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High-throughput materials research is strongly required to accelerate the development of safe and
high energy-density lithium-ion battery (LIB) applicable to electric vehicle and energy storage system.
The artificial intelligence, including machine learning with neural networks such as Boltzmann neural
networks and convolutional neural networks (CNN), is a powerful tool to explore next-generation
electrode materials and functional additives. In this paper, we develop a prediction model that
classifies the major composition (e.g., 333, 523, 622, and 811) and different states (e.g., pristine, pre-
cycled, and 100 times cycled) of various Li(Ni, Co, Mn)O, (NCM) cathodes via CNN trained on scanning
electron microscopy (SEM) images. Based on those results, our trained CNN model shows a high
accuracy of 99.6% where the number of test set is 3840. In addition, the model can be applied to the

case of untrained SEM data of NCM cathodes with functional electrolyte additives.

Lithium-ion battery (LIB) system consists of anode, cathode, electrolyte,
separator to name few. The interaction between each component is very
complicated, which hinders the full understanding of all the interactions
needed for developing high performance LIBs'. Furthermore, there are a lot
of factors affecting the overall capacity and cyclability even in the single
component’,

For instance, the nano- to micron scale structure, and composi-
tion affect the specific capacity and rate capability of the whole cell™*.
As such, various analysis and visualization tools are utilized to analyze
the complicated interactions between each component such as pri-
mary/secondary particles of cathode materials, functional binders,
and solid-electrolyte interphase (SEI) layer’”. To characterize SEI
layer, various inspection tools such as scanning electron microscopy
(SEM), TEM, AFM, X-ray photoemission spectroscopy, Fourier
transform infrared spectroscopy, and electrochemical impedance
spectroscopy (EIS) are used to measure its physical and chemical

properties®™".

Among those methods, SEM is one of the popular, easy, and intuitive
techniques to characterize the morphology of active materials and particle
distribution to capture different states of the electrodes. However, the
analysis of acquired images is strongly dependent on the domain experts’
knowledge and experience'>"”. In these regards, interpretable analysis tools
using artificial intelligence and machine learning approaches are being
developed because they are free from human subjectivity, have data-driven
results, and are able to analyze big data at the same time"*™>".

As machine learning can accelerate the process of human-dependent
labor-intensive analysis* ~, we propose to apply machine learning with class
annotation only, to extract composition and state of the specific NCM
cathode based on the SEM images. We acquired various SEM images of Li(Nj,
Co, Mn)O, (NCM) electrode in different states and compositions and used
them as the input of the machine learning model. The reason we chose
different nickel content of NCM electrode with or without functional addi-
tives is because it is the mostly used cathode materials in electrical vehicles and
energy storage system.
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Here, we develop a prediction model of various NCM cathode states
such as compositions (Ni = 0.3, 0.5, 0.6, and 0.8 while all summation of Ni,
Co, and Mn is 1) and conditions (pristine, formation (less aged) and 100
cycles with 1 C-rate (aged)), and apply the model to various NCM electrodes
with functional additives without any further learning to check the
extendibility of our model. For qualitative analysis, we compare the survey
accuracy of 14 domain experts with the accuracy of our model.

Results

When working with collaborators from battery industry, we found that the
domain experts could frequently distinguish each component by merely
looking at the morphology of particles in SEM images. This could be due to
the fact that SEM brightness is correlated with the specific elements such as
electron density, and the morphology of a particle in SEM images is mostly
determined by the composition of such elements. Furthermore, they could
also point out whether the image contains a pristine or a cycled particle
based on the fact that pulverization leads to smaller-sized particles as a
function of charge and discharge cycles. For those reasons, SEM offers
intuitive information about the chemical composition and the cycled state in
an easily accessible way within a few minutes.

As such, we wondered if we can systematically characterize the com-
position and state of the active materials by using computer vision-based
machine learning algorithm. In order to correlate visual representation
information with the composition and cycle states of LIB cathode electrodes,
we utilized a computationally efficient CNN model named EfficientNet,
which was designed for classification applications using dimension scaling
technique in 20177,

We conducted SEM imaging of various NCM cathode materials, which
include four different Ni contents (Ni= 0.3, 0.5, 0.6, 0.8 at NCM cathode)
and three cycled states (pristine, formation, and cycled for 100 times). The
SEM images were acquired under 500 times magnification to identify each
NCM electrode state. The total number of images is 1637 before augmen-
tation process. Before training, we first augmented all the images, resulting
in 2400, 600, and 600 images for the training, validation, and test sets,
respectively.

To have sufficient number of training and validation images for our
CNN model, we systematically augmented the data by cropping the images.
The original SEM images were subdivided into several sizes and evaluated to
maximize the prediction accuracy efficiently because of limited computa-
tional resources.

Specifically, the observed SEM images were cropped into designated
sizes of sub-images (training and validation images) with randomized x and
y coordinates to comprise the entire NCM particles (2nd particle mainly).
The size and number of sub-images are one of the hyper-parameters needed
to be optimized, of which details can be found in “Optimization of CNNs”.
The best dataset has 4800 images, which consists of 80% training and 20%
validation sets randomly selected from generated sub-image set.

