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 R T I C L E I N F O A B S T R A C T

itor: Hubert Saleur We study the multiplicity of irreducible representations in the decomposition of 𝑛 fundamentals 
of 𝑆𝑈 (𝑁) weighted by a power of their dimension in the large 𝑛 and large 𝑁 double scaling 
limit. A nontrivial scaling is obtained by keeping 𝑛∕𝑁2 fixed, which plays the role of an order 
parameter. We find that the system generically undergoes a fourth order phase transition in 
this parameter, from a dense phase to a dilute phase. The transition is enhanced to third order 
for the unweighted multiplicity, and disappears altogether when weighting with the first power 
of the dimension. This corresponds to the infinite temperature partition function of non-Abelian 
ferromagnets, and the results should be relevant to the thermodynamic limit of such ferromagnets 
at high temperatures.
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 Introduction

Nonabelian unitary groups 𝑆𝑈 (𝑁) play a crucial role in particle physics [1,2], and, indirectly through matrix models [3], in 
ing theory and gravity. Ungauged and gauged 𝑆𝑈 (2) and 𝑆𝑈 (3) groups are the most common, representing spin, flavor, or color 
grees of freedom. Matrix models, on the other hand, involve systems invariant under a larger 𝑆𝑈 (𝑁) symmetry, and eventually 
is taken to infinity to achieve a particular scaling limit.
Independently, magnetic systems with 𝑆𝑈 (𝑁) symmetry have been considered in the context of ultracold atoms [4–8], spin 
ains [9,10], or of interacting atoms on lattice sites [11–17] and in the presence of 𝑆𝑈 (𝑁) magnetic fields [18–20]. Such systems 
nsist of a large number of components (“atoms”), each carrying an irreducible representation of the symmetry group, and the full 
stem transforms under the same symmetry in the direct sum of the representations of the components. The decomposition of the 
tes of the full system into irreducible representations (irreps) of the symmetry group is, then, of physical relevance.
In previous work we derived the statistics of such decompositions [21] and investigated the properties of 𝑛 coupled 𝑆𝑈 (𝑁)
oms in the ferromagnetic regime, that is, in the regime where the mutual interaction of 𝑆𝑈 (𝑁) components would tend to “align” 
eir charges, also in the presence of an external nonabelian magnetic field coupled to the system [22]. We studied the system in 
 thermodynamic limit of a large number of atoms 𝑛 ≫ 1 and uncovered a rich phase structure, qualitatively and quantitatively 
fferent from that of usual 𝑆𝑈 (2) ferromagnets, involving various critical temperatures, hysteresis effects, coexistence of phases, 
d latent heat transfer during phase transitions.
The above raise the obvious question of the properties of such systems when both the large-𝑛 (thermodynamic) and large-𝑁
its are taken. This is the topic of the present work. We consider the number of irreducible components in the decomposition of 𝑛
ndamental irreps of 𝑆𝑈 (𝑁) weighted by a (positive) power of their dimension, which can be viewed as the infinite-temperature 
rtition function of an exotic ferromagnet. We derive the large-(𝑁, 𝑛) properties of this quantity in the appropriate scaling in that 
it, which requires 𝑛∕𝑁2 ∼ 1 as 𝑁, 𝑛 ≫ 1, and demonstrate that, in that limit, the representation content of the system undergoes 
phase transition in this parameter. This transition is model-independent, as the Hamiltonian becomes irrelevant in the infinite-
mperature limit, and thus represents a universal feature of such systems at high temperatures. Although the large-𝑁 limit may 
pear somewhat unnatural for physical applications, the weaker scaling of 𝑁 ∼

√
𝑛 required for this limit allows it to be achieved 

r reasonable values of 𝑁 even for large systems.
In the following sections, we review the relevant mathematics of decomposing a large number of fundamental 𝑆𝑈 (𝑁) repre-
ntations into irreducible components, stressing the fermion momentum parametrization of irreps and related duality properties. 
bsequently, we consider the multiplicity of each irrep weighted by various powers of the number of its states (dimension) in the 
rge-(𝑁, 𝑛) limit and solve for the saddle point irrep that maximizes it. We uncover a fourth-order phase transition in the order 
rameter 𝑡 = 𝑛∕(4𝑁2) in the generic situation, which becomes a stronger, third-order transition between a duality preserving and a 
ality breaking phase for the unweighted multiplicity, and disappears altogether when weighting by the number of states. We will 
nclude with some remarks on possible applications and directions for further investigation.

 Fermions and 𝑺𝑼 (𝑵) group theory: a brief review

We review here the description of irreducible representations of 𝑆𝑈 (𝑁) as 𝑁 -fermion energy eigenstates on the circle [23] and 
e corresponding composition rules in the fermion picture focusing on the results relevant for our considerations.
The correspondence of irreps of 𝑆𝑈 (𝑁) and 𝑁 -fermion energy eigenstates is most readily established by considering the action 

 a particle moving freely on the group manifold 𝑈 (𝑁) [24] with Lagrangian

 = −1
2Tr

(
𝑈−1𝑈̇

)2
, (2.1)

here 𝑈 is an 𝑁 -dimensional unitary matrix and overdot signifies time derivative. Classically, the particle performs geodesic motion 
 𝑈 (𝑁). Quantum mechanically, energy eigestates are matrix elements of irreps of 𝑈 (𝑁), the energy corresponding to the quadratic 
simir of the irrep.
The Lagrangian (2.1) is invariant under unitary conjugations of 𝑈 (as well as left- and right-multiplications by constant unitary 
atrices), with a conserved generator 𝑃 = 𝑖[𝑈−1, 𝑈̇ ], so we can impose the constraint that this conserved generator vanishes. Quan-
m mechanically, this amounts to choosing states invariant under unitary conjugations of 𝑈 . Energy eigenstates in this subspace 
come the conjugation-invariant linear combinations 

∑
𝑎 𝑟𝑎𝑎(𝑈 ) = Tr𝑟(𝑈 ) = 𝜒𝑟(𝑈 ), the latter being the character of the irrep, and 

pend only on the eigenvalues of the matrix 𝑈 .
Classically, we can implement the conjugation invariance constraint at the Lagrangian level by setting

𝑈 (𝑡) = 𝑉 diag{𝑧𝑗}𝑉 −1 , 𝑧𝑗 ∶= 𝑒𝑖𝑥𝑗 , 𝑥𝑗 ≡ 𝑥𝑗 + 2𝜋. (2.2)

e vanishing of 𝑃 implies that 𝑉 can be chosen time independent, and (2.1) becomes the Lagrangian of 𝑁 free particles on the 
it circle with coordinates 𝑥𝑗 . Since exchanging the eigenvalues is a special case of unitary conjugation, states 𝜙(𝑥1, … , 𝑥𝑁 ) are 
variant under exchange of the 𝑥𝑗 and are, in principle, bosonic. However, upon quantization, the change of variables from 𝑈 to 𝑥𝑗
2

troduces in the measure the absolute square of the Vandermonde determinant |Δ(𝐳)|2 , with
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Δ(𝐳) = (𝑧1⋯𝑧𝑁 )−
𝑁−1
2

|||||||||
𝑧𝑁−1
1 𝑧𝑁−2

1 ⋯ 𝑧1 1
𝑧𝑁−1
2 𝑧𝑁−2

2 ⋯ 𝑧2 1
⋮ ⋮ ⋱ ⋮ ⋮

𝑧𝑁−1
𝑁

𝑧𝑁−2
𝑁

⋯ 𝑧𝑁 1

|||||||||
. (2.3)

oldface 𝐳 stands for the full set of variable 𝑧1, … , 𝑧𝑁 , and similarly for other sets of 𝑁 quantities). The prefactor (𝑧1⋯ 𝑧𝑁 )−
𝑁−1
2

a pure phase introduced to make Δ(𝐳) invariant under uniform shifts of the 𝑥𝑖 ’s. Upon incorporating one factor Δ(𝐳) into the 
avefunction

𝜓(𝐳) = Δ(𝐳)𝜙(𝐳) , (2.4)

e integration measure in the 𝑥𝑗 becomes flat and the Hamiltonian becomes the standard free 𝑁 -particle Hamiltonian on the 
. Because of the prefactor Δ(𝐳) the states 𝜓(𝐳) are antisymmetric upon interchanging any two of the 𝑥𝑖. This establishes the 
rrespondence between the conjugation-invariant sector of the model (2.1) and free fermions on the circle, and thus of irreps of 
𝑈 (𝑁) and free fermion energy eigenstates. In particular, the fermion energy eigenstate corresponding to an irrep 𝑟 with energy 
= 𝐶2(𝑟) in terms of the corresponding quadratic Casimir becomes

𝜓𝑟(𝐳) = Δ(𝐳)𝜒𝑟(𝐳) , (2.5)

ith 𝜒𝑟(𝐳) the character of irrep 𝑟 in terms of the eigenvalues 𝑧𝑗 of 𝑈 .
The single-particle spectrum on the circle consists of discrete momentum eigenstates with eigenvalue 𝑘 = 0, ±1, ±2, … and energy 

𝑘 = 𝑘2∕2. An 𝑁 -fermion energy eigenstate corresponds to filling 𝑛 of the single-particle states with fermions. Call 𝑘1 > 𝑘2 >⋯ > 𝑘𝑁
e momenta of these states in decreasing order. The (unnormalized) wavefunction corresponding to this state is given by the Slater 
terminant

𝜓𝐤(𝐳) =

||||||||||
𝑧
𝑘1
1 𝑧

𝑘2
1 ⋯ 𝑧

𝑘𝑁−1
1 𝑧

𝑘𝑁
1

𝑧
𝑘1
2 𝑧

𝑘2
2 ⋯ 𝑧

𝑘𝑁−1
2 𝑧

𝑘𝑁
2

⋮ ⋮ ⋱ ⋮ ⋮
𝑧
𝑘1
𝑁

𝑧
𝑘2
𝑁

⋯ 𝑧
𝑘𝑁−1
𝑁

𝑧
𝑘𝑁
𝑁

||||||||||
. (2.6)

e total momentum of the fermions 𝐾 = 𝑘1 +⋯ + 𝑘𝑛 corresponds to the states picking up a phase 𝑒𝑖𝑐𝐾 upon the shift 𝑥𝑗 → 𝑥𝑗 + 𝑐, 
at is, upon 𝑈 → 𝑒𝑖𝑐𝑈 . It thus represents the 𝑈 (1) charge of the state. We may shift all momenta by a constant, changing 𝑘 and the 
(1) charge without affecting the 𝑆𝑈 (𝑁) part of the states, which can then be labeled by the 𝑁−1 shift-invariant integers 𝑘1 −𝑘𝑁 >

− 𝑘𝑁 >⋯ > 𝑘𝑁−1 − 𝑘𝑁 > 0. Alternatively, we can neutralize the 𝑈 (1) charge by introducing the prefactor (𝑧1… 𝑧𝑁 )−
∑

𝑖 𝑘𝑖∕𝑁 in 
.6), similarly to the prefactor introduced in Δ(𝐳). With this additional prefactor, (2.6) maps to (2.3) for the singlet representation 
r which 𝑘𝑖 =𝑁 − 𝑖, 𝑖 = 1, … , 𝑁 .

