57). The total number of iterations needed by the W -cycle is smaller than the
V -cycle. The former scales as O(DOF 0.3) and the later scales as O(DOF 0.35). Except for 4 out
of the 451 considered discretization sizes, the resulting linear system is diagonally dominant,
and the proposed criteria to check the SPD structure is never violated. The eigenvalues with
the smallest and largest magnitude λSmall and λLarge are plotted in Figure 15. They are all

14

.

...............
...............

...............
....

..............
..............
..............
...

.............
.............
.............
...

.............
.............
.............

............
............
............

...........
...........
..........

...........
...........
.......

..........
..........
.......

..........
..........
.....

..........
..........
...

.........
.........
....

.........
.........
..

........

........

..

........

........

.........

........

.........
........

..........
.......

..........
.......

............
.......

...............
.......

..................
.......

.....................
.......

.........................
......

.............................
....

..................................
..

.......................................

e u

Γl

xi−1,j

xi,jxi−2,j

xΓ
@

@
@I

Figure 12: Two grid points xi−1,j and xi−2,j which border xΓ. An approximation of the distance
between a boundary point xi−1,j and the intersection point xΓ of the interface with the line yj
by the linear interpolation of the level set function.

Figure 13: Poisson’s equation in two dimensions, ∇ · (β∇u) = f , with Dirichlet boundary
conditions on a bone-shape domain. Left: Numerical solution with N = 1280. Right: The
contours of the error between the numerical and the exact solution.

negative, and λSmall scales approximately as O(h−2). Moreover, |λLarge| is smaller than 24,
which is the eigenvalue with largest magnitude of the problem with periodic boundary condition
and conductivity coefficient β̃ = max(|β(x, y|) = 3.

3.3.2 The Helmholtz equation in a star-shaped geometry

We consider the star-shaped geometry described in [14]. We partition the computational domain
[−1, 1]× [−1, 1] by a (N + 1)× (N + 1) uniform mesh. The boundary interface is parameterized
by (

x(θ), y(θ)
)

=
(

0.02
√

5 + (0.5 + 0.2 sin(5θ)) cos(θ), 0.02
√

5 + (0.5 + 0.2 sin(5θ)) sin(θ)
)

with θ ∈ [0, 2π], and the center of this star shape is (0.02
√

5, 0.02
√

5). We solve the Helmholtz
equation

ω2u+ ∆u = 1000δ(xs)δ(ys), ω = 50, (22)

15

Figure 14: Convergence check for the AMG preconditioned embedded boundary method for a
bone-shaped domain. Left: Numerical errors as a function of h. Middle: Numerical errors of the
gradient as a function of h. Right: The total number of iterations for convergence for different
N2.

Figure 15: Bone-shaped geometry: the maximum and minimum eigenvalues of the discrete
Laplace operator as a function of h. Left: the embedded boundary method using mixed inter-
polation. Right: the embedded boundary method using RBF-based interpolation.

with zero Dirichlet boundary conditions. Here, (xs, ys) = (−0.375, 0.125) and δ is the Dirac
delta function which is approximated by a two dimensional hat function whose integral is one.
The Helmholtz operator ω2I + ∆ is indefinite, and we use the MINRES method as our linear
solver. The numerical solution for N = 800 is presented in Figure 16.

3.4 Heat equation

In this example, we consider the heat equation with Dirichlet boundary conditions

ut = ∇ · (β∇u) + f, (x, y) ∈ Ω, (23a)

u(x, y, t) = uD(x, y), (x, y) ∈ Γ and u(x, y, 0) = uI(x, y). (23b)

We consider β(x, y) = 0.25− x2 − y2, and impose a homogenous Dirichlet boundary condition.
The geometry Ω is a disk determined by the level set function ψ(x, y) = 0.25 − x2 − y2. The
source f(x, y, t) and the initial condition are chosen such that u(x, y, t) = e−t(x2 + y2 − 0.25).
The computational domain is [−1, 1]× [−1, 1] partitioned by a (N + 1)× (N + 1) uniform mesh.

We use our method as the spatial discretization and the Crank-Nicolson method as the time
integrator with a time step size ∆t = h. In this example only the V -cycle is used in the AMG.
When inverting the linear system, we use the data from last step as initial guess. We solve the
problem for time t ∈ [0, 0.5]. The numerical solution with N = 1000 at t = 0.5 is presented
in Figure 17. The l2 and l∞ errors in u at t = 0.5 are converging as O(h2), the error of the

16

Figure 16: The Helmholtz equation in two dimensions, ω2u+ ∆u = f , with Dirichlet boundary
conditions in a star-shaped domain. Plotted is the numerical solution with N = 800.

gradient ∇u at t = 0.5 converges as O(h) in l∞ and as O(h1.45) in l2. On average, we need 2
iterations for convergence per time step.