After composing the dataset, we have trained CNNs under Ryzen 7
3800XT 8-core processor, 64 GB RAM, and NVIDIA GeForce RTX 3080
with 10 GB VRAM system. Elapsed training time takes ~2 h and inference
time for 360 images is less than 5 min. Typical hyper-parameters such as
learning rates, size of training batch, and color normalization were opti-
mized via the Asynchronous Successive Halving Algorithm (ASHA) pro-
vided by Ray Tune package™.

With the help of ASHA, a bandit algorithm searches™ the next options
to train the model for finding the highest accuracy within 20 epochs.
Afterwards, the trained model estimates the composition in terms of Ni, Co,
and Mn contents and their cycle state from given SEM images.

For comparison, we conducted a domain expert survey using a Google
Document format (https://forms.gle/9dBd3GG8FCnNHQPKS). As SEM
images of cathode materials were used for many studies, domain expert has
morphological and electrochemical understandings to determine the
composition and state. Determining accuracies of CNN and human
researchers has been described in the following section. Overall workflow is
summarized in Fig. 1.

Performance of CNN

The best network classified the NCM images correctly with an accuracy of
99.6% among 2430 test images from 12 categories, which include the
composition of NCM samples and cycling states.

Figure 2 illustrates representative SEM images with the size of
300 x 300 pixels and guided gradient class activation map (grad-CAM)
overlays” on SEM images. The images in each row have the same NCM
composition and that of each column shares the same cycling state. NCM
cathode consists of primary particles (diameter of hundreds of nanometers)
and secondary agglomerates (diameter of tens of micrometers) after pro-
cessing and cycling steps of which morphology is composition dependent.

For a few cycles of charge and discharge, chemical reactions between
the cathode and electrolyte generally generate SEI that facilitates smooth ion
movement in and out of cathode during lithiation and delithiation
processes.

The existence and growth of the SEI layer affects the lifetime of battery,
which necessitates the understanding of the SEI layer. However, the thick-
ness of the cathode-electrolyte interphase (CEI) that is a SEI layer at cathode
side is typically less than 100 nm, which can be challenging to capture and
analyze by using SEM images quantitatively. Especially, for high nickel
NCM, the CEI property is more critical to cathode performance’*.
Another factor influencing the performance of LIBs is the volumetric
expansion and contraction of electrode materials during lithium-ion dif-
fusion, which occurs inevitably with the ionic current flow back and forth.
This leads to structural changes and electrochemical instability which cause
degradation in overall capacity of battery cells”.

Nevertheless, the SEM can capture the microstructural changes near
cathode particles, which is difficult to spot and describe in detail for the
human researchers, and these descriptors can be correlated to their states
with the help of CNNs.

In order to understand the decision-making process of CNNs, we
generated grad-CAM images, as shown in Fig. 2a. The grad-CAM technique
pulled the fitted gradients out to understand the importance of each layer,
visualizing feature maps to the designated target classes™. Thus, the red areas
of grad-CAM images in the form of heatmap were positively connected to
the predictions from the trained model while the blue areas negatively. In
addition, we evaluated the prediction in the test using confusion matrix and
the classification report that contains precision, recall, and F1-score, as
shown in the Supplementary Fig. 1 and Supplementary Table 1 below,
respectively. As we can see in the confusion matrix above, the majority of the
image classes were correctly classified. However, several of NCM333 for-
mation and NCM811 cycled images were incorrectly classified, leading to a
low recall below 0.90 (0.72), and low precision below 0.90 (0.81), respec-
tively, as shown in the Supplementary Table 1 above. Other classes have
precision and recall above 0.90, which is good. Overall, the total accuracy
determined by the F-1 score is high (96% or 0.96).

Although the same magnification has been used for capturing all the
NCM cathode materials, there are brightness and image quality variations
due to the complex interaction between the cathode materials and electron
beam. The intensity of SEM images typically varies depending on the
conductivity of samples near the surface. The grayscale levels can be adjusted
by controlling the accelerating voltage of electron beam and the aperture
ratio of lens.

Nevertheless, acquiring similar level of brightness and contrast across
different images is very tedious and difficult. As such, normalizing the
brightness and contrast levels inside the augmentation process might be
needed. However, our attempts to normalize the images did not result in
better performance.

Based on Supplementary Fig. 2, each histogram in different
composition and state of NCM cathode materials shows different
slopes and distributions. Furthermore, Supplementary Fig. 2 and
Supplementary Fig. 3 show that training and validation images show
similarity of slope and distribution with insignificant average and
standard deviation, which is also captured in Supplementary Table 2.
These results mean that normalization of each image may reduce
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Fig. 1 | Schematic diagram of workflow. The workflow starts with data acquisition,
proceeds through data augmentation, model training, and ends with prediction. The
prediction accuracy surpasses that of domain experts.

information dimension, which is detrimental for at least estimating
the composition and states of NCM cathode materials.