Finally, we note the correspondence with the standard Young tableau.1 This is done by expressing 𝑘𝑗 − 𝑘𝑁 in terms of variables 
as

𝓁𝑗 = 𝑘𝑗 − 𝑘𝑁 + 𝑗 −𝑁 , 𝓁1 ⩾ 𝓁2 ⩾⋯ ⩾ 𝓁𝑁−1 ⩾ 0 . (2.7)

e non-negative, ordered integers 𝓁𝑗 represent the length of rows 𝑗 = 1, 2, … , 𝑁−1 of the Young tableau of the irrep corresponding 
 the fermionic state. The transition from 𝑘𝑗 to 𝓁𝑗 is, in fact, bosonization (in the sense that any two consecutive 𝓁, unlike the 𝑘, 
n be equal), the 𝓁𝑗 corresponding to the possible momenta of 𝑁 bosons on the circle.

1. Composition of (fundamental) representations

Consider the direct product 𝑟1 × 𝑟2 of two (possibly reducible) representations 𝑟1 and 𝑟2. The basic relation

𝜒𝑟1×𝑟2 (𝑈 ) = Tr (𝑟1 × 𝑟2)(𝑈 ) = Tr 𝑟1(𝑈 )Tr 𝑟2(𝑈 ) = 𝜒𝑟1
(𝑈 )𝜒𝑟2

(𝑈 ) , (2.8)

plies, through ((2.4) and (2.5)), that their corresponding fermion states are related as

𝜓𝑟1×𝑟2 (𝐳) = Δ(𝐳)𝜒𝑟1
(𝐳)𝜒𝑟2

(𝐳) =
𝜓𝑟1

(𝐳)𝜓𝑟2
(𝐳)

Δ(𝐳)
= 𝜓𝑟1

(𝐳)𝜒𝑟2
(𝐳) = 𝜓𝑟2

(𝐳)𝜒𝑟1
(𝐳) . (2.9)

re we need the case of the fundamental 𝑓 for which the character is simply

𝜒𝑓 (𝐳) =
𝑁∑
𝑖=1

𝑧𝑖 . (2.10)

In standard physics convention, we use the term tableau instead of the term diagram that is used in mathematics, where tableau stands for a diagram with 
3

operly ordered integer entries in its boxes.
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e composition of two irreps 𝑟 ⊗ 𝑓 , the second one being the fundamental, is then straightforward. The fermion wavefunction of 
e state corresponding to 𝑟 ⊗𝑓 is, using (2.9) and (2.10), simply

𝜓𝑟⊗𝑓 (𝐳) = 𝜓𝑟(𝐳)𝜒𝑓 (𝐳) = 𝜓𝑟(𝐳)
𝑁∑
𝑖=1

𝑧𝑖 . (2.11)

is can be used to obtain the fermionic state corresponding to the composition of several (𝑛 in number) fundamental irreps 𝑓 . The 
iginal, singlet state is simply Δ(𝐳) and an iteration of the above formula yields

𝜓𝑁,𝑛(𝐳) = Δ(𝐳)
( 𝑁∑

𝑖=1
𝑧𝑖

)𝑛

∶=
∑
𝐤

𝑑𝑛;𝐤

𝑁∏
𝑖=1

𝑧
𝑘𝑖
𝑖

. (2.12)

nce 𝜓𝑁,𝑛 is antisymmetric in the 𝑧𝑖, the coefficients 𝑑𝑛;𝐤 appearing above are fully antisymmetric in the 𝑘𝑖. When the 𝑘𝑖 are in 
creasing order, 𝑑𝑛;𝐤 gives the multiplicity of the irrep labeled by 𝑘1 >⋯ > 𝑘𝑁 .

To derive an explicit combinatorial expression for the multiplicity we first focus on the coefficients produced by the term (𝑧1 +
 + 𝑧𝑁 )𝑛, denoted by 𝐷𝑛;𝐤. We have(

𝑁∑
𝑖=1

𝑧𝑖

)𝑛

∶=
∑

𝑘1 ,…,𝑘𝑁

𝐷𝑛;𝐤

𝑁∏
𝑖=1

𝑧
𝑘𝑖
𝑖

, 𝐷𝑛;𝐤 = 𝛿𝑘1+⋯+𝑘𝑁 ,𝑛

𝑛!∏𝑁

𝑖=1 𝑘𝑖!
, 𝑘𝑖 ⩾ 0 . (2.13)

corporating the Vandermonde factor in (2.12) we eventually obtain [21]

𝑑𝑛;𝐤 = 𝑛!

𝑁∏
𝑗>𝑖=1

(𝑘𝑖 − 𝑘𝑗 )

𝑁∏
𝑖=1

𝑘𝑖!

= 𝑛! Δ(𝐤)∏𝑁

𝑖=1 𝑘𝑖!
with

𝑁∑
𝑖=1

𝑘𝑖 = 𝑛+ 𝑁(𝑁 − 1)
2

. (2.14)

e dimension of the irrep expressed in terms of the 𝑘𝑖 ’s becomes

dim(𝐤) =
𝑁∏

𝑗>𝑖=1

𝑘𝑖 − 𝑘𝑗

𝑗 − 𝑖
= Δ(𝐤)∏𝑁−1

𝑠=1 𝑠!
. (2.15)

2. Momentum density and a group duality

We conclude by giving a “second quantized” expression for the 𝑑𝑛,𝑘1 ,…,𝑘𝑁
that is useful in the large-𝑁, 𝑛 limit. Thinking of the 𝑘𝑖

 a distribution of fermions on the positive momentum lattice 𝑠 = 0, 1, … , we define the discrete momentum density of fermions 𝜌𝑠
ual to one on points 𝑠 of the momentum lattice where there is a fermion and zero elsewhere, that is,

𝜌𝑠 =
𝑁∑
𝑖=1

𝛿𝑠,𝑘𝑖
. (2.16)

early 𝜌𝑠, and in accordance with (2.14), satisfies the relations

𝑀∑
𝑠=0

𝜌𝑠 =𝑁 ,

𝑀∑
𝑠=0

𝑠𝜌𝑠 =𝐾 = 𝑛+ 𝑁(𝑁 − 1)
2

, (2.17)

here 𝑀 is a cutoff momentum that can be chosen arbitrarily as long as it is bigger than all the 𝑘𝑖’s. Then, it can be easily seen that 
.14) can be written as [21]

𝑑𝑛,𝐤 = 𝑛!
𝑀∏

𝑡>𝑠=0
(𝑡− 𝑠)(𝜌𝑠−1)𝜌𝑡 . (2.18)

e integer 𝑀 could in principle be taken to infinity. However, keeping it finite serves to demonstrate an interesting particle-hole 
ality of the formulae. Define

𝜌̃𝑠 = 1 − 𝜌𝑀−𝑠 , 𝑠 = 0,1,… ,𝑀 . (2.19)

early 𝜌̃𝑠 is the density of holes on the lattice [0, 𝑀] with the momentum reversed. Moreover, using (2.17), 𝜌̃𝑠 satisfies

𝑀∑
𝑠=0

𝜌̃𝑠 =𝑀 −𝑁 + 1 ,

𝑀∑
𝑠=0

𝑠 𝜌̃𝑠 = 𝑛+ (𝑀 −𝑁 + 1)(𝑀 −𝑁)
2

. (2.20)

erefore, 𝜌̃𝑠 represents an irrep of 𝑆𝑈 (𝑀 −𝑁 + 1) with the same excitation 𝑛 (total number of boxes) but with the rows in the 
4

ung tableau of the 𝑆𝑈 (𝑁) irrep turned into columns for 𝑆𝑈 (𝑀 −𝑁 + 1), which defines the dual irrep. One can check that
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𝑑𝑛,𝐤 = 𝑛!
𝑀∏

𝑡>𝑠=0
(𝑡− 𝑠)(𝜌̃𝑠−1)𝜌̃𝑡 . (2.21)

at is, in the decomposition of the tensor product of 𝑛 fundamentals of 𝑆𝑈 (𝑁), the multiplicity of any given irrep is the same as 
e one for its dual irrep in the product of 𝑛 fundamentals of 𝑆𝑈 (𝑀 −𝑁 + 1). Note that this relation holds for any 𝑀 such that 
⩾ 𝑘1 > 𝑘2 >⋯ > 𝑘𝑁 .

This duality between 𝑆𝑈 (𝑁) and 𝑆𝑈 (𝑀 −𝑁 + 1) can be turned into a self-duality if we choose 𝑀 = 2𝑁 − 1, which is possible 
𝑘1 ⩽ 2𝑁 − 1, that is, 𝓁1 ⩽𝑁 . This will be guaranteed in the case 𝑛 ⩽𝑁 since then, indeed, 𝓁1 ⩽ 𝑛 ⩽𝑁 .

 Large-𝑵, 𝒏 limits

The two parameters at our disposal in the 𝑆𝑈 (𝑁) case, namely 𝑁 and 𝑛, can be taken to be large in various ways, leading to 
fferent large-𝑁, 𝑛 limit regimes. The dimensionality of the Hilbert space of the system is 𝑁𝑛 , and both the 𝑛 ≫ 1 and the 𝑁 ≫ 1
its are driving it to infinity, although in qualitatively different ways: the limit 𝑛 ≫ 1 can be viewed as a standard thermodynamic 
it increasing the number of individual components (fundamental irreps) of the system, while the 𝑁 ≫ 1 limit swells the available 
ase space per degree of freedom. The relative scaling between 𝑛 and 𝑁 becomes important and, as we shall see, the distribution 
 irreps undergoes a phase transition at some critical line 𝑛 ∼𝑁2 in the two-dimensional parameter space spanned by 𝑁 and 𝑛. The 
act critical line is fixed by the statistical quantity of interest in the problem, namely, number of irreps, number of states, or a more 
neral combination.
In the following we will analyze the large-𝑛, 𝑁 limit of the distribution of irreps, derive the dominant distribution, establish the 
istence of a phase transition, and determine the order of the transition.