Figure 17: The heat equation in two dimensions, ut = ∇ · (β∇u) + f , with Dirichlet bound-
ary conditions on a disk-shaped domain. Left: Numerical solution using N = 1000. Middle:
Numerical error as a function of h at the final time T = 0.5. Right: Numerical errors of the
gradient as a function of h at the final time T = 0.5.

3.5 The wave equation

In this example we solve the wave equation with homogenous Dirichlet boundary conditions

∂2u(x,y,t)
∂t2 = ∇2u(x, y, t), (x, y) ∈ Ω ≡ {x2 + y2 < 1}, t > 0,

u(x, y, t) = 0, (x, y) ∈ Γ ≡ {x2 + y2 = 1}.

The initial data is chosen so that the solution is a standing mode

umn(r, θ, t) = Jm(rκmn) cosmθ cosκmnt. (24)

17

Here Jm(z) is the Bessel function of the first kind of order m, (m = 0, 1, . . .) and κmn is the nth
zero of Jm. In this problem we set m = n = 7. Then κ77 = 31.4227941922 and the period of
the solution is 2π

κ77
= 0.1999562886971.

To discretize in time we use the so-called θ-scheme (see e.g. [3])

un+1 − θ∆t2∇2un+1 = 2un + (1− 2θ)∆t2un − un−1 + θ∆t2∇2un−1. (25)

Here θ ≥ 0 is a parameter that can be chosen to obtain different schemes. The values we consider
here are θ = 0, which corresponds to the classic explicit leap-frog scheme, θ = 1/2, 1/4 which
corresponds to second order unconditionally stable implicit methods, and θ = 1/12 which leads
to an implicit method that is fourth order accurate but with a stability constraint on the time
step. Comparing the explicit method and the fourth order accurate method, the latter can march
with a time step that is roughly 50% larger than the second order explicit method. We discretize
the domain (x, y) ∈ [−1.1, 1.1]2 using 100, 200, 400 and 800 grid points and evolve the numerical
solution for 10.2 periods. The mixed EB method is used in the spatial discretization. We use
∆t/h = (0.7, 2, 2, 0.85) for the schemes corresponding to θ = (0, 1/2, 1/4, 1/12). The initial
data are set using the exact solution. In Table 1 we report max-errors, along with computed
rates of convergence (using two subsequent refinement levels) and average number of CG-AMG
iterations per time step, at the final time. It is clear that for this example there is no benefit
to use an unconditionally stable time stepping method as the temporal errors are dominating
the total error if ∆t > h. On the other hand, the fourth order method achieves an error that
is roughly equivalent with the explicit scheme and may be a suitable alternative for problems
with solutions that vary rapidly in time.

In Figure 18 and Figure 19 we display the numerical solution and the error for the four
different methods.

h θ = 0 p θ = 1
2 p iter θ = 1

4 p iter θ = 1
12 p iter

2.2(-2) 3.6(-2) ∗ 2.0(-1) ∗ 6.0 5.7(-1) ∗ 6.0 5.9(-2) ∗ 3.0
1.1(-2) 9.2(-3) 2.0 4.8(-1) -1.3 6.0 7.6(-3) 6.2 5.2 2.1(-2) 1.5 3.0
5.5(-3) 2.5(-3) 1.9 6.0(-2) 3.0 6.0 5.1(-2) -2.7 5.0 6.1(-3) 1.8 3.0
2.75(-3) 6.7(-4) 1.9 3.5(-2) 0.8 6.0 1.6(-2) 1.7 5.0 1.6(-3) 1.9 3.0
1.375(-3) 1.7(-4) 2.0 9.9(-3) 1.8 5.0 4.3(-3) 1.9 5.0 4.1(-4) 2.0 3.0

Table 1: The table displays max-errors, along with computed rates of convergence (using two
subsequent refinement levels) and average number of CG-AMG iterations per time step, at the
final time T . The results are for the wave equation example

3.6 Quantity of interest determined by geometry parameters

In shape optimization problems, a quantity of interest (QOI) or loss may be determined by the
parameters of the geometry. In order to find the optimal geometry, the gradient of the QOI or
loss with respect to the parameters needs to be computed. If one wants to use an embedded
boundary method as a building block for shape optimization the QOI computed by the method
should be smooth with respect to the parameter. To show the potential of our method for these
type of problems, we consider two prototype examples.