Indeed, using the original images resulted in much better performance,
which is counter-intuitive. Specifically, when we used normalization process
to test the best model, the model classified the state of images with very low
accuracy of 20% with the same test dataset. Thus, we speculate that color
distributions of SEM images are carrying some of state information, which
was removed during normalization processes. The distributions of training
and test image datasets as shown in Supplementary Figs. 2, 3 and Supple-
mentary Table 2 have characteristic shapes, but it is hard to distinguish the
states of cathode materials based on this pixel counts. Furthermore, because
of large contrast levels, normalization throughout the dataset causes
grayscale clipping effect that is information loss from exceeding threshold
value (0-255) likewise washed out in photography.

In order to understand how our CNN predicts the composition and
state accurately without normalization process, we examined the grad-CAM
overlay images, in which most of high reaction points were located in the
boundary of particles and gap between particles. If most of the high reaction
points were located in the center of the particles or disconnected points on
the particles, we would speculate the importance of the size and morphology
of the particles to predict each composition and state. Therefore, the reason
our model shows high accuracy was because it captures the shape and length
of boundaries between particles in addition to the contrast level of the image
to predict the composition and state.

Although some cases including NCM523 formation and
NCMS523 cycled contain some impurities or by-products than other
cases, the model bypasses such anomalies and captures the interfaces
between secondary particles. In addition, in most cases showing well-
defined secondary particle shapes, the grad-CAM overlay images
indicate strong intensity along particle boundaries such as NCM622
pristine and NCM622 formation cases. In the case of Ni-rich com-
position (NCM811), the size of secondary particles is smaller than
other compositions®*, and red area of grad-CAM overlay covers pits
generated from small secondary particles.

We also analyzed misclassified cases, of which number was 10 among
2430 test images. one of misclassified case predicted NCM523 pristine state
from NCM622 pristine image. To see the decision process in more detail, we
plotted the probabilities of all class as shown in Fig. 2b. We found that the
model picked NCM523 with probability of 66.2%, which was larger than
NCM622 with probability of 33.8%. It should be noted that other compo-
sition was not even considered, showing strong capability of distinguishing
samples with large difference in composition.

When we compare the SEM images in true cases of NCM523 and
NCM622 in Fig. 2a, it is difficult to define characteristic features to deter-
mine what belongs to NCM622 class or NCM523. Likewise, grad-CAM
images of two most prominent classes show similar spatial distribution of
red and blue areas, which might have contributed to the error in the
prediction.

Distinguishing the morphologies of cathode materials with naked eyes
is difficult even for domain experts. We gathered the responses from 14
domain experts matching the visual representation to their different states
(composition and cycling state) of 19 SEM images, which is plotted in
Fig. 2c. The highest score from the survey was 13 out of 19 given images,
which is 68.4%, and the average number of the correct match was 5.71 out of
19, which is 30.0%.

Qualitatively, domain expert assumed the size of particles in the pre-
sented image was related to the composition in terms of Ni content and the
roughness of the boundary between particles implied cycling states. Some of
the experts complained that the by-products from cycling steps were
accumulated on the particles, which might degrade the quality of SEM
images rendering poor judgment. Based on our survey, we claim that it is
challenging to match the morphologies to compositions and cycling states
without any provided information using an intuitive way.

Optimization of CNNs

By using ASHA and bandit algorithms, hyper-parameters were optimized
through grid search on parameter space. The learning rate, image aug-
mentation methods including random rotation and flipping, and batch size
were tested for training accuracy under 20 epochs in each candidate. The
image augmentation methods including flipping and rotation were
removed after optimization process, and using pretrained weight can help fit
the model on SEM images of electrode materials.

Although the ImageNet dataset, which is dataset used for pretraining
process, does not share the same features as those of electrode materials, the
CNNes trained on the ImageNet dataset settle down faster than CNNs with
random weights, which is also the case in other fields””". The learning rate
was selected to be 3.5 x 10~ from 0.0001 to 0.1 on uniform log scale grid
search and batch size to be 10 images. Along with provided handy tool for
typical hyper-parameters including learning rate, batch size, and grayscale
normalization, we trained CNNs with various image sizes and number of
training images to have most accurate network model.

Figures 3a, b, e, f plot the resulting accuracies of training and validation
sessions during optimization process. Initially, the EfficientNet model was
designed for the size of 224 x 224 pixels, which is known for size of Ima-
geNet datasets™. Therefore, the image augmentation process was conducted
close to 224 x 224 pixels ranging from 100 x 100 pixels to 400 x 400 pixels.

After cropping, the total number of pixels in the images was resized to
224 x 224 pixels as the input dimension is fixed at 224 x 224 pixels. How-
ever, the length and width of the images were invariant to keep the same size
measured from the SEM images. So, each image carries different number of
particles and structural contexts on training and validation sessions causing
local optimum of 300 x 300 pixels as depicted in Fig. 3c.