1. 𝑛 ≫𝑁 ∼ 1

The thermodynamic limit 𝑛 ≫𝑁 ∼ 1 is the most straightforward. It was derived in [21] and used in [22] to analyze the 𝑆𝑈 (𝑁)
rromagnet and determine its intricate phase transition diagram. We can use the Stirling approximation in the combinatorial formula 
r 𝑑𝑛;𝐤 given in (2.14). In that limit, 𝑘𝑖 ≫ 1 since from (2.14) their sum is of order 𝑛. The result is

𝑑(𝑁,𝑛;𝐤) =
𝑁−1∏
𝑠=1

𝑠! 𝑁
𝑛+𝑁2∕2 𝑒

𝑁2(𝑁2−1)
24𝑛√

2𝜋
𝑁−1

𝑛(𝑁2−1)∕2
dim(𝐤) 𝑒−

𝑁

𝑛
𝑐2(𝐤) , (3.1)

ith the dimension of the irrep and the corresponding quadratic Casimir given by (2.14) and

𝑐2(𝐤) =
1
2

𝑁∑
𝑖=1

(
𝑘𝑖 −

𝐾

𝑁

)2
− 𝑁(𝑁2 − 1)

24
, (3.2)

here factors subleading in 1∕𝑛 are eliminated. Distribution (3.1) implies that in the limit 𝑛 ≫ 1 the deviations of 𝑘𝑖 from their mean 
lue 𝐾∕𝑁 ∼ 𝑛∕𝑁 scale as

𝑘𝑖 −
𝐾

𝑁
∼
√

𝑛 . (3.3)

2. 𝑁, 𝑛 ≫ 1

The limit where both 𝑁 and 𝑛 are large is more interesting. It that limit it does not make sense any more to define a continuous 
stribution 𝑑(𝑁, 𝑘1, … , 𝑘𝑁 ), as the dimensionality of the space of 𝑘𝑖 grows to infinity for large 𝑁 . Instead, it is possible to define 
density of points 𝜌(𝑘) that is the continuous version of 𝜌𝑠 defined in (2.16) smoothed over the position of lattice points 𝑠 around 
omentum 𝑘, and express the number of irreps 𝑑𝑛,𝐤 as a functional of this density 𝜌(𝑘). Alternatively, 𝜌(𝑘) can be defined through 
e continuous momentum function

𝑘(𝑗) ≃ 𝑘𝑗 (𝑗 = 1,… ,𝑁) , 𝜌(𝑘) = − 𝑑𝑗

𝑑𝑘(𝑗)
at 𝑘(𝑗) = 𝑘 (3.4)

e minus sign in the definition of 𝜌(𝑘) is needed to ensure a positive 𝜌 since 𝑘𝑗 is decreasing with 𝑗). Then, using the continuous 
rsion of (2.18), the logarithm of the number of irreps 𝑑𝑛,𝐤 ∶= 𝑑𝑛[𝜌(𝑘)] becomes in the continuous approximation

ln
𝑑𝑛[𝜌(𝑘)]

𝑛!
=

∞

∫
0

𝑑𝑘

𝑘

∫
0

𝑑𝑘′ 𝜌(𝑘)𝜌(𝑘′) ln(𝑘− 𝑘′) −

∞

∫
0

𝑑𝑘

𝑘

∫
0

𝑑𝑘′𝜌(𝑘) ln(𝑘− 𝑘′) , (3.5)

 to a constant of (1) and where we have moved the 𝜌-independent term ln𝑛! to the left hand side. Rewriting the double integral 
 a way symmetric in 𝑘 and 𝑘′ and performing the integral over 𝑘′ in the second term, we obtain

ln
𝑑𝑛[𝜌(𝑘)] = 1

∞

𝑑𝑘

∞

𝑑𝑘′ 𝜌(𝑘)𝜌(𝑘′) ln |𝑘− 𝑘′|− ∞

𝑑𝑘𝜌(𝑘)𝑘(ln𝑘− 1) . (3.6)
5

𝑛! 2 ∫
0

∫
0

∫
0
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tegrals involving singular kernels, such as ln |𝑘 − 𝑘′|, are always defined via their principal value, since the discrete version omits 
e points 𝑘𝑖 = 𝑘𝑗 while including points 𝑘𝑖 = 𝑘𝑗 ±1, leading to a symmetric regularization. Similarly, the logarithm of the dimension 
 the irrep (2.15) becomes in the continuum limit

ln dim[𝜌(𝑘)] = − ln
𝑁−1∏
𝑠=1

𝑠! +

∞

∫
0

𝑑𝑘

𝑘

∫
0

𝑑𝑘′ 𝜌(𝑘)𝜌(𝑘′) ln(𝑘− 𝑘′) . (3.7)

e distribution 𝜌(𝑘) satisfies the constraints

0 ⩽ 𝜌(𝑘) ⩽ 1 ,

∞

∫
0

𝑑𝑘𝜌(𝑘) =𝑁 ,

∞

∫
0

𝑑𝑘𝑘𝜌(𝑘) = 𝑁2

2
+ 𝑛 . (3.8)

e first constraint arises from the fermionic property 𝑘𝑖 ⩾ 𝑘𝑖+1 + 1, while the other two are the continuous, large-𝑁 version of 
.17).

In the large-𝑛, 𝑁 limit the statistics of irreps will be dominated by one particular distribution 𝜌(𝑘) corresponding to one irrep, 
e contribution from other irreps falling off exponentially as the density deviates from that distribution. The determination of the 
minant irrep depends on the quantity of interest. In a pure mathematical context, the number of irreps 𝑑𝑛;𝐤 could be the quantity 
 interest, and we would need to maximize it with respect to 𝜌(𝑘). That is, we would maximize the expression in (3.5) under the 
nstraints (3.8). In statistical physics applications, on the other hand, the relevant quantity is the total number of states at given 
ergy and other thermodynamic state variables. Assuming that the irrep determines all such variables (energy etc.), the relevant 
antity is the total number of a given irrep times its dimensionality (number of states), that is,

𝑚𝑛;𝐤 = dim(𝐤)𝑑𝑛;𝐤 =
𝑛!Δ(𝐤)2

𝑁−1∏
𝑠=1

𝑠!
𝑁∏
𝑖=1

𝑘𝑖!

, with

𝑁∑
𝑖=1

𝑘𝑖 = 𝑛+ 𝑁(𝑁 − 1)
2

, (3.9)

here we used ((2.14) and (2.15)). In terms of the (discrete) fermion density 𝜌𝑠 we have that

𝑚𝑛;𝜌 =
𝑛!∏𝑁−1
𝑠=1 𝑠!

𝑀∏
𝑡>𝑠=0

(𝑡− 𝑠)(2𝜌𝑠−1)𝜌𝑡 . (3.10)

e above obeys the formal duality invariance 𝜌𝑠 → 𝜌̃𝑠 =
1
2 − 𝜌𝑀−𝑠. However, this is not a true duality since, given that 𝜌𝑠 = 0 or 1, 

takes the values ±1
2 . In the large-𝑛, 𝑁 limit in which 𝜌𝑠 → 𝜌(𝑘) we obtain from ((3.5) and (3.7)) that

ln𝑚𝑛[𝜌(𝑘)] = 2

∞

∫
0

𝑑𝑘

𝑘

∫
0

𝑑𝑘′ 𝜌(𝑘)𝜌(𝑘′) ln(𝑘− 𝑘′) −

∞

∫
0

𝑑𝑘𝜌(𝑘)𝑘(ln𝑘− 1) , (3.11)

 to a 𝜌-independent constant. This is identical in form to ln(𝑑𝑛[𝜌(𝑘)]∕𝑛!) in (3.5), the only difference being the factor of 2 in front 
 the double integral.
We can thus consider the general form

𝑆𝑤,𝑛[𝜌(𝑘)] =
𝑤

2

𝑀

∫
0

𝑑𝑘

𝑀

∫
0

𝑑𝑘′ 𝜌(𝑘)𝜌(𝑘′) ln |𝑘− 𝑘′|− 𝑀

∫
0

𝑑𝑘𝜌(𝑘)𝑘(ln𝑘− 1) , (3.12)

here we ignored any overall 𝜌-independent constant and introduced an upper cutoff 𝑀 for the 𝑘 integrals, with the understanding 
at 𝜌(𝑘) = 0 for 𝑘 > 𝑀 . This reproduces the cases ln𝑑𝑛[𝜌] for 𝑤 = 1 and ln𝑚𝑛[𝜌(𝑘)] for 𝑤 = 2, but can describe a more general 
uation. Note that the case of general 𝑤 would correspond to starting, instead of (3.9), with

𝑚𝑤,𝑛;𝐤 =
(
dim(𝐤)

)𝑤−1
𝑑𝑛;𝐤 =

𝑛!
(
Δ(𝐤)

)𝑤
(𝑁−1∏

𝑠=1
𝑠!
)𝑤−1 𝑁∏

𝑖=1
𝑘𝑖!

,

𝑁∑
𝑖=1

𝑘𝑖 = 𝑛+ 𝑁(𝑁 − 1)
2

. (3.13)

ere is a clear distinction between the cases 𝑤 > 1 and 𝑤 < 1. The latter one is rather exotic, and perhaps unphysical, as it would 
rrespond to a statistical model with entropy decreasing as the dimensionality of the irrep increases.
The quantity 𝑆𝑤,𝑛[𝜌(𝑘)] is invariant under the formal duality transformation

𝜌(𝑘)→ 𝜌̃(𝑘) =𝑤−1 − 𝜌(𝑀 − 𝑘) . (3.14)
6

alogous to the one for the 𝑤 = 2 case (3.10). For 𝜌̃ to obey the fermionic constraint 0 < 𝜌̃ < 1, 𝜌 must satisfy
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. 1. The potential 𝑉𝜆(𝑘) for a generic value of 𝜆. It has a “rigid wall” at 𝑘 = 0 and forms a well for all values of 𝜆, allowing for a distribution 𝜌(𝑘) localized inside 
 well, either touching 𝑘 = 0 or with support entirely at 𝑘 > 0.