In the first example, we consider Poisson’s equation on an elliptical shape with a fixed area

x2

a2
+

y2

1/a2
= 1.

Here, a ∈ [0.5, 2], β = 1 and zero Dirichlet boundary conditions are used. The source function
is f(x, y) = 3. The QOI is the value of u at point (0, 0). In Figure 20, we present the QOI and

18

x
-1.0 -0.5 0.0 0.5 1.0

y

-1.0

-0.5

0.0

0.5

1.0
u(x,y,T)

-0.2

-0.1

0.0

0.1

0.2

x
-1.0 -0.5 0.0 0.5 1.0

y

-1.0

-0.5

0.0

0.5

1.0
u(x,y,T)

-0.2

-0.1

0.0

0.1

0.2

x
-1.0 -0.5 0.0 0.5 1.0

y

-1.0

-0.5

0.0

0.5

1.0
u(x,y,T)

-0.2

-0.1

0.0

0.1

0.2

x
-1.0 -0.5 0.0 0.5 1.0

y

-1.0

-0.5

0.0

0.5

1.0
u(x,y,T)

-0.2

-0.1

0.0

0.1

0.2

Figure 18: The wave equation, utt = ∇2u, with zero boundary condition on a disk shaped
geometry. Numerical solutions with θ = (0, 1/2, 1/4, 1/12) correspondingly from left to right,
from top to bottom at the final time.

compute its derivative with respect to a by the central difference method. Both the QOI and
computed derivative are smooth. We observe that u(0, 0) has the minimum at a = 1, when the
elliptical shape becomes a unit circle. We also observe that the value of u(0, 0) corresponding
to a and 1

a equal to each other.
In the second example, we consider an ellipsoid that is rotated by an angle α and the QOI

is the integration of u in the rectangular domain [−1, 1]× [−0.5, 0.5]. The rotated-ellipse-shape
geometry is determined by the level-set function

ψ(x, y) =
(x cos(θ)− y sin(θ))2

16
+

(x sin(θ) + y cos(θ))2

4
− 1. (26)

where θ ∈ [0, 2π). We consider the Poisson equation with β = 1 and zero Dirichlet boundary
conditions, and the source function is f(x, y) = 3. A 501 × 501 uniform mesh partitioning
[−5, 5] × [−5, 5] is used. In Figure 20, we present the QOI and compute its derivative with
respect to θ by the central difference method. Both of the QOI and the derivative are smooth.
Expected symmetry is also observed.

For both examples, the QOI and its derivative computed by our method are smooth, and
the underlying geometric symmetry is also respected.

19

x
-1.0 -0.5 0.0 0.5 1.0

y

-1.0

-0.5

0.0

0.5

1.0
e(x,y,T)

-0.002

-0.001

0.000

0.001

0.002

x
-1.0 -0.5 0.0 0.5 1.0

y

-1.0

-0.5

0.0

0.5

1.0
e(x,y,T)

-0.03

0.00

0.03

x
-1.0 -0.5 0.0 0.5 1.0

y

-1.0

-0.5

0.0

0.5

1.0
e(x,y,T)

-0.04

-0.02

0.00

0.02

0.04

x
-1.0 -0.5 0.0 0.5 1.0

y

-1.0

-0.5

0.0

0.5

1.0
e(x,y,T)

-0.005

0.000

0.005

Figure 19: The wave equation, utt = ∇2u, with zero boundary condition on a disk shaped
geometry. Displayed are the errors for θ = (0, 1/2, 1/4, 1/12) correspondingly from left to right,
from top to bottom at the final time.

4 Conclusion

In summary, we have developed a universal embedded boundary method to solve Poisson’s equa-
tion, the heat equation or the wave equation in general two-dimensional domains with complex
geometries subject to Dirichlet boundary conditions. The two advantages of this method are:
(1) by using interior boundary points instead of placing the ghost point outside the compu-
tational domain, the small-cell stiffness is avoided. (2) to impose the boundary condition, we
apply the line-by-line interpolation or RBF interpolation, which results in a SPD linear system.
The SPD structure of the discrete Laplacian operator can be rigorously proved for the convex
geometry and is numerically verified for non-convex geometries. A simple criteria to a-priori
check the SPD property is also proposed.