In Fig. 3d, the selected SEM images with different cropped sizes are
shown. The average electrode particle size of the full dataset is ~12 um, so the
number of particles in the image varies from few tens to few hundreds.

From the low prediction accuracy in small-sized images, we speculate
that the prepared image dataset does not carry sufficient information to
correctly classify the given test sets. On the other hand, if the size is too large,
the model tends to lose the detailed features, which may be related to the
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Fig. 2 | Comparative analysis between CNN model
and domain experts. a Example images of true cases
and their grad-CAM overlays from the best trained
network. b Probability of each class for false case and
grad-CAM overlays of top-most highest classes.
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composition and the cycled state. As such, the test accuracy shows a bell-
shaped curve as a function of the image size as shown in Fig. 3c.

We also investigated the optimum number of training and validation
images, which was varied by subdividing the original SEM images. This was
to find the best network with smallest datasets and shortest elapsed time for
fitting. If randomly cropped area is not covered sufficiently, it is difficult to
transfer the context of NCM latent features for predicting their composition
and cycling states.

As the number of images in each class increases, the epochs reaching
optimal points in validation process increases as depicted in Fig. 3f. The
CNNs were optimized for training image datasets mostly within 10 epochs

because they contain pretrained weights in structured manner for classifi-
cation applications.

Another factor in optimization process is the elapsed time for fitting the
neural network model. Although the performance increases with increasing
the number of images, the iteration time also increases for each epoch with
the size of training datasets. The elapsed time for a single epoch using
training dataset increases linearly from ~20 s to ~190 s when the number of
images increases from 50 to 500 based on Fig. 3e. In case of validation
dataset, the saturated accuracy increases from ~90% to ~98% as the number
of images increases from 50 to 500 based on Fig. 3f. Furthermore, the
minimum number of epochs to reach the saturated accuracy is 2 for 400
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images, as shown in Fig. 3f. Thus, we conclude that increasing the number of
images above 400 for a single set does not enhance the performance of the
model significantly. As such, we used 400 images with 300 x 300 pixels for
training network that predicts the composition and cycling states of NCM
cathodes.

Finally, we investigated the impact of the SEM magnification level on
the model. We tested our model, trained on the images with different
magnification of 100x, 500x, and 5000x in Supplementary Fig. 4. As we can
see from Supplementary Table 3, the magnifications level does not affect the
accuracy significantly. Therefore, we found that the accuracy does not
improve with increasing magnification to our surprise. Based on these
results, we claim that higher magnification does not allow for training with
smaller data sets.

In addition, accelerating voltage is clearly affecting the brightness and
contrast of the SEM images as shown in Supplementary Fig. 5, so we used
this parameter to see if it affects the accuracy of our model. To save time and
cost, we used pristine samples with different nickel content, namely
NCM333, NCM622, and NCM811. However, as we can see from Supple-
mentary Table 4, the accelerating voltage does not significantly affect the
accuracy of model. Therefore, we think that normalization throughout the
dataset caused grayscale clipping effect, which led to information loss from
exceeding threshold value (0-255) as in the case of washed-out in photo-
graphy rather than losing information from the brightness and contrast of
SEM images.

To strengthen the impact of our work, we trained the same machine
learning algorithm with NCM images obtained using optical microscopy
(OM) with magnifications of 5x, 10x, 20x, 50x, and 100x. Optical micro-
scopes would be significantly cheaper to implement in manufacturing and
the demonstration that an ML model can be used to elevate a simple
instrument would be significant. To avoid large investments in time and
cost, we just used the pristine NCM samples: pristine NCM333(16 images),
pristine NCM622 (11 images), and pristine NCM811 (10 images). Before
training, we first augmented all the images, resulting in 2400, 600, and 600
images for the training, validation, and test sets, respectively. After that, we
performed training and validation, and the resulting trained model per-
formances are shown in Supplementary Fig. 6. The loss function curves for
training and validation are decreased, and their corresponding accuracies
are increased after training for 40 epochs, indicating that the model is
suitable for classifying the NCM images obtained using the OM, as shown in
Supplementary Fig. 6a, b. The test’s confusion matrix shows that most
images could be classified correctly. Only eight pristine NCM811 images
and four pristine NCM333 images were misclassified into eight pristine
NCM622 images and four pristine NCM811 images, respectively, as shown
in Supplementary Fig. 6c. The classification report in the test set shows high
precision and recall, and the total accuracy is 98% (0.98), as shown in
Supplementary Table 5. Therefore, our machine learning algorithm
adapting OM images was confirmed with high accuracy of electrodes
estimation.
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Fig. 4 | Application of CNN model to electrode a)
materials with additives. a Prediction accuracies on
SEM images of electrode materials with additives
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We investigated the preprocessing effect of histogram equalization
techniques, CLAHE for preventing clipping effect in the SEM images.
Supplementary Fig. 7 shows the comparison of the SEM image samples
without the CLAHE equalization technique (left) and with the CLAHE
equalization technique (right). Based on the results, the application of
CLAHE to the SEM images has improved the visual quality by enhancing
the contrast and bringing out details that were less visible in the original
images. To verify loss and accuracy effects by CLAHE equalization, Sup-
plementary Fig. 8 shows a loss function where the validation loss is much
higher and more volatile than the training loss, indicating a degree of
overfitting as the model learns the training data well but fails to generalize
these learnings to unseen data. Supplementary Fig. 9 presents the accuracy
over epochs, with training accuracy reaching near-perfect levels, while
validation accuracy fluctuates significantly, reinforcing the suggestion of
overfitting. Supplementary Fig. 10 is a confusion matrix of the test set, which
shows high true positive rates for most classes. The overall high accuracy,
however, is contradicted by the lower values in some classes. Some classes,
such as 523_formation and 523, have a large number of misclassifications as
shown in the confusion matrix. From this observation, we speculate that
even though the CLAHE can improve the visual quality of the SEM images
by enhancing the contrast, it actually degrades the normalized SEM images
because when they were used as the input into the model, the performance of
the loss function, accuracy, and confusion matrix are much worse than those
without the CLAHE and normalization process.