𝑤−1 − 1 < 𝜌 <𝑤−1 , (3.15)

hich implies that 𝜌̃ will also satisfy it. Further, 𝜌̃ satisfies the integral constraints (3.8) with modified parameters 𝑁̃ and 𝑛̃

𝑁̃ = 𝑀

𝑤
−𝑁 , 𝑛̃ = 𝑛+ (𝑤− 1)𝑀(𝑀 − 2𝑤𝑁)

2𝑤2 . (3.16)

r the special value 𝑀 = 2𝑤𝑁 we see that 𝑁̃ =𝑁 and 𝑛̃ = 𝑛 and therefore the transformation (3.14) becomes a self-duality. Note, 
wever, that this duality holds only for densities satisfying (3.15) so it remains a restricted invariance. Its domain, in particular, 
es not include the singlet.
To calculate the dominant irrep, that is, the distribution 𝜌(𝑘) maximizing 𝑆𝑤,𝑛, we maximize 𝑆𝑤,𝑛[𝜌(𝑘)] while enforcing the 
nstrains (3.8) via two Lagrange multipliers. That is, we extremize

𝑆𝑤,𝑛[𝜌(𝑘)] − 𝜇

⎛⎜⎜⎝
∞

∫
0

𝑑𝑘𝜌(𝑘) −𝑁

⎞⎟⎟⎠− 𝜆

⎛⎜⎜⎝
∞

∫
0

𝑑𝑘𝑘𝜌(𝑘) − 𝑛− 𝑁2

2

⎞⎟⎟⎠ . (3.17)

here from now on we take 𝑀 →∞ keeping in mind that, in general, 𝜌(𝑘) will vanish outside a finite range. Using (3.5) and setting 
e functional derivative with respect to 𝜌(𝑘) to zero yields

𝑤

∞

∫
0

𝑑𝑘′ 𝜌(𝑘′) ln |𝑘− 𝑘′| = 𝑘(ln𝑘− 1) + 𝜇 + 𝜆𝑘 . (3.18)

rther differentiating (3.18) with respect to 𝑘 we obtain

𝑤

∞

∫
0

𝑑𝑘′
𝜌(𝑘′)
𝑘− 𝑘′

= ln𝑘+ 𝜆 . (3.19)

e above equation must hold for 𝑘 such that 𝜌(𝑘) ≠ 0 and 𝜌(𝑘) ≠ 1, since in empty regions with 𝜌(𝑘) = 0 there are no 𝑘𝑖 to vary, and 
 fully filled ones with 𝜌(𝑘) = 1 the 𝑘𝑖 cannot vary.
Hence, from (3.18) we see that the problem amounts to finding the equilibrium distribution of a large number of particles 
pelling each other with a logarithmic potential of strength 𝑤, inside an external potential given by the right hand side of (3.18), 
at is

𝑉𝜆(𝑘) = 𝑘(ln𝑘− 1) + 𝜆𝑘 , (3.20)

here we have omitted the constant term 𝜇. This potential is depicted in Fig. 1. It has a rigid “wall” at 𝑘 = 0 and goes to infinity 
 𝑘 →∞. Therefore, it may always support a finite lump of particles, spread around its minimum value 𝑉𝜆,min = −𝑒−𝜆 arising at 
= 𝑒−𝜆. The issue is whether this lump extends all the way to the boundary at 𝑘 = 0, and if it respects the condition 0 ⩽ 𝜌(𝑘) ⩽ 1. As 
e shall see, this depends on the values of 𝑁, 𝑛 and 𝑤.
In the following sections, we solve the minimization problem and obtain the dominant 𝜌(𝑘). We will first treat the case 𝑤 = 1
7

aximizing 𝑑𝑛[𝜌(𝑘)]), since the solution simplifies and has some special properties, and then extend it to general 𝑤.



A.

Fig

po

3.

to

m

ca

3.

0 <

w

Th

ad

w

th

Fo

ro

Th
Nuclear Physics, Section B 999 (2024) 116434P. Polychronakos and K. Sfetsos

0

𝑧

𝑎 𝑏
Re(𝑠)

Im(𝑠)

. 2. Contour of integration in the 𝑠-plane. The original (magenta) contour around the square root cut on (𝑎, 𝑏) is pulled back to the two (cyan) contours around the 
le at 𝑧 and the logarithm cut on (−∞, 0).

3. 𝑤 = 1, maximal 𝑑𝑛

In this case the equation satisfied by 𝜌(𝑘) is simply (3.19) with 𝑤 = 1

∞

∫
0

𝑑𝑘′
𝜌(𝑘′)
𝑘− 𝑘′

= ln𝑘+ 𝜆 , (3.21)

gether with the constraints (3.8). Moreover, for 𝑤 = 1 the duality relation (3.14) becomes exact, as it preserves the range of 𝜌 and 
aps the singlet to itself. Depending on whether the inequality constraint 𝜌 ⩽ 1 is saturated in a finite domain, we distinguish two 
ses, corresponding to broken or unbroken duality symmetry.

3.1. Duality breaking phase 𝑛 >𝑁2∕4
We start by assuming that the distribution 𝜌(𝑘) does not reach the “wall” on the left at 𝑘 = 0, i.e., it is nonzero inside an interval 
𝑎 < 𝑘 < 𝑏 and vanishes outside. Then solving (3.19) becomes a standard single-cut Cauchy problem. We define the resolvent

𝑢(𝑧) = ∫ 𝑑𝑘
𝜌(𝑘)
𝑧− 𝑘

, (3.22)

ith 𝑧 on the upper complex plane. Its real and imaginary part on the real axis reproduce 𝜌(𝑘) and its Hilbert transform

𝑢(𝑘+ 𝑖𝜖) = −∫ 𝑑𝑘′
𝜌(𝑘′)
𝑘− 𝑘′

− 𝑖𝜋𝜌(𝑘) . (3.23)

erefore, a function that is analytic on the upper half plane and its real part on the real axis equals ln𝑘 + 𝜆 will equal 𝑢(𝑧) up to an 
ditive constant, and its imaginary part will fix 𝜌(𝑘). In standard fashion, we write

𝑢(𝑧) = 1
2𝜋𝑖

√
(𝑧− 𝑎)(𝑧− 𝑏)∮ 𝑑𝑠

ln 𝑠+ 𝜆

(𝑠− 𝑧)
√
(𝑠− 𝑎)(𝑠− 𝑏)

, (3.24)

here the contour winds in the clockwise direction around the cut of the square root but does not include the singularity at 𝑧 and 
e cut of the logarithm (see Fig. 2).
Pulling back the contour we pick up the pole at 𝑠 = 𝑧 and the integral around the cut of the logarithm

𝑢(𝑧) = ln𝑧+ 𝜆−
√
(𝑧− 𝑎)(𝑧− 𝑏)

∞

∫
0

𝑑𝑠

(𝑠+ 𝑧)
√
(𝑠+ 𝑎)(𝑠+ 𝑏)

= ln𝑧+ 𝜆− 𝑖 cos−1 2𝑧− 𝑎− 𝑏

𝑏− 𝑎
+ 𝑖 cos−1 (𝑎+ 𝑏)𝑧− 2𝑎𝑏

(𝑏− 𝑎)𝑧
.

(3.25)

r 𝑧 = 𝑘 real and between 𝑎 and 𝑏 (the region in which 𝜌(𝑘) does not vanish) the last two terms are purely imaginary (the square 
ot factor multiplying the integral provides a factor +𝑖, since we assume that 𝑧 approaches 𝑘 from the upper-half complex plane). 
en, according to (3.23), we determine 𝜌(𝑘) as

𝜌(𝑘) = 1
𝜋
cos−1 2𝑘− 𝑎− 𝑏

𝑏− 𝑎
− 1

𝜋
cos−1 (𝑎+ 𝑏)𝑘− 2𝑎𝑏

(𝑏− 𝑎)𝑘

= 2 cos−1
√

𝑘+
√

𝑎𝑏∕𝑘
, 𝑎 ⩽ 𝑘 ⩽ 𝑏 .

(3.26)
8

𝜋
√

𝑎+
√

𝑏
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e last expression above makes clear that 𝜌(𝑘) indeed vanishes at 𝑘 = 𝑎 and 𝑘 = 𝑏. It also makes clear that 𝜌(𝑘) is positive and never 
comes larger than 1 (since the argument of cos−1 never becomes negative and thus the angle does not exceed 𝜋∕2), so 𝜌(𝑘) satisfies 
e constraint 0 ⩽ 𝜌(𝑘) ⩽ 1.
The parameters 𝑎, 𝑏 and 𝜆 can be determined by matching the asymptotics of 𝑢(𝑧)

𝑢(𝑧) = 𝑧−1

∞

∫
0

𝑑𝑘𝜌(𝑘) + 𝑧−2

∞

∫
0

𝑑𝑘𝑘𝜌(𝑘) +(
𝑧−3

)
= 𝑧−1𝑁 + 𝑧−2

(
𝑛+ 𝑁2

2

)
+(

𝑧−3
)
,

(3.27)

here in the second line we used (3.8), with those implied from (3.25). We obtain

𝑁 =
(
√

𝑏−
√

𝑎)2

2
,

𝑛+ 𝑁2

2
=

2(𝑏− 𝑎)2 + (
√

𝑏−
√

𝑎)4

16
,

𝜆 = −2 ln
√

𝑎+
√

𝑏

2
,

(3.28)

m which the parameters 𝑎, 𝑏 and 𝜆 are determined in terms of 𝑁 and 𝑛 as

√
𝑎 =

√
𝑁

2

(√
1 + 𝑡

2
− 1

)
,

√
𝑏 =

√
𝑁

2

(√
1 + 𝑡

2
+ 1

)
,

𝜆 = −ln 𝑁

4
− ln

(
1 + 𝑡

)
,

(3.29)

here we defined

𝑡 = 4 𝑛

𝑁2 . (3.30)

e above expressions make clear that, in order for both parameters 𝑛, 𝑁 to remain relevant, their scaling must be 𝑛 ∼𝑁2, identifying 
n (3.30) as the relevant order parameter. Under that scaling, 𝑘, 𝑎, 𝑏, and 𝑒−𝜆 all scale like 𝑁 ∼

√
𝑛. The form of 𝜌(𝑘) in (3.26)

comes, upon substituting (3.29),

𝜌(𝑘) = 2
𝜋
cos−1

√
𝑘

𝑁
+ 1

4

√
𝑁

𝑘

(
𝑡− 1

)
√

𝑡+ 1
, 𝑎 ⩽ 𝑘 ⩽ 𝑏 . (3.31)

can be checked that the above density indeed obeys (3.8).
Since 

√
𝑎 > 0, (3.29) shows that this solution will exist for 𝑛 >𝑁2∕4, that is, 𝑡 > 1. For 𝑛 <𝑁2∕4 the above solution is not valid, 

d the point 𝑛 =𝑁2∕4 marks a transition. Clearly 𝜌(𝑘) in (3.31) does not satisfy the self-duality condition 𝜌(𝑘) = 1 − 𝜌(2𝑁 − 𝑘), so 
e phase 𝑛 >𝑁2∕4 is a duality breaking one.