A possible next step in our work is to generalize the current method to problems with
the Neumann boundary conditions. Other possible extensions include combining the current
method with the level set method for moving boundary problems (e.g. Stefan problem) and the
generalization of the method to the Navier-Stokes equations, and the Grad-Shafranov equations
[22, 29].

20

Figure 20: Computations of QOIs with geometry parameter. Top left: QOI vs a for the first
example. Top right: the derivative of QOI with respect to a vs a for the first example. Bottom
left: QOI vs the rotation angle α for the second example. Bottom right: the derivative of QOI
with respect to α vs the rotation angle α for the second example.

A Proof of Lemma 2.1

For the case n = 1 and n = 2, the lemma can be verified through direct computations of leading
principal minors. We only focus on the case n ≥ 3.

The matrix D(n)(a, b) is manifestly symmetric. To prove that D(n) ∈ Rn×n is SPD, we
use mathematical induction to prove that its leading principal minors are all positive. When
1 ≤ k ≤ n− 1, the k-th order leading principal minor of D(n) ∈ Rn×n is

Q
(n)
k (a) = det



a −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 2


︸ ︷︷ ︸

k×k

, 1 ≤ k ≤ n− 1. (27)

21

The n-th order leading principal minor of D(n)(a, b) ∈ Rn×n is

P (n)(a, b) = det



a −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 b


︸ ︷︷ ︸

n×n

. (28)

(1) We first prove that if a > n−2
n−1 , then the first n − 1 principal minors of D(n) ∈ Rn×n,

namely Q
(n)
k (a) (1 ≤ k ≤ n− 1) are all positive.

For n = 3, with direct computations, one can check that if a > 3−2
3−1 = 1

2 then Q
(3)
1 (a) and

Q
(3)
2 (a) are positive. Now, for the induction case n − 1, we assume if a > n−3

n−2 , then the first

n− 2 principal minors of D(n−1), namely Q
(n−1)
k (a) (1 ≤ k ≤ n− 2), are all positive. With this

induction assumption, we will prove that if a > n−2
n−1 then the first n − 1 principal minors of

D(n)(a, b) are all positive.

The definition in (27) implies that Q
(n)
k (a) = Q

(n−1)
k (a) when 1 ≤ k ≤ n − 2. Moreover, if

a > n−2
n−1 , then a > n−3

n−2 and the induction assumption leads to

Q
(n)
k (a) = Q

(n−1)
k (a) > 0, 1 ≤ k ≤ n− 2.

Now, we only need to prove that Q
(n)
n−1 is positive:

Q
(n)
n−1(a) = det



a −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 2


= det



a −1 0 . . . 0 0
0 2− 1

a −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 2


= aQ

(n−1)
n−2

(
2− 1

a

)
. (29)

Moreover, if a > n−2
n−1 > 0, then

2− 1

a
> 2− n− 1

n− 2
=
n− 3

n− 2
, (30)

and together with the induction assumption for n− 1, we have

Q
(n)
n−1(a) = aQ

(n−1)
n−2

(
2− 1

a

)
> 0.

(2) At last, we prove if a > (n−2)b−(n−3)
(n−1)b−(n−2) and b > n−2

n−1 , the last principal minor P (n)(a, b) is

positive. We perform an induction proof with respect to n.

For the base case, when n = 3, b > n−2
n−1 = 1

2 and a > (n−2)b−(n−3)
(n−1)b−(n−2) = b

2b−1 . A direct

computation shows that P (3)(a, b) is positive. Now, we turn to the induction case, for n − 1,
assume that

b >
n− 2

n− 3
and a >

(n− 3)b− (n− 4)

(n− 2)b− (n− 3)
(31)

22

implies that P (n−1)(a, b) is positive.
We note that P (n)(a, b) can be related to P (n−1)

(
2− 1

a , b
)

through the rules of determinants
as follows:

P (n)(a, b) = det



a −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 b


= det



a −1 0 . . . 0 0
0 2− 1

a −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 b


= aP (n−1)

(
2− 1

a
, b

)
. (32)

Now, we just need to verify that a > 0 and P (n−1)
(
2− 1

a , b
)
> 0 under the assumption that

b > n−2
n−1 and a > (n−2)b−(n−3)

(n−1)b−(n−2) . As b > n−2
n−1 and a > (n−2)b−(n−3)

(n−1)b−(n−2) , we have

(n− 1)b− (n− 2) > 0, (n− 2)b− (n− 3) ≥ (n− 2)2 − (n− 1)(n− 3)

n− 1

1

n− 1
> 0,

0 <
1

a
<

(n− 1)b− (n− 2)

(n− 2)b− (n− 3)
and a∗ = 2− 1

a
> 2− (n− 1)b− (n− 2)

(n− 2)b− (n− 3)
=

(n− 3)b− (n− 4)

(n− 2)b− (n− 3)
.