Predicting state of cathode with functional additive using
untrained CNN networks
It is well known that the functional additive enhances LIB performance by
e.g, generating electrochemically and mechanically robust interface
between electrode and electrolyte”. For example, some additives such as
vinylene carbonate (VC) and 1,3-propane sultone (PS) significantly
enhance the capacity retention, by generating stable interfaces in both
cathode and anode***.

In order to check the extended applicability of our trained CNN to other
types of NCM cathode, we applied our best-trained models to NCM333,

NCM622, and NCM 811 electrode materials with additives which were not
included in our training dataset. Figure 4a illustrates the compositional and
state accuracies of each category. The accuracy of overall prediction in
composition and cycling state was 34.17%, which limits the direct application
of our model to NCM cathodes with additives. However, the overall com-
positional accuracy was 96.0% implying that SEM images of electrode
materials with or without additives share common features and the trained
CNN captures the characteristic descriptors to predict their compositions.

Especially in the case of NCM 622 after formation, the trained CNN
predicted the composition and cycling state with 91.0% accuracy. Based on
this high accuracy, we assume that NCM622 samples with and without
additives are sharing common visual representation while undergoing
formation cycle.

The examples of SEM images and grad-CAM overlays from cathodes
with or without additives are shown in Fig. 4b. As discussed in the previous
section, it is almost impossible even for domain experts to specify the latent
common features that are correlated with cycling states.

The existence of functional additives in electrode materials might either
reduce the rate of degradation, which may be the cause of underestimating
the number of cycles like judging cycled state to be formation or induce
jittering in the boundary area that misleads the cycling state predictions
from 100 cycles to formation cycle. Through grad-CAM overlays, the best
CNN still pays attention to the boundary and gap between particles in
additive cases as trained dataset. This means the model behaves like domain
experts catching dominantly the interface topographies to predict
properties.

Discussion
We correlated the surface morphologies of NCM cathode materials cap-
tured by SEM images with the compositions and electrochemical states
using an EfficientNet-based CNN model. Our model showed 99.6% accu-
racy of both composition and cycled state classification, which is much
higher than 30% accuracy of domain experts.

We speculate that the most important features for understanding the
relationship between physical structure and compositions are coming from
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Fig. 5 | Schematic diagram of CNN model archi-
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interfacial area of primary and secondary particles based on the analysis of
the guided grad-CAM images.

The size of training images was determined by the number of particles
in the SEM images and the structure of pre-defined model architecture. In
order to confirm wider applicability of our model to other cathode materials,
we classified untrained SEM images obtained from samples with functional
additive (base electrolyte + 2 wt% VC + 1 wt% PS additives), resulting in
96.0% of accuracy for predicting the composition but 34.17% of accuracy for
predicting the cycling state.

As such, we think that our current model has a limitation to recognize
the state of an untrained electrode. If the NCM particle with the same
composition is developed by a different company, we should include them
in the training set to enhance the accuracy.

Methods

Preparation of samples

The NCM (NCM333 (LiNi, ;5Coy/5Mny505), 523 (LiNigsCog2Mng3;0,),
622 (LiNig4Cog,Mny,0,), and 811 (LiNigsCo ;Mng,0,), L&E Co. Ltd.,
Korea) were used as cathode active material and lithium metal foil (Honjo
Metal Co., Japan) was used as an anode active material. The NCM cathode
was fabricated by coating a slurry, mixture of NCM (94 wt%), carbon black
(Super P, Timcal, 3 wt%) as a conducting agent, poly(vinylidene fluoride)
(PVdF, Aldrich, 3 wt%) as a polymer binder in N-methyl-2-pyrrolidone
(Aldrich) as a solvent, onto Al foil (10 um thick) as a current collector,
drying in a vacuum at 100 °C for 24 h, and pressing with a line pressure of
1000 kgf. The active mass loading of the cathode film was
18.3-20.5 mg cm™". The coin-type cell (2032) for electrochemical perfor-
mance tests was fabricated by sequentially superimposing the NCM cath-
ode, the polyethylene separator, and Li foil anode, and injecting 400 pm of
the liquid electrolyte sample. Each NCM electrochemical cell was prepared
to observe variation of NCM performance (total 3 samples). The liquid

electrolyte used was a commercial liquid electrolyte (Enchem Co., Ltd,,
Korea) of 1 M LiPF¢/ethylene carbonate (EC): ethyl methyl carbonate
(EMC) (3:7 v/v) battery grade. In addition, the functional additives were
2 wt% VC and 1 wt% PS.