3.2. Duality preserving phase 𝑛 <𝑁2∕4
For 𝑛 =𝑁2∕4 (𝑡 = 1) the parameter 𝑎 is driven to zero and the solution (3.26) of the previous section becomes

𝜌(𝑘) = 1
𝜋
cos−1 2𝑘− 𝑏

𝑏
= 2

𝜋
cos−1

√
𝑘

𝑏
, 0 < 𝑘 < 𝑏 . (3.32)

e parameters 𝑏 and 𝜆 in this case can be obtained from the 𝑎 → 0 limit of the corresponding expressions (3.29) as

𝑏 = 4
√

𝑛 , 𝜆 = −1
2 ln𝑛 . (3.33)

e note that, now, 𝜌(0) = 1. This marks a transition to a phase where the density 𝜌(𝑘) saturates to 1 over a finite interval when 
𝑁2∕4.
In fact, in this phase the expression for the maximal 𝑑𝑛[𝜌(𝑘)] develops a flat region for a range 0 ⩽ 𝑘 ⩽ 𝑎 with the rest of it 
coming 𝑁 -independent, for all 𝑛 <𝑁2∕4. This is already clear in the case of finite 𝑁 > 𝑛: the expression (2.14) for 𝑑𝑛,𝐤 also holds 
𝑁 is replaced by 𝑁 ′ >𝑁 . Specifically, define the new “extended” momenta 𝑘′

𝑖
with 𝑖 = 1, 2, … , 𝑁 ′

′
{

𝑘𝑖 +𝑁 ′ −𝑁 , 𝑖 = 1,… ,𝑁
9

𝑘
𝑖
=

𝑁 ′ − 𝑖 , 𝑖 =𝑁 + 1,… ,𝑁 ′ .
(3.34)
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. 3. The distribution 𝜌(𝑘) for various values of 𝑛∕𝑁2 . For 𝑛 = 0 (first panel) the distribution is a step function corresponding to the singlet. For 0 < 𝑛 < 𝑁2∕4
cond panel) the edge of the distribution deforms into an inverse cosine. For 𝑛 =𝑁2∕4 (third panel) the deformation reaches 𝑘 = 0, signaling a phase transition. As 
n as 𝑛 exceeds 𝑁2∕4 (fourth panel) the left edge of the distribution drops to 𝜌(0) = 0, and as 𝑛 increases (fifth panel) 𝜌(𝑥) has support on a positive interval. For 
𝑁2∕4 (sixth panel) it approaches a Wigner semicircle distribution.

entical to the old ones but shifted to the right by 𝑁 ′ −𝑁 with the “Fermi sea” filled to their left (the second line above). Then we 
ve

𝑑𝑛,𝐤 = 𝑑𝑛,𝐤′ . (3.35)

is can be shown, e.g., inductively. For 𝑁 ′ =𝑁 + 1,

𝑁 ′∏
𝑗>𝑖=1

(𝑘′
𝑖
− 𝑘′

𝑗
)

𝑁 ′∏
𝑖=1

𝑘′
𝑖
!

=

𝑁∏
𝑗>𝑖=1

(𝑘𝑖 − 𝑘𝑗 )
𝑁∏
𝑖=1

(𝑘𝑖 + 1)

𝑁∏
𝑖=1

(𝑘𝑖 + 1)!

=

𝑁∏
𝑗>𝑖=1

(𝑘𝑖 − 𝑘𝑗 )

𝑁∏
𝑖=1

𝑘𝑖!

(3.36)

d by induction we can reach any value 𝑁 ′ >𝑁 . It is clear that

𝑁 ′∑
𝑖=1

𝑘′
𝑖
= 𝑛+ 𝑁 ′(𝑁 ′ − 1)

2
, (3.37)

here we used (2.14) for 𝑘. Therefore, {𝑘′
𝑖
} represents the same irrep as {𝑘𝑖} (same Young tableau) arising from the direct product 

 𝑛 fundamentals of 𝑆𝑈 (𝑁 ′). This translates to a corresponding relation in the momentum density description. It can be checked 
at the new “extended” density

𝜌′(𝑘) =
{

1 , 0 < 𝑘 <𝑁 ′ −𝑁 ,

𝜌(𝑘+𝑁 −𝑁 ′) , 𝑘 >𝑁 ′ −𝑁 ,
(3.38)

oduces the same 𝑑𝑛[𝜌(𝑘)] in (3.5).
This provides an extension of the solution (3.32), which was ostensibly valid only for 𝑛 =𝑁2∕4, to any 𝑛 > 𝑁2∕4. Specifically, 
plying (3.38) with 𝑁 → 2

√
𝑎 and 𝑁 ′ →𝑁 for the configuration (3.32), and taking also into account that 𝑏 = 4

√
𝑛, we obtain

𝜌(𝑘) =
⎧⎪⎨⎪⎩

1 , 0 < 𝑘 <𝑁 − 2
√

𝑛 ,
1
𝜋
cos−1 𝑘−𝑁

2
√

𝑛
, 𝑁 − 2

√
𝑛 < 𝑘 <𝑁 + 2

√
𝑛 (3.39)

d zero elsewhere. It can be checked that the above density indeed satisfies (3.8). Moreover, it is self-dual, satisfying

𝜌(𝑘) = 1 − 𝜌(2𝑁 − 𝑘) , 0 < 𝑘 < 2𝑁 . (3.40)
10

erefore, 𝑛 <𝑁2∕4 represents a duality preserving phase. An evolution of 𝜌(𝑘) for various values of 𝑛∕𝑁2 is presented in Fig. 3.
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We conclude by pointing out that the distribution (3.39) reproduces the VKLS limiting Young tableau shape for a large number 
 boxes 𝑛 weighted by the Plancherel measure [25,26]. The VKLS parametrization of Young tableau shapes is achieved by reflecting 
e Young tableau about its top row, rotating it by 𝜋∕4 in the positive direction to produce a V-based shape, and rescaling it by a 
ctor of 1∕

√
𝑛. The coordinates (𝑥, 𝑦) of the last box of row 𝓁𝑖, for large 𝑛, will be

𝓁𝑖 =
√

𝑛

2
(𝑥+ 𝑦) , 𝑖 =

√
𝑛

2
(𝑦− 𝑥) (3.41)

ing over to our variables 𝑘𝑖, we recall relation (2.7) between 𝓁𝑖 and 𝑘𝑖. In fact, we will slightly modify this relation to 𝑘𝑖 =
+𝑁 − 𝑖, so that 𝓁𝑁 is not necessarily 0. This has the advantage that the total number of boxes in the tableau is 𝑛, at the price of 
tentially introducing columns of length 𝑁 in the tableau, although in the duality preserving phase this will never happen since 
= 0. Then, in the continuum limit 𝑁, 𝑛 ≫ 1, (3.41) implies

𝑘 =𝑁 +
√
2𝑛𝑥 . (3.42)

e corresponding density of 𝑘𝑖 will be

𝜌(𝑘) = − 𝑑𝑖

𝑑𝑘
= 1

2

(
1 − 𝑑𝑦

𝑑𝑥

)
. (3.43)

on substituting (3.39) and integrating, we obtain

𝑦 = ∫
(
1 − 2𝜌(𝑁 +

√
2𝑛𝑥)

)
𝑑𝑥 =

⎧⎪⎨⎪⎩
2
𝜋

(√
2 − 𝑥2 + 𝑥 sin−1 𝑥√

2

)
, |𝑥| ⩽√

2 ,

|𝑥| , − 𝑁√
2𝑛

⩽ 𝑥 ⩽ −
√
2 or 𝑥 ⩾

√
2 ,

(3.44)

here the integration constant was fixed by the condition that 𝑘 = 0 for 𝑖 =𝑁 . This is the VKLS distribution, with the left branch 
 |𝑥| truncated at 𝑥 = −𝑁∕

√
2𝑛, and is valid for all 𝑛 < 𝑁2∕4. The relation of our work with the Plancherel process and related 

stributions will be analyzed in an upcoming publication.

3.3. The Wigner semicircle limit 1 ≪𝑁 ≪
√

𝑛

In the limit 𝑛 ≫𝑁2∕4 ≫ 1 (𝑡 ≫ 1), deep in the duality breaking region, the particle momenta 𝑘𝑖 lump near the minimum of the 
ective potential in (3.20), where it can be approximated as a harmonic oscillator. The minimum arises at

𝑘0 = 𝑒−𝜆 = 𝑛

𝑁
+ 𝑁

4
≃ 𝑛

𝑁
= 𝑁

4
𝑡 (3.45)

d the potential can be approximated by

𝑉 (𝑘) ≃ − 𝑛

𝑁
+ 𝑁

2𝑛

(
𝑘− 𝑛

𝑁

)2
. (3.46)

 a consequence, the distribution 𝜌(𝑘) will become a Wigner semicircle around 𝑘0 with radius 
√
2𝑛 =𝑁

√
𝑡∕2

𝜌(𝑘) = 𝑁

𝜋𝑛

√
2𝑛−

(
𝑘− 𝑛

𝑁

)2
= 2

𝜋

√
2
𝑡

√
1 − 2

(𝑘∕𝑁 − 𝑡∕4)2
𝑡

. (3.47)

e same result is obtained by taking a limit of 𝜌(𝑘) in (3.26): we set 𝑘∕𝑁 = 𝑡∕4 +
√

𝑡 𝑦, where the form of the last term is dictated 
 the fact that 𝑘 has range 𝑏 − 𝑎 ≃𝑁

√
2𝑡 for 𝑡 ≫ 1. Expanding 𝜌(𝑘) for large 𝑡 we obtain to leading order

𝜌(𝑘) ≃ 2
𝜋
cos−1

(
1 − 1 − 2𝑦2

𝑡

)
≃ 2

𝜋

√
2
𝑡

√
1 − 2𝑦2 . (3.48)

instating the variable 𝑘∕𝑁 we recover (3.47).
Interestingly, this result also derives from the 𝑛 ≫𝑁 ∼ 1 distribution (3.1). The exponent of the gaussian exponential corresponds 

 𝑘𝑖 having a potential (𝑁∕2𝑛)𝑘2
𝑖
. which is the same potential as (3.46). The Vandermonde factor in front endows the 𝑘𝑖 with a 

garithmic mutual repulsive potential, while the delta-function puts the average momentum (1∕𝑁) 
∑

𝑖 𝑘𝑖 to the value 𝑛∕𝑁 , leading 
 the Wigner semicircle distribution (3.47). So the 𝑁 ∼ 1 result reliably reproduces the 1 ≪𝑁 ≪ 2

√
𝑛 situation, but not the one for 

∼ 2
√

𝑛, which leads to distorted Wigner semicircle distributions and, eventually, to the phase transition to the self-dual phase.