Hence, we have b = n−2
n−1 >

n−2
n−3 , and a∗ > (n−3)b−(n−4)

(n−2)b−(n−3) . The induction assumption for the n−1

case in (31) is satisfied and P (n−1)
(
2− 1

a , b
)

= P (n−1) (a∗, b) > 0.

References

[1] D. Appelö and N. A. Petersson. A fourth-order embedded boundary method for the wave
equation. SIAM Journal on Scientific Computing, 34(6):2982–3008, 2012.

[2] GA Barnett. A robust RBF-FD formulation based on polyharmonic splines and polynomials.
PhD thesis, Citeseer, 2015.

[3] Steven Britt, Eli Turkel, and Semyon Tsynkov. A high order compact time/space finite
difference scheme for the wave equation with variable speed of sound. Journal of Scientific
Computing, 76(2):777–811, 2018.

[4] Oscar P. Bruno and Mark Lyon. High-order unconditionally stable fc-ad solvers for general
smooth domains I. basic elements. Journal of Computational Physics, 229(6):2009–2033,
2010.

[5] Han Chen, Chohong Min, and Frédéric Gibou. A supra-convergent finite difference scheme
for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian
grids. Journal of Scientific Computing, 31(1):19–60, 2007.

[6] Han Chen, Chohong Min, and Frédéric Gibou. A numerical scheme for the Stefan problem
on adaptive Cartesian grids with supralinear convergence rate. Journal of Computational
Physics, 228(16):5803–5818, 2009.

[7] S Chen, B Merriman, Smereka Osher, and P Smereka. A simple level set method for solving
Stefan problems. Journal of Computational Physics, 135(1):8–29, 1997.

[8] G. Chesshire and W.D. Henshaw. Composite overlapping meshes for the solution of partial-
differential equations. Journal of Computational Physics, 90(1):1–64, 1990.

23

[9] Armando Coco and Giovanni Russo. Finite-difference ghost-point multigrid methods on
Cartesian grids for elliptic problems in arbitrary domains. Journal of Computational
Physics, 241:464–501, 2013.

[10] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations.
Bulletin of the American Mathematical Society, 49(1):1 – 23, 1943.

[11] Natasha Flyer, Bengt Fornberg, Victor Bayona, and Gregory A Barnett. On the role
of polynomials in RBF-FD approximations: I. Interpolation and accuracy. Journal of
Computational Physics, 321:21–38, 2016.

[12] Bengt Fornberg, Tobin A Driscoll, Grady Wright, and Richard Charles. Observations
on the behavior of radial basis function approximations near boundaries. Computers &
Mathematics with Applications, 43(3-5):473–490, 2002.

[13] Frédéric Gibou and Ronald Fedkiw. A fourth order accurate discretization for the Laplace
and heat equations on arbitrary domains, with applications to the Stefan problem. Journal
of Computational Physics, 202(2):577–601, 2005.

[14] Frederic Gibou, Ronald P Fedkiw, Li-Tien Cheng, and Myungjoo Kang. A second-order-
accurate symmetric discretization of the Poisson equation on irregular domains. Journal of
Computational Physics, 176(1):205–227, 2002.

[15] Hans Johansen and Phillip Colella. A Cartesian grid embedded boundary method for
Poisson’s equation on irregular domains. Journal of Computational Physics, 147(1):60–85,
1998.

[16] Ziad Jomaa and Charlie Macaskill. The embedded finite difference method for the Pois-
son equation in a domain with an irregular boundary and Dirichlet boundary conditions.
Journal of Computational Physics, 202(2):488–506, 2005.

[17] H.-O. Kreiss and N. A. Petersson. A second order accurate embedded boundary method
for the wave equation with Dirichlet data. SIAM J. Sci. Comput., 27:1141–1167, 2006.

[18] H.-O. Kreiss, N. A. Petersson, and J. Yström. Difference approximations for the second
order wave equation. SIAM Journal on Numerical Analysis, 40(5):1940–1967, 2002.

[19] H.-O. Kreiss, N. A. Petersson, and J. Yström. Difference approximations of the Neu-
mann problem for the second order wave equation. SIAM Journal on Numerical Analysis,
42(3):1292–1323, 2004.