Electrochemical performance and characteristics

Galvanostatic charge-discharge cycling testing of the NCM/Li coin cell was
carried out using a cycler (Toscat 3000, Toyo Systems, Japan) in the voltage
range of 3.0-4.3 V using a formation protocol and the consecutively spe-
cified charge-discharge program. The formation protocol was charge-
discharge cycling at 0.1 C (14 mA g ' at NCM333, 15mA g ' at NCM523,
17mA g ' at NCM622, and 20 mA g~' at NCM811) for the first cycle on
constant-current and 0.2C for the 3 formation cycles on constant-current/
constant-voltage (0.02C) mode. The cycle tests were performed with 1 C for
100 cycles. Supplementary Fig. 11 shows the measured specific discharge
capacity as a function of cycle numbers for different NCM composition.
Each test was conducted for three times to calculate the standard deviation
of the specific capacity.

The NCMY/Li coin cell was disassembled after cycling and the surface
part of the cathode sheet was extracted to investigate the morphology var-
iation of electrode-electrolyte interphase and particle cracks. Before
obtaining the SEM images, we washed the electrode with DMC (Dimethyl
carbonate) after disassembling the cell. We dried it in the vacuum oven at
room temperature for 12 h and took SEM images. All processes including
washing and observing the electrode were conducted inside a dry room (dew
point < —50 °C).

We acquired scanning electron microscopy (SEM, SEC SNE-4500M
Plus) images of NCM cathodes at different states (pristine, formation and
cycled) from 100 positions, which were used in training and test datasets.
We controlled the contrast and brightness by aperture ratio of lens
(manually) with constant accelerating voltage of 20 kV.
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Image augmentation methods

It is difficult to acquire SEM images covering all of sample surface carrying
the structural context of electrode materials. Firstly, we collected test images
(10% of the full dataset) from each class before splitting the dataset. Then, we
cropped the test images to check the performance of the trained network.
Afterwards, 20% of the full dataset except the test dataset were selected for
validation process.

Random coordinates of rectangle, which are not overlapping with the
informatic area of SEM images, were generated to divide large SEM images.
The number of generated random coordinates can be altered for the opti-
mization process.

The designated number of images is the sum of training and validation
images, so 80% of generated images from the predefined training set goes
into the training dataset and the remaining 20% goes into validation dataset.
In order to avoid clipping problems, that is black-out or white-out of fea-
tures when we normalize the images having large grayscale range, we didn’t
apply color normalization, which is typically processed in classification
applications. Also, other image augmentation methods including random
rotation and flipping were tested.

EfficientNet architecture
We utilized state-of-the-art image classification network structure called
EfficientNet which has been developed in 2019””. The main structure follows
previously opened to public named MNasNet, which is illustrated in Fig. 5a.
Details of each MBConv blocks were explained as Fig. 5b, ¢, which has
tunable convolutional layers. One of the important considerations of
machine learning application is the efficiency. During training and actual
functioning environments, the designed architectures should respond fast
and accurate. In order to accomplish this goal, the developers brought
“compound scaling” method that is controlling the dimensions inside of
architectures under constraint resources. Typical CNNs having large
dimensions show high accuracy, but take a lot of computational resources.
The depth, width, and resolution of the models were parameterized com-
paring the profits using following equations:

depth = of | width = B, resolution = y* (1)
subjecttoa - -y*~2,a>1,>1,y> 1. Under this constraint, number of
calculations is proportional to 2%, and parameter ¢ controls the dimensions
that is directly related to the number of weights. In this study, we used the
model named “EfficientNet-b7” having 66 million parameters and requiring
37 billion FLOPs.

Data availability

The authors declare that the data supporting the findings of this study are
available within the article and its supplementary information files or from
the corresponding authors on reasonable request.

Code availability
Code is available at https://github.com/MIIMSEKAIST/CNN_for NCM-
composition-and-state-prediction.

Received: 20 February 2023; Accepted: 19 April 2024;
Published online: 04 May 2024

References

1. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451,
652-657 (2008).

2. Manthiram, A. A reflection on lithium-ion battery cathode chemistry.
Nat. Commun. 11, 1550 (2020).

3. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M.
Nano-sized transition-metal oxides as negative-electrode materials
for lithium-ion batteries. Nature 407, 496-499 (2000).

4. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite
polymer electrolytes for lithium batteries. Nature 394, 456-458 (1998).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Xu, Y. et al. Promoting mechanistic understanding of lithium
deposition and solid-electrolyte interphase (SEI) formation using
advanced characterization and simulation methods: recent progress,
limitations, and future perspectives. Adv. Energy Mater. 12,
2200398 (2022).

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond.
Chem. Rev. 114, 11503-11618 (2014).

Scharf, J. et al. Bridging nano- and microscale X-ray tomography for
battery research by leveraging artificial intelligence. Nat. Nanotechnol.
17, 446-459 (2022).

Liu, X. et al. Bridging multiscale characterization technologies and
digital modeling to evaluate lithium battery full lifecycle. Adv. Energy
Mater. 12, 2200889 (2022).

Cheng, D., Lu, B., Raghavendran, G., Zhang, M. & Meng, Y. S.
Leveraging cryogenic electron microscopy for advancing battery
design. Matter 5, 26-42 (2022).

Lin, F. et al. Synchrotron X-ray analytical techniques for studying
materials electrochemistry in rechargeable batteries. Chem. Rev. 117,
13123-13186 (2017).

Huang, B., Li, Z. & Li, J. An artificial intelligence atomic force
microscope enabled by machine learning. Nanoscale 10,
21320-21326 (2018).

Wang, X, Li, Y. & Meng, Y. S. Cryogenic electron microscopy for
characterizing and diagnosing batteries. Joule 2, 2225-2234 (2018).
Sulzer, V. et al. The challenge and opportunity of battery lifetime
prediction from field data. Joule 5, 1934-1955 (2021).

Chen, C. etal. A critical review of machine learning of energy materials.
Adv. Energy Mater. 10, 1903242 (2020).

Vidal, C., Malysz, P., Kollmeyer, P. & Emadi, A. Machine learning
applied to electrified vehicle battery state of charge and state of
health estimation: state-of-the-art. [EEE Access 8,

52796-52814 (2020).

Chun, H., Kim, J. & Han, S. Parameter identification of an
electrochemical lithium-ion battery model with convolutional neural
network. IFAC-PapersOnLine 52, 129-134 (2019).

Zheng, H., Lu, X. & He, K. In situ transmission electron microscopy and
artificial intelligence enabled data analytics for energy materials. J.
Energy Chem. 68, 454-493 (2022).

Wei, J. et al. Machine learning in materials science. InfoMat 1,
338-358 (2019).

Andersson, M. et al. Parametrization of physics-based battery models
from input-output data: a review of methodology and current
research. J. Power Sources 521, 230859 (2022).

You, G., Park, S. & Oh, D. Real-time state-of-health estimation for
electric vehicle batteries: a data-driven approach. App/ Energy 176,
92-103 (2016).

Gu, G. H., Noh, J., Kim, I. & Jung, Y. Machine learning for renewable
energy materials. J. Mater. Chem. A Mater. 7, 17096-17117 (2019).
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A.
Machine learning for molecular and materials science. Nature 559,
547-555 (2018).

Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent
advances and applications of machine learning in solid-state
materials science. NPJ Comput. Mater. 5, 83 (2019).

Benkedjouh, T., Medjaher, K., Zerhouni, N. & Rechak, S. Remaining
useful life estimation based on nonlinear feature reduction and
support vector regression. Eng. Appl. Artif. Intell. 26,

1751-1760 (2013).

Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. &
Kim, C. Machine learning in materials informatics: recent applications
and prospects. NPJ Comput. Mater. 3, 54 (2017).

Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. & Dietmayer,
K. Health diagnosis and remaining useful life prognostics of lithium-
ion batteries using data-driven methods. J. Power Sources 239,
680-688 (2013).

npj Computational Materials | (2024)10:88


https://github.com/MIIMSEKAIST/CNN_for_NCM-composition-and-state-prediction
https://github.com/MIIMSEKAIST/CNN_for_NCM-composition-and-state-prediction

https://doi.org/10.1038/s41524-024-01279-6

Article

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Tan, M. & Le, Q. V. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. Preprint at https://arxiv.org/abs/
1905.11946 (2019).

Li, L. et al. A System for Massively Parallel Hyperparameter Tuning.
Preprint at https://arxiv.org/abs/1810.05934 (2018).

Yu, T. & Zhu, H. Hyper-Parameter Optimization: A Review of
Algorithms and Applications. Preprint at https://arxiv.org/abs/2003.
05689 (2020).

Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep
networks via gradient-based localization. In Proc. 2017 IEEE
International Conference on Computer Vision (ICCV) 618-626 (IEEE,
Venice, Italy, 2017).

Oh, J. et al. Effects of vinylene carbonate and 13-propane sultone on
high-rate cycle performance and surface properties of high-nickel
layered oxide cathodes. Mater Res Bull 132, 111008 (2020).

Oh, J. et al. A trade-off-free fluorosulfate-based flame-retardant
electrolyte additive for high-energy lithium batteries. J. Mater. Chem.
A. 10, 21933-21940 (2022).