3.4. Phase transition
The point 𝑛 =𝑁2∕4, or 𝑡 = 1, clearly marks a phase transition. To identify the order of the phase transition and the properties 

 the two phases we calculate the maximal 𝑑𝑛 for the dominant 𝜌(𝑘) in each phase. We will compute its first few derivatives with 
spect the order parameter 𝑡 and will discover a discontinuity in its third derivative at 𝑡 = 1, identifying it as a third-order transition.
We will use the standard result that the derivative with respect to 𝑛 of any functional 𝐹 [𝜌(𝑘)] of 𝜌(𝑘) that does not explicitly 
11

pend on 𝑛 at its maximum in 𝜌(𝑘) subject to the constraints (3.8) is given by the Lagrange multiplier 𝜆 for 𝑛. Indeed,
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𝜕

𝜕𝑛
𝐹 [𝜌(𝑘)]=

∞

∫
0

𝑑𝑘
𝛿𝐹 [𝜌(𝑘)]
𝛿𝜌(𝑘)

𝜕𝜌

𝜕𝑛
=

∞

∫
0

𝑑𝑘 (𝜇 + 𝜆𝑘)𝜕𝜌
𝜕𝑛

(3.49)

=𝜇
𝜕

𝜕𝑛

∞

∫
0

𝑑𝑘𝜌+ 𝜆
𝜕

𝜕𝑛

∞

∫
0

𝑑𝑘𝑘𝜌 = 𝜇
𝜕𝑁

𝜕𝑛
+ 𝜆

𝜕

𝜕𝑛

(
𝑛+ 𝑁2

2

)
= 𝜆 ,

here we used the saddle point condition and the constraints. The quantity ln(𝑑𝑛[𝜌(𝑘)]∕𝑛!) that was maximized with respect to 𝜌(𝑘)
deed does not involve 𝑛 explicitly, and thus

𝜕

𝜕𝑛
ln

𝑑𝑛[𝜌(𝑘)]max
𝑛!

= 𝜆 , (3.50)

, in terms of the order parameter 𝑡 = 4𝑛∕𝑁2,

𝜕

𝜕𝑡
ln

𝑑𝑛[𝜌(𝑘)]max
𝑛!

= 𝑁2

4
𝜆 . (3.51)

here we have explicitly indicated that it is the density at the maximal configuration.
Before proceeding to compute further derivatives, we may integrate (3.50) above to find 𝑑𝑛[𝜌(𝑘)]max itself. In the duality preserv-
g phase 𝑛 <𝑁2∕4 (𝑡 < 1), for which 𝜆 = −1

2 ln𝑛 from (3.33), we obtain

ln
𝑑𝑛[𝜌(𝑘)]max

𝑛!
= −𝑁2

8
𝑡

(
ln 𝑡− 1 + 2 ln 𝑁

2

)
= −𝑛

2
(ln𝑛− 1) ≃ −1

2
ln𝑛! , (3.52)

here the integration constant has been fixed such that in the limit 𝑛 → 0, in which we are left with the fundamental irrep, 𝑑𝑛 → 1. 
erefore,

duality preserving phase ∶ 𝑑𝑛,max = 𝑑𝑛[𝜌(𝑘)]max ≃
√

𝑛! . (3.53)

milarly, for the duality breaking phase, 𝜆 is given by (3.29), so we find

ln
𝑑𝑛[𝜌(𝑘)]max

𝑛!
= 𝑛−

(
𝑛+ 𝑁2

4

)
ln

(
𝑛

𝑁
+ 𝑁

4

)
− 𝑁2

4

(
1
2
− ln 𝑁

2

)
(3.54)

here we fixed the integration constant by matching the result at 𝑛 =𝑁2∕4 with the one in the duality preserving phase, since 𝜌(𝑘)
s no discontinuity at the transition point. Thus

duality breaking phase: 𝑑𝑛,𝑚𝑎𝑥 = 𝑑𝑛[𝜌𝑛(𝑘)] =𝑁𝑛

𝑛!
(
𝑁2

4

)
!(

𝑛+ 𝑁2

4

)
!

(
2𝑒−1∕2

)𝑁2∕4
. (3.55)

e above was written in a suggestive form, one of several equivalent forms at the 𝑁, 𝑛 ≫1 limit, to display the leading behavior: 
e multiplicity of the dominant irrep becomes a fraction of the total number of states 𝑁𝑛 . As 𝑛 increases, this fraction becomes

𝑑𝑛,𝑚𝑎𝑥

𝑁𝑛
≃
(
𝑁2

4

)
!
(

2
𝑛𝑒1∕2

)𝑁2∕4
, 𝑛 ≫𝑁2∕4 . (3.56)

is clear that ln𝑑𝑛∕𝑛!, playing the role of free energy, has no discontinuity at the transition point, and neither does its first derivative, 
ce 𝜆 is continuous across the transition. It turns out that the second derivative in 𝑡 for fixed 𝑁 evaluated at 𝑡 = 1 is also continuous. 
ecifically,

𝜕

𝜕𝑡
ln

𝑑𝑛[𝜌(𝑘)]max
𝑛!

|||𝑡→1−
= −𝑁2

4
ln 𝑁

2
= 𝜕

𝜕𝑡
ln

𝑑𝑛[𝜌(𝑘)]max
𝑛!

|||𝑡→1+
,

𝜕2

𝜕𝑡2
ln

𝑑𝑛[𝜌(𝑘)]max
𝑛!

|||𝑡→1−
= −𝑁2

8
= 𝜕2

𝜕𝑡2
ln

𝑑𝑛[𝜌(𝑘)]max
𝑛!

|||𝑡→1+
,

(3.57)

wever, the third derivative is discontinuous:

𝜕3

𝜕𝑡3
ln

𝑑𝑛[𝜌(𝑘)]max
𝑛!

|||𝑡→1−
= 𝑁2

8
,

𝜕3

𝜕𝑡3
ln

𝑑𝑛[𝜌(𝑘)]max
𝑛!

|||𝑡→1+
= 𝑁2

16
.

(3.58)

erefore, this is a 3rd-order phase transition.
The picture that emerges in terms of fermion momenta is that, for large 𝑁 , the singlet irrep corresponds to a filled Fermi sea with 
rmi level 𝑘 =𝑁 . Multiplying with fundamental irreps excites the state by one unit of momentum per irrep and results in excitations 
12

ound the Fermi level. As long as 𝑛 < 𝑁2∕4 the excitations remain localized around the Fermi level and are 𝑁 -independent. For 
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=𝑁2∕4 the excitations reach the bottom of the sea (𝑘 = 0), marking a phase transition, and for 𝑛 >𝑁2∕4 the entire Fermi sea is 
cited and lifted above 𝑘 = 0. We remark that, in the case 1 ≪ 2

√
𝑛 < 𝑁 < 𝑛, there are in principle irreps with all the 𝑘𝑖 excited 

ove their ground state (singlet) values, but such irreps have subleading multiplicities and are irrelevant in the large-𝑁 limit.

4. General repulsion 𝑤 ≠ 1, maximal 𝑆𝑤,𝑛

For general 𝑤, the equation for 𝜌(𝑘) that maximizes 𝑆𝑤,𝑛[𝜌(𝑘)] is (3.19) with the constraints (3.8). The solution proceeds along 
ilar lines as the 𝑤 = 1 case. Rather than “duality preserving” and “duality violating” phases, we will talk about “condensed” and 
ilute” cases, the former being one where the density reaches its saturation value 𝜌(𝑘) = 1 for a range of values of 𝑘, the latter one 
ith 𝜌(𝑘) always less than 1. As we shall see, for 𝑤 > 1 the condensed phase always involves a saturation region [0, 𝑎] for 𝑘, while 
r 𝑤 < 1 it can saturate in a region [𝑎1, 𝑎2] with 0 < 𝑎1 < 𝑎2. We shall focus on the physically more relevant case 𝑤 ⩾ 1 from now 
, for reasons explained below (3.13).

4.1. Dilute phase 𝑛 > 𝑛𝑤
In this case 𝜌(𝑘) < 1 for all 𝑘 and the solution can be obtained from the 𝑤 = 1 solution with a simple rescaling. Specifically,

𝜌̄(𝑘) =𝑤𝜌(𝑘) , 𝑁 =𝑤𝑁 , 𝑛̄ =𝑤𝑛+ 𝑤(1 −𝑤)𝑁2

2
, (3.59)

tisfy the same equations and constraints for 𝑤 = 1. We can use the solution in that case to find

𝜌(𝑘) = 2
𝑤𝜋

cos−1
√

𝑘+
√

𝑎𝑏∕𝑘√
𝑎+

√
𝑏

, 𝑎 ⩽ 𝑘 ⩽ 𝑏 , (3.60)

ith √
𝑎 =

√
(2 −𝑤)𝑁

4
+ 𝑛

𝑁
−
√

𝑤𝑁

2
,

√
𝑏 =

√
(2 −𝑤)𝑁

4
+ 𝑛

𝑁
+
√

𝑤𝑁

2
,

𝜆 = −ln
(
(2 −𝑤)𝑁

4
+ 𝑛

𝑁

)
.

(3.61)

early 𝜌(𝑘) <𝑤−1 and thus 𝜌(𝑘) ⩽ 1 for 𝑤 ⩾ 1. The above solution will exist as long as 
√

𝑎 ⩾ 0, and thus for 𝑛 above a critical value 

𝑛 > 𝑛𝑤 = (3𝑤− 2)𝑁2

4
⟹ 𝑡 > 3𝑤− 2 , (3.62)

r the order parameter 𝑡 defined in (3.30). For 𝑤 = 1 we recoved the transition at 𝑛 =𝑁2∕4, while for the number of states case 
 = 2 the transition happens at 𝑛 =𝑁2.