[20] J.-R. Li and L. Greengard. High order marching schemes for the wave equation in complex
geometry. Journal of Computational Physics, 198(1):295–309, 2004.

[21] Zhilin Li. A fast iterative algorithm for elliptic interface problems. SIAM Journal on
Numerical Analysis, 35(1):230–254, 1998.

[22] Shuang Liu, Qi Tang, and Xian-zhu Tang. A parallel cut-cell algorithm for the free-
boundary grad–shafranov problem. SIAM Journal on Scientific Computing, 43(6):B1198–
B1225, 2021.

[23] B Lombard and J Piraux. Numerical treatment of two-dimensional interfaces for acoustic
and elastic waves. Journal of Computational Physics, 195(1):90–116, March 2004.

[24] B. Lombard, J. Piraux, C. Gelis, and J. Virieux. Free and smooth boundaries in 2-d
finite-difference schemes for transient elastic waves. Geophysical Journal International,
172(1):252–261, 2008.

24

[25] M. Lyon. High-order unconditionally-stable FC-AD PDE solvers for general domains. PhD
thesis, Caltech, 2009.

[26] Mark Lyon and Oscar P. Bruno. High-order unconditionally stable FC-AD solvers for gen-
eral smooth domains II. elliptic, parabolic and hyperbolic PDEs; theoretical considerations.
Journal of Computational Physics, 229(9):3358–3381, 2010.

[27] Yen Ting Ng, Han Chen, Chohong Min, and Frédéric Gibou. Guidelines for Poisson solvers
on irregular domains with Dirichlet boundary conditions using the ghost fluid method.
Journal of Scientific Computing, 41(2):300–320, 2009.

[28] Richard B. Pember, John B. Bell, Phillip Colella, William Y. Curtchfield, and Michael L.
Welcome. An adaptive cartesian grid method for unsteady compressible flow in irregular
regions. Journal of Computational Physics, 120(2):278–304, 9 1995.

[29] Zhichao Peng, Qili Tang, and Xian-Zhu Tang. An adaptive discontinuous petrov-galerkin
method for the grad-shafranov equation. SIAM J. Sci. Comput., 42:B1227–B1249, 2020.

[30] Charles S. Peskin. Flow patterns around heart valves: A numerical method. Journal of
Computational Physics, 10(2):252–271, 10 1972.

[31] John W Ruge and Klaus Stüben. Algebraic multigrid. In Multigrid methods, pages 73–130.
SIAM, 1987.

[32] Peter Schwartz, Michael Barad, Phillip Colella, and Terry Ligocki. A Cartesian grid em-
bedded boundary method for the heat equation and Poisson’s equation in three dimensions.
Journal of Computational Physics, 211(2):531–550, 2006.

[33] Göran Starius. Composite mesh difference methods for elliptic boundary value problems.
Numerische Mathematik, 28(2):243–258, 1977.

[34] J Visher, S Wandzura, and A White. Stable, high-order discretization for evolution of the
wave equation in 1+1 dimensions. Journal of Computational Physics, 194(2):395–408, 2004.

[35] Evgenii Alekseevich Volkov. The method of composite meshes for finite and infinite regions
with piecewise smooth boundary. Trudy Matematicheskogo Instituta imeni VA Steklova,
96:117–148, 1968.

[36] S. Wandzura. Stable, high-order discretization for evolution of the wave equation in 2 + 1
dimensions. Journal of Computational Physics, 199(2):763–775, 2004.

[37] R. Weller and H. Shortely. Calculation of stresses within the boundary of photoelastic
models. J. Appl. Mech, 6:A71–A78, 1939.

[38] Grady Barrett Wright. Radial basis function interpolation: numerical and analytical devel-
opments. University of Colorado at Boulder, 2003.

25

	1 Introduction
	2 Universal embedded boundary discretization of the Laplacian
	2.1 Imposing the boundary condition at boundary points
	2.1.1 Line-by-line interpolation

	2.2 Radial Basis Function (RBF) interpolation
	2.3 Choice of interpolation strategy
	2.4 An algorithm to check the SPD structure for constant

	3 Numerical results
	3.1 Poisson's equation in a non-convex geometry
	3.2 Poisson's equation on a tilted square
	3.3 Geometry determined by parametric curves
	3.3.1 Poisson's equation on a bone-shaped geometry
	3.3.2 The Helmholtz equation in a star-shaped geometry

	3.4 Heat equation
	3.5 The wave equation
	3.6 Quantity of interest determined by geometry parameters

	4 Conclusion
	A Proof of Lemma 2.1