Zhang, M. et al. Effect of micron sized particle on the electrochemical
properties of nickel-rich LiNig gCog 1Mng 1O, cathode materials.
Ceram. Int 46, 4643-4651 (2020).

Liu, S., Xiong, L. & He, C. Long cycle life lithium ion battery with lithium
nickel cobalt manganese oxide (NCM) cathode. J. Power Sources
261, 285-291 (2014).

Liu, J.-M. et al. Cough event classification by pretrained deep neural
network. BMC Med. Inf. Decis. Mak. 15(Suppl 4), S2 (2015).
Haciefendioglu, K., Demir, G. & Basaga, H. B. Landslide detection
using visualization techniques for deep convolutional neural network
models. Nat. Hazards 109, 329-350 (2021).

Qayyum, A., Meriaudeau, F. & Chan, G. C. Y. Classification of atrial
fibrillation with pre-trained convolutional neural network models. In
Proc. 2018 IEEE-EMBS Conference on Biomedical Engineering and
Sciences (IECBES) 594-599 (IEEE, Sarawak, Malaysia, 2018).

Deng, J. et al. ImageNet: A large-scale hierarchical image database. In
Proc. 2009 IEEE Conference on Computer Vision and Pattern
Recognition 248-255 (IEEE, Miami, FL, USA 2009).

Li, L. et al. Recent progress on electrolyte functional additives for
protection of nickel-rich layered oxide cathode materials. J. Energy
Chem. 65, 280-292 (2022).

Han, G., Li, B., Ye, Z., Cao, C. & Guan, S. The cooperative effect of
vinylene carbonate and 1,3-propane sultone on the elevated
temperature performance of lithium-ion batteries. Int. J. Electrochem.
Sci. 7, 12963-12973 (2012).

Zhang, B. et al. Role of 1,3-propane sultone and vinylene carbonate in
solid electrolyte interface formation and gas generation. J. Phys.
Chem. C. 119, 11337-11348 (2015).

Xia, J. et al. Comparative study on methylene methyl disulfonate
(MMDS) and 1,3-propane sultone (PS) as electrolyte additives for Li-
ion batteries. J. Electrochem. Soc. 161, A547-A553 (2014).

Xu, D. et al. Exploring synergetic effects of vinylene carbonate and
1,3-propane sultone on LiNig g§Mng 2Cog 2O,/graphite cells with
excellent high-temperature performance. J. Power Sources 437,
226929 (2019).

Xia, J. et al. Comparative study on prop-1-ene-1,3-sultone and
vinylene carbonate as electrolyte additives for Li(Ni;/3Mn13C04,3)O0o/
graphite pouch cells. J. Electrochem. Soc. 161, A1634-A1641 (2014).

45. Aurbach, D. et al. On the use of vinylene carbonate (VC) as an additive
to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47,
1423-1439 (2002).

46. Ota, H., Sakata, Y., Inoue, A. & Yamaguchi, S. Analysis of vinylene
carbonate derived SEl layers on graphite anode. J. Electrochem. Soc.
151, A1659 (2004).

Acknowledgements

This work was supported the KAIST-funded Global Singularity Research
Program for 2022 and 2023 under award number 1711100689 and the
National Research Foundation (NRF) grant funded by the Korea government
(MSIT) (2020M3H4A3081880, RS-2023-00247245). J.C.A. acknowledges
support from the DOE Data Reduction for Science award Real-Time Data
Reduction Codesign at the Extreme Edge for Science, the Army/ARL via the
Collaborative for Hierarchical Agile and Responsive Materials (CHARM)
under cooperative agreement W911NF-19-2-0119, and National Science
Foundation under grant OAC:DMR:CSSI-2246463.

Author Contributions

J.0.,J.Y.,C.H.L,,and S.H. conceived and designed the experiment. J.O.and
K.M.K. prepared the NCM samples and obtained the SEM images. J.Y.,
C.H.L., B.M,, and J.C.A. designed the machine learning model and
optimized the model. J.O., J.Y., B.M., and S.H. wrote the manuscript and all
the authors discussed and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-024-01279-6.

Correspondence and requests for materials should be addressed to
Seungbum Hong.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

npj Computational Materials | (2024)10:88


https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1810.05934
https://arxiv.org/abs/1810.05934
https://arxiv.org/abs/2003.05689
https://arxiv.org/abs/2003.05689
https://arxiv.org/abs/2003.05689
https://doi.org/10.1038/s41524-024-01279-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Composition and state prediction of lithium-ion cathode via convolutional neural network trained on scanning electron microscopy�images
	Results
	Performance�of CNN
	Optimization of�CNNs
	Predicting state of cathode with functional additive using untrained CNN networks

	Discussion
	Methods
	Preparation of samples
	Electrochemical performance and characteristics
	Image augmentation methods
	EfficientNet architecture

	Data availability
	Code availability
	References
	Acknowledgements
	Author Contributions
	Competing interests
	Additional information