4.2. Condensed phase 𝑛 < 𝑛𝑤
For 𝑛 < 𝑛𝑤 (𝑡 < 3𝑤 −2) the solution (3.60) ceases to exist and we enter the condensation phase. Similar to the solution (3.39), we 
t

𝜌(𝑘) =
{

1 , 0 < 𝑘 < 𝑎 ,

𝜌0(𝑘− 𝑎) , 𝑎 < 𝑘 < 𝑎+ 𝑏 ,
(3.63)

d zero elsewhere, with 𝑎, 𝑏 two positive constants. The function 𝜌0(𝑘) satisfies the constraints

0 ⩽ 𝜌0(𝑘) ⩽ 1 ,

𝑏

∫
0

𝑑𝑘𝜌0(𝑘) =𝑁 − 𝑎 ,

𝑏

∫
0

𝑑𝑘𝑘𝜌0(𝑘) =
(𝑁 − 𝑎)2

2
+ 𝑛 . (3.64)

bstitution of 𝜌(𝑘) in (3.12) yields, upon changing variable 𝑘 → 𝑘 + 𝑎,

𝑆𝑤,𝑛[𝜌0(𝑘)] =
𝑤

2

∞

∫
0

𝑑𝑘

∞

∫
0

𝑑𝑘′ 𝜌0(𝑘)𝜌0(𝑘′) ln |𝑘− 𝑘′|
−𝑤

∞

𝑑𝑘𝜌0(𝑘)𝑘(ln𝑘− 1) + (𝑤− 1)

∞

𝑑𝑘𝜌0(𝑘) (𝑘+ 𝑎)
(
ln(𝑘+ 𝑎) − 1

)
,

(3.65)
13

∫
0

∫
0
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0

𝑧

𝑏
−𝑎 Re(𝑠)

Im(𝑠)

. 4. Contour of integration in the 𝑠 plane. The original (magenta) contour around the (black) square root cut on (0, 𝑏) is pulled back to the two (cyan) contours 
und the pole at 𝑧 and the two (blue) logarithm cuts on (−∞, 0) and (−∞, −𝑎).

here we omitted terms set to be constant by the constraints and harmlessly extended the integration range to infinity since 𝜌0(𝑘)
s finite range. Adding to this the constraints (3.64) with appropriate Lagrange multipliers and following the procure that led to 
.18) we obtain the equilibrium equation for 𝜌0

𝑤

∞

∫
0

𝑑𝑘′ 𝜌0(𝑘′) ln |𝑘− 𝑘′| =𝑤𝑘(ln𝑘− 1) − (𝑤− 1)(𝑘+ 𝑎)
(
ln(𝑘+ 𝑎) − 1

)
+ 𝜇 + 𝜆𝑘 . (3.66)

king the 𝑘-derivative we obtain the analog of (3.19), i.e.
∞

∫
0

𝑑𝑘′
𝜌0(𝑘′)
𝑘− 𝑘′

= ln𝑘− 𝛾 ln(𝑘+ 𝑎) + 𝜆∕𝑤 , when 𝜌0(𝑘) > 0 (3.67)

d where we defined for convenience the parameter2

𝛾 = 1 − 1
𝑤

, 𝛾 ∈ [0,1] . (3.68)

e see that the equation for 𝜌0(𝑘) now has a two-logarithm potential, given by the right hand side of (3.66) as

𝑉𝜆,𝑤,𝑎(𝑘) =𝑤𝑘(ln𝑘− 1) − (𝑤− 1)(𝑘+ 𝑎)
(
ln(𝑘+ 𝑎) − 1

)
+ 𝜆𝑘 . (3.69)

p to a constant term 𝜇), while for 𝑤 = 1 the second logarithm drops out.
To solve for 𝜌0(𝑘), we define as before the resolvent

𝑢0(𝑧) = ∫ 𝑑𝑘
𝜌0(𝑘)
𝑧− 𝑘

, (3.70)

producing 𝜌0(𝑘) and its Hilbert transform as

𝑢0(𝑘+ 𝑖𝜖) = −∫ 𝑑𝑘′
𝜌0(𝑘′)
𝑘− 𝑘′

− 𝑖𝜋𝜌0(𝑘) . (3.71)

 analogy to (3.24), we set

𝑢0(𝑧) =
1
2𝜋𝑖

√
𝑧(𝑧− 𝑏)∮ 𝑑𝑠

ln 𝑠− 𝛾 ln(𝑠+ 𝑎) + 𝜆∕𝑤

(𝑠− 𝑧)
√

𝑠(𝑠− 𝑏)
, (3.72)

here the contour winds in the clockwise direction around the cut of the square root [0, 𝑏] but does not include the singularity at 
nor the cuts of the logarithms (so it “threads” the real line at 𝑘 = 0) (see Fig. 4). Pulling back the contour we pick up the pole at 
𝑧 and the integral around the cuts of the logarithms and obtain

𝑢0(𝑧) = ln𝑧− 𝛾 ln(𝑧+ 𝑎) + 𝜆

𝑤
−
√

𝑧(𝑧− 𝑏)
⎡⎢⎢⎣

∞

∫
0

−𝛾

∞

∫
𝑎

⎤⎥⎥⎦ 𝑑𝑠

(𝑠+ 𝑧)
√

𝑠(𝑠+ 𝑏)
. (3.73)

r 𝑧 = 𝑘 real and between 0 and 𝑏 (the region in which 𝜌0(𝑘) does not vanish) the last term proportional to 
√

𝑧(𝑧− 𝑏) is purely 
aginary and, according to (3.71), determines 𝜌0(𝑘) as
14

A similar equation to (3.67) was found in [27] (eq. (5.2) of that work) in a matrix model approach to black hole microstates.
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𝜌0(𝑘) =
√

𝑘(𝑏− 𝑘)
⎡⎢⎢⎣(1 − 𝛾)

∞

∫
0

+𝛾

𝑎

∫
0

⎤⎥⎥⎦ 𝑑𝑠

(𝑠+ 𝑘)
√

𝑠(𝑠+ 𝑏)
. (3.74)

on performing the integrals,

𝜌0(𝑘) =
2
𝑤𝜋

cos−1
√

𝑘

𝑏
+ 2(𝑤− 1)

𝑤𝜋
cos−1

√
(𝑎+ 𝑏)𝑘
(𝑎+ 𝑘)𝑏

. (3.75)

e density 𝜌0(𝑘) is a decreasing function of 𝑘, with 𝜌0(0) = 1 and 𝜌0(𝑏) = 0. For 𝑤 = 1 this recovers the result (3.32), while for the 
mber of states case 𝑤 = 2 it reduces to

𝜌0(𝑘) =
1
𝜋
cos−1

√
𝑘

𝑏
+ 1

𝜋
cos−1

√
(𝑎+ 𝑏)𝑘
(𝑎+ 𝑘)𝑏

= 1
𝜋
cos−1

(1 +
√
1 + 𝑏∕𝑎)𝑘− 𝑏

𝑏
√
1 + 𝑘∕𝑎

. (3.76)

e parameters 𝑎, 𝑏 and 𝜆 can be related to 𝑁 and 𝑛 by matching the asymptotic expansion of 𝑢0(𝑧)

𝑢0(𝑧) = 𝑧−1

∞

∫
0

𝑑𝑘𝜌0(𝑘) + 𝑧−2

∞

∫
0

𝑑𝑘𝑘𝜌0(𝑘) +(
𝑧−3

)
= 𝑧−1 (𝑁 − 𝑎) + 𝑧−2

(
𝑛+ (𝑁 − 𝑎)2

2

)
+(

𝑧−3
)
,

(3.77)

m (3.70) using (3.64) to those from (3.72). We obtain

𝜆 = 2(𝑤− 1) ln
√

𝑎+
√

𝑎+ 𝑏

2
−𝑤 ln 𝑏

4
,

𝑁 − 𝑎 = 𝑏

2
− 𝛾

2

(√
𝑎+ 𝑏−

√
𝑎

)2
,

(𝑁 − 𝑎)2

2
+ 𝑛 = 3𝑏2

16
+ 𝛾

4

(
−3𝑏2

4
+ 2𝑎2 + (𝑏− 2𝑎)

√
𝑎(𝑎+ 𝑏)

)
.

(3.78)

though the system (3.78) is quite complicated, it can be explicitly solved for 𝑎, 𝑏. We set

𝑎 =𝑁

(√(
𝑤

2
− 1

)
𝑥+ 1 −

√
𝑤𝑥

2

)2
,

𝑏 = 2𝑁
√

𝑤𝑥

(
(𝑤− 2)𝑥+ 2

)
.

(3.79)

ese satisfy the last two of (3.78) provided that

𝑥 =
4𝑛∕𝑁2

𝑤+
√

𝑤2 + 4(𝑤− 2)𝑛∕𝑁2
. (3.80)

e above give for 𝜆

𝜆 =− ln 𝑁

2
− 𝑤

2
ln

(4𝑤𝑛

𝑁2

)
+
(
𝑤

2
− 1

)
ln

(
2 −𝑤+

√
𝑤2 + (𝑤− 2)4𝑛∕𝑁2

)
+ 𝑤

2
ln

(
𝑤+

√
𝑤2 + (𝑤− 2)4𝑛∕𝑁2

)
.

(3.81)

te that the argument of the square roots are strictly positive for 𝑛 < 𝑛𝑤.

As a consistency check, for 𝑤 = 1 the above reproduce the results (3.28) (for 𝑎 = 0), while for 𝑛 = 𝑛𝑤 = (3𝑤 − 2)∕4𝑁2, 𝑥 = 1
d thus 𝑎 = 0, 𝑏 = 2𝑤𝑁 and the results match the results of the dense case at the critical point. Also, 𝑛 = 0 implies 𝑥 = 0, and thus 
=𝑁 , 𝑏 = 0, reproducing the singlet distribution.
For 𝑤 = 2 the results simplify considerably and we obtain

𝑤 = 2 ∶ 𝑎 =
(√

𝑁 −
√

𝑛

𝑁

)2
, 𝑏 = 4

√
𝑛 , 𝜆 = −ln 𝑛

𝑁
. (3.82)

markably, these are just the dilute case results (3.61) for 𝑤 = 2 (noting that 𝑏 in that case maps to 𝑎 + 𝑏 in the present case), 
alytically continued for negative values of 𝑛 −𝑁2.
The behavior of 𝜌(𝑘) for 𝑤 > 1 is qualitatively similar as for 𝑤 = 1, with the notable exception that the maximal value of 𝜌(𝑘)

 the dilute phase is 𝜌 = 1∕𝑤, achieved for 𝑘 ≃ 0 as 𝑛 → 𝑛𝑤 + 𝜖. However, 𝜌(0) jumps from 𝜌(0) = 0 for 𝑛 = 𝑛𝑤 + 𝜖 to 𝜌(0) = 1 for 
15

𝑛𝑤 − 𝜖. This behavior is displayed in Fig. 5.
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. 5. The distribution 𝜌(𝑘) for 𝑤 = 2 around the critical point 𝑛 =𝑁2 . Both the dilute (blue) density and the dense (red) density have a value close to 𝑤−1 = 1∕2
ar 𝑘 = 0, but the dilute one sharply dips to 0 and the dense one sharply rises to 1, for an increasingly sharp transition as 𝑛 crosses the critical value 𝑁2.

Table 1

Phase transitions for various values of 𝑤 ⩾ 1.

transition 3rd order 4th order no transition

𝑤 = 1 ✓
𝑤> 1 (𝑤 ≠ 2) (crossover) ✓
𝑤 = 2 ✓

4.3. Phase transition
The general 𝑤 case exhibits an interesting pattern of phase transitions, depending on the value of 𝑤. As in the 𝑤 = 1 case, the “free 
ergy” functional 𝑆𝑤[𝜌(𝑘)] appearing in (3.12) does not depend explicitly on 𝑛, so its derivative with respect to 𝑛 at the dominant 
nfiguration is still given by the value of the Lagrange multiplier 𝜆. We have explicit expressions for 𝜆 in both phases, dilute (3.61)
d condensed (3.81), so we may directly calculate its derivatives on either side of the critical point 𝑛 = 𝑛𝑤. Equivalently, we give 
 expansion around the critical point. For the condensed phase 𝑛 < 𝑛𝑤 the expansion is

𝑛 < 𝑛𝑤 ∶ 𝜆 = −ln 𝑤𝑁

2
− 2

𝑤𝑁2 (𝑛− 𝑛𝑤) +
2

𝑤2𝑁4 (𝑛− 𝑛𝑤)2

− 8 − 14𝑤+ 7𝑤2

3𝑤3(1 −𝑤)2𝑁6 (𝑛− 𝑛𝑤)3 +…
(3.83)

hile for the dilute phase 𝑛 > 𝑛𝑤 we obtain

𝑛 > 𝑛𝑤 ∶ 𝜆 = −ln 𝑤𝑁

2
− 2

𝑤𝑁2 (𝑛− 𝑛𝑤) +
2

𝑤2𝑁4 (𝑛− 𝑛𝑤)2

− 8
3𝑤3𝑁6 (𝑛− 𝑛𝑤)3 +… .

(3.84)

e see that for all values of 𝑤 > 1, except 𝑤 = 2, 𝜆 and its first two derivatives in 𝑛 (equivalently in 𝑡) are continuous, while its 
ird derivative is discontinuous at 𝑛 = 𝑛𝑤. This means that the first three derivatives of 𝑆𝑤 are continuous but the fourth one is 
scontinuous, signaling a fourth-order phase transition at 𝑛 = 𝑛𝑤.

3

The values 𝑤 = 2 and 𝑤 = 1 are special. For 𝑤 = 2, all derivatives of 𝜆 are continuous across 𝑛 = 𝑛2 =𝑁2, since 𝜆 in this case is 
ven by a unique analytic function of 𝑛 (3.82), so there is no phase transition.
The case 𝑤 = 1 is trickier. From (3.83) and (3.84) we would deduce that the second derivative of 𝜆 is continuous, in contradiction 

 the results of section 3.3.4. What in fact happens is that for 𝑤 = 1 + 𝜖, the second derivative 𝑑2𝜆∕𝑑𝑛2 in the condensed phase 
splays an increasingly sharp transition: it approaches 8∕𝑁4 as 𝑛 approaches 𝑛1 = 𝑁2∕4, which is the value for 𝑤 = 1, but at 
∼ 𝑁2∕4 − 𝜖2 it starts sharply dropping, and as 𝑛 exceeds 𝑁2∕4 it reaches 4∕𝑁4, the value consistent with (3.83) (see Fig. 6). 
ysically, for 𝑤 close to 1 the system goes through a crossover near 𝑛 = 𝑛𝑤, which is increasingly sharp as 𝑤 approaches 1 and 
comes a full phase transition at 𝑤 = 1. Mathematically, the limits 𝑤 → 1 and 𝑛 → 𝑛𝑤 in the condensed phase do not commute. By 
ntrast, in the dilute phase the 𝑤 → 1 limit is smooth. The various phase transitions are summarized in Table 1.
As in the 𝑤 = 1 case, we can integrate 𝜆 with respect to 𝑛 to find the quantity 𝑚𝑤,𝑛 for general 𝑤. Note that the relation of 𝑚𝑤,𝑛

 (3.13) with 𝑆𝑤,𝑛 of (3.12) is
16

In [27] a third order phase transition was mentioned with an order parameter related to 𝑤. Its relationship to our present work is not obvious.
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. 6. Plots of 𝜆′′(𝑛) = 𝑑2𝜆∕𝑑𝑛2 for 𝑤 = 1 (blue curve) and 𝑤 = 1.01 (red curve) around the 𝑤 = 1 critical point 𝑛 =𝑁2∕4. For 𝑤 = 1.01 there is a sharp transition 
m 𝜆′′ ≃ 4∕𝑁4 to 𝜆′′ ≃ 8∕𝑁4 but no discontinuity, while for 𝑤 = 1 the transition evolves into a discontinuity. The 𝑤 = 1.01 curve has a cusp at its critical point, 
nifying a discontinuous 3𝑟𝑑 derivative and a fourth-order phase transition.

ln𝑚𝑤,𝑛 = 𝑆𝑤,𝑛 + ln𝑛! − (𝑤− 1)
𝑁−1∑
𝑠=1

ln 𝑠! (3.85)

d is defined such that for the singlet irrep it becomes 1. This fixes the integration constant in the dense case, and continuity at 
𝑛𝑤 fixes the integration constant in the dilute case. We obtain for the dense phase 𝑛 < 𝑛𝑤

ln𝑚𝑤,𝑛;max =
2𝑛(𝑤− 1)

𝑤+
√

4𝑛(𝑤−2)
𝑁2 +𝑤2

− 𝑛

2
(
(𝑤− 2) ln𝑛+𝑤 ln𝑤+ 1

)
+ 1

2
(
𝑤

(
𝑛+𝑁2)− 2𝑛−𝑁2) ln(√

4𝑛(𝑤− 2)
𝑁2 +𝑤2 −𝑤+ 2

)
+ 𝑛𝑤

2
ln
(√

4𝑛(𝑤− 2)
𝑁2 +𝑤2 +𝑤

)
+ (𝑤− 1)

(
𝑛 ln 𝑁

2
− 𝑁2

2
ln2

)
,

(3.86)

hich indeed vanishes for 𝑛 = 0. For the dilute phase 𝑛 > 𝑛𝑤 we have that

ln𝑚𝑤,𝑛;max = 𝑛 ln𝑛−𝑁

(
(2 −𝑤)𝑁

4
+ 𝑛

𝑁

)
ln

(
(2 −𝑤)𝑁

4
+ 𝑛

𝑁

)
+ 𝑁2

8

(
4 ln𝑁 +𝑤− 2 + 2𝑤 ln 𝑤

2𝑁

)
.

(3.87)

 the special case 𝑤 = 2 the expressions (3.86) and (3.87) simplify and unify, giving the result

𝑚2,𝑛;max =𝑁𝑛 , (3.88)

 expected, since the saddle point in the large-𝑁, 𝑛 limit must give the full number of states 𝑁𝑛 up to subleading terms (determi-
nts).

We conclude with a couple of remarks. In the case 0 <𝑤 < 1, 𝜌(𝑘) in (3.60) can reach or exceed the value 1 for 𝑛 below a critical 
lue higher than 𝑛𝑤, or equivalently a critical value for 𝑡

𝑡 < 𝑡𝑐 =
2𝑤

sin2 𝜋𝑤

2

+𝑤− 2 . (3.89)

r 𝑡 < 𝑡𝑐 , or 𝑛 < 𝑡𝑐𝑁
2∕4, the solution (3.60) is not valid any more, as it exceeds 1 at some interval. The true solution is one with

𝜌(𝑘) =
⎧⎪⎨⎪⎩

0 , 0 < 𝑘 < 𝑎1 or 𝑎2 < 𝑘 ,

𝜌1(𝑘) , 𝑎1 < 𝑘 < 𝑏1 ,

1 , 𝑏1 < 𝑘 < 𝑏2 ,

𝜌2(𝑘) , 𝑏2 < 𝑘 < 𝑎2 .

(3.90)

ading to a genuine two-cut Cauchy problem. We will not explore this solution, as 𝑤 < 1 would correspond to a statistical model with 
tropy decreasing as the dimensionality of the irrep increases (see (3.13)). This is rather unphysical, although it could conceivably 
d application in some exotic situation.
Finally, the case 𝑤 < 0 is even more unphysical, representing a drastic reduction of entropy. Its large-(𝑁, 𝑛) limit would corre-
ond to 𝑁 particles attracting each other with two-body logarithmic potentials. In the concave external potential 𝑉𝜆(𝑘) of (3.20)
e only stable configuration is one with all particles coalescing to an interval of length 𝑁 , for a density of 1, corresponding to the 
17

glet irrep.
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 Conclusions

We considered the multiplicity of irreps arising in the decomposition of 𝑛 fundamental representations of 𝑆𝑈 (𝑁), weighted 
 a power of their dimension. We showed that a nontrivial double scaling limit exists in which both 𝑛 and 𝑁 become large 
eping the ratio 𝑛∕𝑁2 fixed, and uncovered novel phase transitions in which this ratio plays the role of the order parameter. The 
stem generically undergoes a fourth order phase transition, from a dense to a dilute phase, enhanced to a third order one for the 
weighted multiplicity, and ceasing to exist altogether when weighting with the first power of the dimension, which corresponds 
 the infinite temperature partition function of nonabelian ferromagnets.
Our results are model independent, not involving a Hamiltonian, and should thus be relevant to the thermodynamics of nonabelian 

rromagnets at high temperatures. In this respect, it is interesting to reconsider the phase structure of the ferromagnetic model in 
hich 𝑛 atoms mutually interact via 𝑆𝑈 (𝑁) components, which we recently investigated in [22] in the thermodynamic limit 𝑛 ≫ 1
t for fixed finite 𝑁 . We expect that the present double scaling limit will qualitatively modify the phase structure, provided 𝑁 ∼

√
𝑛. 

e generalization of our results for a product of irreps other than the fundamental would also be interesting, the adjoint being the 
ost natural alternative choice. The related question of the relation of our results to Markov processes in the space of tableaux, such 
 the Plancherel process, is also of mathematical interest.
Finally, the relevance of our results to matrix models and large-𝑁 Yang-Mills theories should be explored. Of particular interest 
the understanding of microstates in the two-dimensional black hole of [28,29] with matrix models, along the lines of [30,31] and 
ore recently of [27,32], and of the deconfinement/Hagedorn transition in large-𝑁 gauge theories [33–35], especially in the setting 
 [36,37]. These and other related questions are the subject of ongoing investigation.
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